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ABSTRACT
With the fast development of the Internet of Things (IoT), smart
speakers for voice assistance have become increasingly important
in smart homes, which offers a new type of human-machine in-
teraction interface. Voice localization with microphone arrays can
improve smart speaker’s performance and enable many new IoT
applications. To address the challenges of complex indoor envi-
ronments, such as non-line-of-sight (NLOS) and multi-path prop-
agation, we propose voice fingerprinting for indoor localization
using a single microphone array. The proposed system consists
of a ReSpeaker 6-mic circular array kit connected to a Raspberry
Pi and a deep learning model, and operates in offline training and
online test stages. In the offline stage, the models are trained with
spectrogram images obtained from audio data using short-time
Fourier transform (STFT). Transfer learning is used to speed up the
training process. In the online stage, a top-K probabilistic method is
used for location estimation. Our experimental results demonstrate
that the Inception-ResNet-v2 model can achieve a satisfactory lo-
calization performance with small location errors in two typical
home environments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; •Computingmethodologies→Ma-
chine learning.
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Internet of Things (IoT), voice localization, deep learning, transfer
learning, microphone array.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiseML ’22, May 19, 2022, San Antonio, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9277-8/22/05. . . $15.00
https://doi.org/10.1145/3522783.3529528

ACM Reference Format:
Shivenkumar Parmar, XuyuWang, Chao Yang, and Shiwen Mao. 2022. Voice
Fingerprinting for Indoor Localization with a Single Microphone Array and
Deep Learning. In Proceedings of the 2022 ACMWorkshop onWireless Security
and Machine Learning (WiseML ’22), May 19, 2022, San Antonio, TX, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3522783.3529528

1 INTRODUCTION
With the rapid growth of the Internet of Things (IoT), smart speak-
ers in smart homes are in great demand, which can be used to locate
voices and provide voice assistance. The global smart speaker mar-
ket is expected to expand at a pace of 21.12% per year until 2024,
when it will reach $19.91 billion [1]. Current, Amazon Echo (Alexa)
and Google Home use a microphone array to provide voice assis-
tance corresponding to user voice commands. Thus, smart speaker
and microphone array driven IoT voice applications are becom-
ing a hot research area, with emerging applications such as voice
control of smart home devices, human-computer dialogue, indoor
localization, and voice-based entertainment applications.

The localization technique is useful for tracking objects or users
in indoor environments. Specifically, voice localization can improve
smart speaker’s performance in various ways [1, 2]. First, voice
localization can boost the long-range communications between a
smart speaker and a user using beamforming. Moreover, the user’s
position can provide useful context information, which helps better
understand the user’s intent. For example, if a user wants to turn on
the light, the smart speaker can determinewhich light will be turned
on based on the user’s location. In addition, voice localization can
offer location-based service (LBS). For example, the smart speaker
can dynamically adjust the room temperature (which can help
energy saving), if it knows where the user is. Last, voice localization
can also enhance the speech recognition performance. For example,
Google is developing a kitchen-related speech recognition system,
when the smart speaker can locate the user near the kitchen [3].

Traditionally, voice localization needs to use multiple distributed
microphone arrays with geometry-based methods (e.g., triangula-
tion). For example, the sound source localization can be estimated
by using directional-of-arrival (DoA) or time-difference-of-arrival
(TDOA) at multiple microphone arrays [4, 5]. However, such meth-
ods do not work for indoor localization with only a single microphone
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array. There are three voice localization systems using a single mi-
crophone array. VoLoc [6] is the first voice localization work with a
single microphone array, which uses an iterative align-and-cancel
algorithm for DOA estimation, and then employs an error reduction
technique to predict the location of neighboring wall reflections.
However, VoLoc is not effective in non-line-of-sight (NLOS) sce-
narios. The Symphony [2] system uses location-based filtering to
distinguish signals from different sound sources along with DOA
paths, and exploits a coherence-based module to identify sound sig-
nals from identical sources. In addition, MAVL [1] proposes a new
multi-resolution based DOA estimation algorithm from multiple
propagation paths. Although these existing works demonstrate the
feasibility of voice localization using a single microphone array,
voice localization in indoor environments (e.g., with rich multi-
path propagations) is still challenging for geometry-based methods,
since the number of paths and the line-of-sight (LOS) component
cannot be easily determined for voice localization.

