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Hyper-resolution land surface models can explicitly represent landscape scale heterogeneity, but the complexity
of representing finer scale processes and meeting computational needs makes them inaccessible to the general
scientific community and limits their adoption. In this work, we present the Multi-layer Canopy and 3D Soil
(MLCan3D) model, which is a high resolution, high fidelity, physical ecohydrologic model that aims to maintain
accessibility. MLCan3D implements detailed physical process representations, is accessible through graphical

user interface, and is tested using comparisons with other models and field data. This work demonstrates the
feasibility of using MLCan3D to produce simulations close to real systems and the potential of the model to
perform virtual experiments to explore model results. Our goal is for MLCan3D to serve as a virtual laboratory
that enables virtual experiments from the broader scientific community and contribute to our understanding of
ecohydrologic process heterogeneity, dynamics, and interactions across scales.

1. Introduction

Modeling of ecohydrologic processes is important in quantifying the
water resource dynamics such as prediction of floods and droughts, and,
among others, in understanding vegetation processes and ecosystem
carbon fluxes. Accurate quantification of land surface processes is also
important for weather and climate predictions because of the strong
interaction and feedback between land surface and atmospheric pro-
cesses (Walker and Rowntree, 1977; Shukla et al., 1990). Fine scale
ecohydrologic heterogeneity such as those related to topography, soil
moisture and water flux has been shown to significantly influence larger
scale ecosystem water and energy fluxes (Le and Kumar, 2017; Riley and
Shen, 2014; Vivoni et al., 2010), runoff and streamflow (Arrigo and
Salvucci, 2005; Barrios and Francés, 2012), and atmospheric feedback
and circulation (Nykanen and Foufoula-Georgiou, 2001). Current
models tend to focus on their ability to simulate large domains and
computation efficiency. They make sacrifices such as simplification of
process representations, reduction of process complexity and the range
of processes captured, and are often limited by computing hardware
constrains (Maxwell et al., 2015; Le et al., 2015). In this work, we pre-
sent a high-resolution and high fidelity ecohydrologic model that

focuses on detailed physical process representation, ease of use, and
broad applicability to serve as a virtual laboratory. It is aimed to enable
the general scientific community to use it to explore the interactions
between topographic variability and ecohydrologic processes where
complex feedback between these processes lead to non-linear ecohy-
drologic dynamics.

With recent advances in environmental data availability and
computational capability, there is a call for hyper-resolution land sur-
face models over the regional to global extent that can more explicitly
represent ecohydrologic heterogeneity to better understand and predict
the non-linear interactions between spatial variability and ecohydro-
logic processes (Bierkens et al., 2015; Wood et al., 2011). Hydrologic
and land surface models are starting to become available at the ~100 m
resolution for continental extent and ~1 km resolution for global extent
(Maxwell et al., 2015; Sutanudjaja et al., 2018; de Graaf et al., 2017).
Subgrid-scale  processes, such as those associated with
micro-topographic variability, are generally simplified with subgrid
parameterizations or ignored (Clark et al., 2015). However, current
understanding and model representation of many ecosystem processes
are developed and validated with sensor measurements at the meter
scale (Wood et al., 2011), and understanding and quantifying how
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processes behave at the ~100 m scale remains an issue (Clark et al.,
2015). Some hypothesize that current model formulations relating to
ecohydrologic processes are applicable and meaningful up to ~100 m
resolution as the limit (Wood et al., 2011; Riley and Shen, 2014).
However, other works find that meter scale micro-topographic features
influence stream flow (Dunne et al., 1991; Frei et al., 2010; Thompson
et al., 2010), infiltration (Frei and Fleckenstein, 2014; Le and Kumar,
2017), and vegetation (McGrath et al., 2012). Therefore,
micro-topographic variability is important for better understanding of
heterogeneous ecohydrologic processes and how they behave at larger
scales.

