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Abstract—Human activity recognition has been used for var-
ious applications in Internet of Things (e.g., health monitoring,
security, and sport-related monitoring). Wi-Fi channel state
information (CSI) is widely used for activity recognition, where
CSI can capture human activities that influence wireless channel.
In this paper, we study the impact of adversarial attacks on deep
neural network (DNN) based human activity recognition with Wi-
Fi CSI. First, we discuss the system framework, where activity
recognition can be considered as a classification problem and a
specific DNN model is introduced. Then, we discuss adversarial
attack problem for DNN-based human activity recognition and
formulate three white-box attacks. In the experiment with a
public Wi-Fi CSI dataset, our results show that the performances
of DNN-based human activity classification are greatly influenced
by three white-box adversarial attacks.

I. INTRODUCTION

Human activity recognition has gained great attentions in
Internet of Things (IoT), which is widely employed in human
health monitoring (e.g., fall detection for elders), human-
computer interaction (HCI), security and surveillance, sport-
related analysis. Currently, several techniques have been used
for human activity recognition including sensor-based, radar-
based, RFID-based, and Wi-Fi based methods [1]. For sensor-
based methods, the wearable device (e.g., smartwatch) with
motion sensors (e.g., an accelerator and a gyroscope) can
recognize different activities such as step counter. More-
over, commodity radars such as Doppler-based or frequency-
modulated continuous-wave (FMCW)-based can be exploited
for contactless activity monitoring. Also, RFID is also used
for activity monitoring and pose estimation with cheap RFID
tags. Currently, Wi-Fi channel state information (CSI) be-
comes a mainstreaming research for activity monitoring using
signal processing and machine learning methods. For example,
CARM [2] is the first system work to use CSI to analyze
activity recognition, where discrete wavelet transform (DWT)
is used to extract features of CSI, and hidden Markov model
(HMM) is exploited for activity classification, which requires
manual feature extractions.

Compared with traditional machine learning, deep learning
techniques have high learning capacity and could automati-
cally extract the features, which also benefits human activity
classification. In this paper, we mainly focus on Wi-Fi CSI
based methods. For example, long short-term memory (LSTM)
technique is first used for human activity recognition with
Wi-Fi CSI amplitudes, which can obtain better performance

compared with CARM system [3]. In addition, attention based
Bi-directional LSTM (BiLSTM) model is proposed to improve
the accuracy in different Wi-Fi CSI datasets [4]. In addition,
unsupervised adversarial domain adaption is also used to
address wireless environment change problems [5]. Generative
adversarial networks (GAN) is used to augment the training
data to improve activity classification accuracy [6].

Although deep learning could improve the performance of
human activity recognition with Wi-Fi CSI, the deep neural
networks (DNN) are easily misled by adversarial examples that
are generated by adding a subtle perturbations [7]. Fast Gradi-
ent Sign Method (FGSM) attack method is the first to use an
one-step attack method to generate adversarial examples [8].
To enhance the performance of adversarial examples, other
iterative-based methods are also proposed such as Projected
Gradient Descent (PGD) [9] and Momentum Iterative Method
(MIM) [10]. Currently, adversarial attacks are being studied for
different applications. For example, adversarial attacks have
been only used for sensor-based [11] and radar-based human
activity recognition [12]. Also, there are some work to study
the impact of adversarial attacks on wireless communication
systems (e.g., modulation recognition, end-to-end communi-
cation system, indoor localization) [13], [14].

Motivated by the previous works, we study the impact of
adversarial attacks on DNN-based human activity recognition
with Wi-Fi CSI. The main idea is to leverage adversarial
examples to evaluate the models’ classification performance
by adding a small perturbation to Wi-Fi CSI. Specifically,
we use Wi-Fi CSI amplitude information for human activ-
ity recognition, because CSI amplitude is stable compared
with CSI phase information (where carrier frequency offset
(CFO) brings random phase errors over different packets). In
this paper, we first discuss the system model including the
offline stage and the online stage. In the offline stage, we
propose a modified BiLSTM model, which can capture the
CSI sequence features, and automatically study the importance
of features and time steps, thus improving the accuracy of
human activity recognition. Then, we introduce three white-
box attack methods (i.e., FGSM, PGD, and MIM) and evaluate
the performances of DNN-based human activity recognition
model using a public Wi-Fi CSI dataset.

The main contributions of this paper are summarized as
follows.
• To the best of our knowledge, this is the first work to



study the impact of adversarial attacks on DNN-based
human activity recognition using Wi-Fi CSI.

• We discuss the system model, including system archi-
tecture, and attention-based BiLSTM model for human
classification. Then, we also introduce three white-box
attacks methods.

• Using a public Wi-Fi CSI dataset, our experimental
results show that the three white-box attack methods
greatly mislead the performance of the used DNN model
for human activity recognition.