To address the challenge of complex indoor environments, in this
paper, we propose voice fingerprinting for indoor localization with
a single microphone array. This proposed method is highly suitable
for NLOS and rich multi-path indoor environments. It can achieve
a satisfactory performance because the received sound signals from
NLOS can be exploited as features for indoor localization. Gener-
ally, fingerprinting-based indoor localization includes a training
phase and a test phase. We first build a database of many location
and data pairs in the training phase. When new measurements are
available from an unknown location in the test phase, we find the
best-match fingerprint from the database to compute the unknown
location [7]. We have proposed several fingerprinting-based indoor
localization systems using WiFi channel state information (CSI).
For example, we leveraged CSI amplitude, and bi-modal CSI data
for indoor localization using a deep autoencoder [8, 9]. We also
proposed a deep convolutional neural network for indoor localiza-
tion using CSI images [10]. Different from our previous CSI-based
localization works, in this paper, we leverage three deep convo-
lutional networks (i.e., Inception-v3 [11], ResNet-101-v2 [12], and
Inception-ResNet-v2 [13]) for voice localization with a single mi-
crophone array. In addition, we employ transfer learning to train
the models with collected voice dataset. The pre-trained ImageNet
weights of some layers are frozen, while the remaining layers are
fine-tunedwith the voice dataset. This approach has greatly speeded
up the training process and make the trained models fast adaptive
to new environments.

In this paper, we propose voice fingerprinting based indoor lo-
calization with a single microphone array, and use the above three
deep networks for location estimation. Particularly, we use the ReS-
peaker 6-mic circular array kit connected to a Raspberry Pi to collect
the audio dataset in two different indoor environments. Then, our
system records the user’s voice from different locations in these two
indoor home environments. Short-time Fourier transform (STFT) is
applied on audio data to transform it to spectrogram images, which
are then used for model training and testing. In the offline training
stage, we adopt transfer learning with the pre-trained weights and
fine-tune the model with new audio data to speed up the train-
ing process. In the online stage, we propose a top-K probabilistic
approach for location estimation. The main contributions of this
paper are summarized in the following.
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Figure 1: Architecture of the voice fingerprinting indoor lo-
calization system.

• To the best of our knowledge, this is the first work to use
voice fingerprinting for indoor localization with a single
microphone array using transfer learning.
• We employ STFT to create spectrogram images from au-
dio data, which are used to train three deep convolutional
neural networks using transfer learning in the offline stage.
Then, a top-K probabilistic approach is proposed for location
estimation in the online stage.
• We develop a prototype system with off-the-shelf micro-
phone array and Raspberry Pi. Our experimental study demon-
strates that the proposed deep learningmethod (i.e., Inception-
ResNet-v2 network) can achieve a satisfactory localization
performance with 1.6 meters and 1.55 meters average local-
ization errors in two home environments, respectively.

In the remainder of this paper, Section 2 presents the system
design. Our experimental study is discussed in Section 3. Section 4
concludes this paper.

2 SYSTEM DESIGN
2.1 System Architecture
Fig. 1 presents the architecture of the voice fingerprinting based
indoor localization system. In our proposed system, we collect audio
data for each user location, and then use the collected audio data
and location pairs to train a deep convolutional neural network
with the transfer learning approach. Then, we apply the trained
model to estimate users’ locations. Compared with DOA-based
voice localization, the voice fingerprinting approach works well
in the complex indoor scenarios (e.g., rich multi-path and NLOS
environments).

Specifically, we set up a Raspberry Pi device and connect a 6-mic
circular array kit to the Raspberry Pi using input-output pins. After
setting up our device, we collect audio data using the microphone
array for each user location. We consider two different indoor
environments to collect our datasets and build our localization
system. We collect the training and test data for each user location.
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Then, we apply STFT to the audio data to obtain spectrogram images
in the frequency-time space. Particularly, we obtain the spectrogram
image for each audio file, which will then be used to train the deep
convolutional neural networks.

In Fig. 1, the proposed system operates in an offline stage and
an online stage. In the offline stage, we first collect audio data and
apply STFT to transform the audio data into spectrogram images,
which are used to train the deep convolutional networks. In the
online stage, we feed the newly collected test spectrograms into the
trained deep convolutional neural networks to estimate the user’s
location.

2.2 Data Preprocessing with STFT
We collect audio data at different locations using the 6-mic circular
array kit controlled by a Raspberry Pi. The collected audio data are
saved in the .wav format. Then, we preprocess the audio data with
STFT to obtain spectrogram images.