In order to better understand the complex interactions between
topographic variability and ecohydrologic processes, we need models
that can capture the influence of micro-topographic variability and
represent physical processes that couples heterogeneity with other
ecohydrologic dynamics. While such models are starting to emerge, the
increases in model resolution, fidelity of process representation, and
range of processes represented incur significant computational costs.
Many models prioritize the ability to simulate large domains and effi-
cient computation, (Maxwell et al., 2015; Le and Kumar, 2017), and they
are effective for their purpose and necessary for advancement of the
science. However, to meet computation needs, they may simplify pro-
cess representations and reduce process representations and couplings.
They also extensively leverage advanced hardware and computation
methods, and thus tend to be less accessible to general scientific com-
munity due to the learning curve needed to set up the models,
complexity of the code, and limiting knowledge to exploit advanced
hardware such as hybrid computing involving both CPU (central pro-
cessing units) and GPU (graphical processing units) (Le and Kumar,
2017). Due to such complexity, these models are also often only tested
on individual or limited number of sites (Baatz et al., 2018), further
limiting their adoption by general users. In order to stimulate scientific
exploration of how fine scale landscape heterogeneity affects ecohy-
drologic process dynamics, a model that overcomes the above issues and
focuses on physical process representation, greater accessibility, and
wider applicability is needed.

Therefore, in this work, we present the Multi-layer Canopy and 3D
Soil (MLCan3D) model: a high-resolution, high fidelity, but easy to use
ecohydrologic model for simulating heterogeneities from micro-
topographic scale to larger scales and their interactions with coupled
ecohydrologic processes. Our goal is to provide an accessible model for
the general scientific community that can be used as a virtual laboratory
for testing scientific hypotheses, investigating knowledge gaps, and
understanding ecohydrologic process interactions and dynamics (Fatichi
etal., 2016). In MLCan3D, we implement topography aware surface and
subsurface moisture dynamics with 2D diffusive overland flow and 3D
terrain-following Richards’ Equation for subsurface flow. We model
vegetation, energy, and above-ground moisture processes with an
advanced ecohydrologic process model, the Multi-Layer Canopy
(MLCan) model, that has been tested on a wide range of ecosystems
(Drewry et al., 2010a,b; Quijano et al., 2012, 2013; Quijano and Kumar,
2015). We tightly integrate our state of the art 3D flow model with
MLCan through root-soil moisture exchange and fully coupled surface
flow and land surface water and energy processes. To keep the model
accessible, we improve upon the Graphical User Interface (GUI) devel-
oped for MLCan (Le et al., 2012) to facilitate model setup, and we use the
Advanced Iterative Alternating Direction Implicit (AIADI) method (An
etal., 2011; Douglas and Rachford, 1956) to solve the subsurface flow so
that the model can be run without stringent computing hardware con-
straints. We simulate two very different ecosystems to test and demon-
strate the broad applicability of MLCan3D.

With the availability of extensive ecohydrologic observations from
observational networks such as the Critical Zone Observatories (CZOs)
(Brantley et al., 2006), the Long-Term Ecosystem Research (LTER)
network (Callahan, 1984), and the National Ecological Observatory
Network (NEON) (National Research Council, 2004), we have the ability

Environmental Modelling and Software 149 (2022) 105283

to develop simulations that capture real world behavior with high fi-
delity (Baatz et al., 2018). Based on these simulations, we can then
perform virtual experiments to gain understanding about processes in
temporal and spatial extents and resolutions that cannot be measure-
ment in the field (Fatichi et al., 2016) or guide the design of new ex-
periments. By focusing on process representation, accessibility, and
wide applicability, we believe that MLCan3D can serve as a virtual
laboratory that encourage such experiments by the scientific
community.

In Section 2, we first discuss the theory, numerical implementation,
and benchmark verification of the coupled surface-subsurface 3D flow
model that captures topographic heterogeneity. Next, we discuss the
integration of the flow model with the MLCan model in Section 3. Then
in Section 4, we apply the model to two very different NEON sites to test
and demonstrate model capability. We close with Sections 5 and 6 with
discussion of model sensitivity, results, and next steps.

2. Surface-subsurface 3D flow model
2.1. 3D subsurface flow

In many diverse fields of study, Richards’ equation is seen as the
standard for modeling water flow in the near surface soil layers (Hillel,
2013). There are three forms of the equation used in existing studies, the
‘h-based’ form solving for pressure head, the ‘6-based’ form solving for
soil moisture, and the ‘mixed-form’ using both pressure and moisture as
dependent variables. Studies have shown that the ‘mixed-form’
Richards’ equation is perfectly mass conserved using finite difference
and gives better performance over the other forms at no additional
computational cost (Celia et al., 1990; An et al., 2011). Therefore, in this
work, we use the ‘mixed-form’ Richards’ equation that is generally
written as follows (Celia et al., 1990):