In the following, the preliminaries are introduced in Sec-
tion II. We present the system model in Section III and
adversarial attack models in Section IV. Our experimental
study in Section V. Section VI summaries this paper.

II. PRELIMINARIES

A. Channel State Information Preliminaries

Many wireless communication systems (e.g., Wi-Fi, LTE,
and 5G) leverage orthogonal frequency-division multiplexing
(OFDM) techniques in physical layer to obtain high data rate
and address frequency selective channel fading. Generally,
OFDM systems divide a large bandwidth into several orthog-
onal small bands (i.e., subcarriers). Also, cyclic prefix is used
as a guard interval to address intersymbol interference (ISI).
Fast Fourier transform (FFT) and inverse FFT (IFFT) are also
exploited in the receiver and the transmitter to implement the
OFDM systems, respectively.

Recently, several 802.11n/ac measurement tools (e.g., Intel
WiFi Link 5300 NIC [15]) become public, which can easily
extract CSI data from off-the-shelf Wi-Fi devices. Our model
uses the Intel 5300 NIC to collect CSI data including 30
out of the 56 subcarriers at the WiFi receiver for a 20MHz
or 40MHz channel. Generally, Wi-Fi CSI can capture the
multipath effect in indoor environments, which includes static
paths and dynamic paths. For wireless sensing, the static paths
(i.e., static vector) is constant, while the dynamic paths (i.e.,
dynamic vector) is variable that is reflected by the moving
object in different activities, or different locations. Thus, the
complex CSI value is also defined by

H(f, t) = (Hs(f) +
∑
i∈D

ai(f, t)e
−j 2πdi(t)

λ )e−j2π∆ft (1)

where H(f, t) is the CSI for the carrier frequency f at time
t, Hs(f) is the static vector, D is the set of dynamic paths,
ai(f, t) and di(t) are the channel attenuation and the ith path
length at time t, e−j2π∆ft is the phase shift because of the
carrier frequency difference.

Human activities (e.g., walking, standing up) will influence
CSI dynamic paths, thus leading to different complex CSI
values over time. The complex CSI value can be defined
Hi = |Hi| exp (j∠Hi), where |Hi| and ∠Hi are the amplitude
response and phase response of subcarrier i, respectively.
Generally, CSI amplitude and phase difference between two
antennas are stable, which can be used for wireless sensing
applications (e.g., indoor localization, vital sign monitoring,
and human activity recognition) [16], [17].

B. Adversarial Machine Learning

When a large dataset (e.g., image, audio, text, or wireless
data) is available, deep neural networks (DNN) have become a
powerful tool to solve the complex real-world problems (e.g.,
classification, regression, and data compression and genera-
tion). However, adversarial machine learning (i.e., a type of
machine learning methods) can fool deep neural networks by
adding a small perturbation into the input data (i.e. adversarial
examples) [7]. Specifically, a well-trained DNN model is easily
attacked by adversarial examples, which will lead to incorrect
classification.

Currently, adversarial examples can be generated by white-
box attacks and black-box attacks. When performing white-
box attacks, the attacker can access the entire information
including network framework, training weights and gradients,
and the dataset. Thus, the white-box attack can always obtain a
stronger attack by carefully crafting the adversarial examples.
For black-box attacks, the adversary does not know DNN
framework and weights, which can query the output of the
DNN model with the available input data. Also, the black-
box attack can use a local substitute DNN with a synthetic
dataset to generate the adversarial examples, which can not
only misclassify the substitute DNN model but also the target
DNN model [18].

III. SYSTEM MODEL

Deep Learning has been used for human activity recognition
problems to improve high classification accuracy, compared
with the traditional machine learning. However, DNN models
are vulnerable to the adversarial examples, which are only
slightly different from the original data. In the section, we will
discuss the system framework under adversarial attacks and
introduce DNN-based human activity classification problem.

A. System Architecture

Fig. 1 represents the system architecture of the human
activity recognition, which includes an offline training stage
and an online test stage. We consider Intel 5300 NIC to
collect WiFi CSI data, where CSI amplitude is used for activity
recognition because its stability. Generally, we can obtain 90
CSI subcarriers from three antennas as the input of DNN
model. In the offline stage, the training dataset is exploited
to train the DNN model to classify K activities. Note that in
this paper, we use the public dataset including seven different
activities. In the online stage, we use three three white-
box attacks to generate adversarial examples, which will be
introduced to the new Wi-Fi CSI amplitude data. In addition,
the trained DNN model is used to validate the performance of
human activity recognition in the online stage.