Generally, fast Fourier transform (FFT) can convert audio signals
from the time domain to the frequency domain. However, FFT only
obtains a static snapshot of frequency and magnitude presented in
the entire signal, but it misses the useful information in the time
domain. Considering that audio data is represented as a time series,
we need to perform a windowing function on the sequence signal.
To address this problem, the STFT method is used as an effective
method to obtain the spectrogram in the time-frequency domain
at different time intervals. Thus STFT preserves the information
about how the frequency components change over time in the given
audio by performing a series of FFTs on the audio data.

Fig. 2 presents the captured audio data in the time domain and the
corresponding spectrogram in the time-frequency domains using
STFT, respectively. We can see that it is hard to obtain the frequency
information from the time domain audio data. After STFT, we obtain
both the time (i.e., 3 seconds) and frequency information (ie., 48
kHz) from the 2D image, which can be used for deep convolutional
neural networks to capture the features of audio data from a given
location, thus achieving a good localization performance.

2.3 Deep Convolutional Neural Networks
Deep neural networks are a type of machine learning algorithms
that extract features using non-linear processing neurons. Convolu-
tional neural network (CNN) is a class of deep learning algorithms
that are frequently used to solve computer vision problems. Instead
of using shallow CNN models (e.g., LeNet-5 [14]), we use three
powerful deep convolutional neural network (DCNN) models in-
cluding Inception-v3, ResNet-101-v2, and Inception-ResNet-v2 for
indoor localization with the spectrogram images from audio data,
and employ transfer learning to train with the spectrogram images,
which are discussed in details in the following.

2.3.1 Inception-v3. The Inception-v3 model was developed by the
Google Brain team for ImageNet, which is a powerful deep convo-
lution neural model with an efficient computing power [11]. On the
ImageNet dataset, Inception-v3 is the most popular image recogni-
tion model that has achieved an accuracy greater than 78.1% [11].
The model has symmetric and asymmetric building blocks, includ-
ing convolutions, average pooling, max pooling, concats, dropouts,
and fully connected layers. Specifically, the Inception-v3 model is
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Figure 2: Illustrate the spectrogram obtained using STFT,
where the unit of frequency is Hz and the unit of time is
second.

progressively built by using factorized convolutions for reducing
the number of parameters, smaller convolutions for fast training,
auxiliary classifier for the regularizer, and grid size reduction to
address the constraints of computational cost.

In this paper, we transform the format of our spectrogram images
into the size of 299×299×3 as input to the Inception-v3 model, and
use the pre-trained ImageNet weights to learn the features of the
spectrogram using transfer learning. Specifically, we use the fine-
tuning method to train weights of the fully connected layer to
learn the spectrogram data and the weights of remaining layers
are are frozen. Moreover, batch normalization used in the model is
extended to activation inputs. The Softmax function is employed
in the last layer for location label predication and cross-entropy is
used to calculate the loss. We consider the output shape of (15×1)
in Inception-v3 to classify 15 different locations. We also have the
following parameter setting for Inception-V3 in the two indoor
environments: batch size = 32, number of epochs = 60, learning
rate = 1e-4, momentum = 0.9, number of training images = 2400,
number of validation images = 615, optimizer = ’SGD,’ and patience
= 3, where 2,400 spectrogram images are used for model training,
and 615 spectrogram images are used for validation.

2.3.2 ResNet-101-v2. ResNet is one of the most efficient deep con-
volutional neural networks, which has achieved great success in
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computer vision [15]. ResNet has demonstrated excellent gener-
alization in several projects (e.g., ILSVRC and COCO 2015 com-
petitions of ImageNet recognition, COCO detection, and COCO
segmentation [15]). Currently, ResNet is also leveraged in other
fields (e.g., WiFi based localization [16]). The ResNet architecture
includes a variety of forms, each of which has a different num-
ber of layers (e.g., ResNet-18, ResNet-34, ResNet-50, ResNet-101,
ResNet-110, ResNet-152, and others). In this paper, we adopt the
ResNet-101-v2 architecture [12] that provides a trade-off between
the model complexity and the classification performance. The core
component in the ResNet is the bottleneck residual block, which
has an identity shortcut connection from the input to the output.
Batch normalization is also used to improve the performance of the
ResNet model.

In this paper, we use the ResNet-101-v2 model with pre-trained
ImageNet weights. For transfer learning, fine-tuning is also used
(i.e., similar to Inception-v3). We also consider input shape with
299×299×3 and output shape with 15×1 using the Softmax function
in ResNet-101-v2. We set the same parameters for ResNet101-v2
for both indoor environments as in the case of Inception-v3.