06 oK

= =VKy)Vy - o

ot M

Here, 6 is the volumetric soil moisture content. K(y) is the unsaturated
hydraulic conductivity which depends on soil matric potential y. The
relationships between K, 6 and y are calculated using the well known
soil moisture retention curve from van Genutchen (Van Genuchten,
1980) and the unsaturated hydraulic conductivity function from Mua-
lem (1976):

006, 1

0= 6, — 0, [1 + ((ly/)”v}m” -

K(@) = Ky@l/z[l _ (1 _ @l/mv)m\»]z. (3)

Oy, O are the residual and saturated soil moisture. Ky is the saturated
hydraulic conductivity. « is a parameter corresponding to the inverse
air-entry value. n, is the pore-size distribution, and m, =1 — 1/n,. All
parameters can be found based on soil type or composition.

To generalize the Richards’ equation to be applicable to model a
natural environment, we modify Equation (1) to account for plant root
uptake, elastic storage, and topography as follows:

— +—=S— = V-K(y)[Vhcos 9 +sin 9] — g,. “4)

The inclusion of flux due to transpiration q; accounts for vegetation root
uptake. %SS% accounts for elastic storage (Bear et al., 1979) where ¢ is
the porosity, and S; is elastic storage coefficient. To account for changes
in elevation within the domain, we use h, the total pressure head, where
h =y + 2. y is the soil matric head as previously defined, and z is the
gravity head, the elevation above a given datum. We further apply a
terrain following transform to better account for topography in the
domain (Maxwell, 2013; Childs, 1971; Sloan and Moore, 1984;
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Fig. 1. In this figure, the top shows the grid formulation for the 3D subsurface
model with terrain following transform. The bottom depicts a detailed 2D view
of the discretization used in the finite difference solution. i, j, k are cell indices
in the x, y, and z directions respectively. Horizontal grid size (Ax, Ay) are
constant over space, but the depth of each layer (Az) can vary.

Brutsaert, 1994). A representation of the 3D subsurface model with
terrain following transform is shown at the top of Fig. 1. The terrain
following transform [Vh cos 9 + sin 9] modifies horizontal fluxes to
follow local topographic slope with angle 9 assuming local slope is
constant over depth. Angles of local slope in the horizontal directions are
calculated as 9 = tan (%) and 9y =tan ~'(%). Since there is no need to

account for slope for vertical fluxes 9, = 0. Compared to traditional
orthogonal fluxes, the terrain following implementation improves in
accuracy and is better suited to modeling complex terrains or at coarse
spatial resolutions (Maxwell, 2013).

We solve Equation (4) using Backward Euler for the time dis-
cretization and finite difference for space discretization. The bottom of
Fig. 1 shows the finite difference stensil in the x — z plane. Since the
Richards’ equation is non-linear due to the relationship between 6, K and
h, we use the modified Picard method (Celia et al., 1990) to linearize the
equation and solve each time step iteratively. Please refer to
Appendix A.1 for more details on the discretization of Equation (4).

2.1.1. AIADI

Due to considerations for ease of use and computational effort, an
ADI scheme is used to solve Equation (4) one dimension at a time instead
of the full implicit solution. Previous studies have compared ADI with
full implicit implementations for multi-dimensional Richards’ Equation
and found ADI method to be faster with similar simulation results (An
et al., 2011). However, traditional ADI methods (Peaceman and Rach-
ford, 1955; Rubin, 1968) can encounter instabilities and difficulty in
convergence when solving higher dimension problems (Clement et al.,
1994). To overcome these issues, we use the Advanced Iterative Alter-
nating Direction Implicit (AIADI) method (An et al., 2011; Douglas and
Rachford, 1956), which was first developed for linear parabolic partial
differential equations and is unconditionally stable in 2D and 3D
(Douglas and Rachford, 1956). In non-linear cases, stability is not
guaranteed, but is improved over traditional ADI methods (An et al.,
2011). We adapt the AIADI method to solve the generalized Richards’
Equation (4) for natural environments.

Our modified AIADI method uses three passes as follows:
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First pass in x-direction:
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second pass in y-direction:
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and third pass in z-direction:
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and

1, = 0.55". (6)

Here n is the timestep index, and m is the Picard iteration level index. I,
is an iteration parameter for the disturbance term in the AIADI scheme.
0.55 is chosen in this work following previous studies (An et al., 2011;
Weeks et al., 2004). Each time step is iterated until [p"+13m+3 _ pn+1.3m)
is less than the tolerance value given by the user.