B. Problem Formulation

In human activity recognition problem, we denote x as the
input sequence data (i.e., CSI amplitudes from 500 packets and
90 subcarriers) in a sliding window, and define y the output
label (e.g., seven activities in this paper). Further, we exploit
f to represent the DNN model function, L to denote the loss



Fig. 1. System architecture.

function of the DNN model (i.e. categorical cross-entropy for
human activity classification problem), and θ to represent the
weight parameters of the DNN model. For human activity
classification problem with Wi-Fi CSI, the objective of the
problem is to minimize the loss function to seek the optimal
weight parameters of the DNN model, which is formulated by

argmin
θ
L(f(x, θ), y). (2)

By minimizing the loss function in th training stage, the
optimal weight parameters θ∗ are obtained, which will be
employed for human activity recognition in the online stage
using new Wi-Fi CSI amplitudes.

To validate the effect of adversarial attacks on DNN based
human activity recognition, the specific DNN model is used in
the proposed system. The table I summarizes the used DNN
model. First, the DNN model uses different layers including
input layer, bidirectional layer, attention layer, and three dense
layers. The last dense layer employs Solftmax function to
classify seven different activities. We also employ Adam as
the optimizer for the DNN model, using a batch size of 128
and the number of epochs of 50.

Specifically, before three dense layers, we use BiLSTM
and attention blocks in the DNN model. Compared with
LSTM that only processes CSI amplitudes in one direction
(past information), BiLSTM can consider the past and future
information, which includes a forward layer and a backward
layer. In addition, the use of attention model can focus on
the interest CSI signal parts, and obscure the rest for human
activity classification [4]. Specifically, the attention model
can automatically study the importance of features and time
steps, where larger weights are assigned to more important
features and time steps. In summary, BiLSTM can learn the
sequential features as the input of the attention model (i.e., the
self-attention), which can effectively improve the accuracy of
human activity recognition.

TABLE I
DNN MODEL

Model Type of Layer Output Shape Loss Function

DNN

Input Layer 500, 90

Categorical
Cross-entropy

Bidirectional Layer 500, 20
Attention Layer 20
Dense Layer 64
Dense Layer 32
Dense Layer 16
Dense Layer (Softmax) 7

IV. ADVERSARIAL ATTACK MODELS

In this section, We will discuss the adversarial attack prob-
lem for DNN-based human activity recognition, and then intro-
duce three white-box adversarial attack methods (e.g., FGSM,
PGD, and MIM) to validate the robustness performance of the
proposed system.

A. Problem Formulation

The widely used DNN model can be misled by adversarial
examples by adding a small perturbation to the new Wi-Fi
CSI amplitude. Generally, the objective of the adversary is to
destroy the performance of the DNN model by maximizing
the loss function, which is formulated by

argmax
xadv

L(f(xadv, θ∗), y), (3)

where xadv is the adversarial example. The adversarial exam-
ple xadv can be obtained by xadv = x + η, where η is the
perturbation. Traditionally, when the trained DNN model f
with parameter θ∗ can be accessed, we use a box-constrained
optimization problem (e.g., L-BFGS attack needs to use a
binary search to find the optimal parameter value) [7] to
generate an adversarial example xadv . However, it will have
high time complexity, which becomes impractical in real-
world applications. Therefore, we consider the one-step attack
method (i.e., FGSM) and two iterative attack methods (PGD
and MIM) in this paper, which are discussed as the follows.

B. Fast Gradient Sign Method

The FGSM attack method is an effective one-step attack to
reduce the time complexity, compared with L-BFGS attack.
Based on the given input, the FGSM attack method can
generate the perturbation η by calculating the gradient of the
loss function [8], which is defined by

η = ε · sign(OxL(f(x, θ∗), y)), (4)

where ε is a hyper-parameter to adjust the magnitude of the
perturbation. Given the loss function L , we can obtain the per-
turbation η by calculating the first derivative of L(f(x, θ∗), y)
using the backpropagation algorithm. The generalization of
FGSM is called the Fast Gradient Method (FGM) [19], where
the perturbation o FGM is formulated by

η = ε · OxL(f(x, θ∗), y)
‖OxL(f(x, θ∗), y)‖2

. (5)

Based on FGM method (5), we can conveniently generate the
perturbation.



C. Projected Gradient Descent Attack

Based on the one-step method (e.g. FGM), PGD attack was
proposed using an iterative version of FGM to enhance the
attack performance [9]. The PGD attack method could improve
the robustness of the DNN model against first-order attacks
methods (e.g., FGM). Based on PGD method (i.e. an iterative
method), we could generate the adversarial examples by

xadv0 = x, (6)

xadvN+1 = Clipx,ε

{
xadvN + α · OxL(f(xadvN , θ∗), y)∥∥OxL(f(xadvN , θ∗), y)

∥∥
2

}
,

(7)

where α a hyper-parameter in each iteration, which can be set
to ε/N , if the ε parameter is provided. The generated small
perturbation is around the original input x in the Lp ball.
In addition, Clipx,ε could project the perturbation back into
the Lp ball. The PGD method is a stronger adversarial attack
method, compared with one-step FGM/FGSM methods.