2.3.3 Inception-ResNet-v2. Both ResNet and Inception have be-
come the most popular deep convolutional neural networks in
image recognition, which can provide excellent results at a low com-
putational cost. Inception-ResNet-v2 is developed by integrating
the Inception framework and the ResNet framework, thus making
the network deeper and wider [13]. The Inception-ResNet-v2 model
can not only greatly improve the training speed, but also obtain
better features to boost the performance of the classification task.
Multiple convolutional filters of different sizes and residual connec-
tions are merged in the Inception-ResNet block. The use of residual
links not only prevents the over-fitting caused by deep networks
but also reduces the training time. Moreover, batch-normalization
is only used on top of the standard layers in Inception-ResNet-v2,
but not on top of the summations.

In this paper, we use the Inception-ResNet-v2 model on spec-
trogram images. The same transfer learning approach as the two
previous deep learning models is adopted here with pre-trained Im-
ageNet weights. We also consider input shape with 299×299×3 and
output shape with 15×1 for Inception-ResNet-v2. The same parame-
ters are used for Inception-ResNet-v2 for both indoor environments
as in the case of Inception-v3.

2.4 Online Testing
After training the deep convolutional neural networkswith the spec-
trogram data with transfer learning, we will use the trained models
for location estimation in the online phase (i.e., the test phase) using
newly measured audio data. We use a probabilistic method to com-
pute the user’s location, because it can generally achieve a higher
localization accuracy than the deterministic method [17, 18].

In all the three deep models, we use the Softmax function in the
last layer to predict location label. With the probabilistic method,
we consider the top-K outputs to estimate the user’s location. Let L̂
be the estimated location of the user, and pi be the ith probabilistic
value in the top-K outputs of the Softmax function. The user’s
location is estimated as a weighted average of the top-K known

Microphones

6-mic array

Raspberry

Pi

Figure 3: Configuration of the Raspberry Pi and the ReS-
peaker 6-mic circular array.

locations, given by

L̂ =
K∑
i
Li ×

pi∑K
i pi
, (1)

where Li is the ith training location in the top-K outputs. In this
paper, we consider top-3 outputs for location estimation. We will
compare the top-3 results with the top-1 results in the next section.

3 EXPERIMENTAL STUDY
3.1 Experimental Setup
3.1.1 Seeed’s ReSpeaker 6-mic Circular Array Kit. We use Seeed’s
ReSpeaker 6-mic circular array kit for data collection, which in-
cludes a 6-mic circular array and a voice accessory hat. It is devel-
oped for human-voice applications and can also be used to design
other useful voice applications with Raspberry Pi. The microphone
array kit provides eight input and eight output channels in the Rasp-
bian system. Among the eight input channels, the first six channels
are employed for recording and two channels are utilized for play-
back. Among the eight output channels, the first two channels are
for playback and the other six channels are dummy channels [19].
The microphone array kit also contains two ADC chips and one
DAC chip, and includes a 3.5 mm headset audio jack and a speaker
jack. Also, the maximum sampling rate is 48,000 Hz in the micro-
phone array. It is connected to the Raspberry Pi using 40 pin GPIO
headers.

3.1.2 Device Configuration. Fig. 3 shows the configuration of Seed’s
ReSpeaker 6-mic circular array kit with a Raspberry Pi 3 B+. We
have implemented four steps to set up the microphone array de-
vice [19]. First, we connect the ReSpeaker 6-mic circular array to
the ReSpeaker voice accessory hat using a ribbon cable. Second, we
connect the voice accessory hat to the Raspberry Pi through the 40
pin GPIO. Third, we connect the earphone into the 3.5mm headset
jack and the speaker into the JST 2.0 speaker jack. Last, we connect
the laptop to the Raspberry Pi with a cable.

After connecting the device to Raspberry Pi and the laptop, we
then install Seed’s voice card, which is developed for voice appli-
cations [19]. Then 6-mic circular array voice card is installed in
the Raspbian system, which can be used to record voice data. It
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Figure 4: Layout of home environment 1, where the train-
ing locations are marked in blue and the test locations are
marked in green.

will record sound on the AC108 ADC chip using 8 channels, where
captured audio will be on the first six channels. It will record data
in the .wav format, which is one of the most appropriate formats
for audio processing.