2.2. 2D overland flow

Overland flow is simulated using the St. Venant Equations which
consists of the continuity equation and two momentum equations. The
continuity equation for 2D application is:
ow 90

7}
W+a(wu)+a*y(w")*qi+qa—0, )

where W is the depth of water; u and v are velocities in the x and y
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direction respectively; and g; and g, are the inflow and outflow flux term
contributing to the overland flow. These terms, in units of length/time
account for sources and sinks in the overland flow process and facilitate
the exchange of water between overland and subsurface components of
the model. Detailed physical processes included in each term is dis-
cussed in section 2.3.

In this work, we use diffusion flow to model the overland flow pro-
cess. While omitting the inertial terms in the St. Venant Equations,
diffusion flow is still capable of accurately representing many natural
flow situations (Lal, 1998; Fennema et al., 1994; Akan and Yen, 1981;
Hromadka and Lai, 1985). The momentum equations are reduced to:
oH oH

a = 7Sfx and a = 7Sfy, (8)

where H = W + z is the depth of the water, W, in addition to surface
elevation, z, above a given datum. Thus, Sy, Sp, the friction slopes are
the same as the slope of the water surface S,, in 2D, where S,, =

(Sfx)2 + (Sfy)z. Combined with Manning’s equation, flow velocity can

be expressed in terms of H (Hromadka and Lai, 1985):

W2? oH  DoH

= T Se o h o ©)
2/3
__WP" oH - b 67H7 (10)
Mu/Sy Oy h dy

where n;, is the Manning’s coefficient, and D, the diffusion coefficient, is
expressed as:

W/3

D= nm\/S—w7

0, otherwise

for |S,| > Spin  and  |W| > W,

Parameters Sy, and hp;, are both user defined. Sy, is used to keep D
within a finite limit, and Wy, facilitates wetting and drying.

Using Equations (9) and (10), the governing equation, based on
continuity (Equation (7)), is written as:

OH o0, 0H 0, 0H

E:a( a)Jra*y(Da)*%*%' an
The overland flow equation can be linearized and solved with a wide
variety of approaches (Lal, 1998). In this work, we use a linearized
implicit method where Equation (11) is linearized using explicit D and
then solved using the implicit backward Euler and finite difference in
2D. Please refer to Appendix A.2 for the discretization of Equation (11).

2.3. Surface-subsurface coupling

Infiltration and evaporation, determined by surface processes and
subsurface moisture conditions, couple the overland flow and subsur-
face components of the 3D flow model. The amount of water exchanged
between the two model components is calculated at each timestep. It is
included in the sink term in the overland flow model, g, in Equation
(11), and it is a source to the subsurface model by serving as the top
boundary condition. We use a switching top boundary condition in the
subsurface where, depending on moisture conditions, the top boundary
of any cell is Dirichlet or Neumann (Paniconi and Wood, 1993; Cam-
porese et al., 2010, 2014; Sulis et al., 2010; Le et al., 2015). Dirichlet
boundary condition applies when infiltration and evaporation becomes
limited by soil moisture conditions, such as in the case of saturation
excess. Otherwise, Neumann boundary condition applies. Precipitation
contributes to the overland flow model through the term g; from Equa-
tion (11), and excess water that does not infiltrate into the soil is
included in g; at the next timestep of the simulation. Additional pro-
cesses contributing to sources and sinks for the coupled 3D flow model
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are discussed in Section 3 where the 3D flow model is integrated with a
1D ecohydrologic model.

2.4. Flow model benchmarks

We use a set of benchmarks as preliminary tests for our coupled 3D
flow model. These benchmark simulations have been established
through previous works and are designed to compare the physical re-
sponses of models (Kollet and Maxwell, 2006; Sulis et al., 2010; Maxwell
et al., 2014). We use two established test cases, infiltration excess and
saturation excess, to examine the most prevalent hydrologic responses
and the interaction between overland flow and subsurface flow com-
ponents of the model.