D. Momentum Iterative Method

Because PGD generates the adversarial examples greedily
along the direction of the gradient in each iteration, the
local maxima could be obtained easily, thus leading to the
poor transferability. To address this problem, the momentum
iterative method is used, which can leverage the gradient of
the previous iterations to help update the perturbation. Based
on the MIM method, the gradient is obtained by

g(N+1) = µ · gN +
OxL(f(xadvN , θ∗), y)∥∥OxL(f(xadvN , θ∗), y)

∥∥
2

, (8)

where gN includes the gradients from previous N−1 iterations
with a decay factor µ. Then, we can generate the adversarial
examples using the following equation,

xadv(N+1) = xadvN + α · sign(g(N+1)), (9)

where α could be set to ε/N when ε is given.

V. EXPERIMENTATION AND RESULTS

A. Experiment Configuration

We use a public Wi-Fi CSI dataset for human activity
recognition, which are collected in indoor environments [3].
A commodity Wi-Fi router and a laptop are used as the
transmitter and the receiver, both of which have the Intel
5300 NIC. Also, the transmitter and the receiver are located
three meters apart in line-of-sight (LOS) environment. Then,
the receiver has a sampling frequency of 1 kHz, where three
antennas are exploited to obtain 90 CSI values over a packet.
To implement CSI data segmentation, a sliding window (i.e.,
2 seconds) is employed. In addition, six persons collected
CSI data with seven common daily activities including “bed”,
“stand-up”, “fall”, “pick-up”, “run”, “sit-down” and “walk”,
where each person conducted an activity with a period of
20 seconds. Then, the first column in the CSI dataset offers
the timestamp; the second column to the 91st column provide
CSI amplitude values (90 subcarriers over three antennas) and

Fig. 2. Training loss vs validation loss.

Fig. 3. Confusion matrix of human activity classification with clear test data.

the remaining columns offer the phase information. In this
paper, we only use the CSI amplitude data for human activity
recognition. In addition, the data is divided into two subsets:
90% for training and validation, 10% for test.

We independently implemented three types of adversarial
attacks (i.e., FGSM, PGD, and MIM) for human activity
recognition. Three adversarial attacks have been performed in
the testing stage over different epsilon values. In all the ex-
periments, we use Python, Tensorflow, Keras, and Cleverhans
libraries for training and testing the used model. In addition,
Google Colab Pro is exploited as a cloud service to train the
DNN model.

In the following section, we will discuss the performance
of DNN-based human activity recognition, and validate their
performances under three white-box adversarial attacks.

B. Results and Discussions

Fig. 2 shows the loss over different epochs for training and
validation of human activity classification model. We use 50
epochs to train the DNN model in the offline stage. We can see



Fig. 4. Classification accuracy under different white-box attacks.

that the loss functions over training and validation decreases
with the increase of epochs. Then, the loss function curves
for training and validation will converge after the number of
epochs is about 40. Fig. 3 shows the confusion matrix for the
human classification model with clear test data, which can be
used to analyze the performance of the classification model.
We can see that the classification can predict the walking
activity much more accurately because of a large movement
from walking that will greatly influence CSI amplitude values.
In addition, for other activities, the classification model can
also obtain satisfied results.

Fig. 4 shows the accuracy of activity classification over
different epsilon values under three white-box attacks (i.e.,
FGSM attack, PGD attack, and MIM attack). The adversarial
examples are obtained by adding a small perturbation under
different epsilon values, which can determine the strength of
the noise in the original CSI amplitude data. We consider the
range of epsilons in [0.00001, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7].
In Fig. 4, we can see that the accuracy for the clear test
data (denoted by CLEAN) is about 0.85. However, under the
adversarial examples, the used DNN model cannot obtain good
results for all attacks. For example, at the epsilon with 0.7,
the accuracy for three attacks will drop under 0.3. Moreover,
we can notice that MIM and PGD attacks methods with the
iterative method are better than the one-step FGSM attack.
Therefore, we consider that all three white-box adversarial
attacks can mislead the human activity classification model
(i.e. the used DNN model).

VI. CONCLUSION

In this paper, we proposed adversarial machine learning for
human activity recognition using Wi-Fi CSI. We discussed
the system framework, where activity recognition can be
considered as a classification problem and the attention-based
BiLSTM model is introduced. Then, we discussed adversarial
attack problem for DNN-based human activity recognition and
formulated three white-box attacks (i.e., FGSM, PGD, and
MIM). In the experimental part with a public CSI dataset, our

results showed that the performances of DNN-based human
activity classification are greatly influenced by three white-
box adversarial attacks.
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