3.1.3 Data Collection in Two Indoor Environments. With the Rasp-
berry Pi and 6-mic circular array kit, we record user’s audio from
different locations in two home environments. Fig. 4 and Fig. 5
present the first and second home environments for data collection,
respectively. In both environments, we collect data in different ar-
eas (e.g., living room, dining room, and kitchen). The first home
environment is 10 meters long and 10 meters wide, and the second
home environment is 10 meters long and 5 meters wide. In both
environments, we place the microphone array device at the cen-
ter of the room and then collect voice data. We collect data at 15
different training and test locations in the two scenarios, where
all the 15 training and test locations are marked in meters in 2D
x and y coordinates. We place the microphone array device to the
origin, and the device’s (x ,y) coordinates are (0 m, 0 m). In Fig. 4
and Fig. 5, training locations are marked in blue and test locations
are marked in green. All the training and test locations are marked
in meters from the recording device location, which is the origin.
We consider test locations within a range of 1 meter from their
corresponding training locations. We collect user’s voices from
each location, where all audio files are stored in the .wav format.

In the remainder of this section, we will discuss the experimental
results of indoor localization using three deep learning models in
the two indoor environments, where Euclidean distance between
the true and predicted locations is used to compute location error.
Moreover, all the experiments are implemented using Python, ten-
sorflow, keras, and Scikit-Learn libraries, where Google Colab Pro
is employed as a cloud service to train all the models.
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Figure 5: Layout of home environment 2, where the train-
ing locations are marked in blue and the test locations are
marked in green.

Figure 6: CDFs of localization errors (in meters) with
Inception-v3.

3.2 Experimental Results
Our experiments results are discussed in this section. Fig. 6 presents
the cumulative distribution functions (CDFs) of location errors for
both test environments using the Inception-v3 model. We can see
that the median location errors are approximately 1.0 meter and 1.3
meters in environment 1 and environment 2, respectively. Further-
more, the 80th percentile location errors for the two environments
are about 3.0 meters and 3.3 meters, respectively. Fig. 7 plots the
CDFs of locations errors in the two environments using the ResNet-
101-v2 model. The median location errors are about 1.0 meter for
both environments. Using the ResNet-101-v2 model, the 80th per-
centile location errors for the two environments are 2.5 meters and
4.0 meters, respectively. Fig. 8 shows the CDFs of locations errors
in the two environments using the Inception-ResNet-v2 model. We
find that the median location errors are 1.0 meter and 0.8 meter in
environment 1 and environment 2, respectively. The 80th percentile
location errors for two environments achieved by the Inception-
ResNet-v2 model are both 2.3 meters. Thus, we conclude that the
Inception-ResNet-v2 model can achieve the best localization per-
formance and have highest robustness among the three models.
This is because it effectively takes advantage of both the Inception
model and the ResNet model.

In Table 1, we present the average localization errors achieved
by the three deep learning models (i.e., Inception-v3, ResNet-101-
v2, and Inception-ResNet-v2) in the two different indoor scenarios.

Session 1: RF Analytics WiseML ’22, May 19, 2022, San Antonio, TX, USA

25



Figure 7: CDFs of localization errors (inmeters) withResNet-
101-v2.

Figure 8: CDFs of localization errors (in meters) with
Inception-ResNet-v2.

Table 1: Comparison of Different Methods

Testing DCNN Top-1 Mean Top-3 Mean
Scenarios Methods Error (m) Error (m)

Scenario 1 Inception-v3 2.08 1.86
ResNet-101-v2 2.25 2.02

Inception-ResNet-v2 1.60 1.56

Scenario 2 Inception-v3 2.18 2.03
ResNet-101-v2 1.73 1.64

Inception-ResNet-v2 1.55 1.48

Both the top-1 scheme and the top-3 scheme are used for a compar-
ison study. Recall that the top-3 average location error is obtained
with the proposed probabilistic method described in Section 2.4,
while the top-1 average location error is achieved with the maxi-
mum Softmax output. We can see that all the top-3 average location
errors are smaller than the corresponding top-1 results. We also find
that Inception-ResNet-v2 achieves the minimum location errors
among the three schemes in both scenarios with the top-3 scheme,
which are 1.56 meters and 1.48 meters, respectively.

4 CONCLUSIONS
In this paper, we investigated voice fingerprinting for indoor local-
ization using a single microphone array. We presented the system
architecture of voice based indoor localization, including offline
training and online test stages. In particular, we applied STFT to
obtain spectrogram images from audio data, which was then used to
train three deep convolutional neural networks (i.e., Inception-v3,
ResNet-101-v2, Inception-ResNet-v2) for indoor localization, where
the transfer learning approach was utilized to speed up offline
training. A top-k probabilistic method was exploited for location
estimation. Our experimental results demonstrated efficacy of the
proposed approach and the Inception-ResNet-v2 model achieved
the best performance among the three models.
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