Both test cases use a domain that slopes in one direction as shown in
Fig. 2. The soil depth is 5 m with no water flowing through any
boundaries of the domain except the outlet on the right side as depicted
in Fig. 2. They both use the same van Genuchten parameters, except for
saturated hydraulic conductivity K, based on values for sandy-loam soil
estimated by Schaap and Leij (1998). Both tests consists of a 300 min
simulation that starts with 200 min of rainfall followed by 100 min of
recession. Parameters used are shown in Table 1, and the two cases differ
in their parameterization for the saturated hydraulic conductivity and
initial water table depth as follows:

1. The infiltration excess case tests for runoff before the soil column is
saturated due to rainfall rate that is higher than the infiltration rate.
Therefore, this case tests two saturated hydraulic conductivity (Kj)
values that are smaller than the rainfall rate shown in Table 1.

2. The saturation excess case tests for runoff when the soil column is
saturated. This is simulated with a Kj that is larger than the rainfall
rate. Two values for initial water table depth are tested given in
Table 1.

Fig. 3 compares the outflow rate from our model with that of five
other models for the infiltration excess benchmark test case. Our model
generally agrees well with other models. Especially for the magnitude of
the peak outflow and the recession curve, our model matches other
model outputs very closely or is within the range of variability of the
other models. The largest discrepancy occurs in the rising limb of the
outflow for the low K; case. Our model produces a slightly steeper rising
limb compared to other models tested and thus plateaus faster where the
outflow is equivalent to rainfall rate. One possible cause of this is nu-
merical differences in the overland flow model implementation. Another
possible cause is the difference in mesh size and timestep for our model.
Based on the comparison of a similar test case with different mesh sizes
and the analytical solution from Kollet and Maxwell (2006), we see that
the analytical solution and simulations with very fine mesh tend to also
have a steeper rising limb and plateau faster than models with coarser
grids.

Fig. 4 compares the outflow rate from our model with that of other

0.3
= 320
g2 240
N 0.1
160
. S —/ 80
100 200 300 400 O y (m)

x (m)

Fig. 2. Domain used for the benchmark tests based on Sulis et al. (2010) and
Maxwell et al. (2014). Outflow used for comparison in benchmarks are
measured for the gray cells at the bottom of the slope.
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Table 1
Parameters used for test cases.
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Parameter Units Infiltration Excess Saturation Excess
Horizontal mesh size Ax = Ay m 20 20

Vertical mesh size Az m 0.1 0.1
Timestep At min 0.5 0.5

Initial water table depth wt m 1.0 1.0, 0.5
Saturated hydraulic conductivity K mmin~ 6.94 x 107>, 6.94 x 107° 6.94 x 107*
Porosity @ - 0.4 0.4

Specific storage S, m! 5x 1074 5x 1074
Manning’s coefficient” N m~3 min 3.31 x 107* 3.31 x 1074
x direction slope % 0.05 0.05

y direction slope % 0 0

Rain rate mmin~ 3.30 x 1074 3.30 x 1074
vanGenuchten parameters

Alpha” a em ! 0.01 0.01
Pore-size distribution n, - 2.0 2.0

Residual water content o, - 0.08 0.08
Saturated water content O - 0.4 0.4

@ Values do not match those of previous publications due to confirmed typos in previous works.

—& — Cathy
o —% — HGS
[ —& — ParFlow
—A- = PAWS

—% — tRIBS+VEGGIE
— 3D flow model

outflow [m3/min]

50 100 150 200 250 300

time [min]

Fig. 3. Comparison of outflow for the infiltration excess test case. Two different
values of saturated hydraulic conductivity are tested where our 3D flow model
is compared with other similar models. Data of other models are from Maxwell
et al. (2014).

models for the saturation excess benchmark test case. Our model also
agrees well with other models for this case. Similar to the infiltration
excess test case, our model matches other model outputs very closely or

—& — Cathy
o — % — HGS
[ —¢& — ParFlow
—A — PAWS

—% — tRIBS+VEGGIE

outflow [m3/min]

0 g

time [min]

Fig. 4. Comparison of outflow for the saturation excess test case. Two different
values of initial water depth are tested where our 3D flow model is compared
with other similar models. Data of other models are from Maxwell et al. (2014).

is within the range of variability of the other models for the peak outflow
and the recession curve. The largest difference occurs at the rising limb
for the case with initial water table at 1.0 m where our model produces
outflow slightly slower than other models and have a steeper rising limb
similar to the infiltration excess case. Cause for the discrepancy is also
likely a combination of differences in numerical implementation and
mesh size, same as that of the infiltration excess case. However, in
general, results from our model match with other models in the
benchmark tests reasonably closely and show expected model behavior
which provides confidence in the validity of our model.

3. A virtual laboratory
3.1. Canopy and flow model process integration

In order to simulate land surface processes, we integrate our flow
model into the existing Multi-Layer Canopy (MLCan) model (Drewry
et al., 2010a,b; Quijano et al., 2012; Le et al., 2012; Quijano et al., 2013;
Quijano and Kumar, 2015). MLCan is a high fidelity, high complexity 1D
model that simulates above-ground canopy processes by (1) fully
coupling leaf biophysical processes including photosynthesis, leaf sto-
matal conductance, leaf boundary layer conductance and leaf energy
balance, (2) scaling from leaf to canopy level with a multi-layer
approach using sunlit and shaded leaf fractions for each layer, and (3)
resolving the vertical profiles of radiation, water storage, energy bal-
ance, and CO flux. MLCan also describes surface and below ground
processes such as water storage and energy balance in the litter and
snow layers, root and soil water interactions that couples to photosyn-
thesis, soil heat transport, and 1D soil water movement.

We integrate our 3D flow model with MLCan by replacing the orig-
inal 1D soil moisture model with our 3D subsurface model and adding
the 2D overland flow model as shown in Fig. 5. We maintain all process
interaction in the original MLCan model such as soil water interactions
with plant roots. The transpiration flux, g; in Equation (4), is modeled as
a sink term in the subsurface model, and it is generally uptake of water
by plants determined by the canopy transpiration. However, due to the
hydraulic redistribution incorporated in the model (Amenu and Kumar,
2008; Quijano et al., 2012), where water travels through plant roots
from wet to dry parts of the soil upwards or downwards, q; can be both
sink or source in different parts of the model domain at any timestep.

We also implement additional process interactions with the addition
of the 2D overland flow model. Sinks in the overland flow model, g, from
Equation (11), include evaporation and infiltration, as described in
Section 2.3, to couple overland flow with subsurface processes. Evapo-
ration from the overland flow model is integrated into MLCan canopy
processes. To further integrate the 3D flow model into MLCan surface
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Fig. 5. This figure illustrates the MLCan3D model. The left side is a graphical representation of MLCan3D depicting the integration of the Multi-Layer Canopy model
with our new 3D flow model including 2D overland and 3D subsurface flows overlaid with major modeled ecohydrologic processes. The right sides is a schematic
showing the coupling of processes in the model with the integration of the 3D flow model into original MLCan shown in blue (adapted from Drewry et al. (2010a); Le

et al. (2012)).

and canopy processes, q, includes the contribution of overland flow to
water stored in the litter layer, and precipitation which contributes to g;
from Equation (11) is determined by throughfall from the canopy model
and uptake by the litter and snow model. Drainage of excess water from
the litter and snow layer, as well as overland flow, contributes to infil-
tration into the subsurface.

The resulting Multi-layer Canopy and 3D Soil (MLCan3D) model has
the capability to represent vegetation dynamics with high fidelity,
including acclimation response of vegetation to changes in atmospheric
CO4 (Drewry et al., 2010a,b) and its consequent impact in water and
energy partitioning, capture high resolution heterogeneity in the
topography and subsurface, and maintains the tight process interactions
between vegetation and soil moisture. Fig. 5 shows the schematic of
process interactions of the MLCan3D model with the new coupled 3D
flow model and associated process interactions highlighted in blue.

3.2. Model capabilities

A detailed physical process model such as MLCan3D inevitably need
a lot of data to set up and is computationally demanding. To encourage
the use of MLCan3D as a virtual laboratory by the broader scientific
community, we develop MLCan3D with an emphasis on accessibility,
where the model is easy to set up and understand as well as run without
stringent computing hardware constraints.

We use a Graphical User Interface (GUI) to guide users step-by-step
through the model setup process. The GUI was first developed for
MLCan (Le et al., 2012) and is now modified to include setup of the

coupled surface and subsurface flow components. In setting up the
model, users first specify the simulation location as latitude and longi-
tude, plant species composition, and vegetation structure through leaf
area index (LAI) and vertical leaf area density (LAD) profile for each
species. Then, users have the ability to specify which modules to include
in the simulation, such as using the 3D flow model (2D overland and 3D
subsurface) or the 1D soil moisture module in the original MLCan model.
MLCan3D then takes available eddy-covariance flux tower data as model
forcings and uses lidar derived Digital Elevation Models (DEMs) to
characterize topography for the 3D flow model. For initial soil moisture
conditions, users have the option to use a vertical profile that is homo-
geneous over the domain or input 3D data as a grid of user specified
values. Similarly, users can specify 3D heterogeneous soil parameters for
soil moisture retention and hydraulic conductivity as described in
Equations (2) and (3). Appendix B contains details on how to use the GUI
to set up the 3D flow model. MLCan3D outputs water, CO,, and energy
fluxes for the canopy and the soil as well as vegetation dynamics and
microclimate conditions. In addition, MLCan3D outputs moisture con-
ditions from the 3D flow model including ponded water depth on the
land surface and subsurface soil moisture.

Since we use the Advanced Iterative Alternating Direction Implicit
(AIADI) method (An et al., 2011; Douglas and Rachford, 1956) to solve
the subsurface flow, the model is significantly less memory intensive
than fully implicit methods and is easily parallelized. Therefore,
MLCan3D can be run on personal computers for small virtual experi-
ments or in highly parallel computing environments for large experi-
ments. With the help of the GUI and limited hardware constraints,
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MLCan3D can be more accessible to users from broader range of back-
grounds and encourage virtual experiments to answer more questions
from diverse disciplines. MLCan3D is open source and available for
download at https://github.com/HydroComplexity/MLCan3D.

4. Model application

MLCan3D can be applied to a wide range of ecosystems. To
demonstrate its applicability, we simulate, without calibration, two very
different ecosystems to test MLCan3D in real world situations using data
from NEON (National Ecological Observatory Network) (National
Research Council, 2004). NEON, funded by NSF, consists of a network of
long term data collection facilities that provides comprehensive data for
quantifying land surface ecological processes. NEON has sites across the
US and covers a range of ecosystems and climates. They collect
long-term open access data and provide more than 175 data products for
ecologic and biological studies, and their standardized data collection
and processing protocols can provide comparable data across different
sites.

At each NEON site, an eddy covariance flux tower collects weather
data needed as forcings for MLCan3D such as radiation, precipitation,
air temperature, and wind speed. The tower also collects ecosystem
fluxes of water, energy, and carbon which can be used to compare with
model output. At each site, there is also an array of soil plots near the
tower (Fig. 6) that have sensors at various depths in the soil to measure

Flux Tower]

@ |Flux Tower|

Fig. 6. Illustration of NEON ORNL (top) and OSBS (bottom) sites with their
locations on the US map from NEON (NEON, 2020) circled in red. This figure
shows the digital elevation model for each site based on Lidar data from NEON
(Table 3) and the five soil plots where moisture and temperature measurements
are used to compare with model output. The eddy-covariance flux tower lo-
cations are also marked.
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soil variables such as water content, salinity, and temperature. NEON
also collects, processes, and provides high resolution airborne remote
sensing data, including hyperspectral, lidar, and digital photography for
each site around the time of peak greenness each year. Hyperspectral
and lidar remote sensing products are provided at 1 m resolution. The
hyperspectral data products include leaf area index (LAI), and lidar data
products include canopy height (CHM) and surface elevation (DEM).
Observational samples are also taken for a variety of ecosystem factors
such as plants, soil, and organisms. Relevant data include plant species,
soil texture, and litter layer information. We apply MLCan3D to two sites
in order to test model performance for different conditions of vegetation,
topography, and soil textures. NEON datasets used to set up model
simulations and verify model results are listed in Table 3 in the
Appendix.

4.1. Ordway-swisher biological station site

The Ordway-Swisher Biological Station (OSBS) site is located in
central Florida (Lat/Long: 29.689 27, —81.993 43). Mean annual pre-
cipitation is 1290 mm with more rain in the summer months. It consists
of fairly homogeneous evergreen forests dominated by longleaf pine
(pinus palustris) within the eddy-covariance flux tower airshed. Average
canopy height, based on airborne lidar data, is 23 m with relatively open
canopy and low Leaf Area Index (LAI) of 0.79 (ORNL DAAC, 2018a;
Myneni et al., 2015).

We use 1 m resolution DEM from airborne Lidar to characterize the
topography of the site for the 3D flow model. While the OSBS site has
limited elevation changes, it consists of very fast draining deep sandy
soils whose sharp changes in soil moisture conditions really test the
numerical stability of the subsurface model. According to soil sample
measurements, the OSBS soil contains more than 95% sand and is
therefore a sandy textured soil. Texture based soil parameters for
Equations (2) and (3) found in literature are used as model parameters as
shown in Table 2 (Dingman, 2015; Clapp and Hornberger, 1978; Leij,
1996; Ghanbarian-Alavijeh et al., 2010).

In this work, we model a 150 x 60 m? plot at 1 m? resolution covering
all soil moisture sensor as shown in Fig. 6. The site has a slight topo-
graphic gradient of about 2.5 m going down slope from the north east to
the south west. We run the model for June 2018 at 30 min timesteps
with a 10 day spin up period. The 3D flow model’s initial soil moisture
condition is homogeneous with volumetric soil moisture of 0.1, and
measured forcing data from May 2018 is used for the spin up period. Due
to the fast draining nature of the soil, initial soil moisture conditions do
not significantly affect results after the spin up period.

The summary of model results for the simulation period is shown in
Fig. 7 where we compare our model simulation with field measured data
from NEON. In Fig. 7a, we compare simulated plot-average results of soil
moisture and temperature with measured data from five soil plots at 6
cm depth, corresponding to the first layer of 10 cm in our model. We also
display the vertical profile of plot-average soil moisture over time. We
find that on the plot level average, our model simulation is in good
agreement with measured data, though simulated soil temperature does
not show diurnal variations as strong as that of the observed data. In
Fig. 7b, we show topography of the plot and the heterogeneity of soil
moisture over the plot at various depths. Here we observe that simulated
soil moisture varies at fine scales that corresponds to heterogeneity due
to micro-topographic variability (on the order of a few meters). How-
ever, soil moisture does not change significantly over the domain, and
the variance of the top layer soil moisture shown in 7b is less than what
is observed by the five soil moisture sensors ploted in 7a. This indicates
that simulated soil moisture for the OSBS site does not react to larger


https://github.com/HydroComplexity/MLCan3D

K. Wang and P. Kumar

scale topographic features, such as the gradual slope in the plot, as much
as what the soil moisture sensors measure. In Fig. 7c, we compare
diurnally averaged simulated latent heat flux from the plot with that of
the measured data from the flux tower. We find that simulated latent
heat flux is in good agreement with measured.

4.2. Oak ridge national laboratory site

The Oak Ridge National Laboratory (ORNL) site is located in Ten-
nessee (Lat/Long: 35.964 12, —84.282 6). Mean annual precipitation is
1222 mm with slightly more precipitation in the winter and spring. It
consists of mainly mixed deciduous forests dominated by oaks, maples,
and hickories within the flux tower airshed with average canopy height
of 28 m and LAI of 5.2 (ORNL DAAC, 2018b; Myneni et al., 2015).

As part of the Ridge-and-Valley Appalachians, the site is situated
within five parallel ridges and valleys with dramatic variations in
elevation. Therefore, this site allows us to test the model’s ability to
capture the effects of topographic variations. Due to the large topo-
graphic variability at the ORNL site, soil texture also varies dramatically
from sandy loam and silt loam to clay according to soil sample mea-
surements from NEON. NEON does not have soil sample measurements
very close to the eddy-covariance flux tower, but we know from litera-
ture and measured data that the soil at the top of the ridges, where the
tower is, tends to be more coarse and well drained compared to soil in
valleys (Solomon et al., 1992). Therefore, for this study, we use silt loam
soil with low porosity as described in Solomon et al. (1992). Texture
based soil parameters for Equations (2) and (3) found in literature are
shown in Table 2 (Dingman, 2015; Clapp and Hornberger, 1978; Leij,
1996; Ghanbarian-Alavijeh et al., 2010).

For the ORNL site, we model a 200 x 80 m? plot at 1 m? resolution
covering all soil moisture sensor and the eddy-covariance flux tower as
shown in Fig. 6. The site has topographic changes of over 17 m over the
plot, much larger than that of the OSBS site. We run the model for June
2020 at 30 min timesteps with a 20 day spin up period. Initial soil
moisture condition is homogeneous with volumetric soil moisture set to
0.2. To mitigate effects of the initial condition, we use a longer spin up
period to compensate for the slower draining soil at the site.

The summary of model results for the simulation period is shown in
Fig. 8 where we compare our model simulation with field measured data
from NEON. In Fig. 8a, we compare simulated plot-average results of soil
moisture and temperature with measured data from five soil plots at
0.06 m depth, corresponding to the first layer of 0.1 m in our model. We
find that on the plot level average, our model simulation for the ORNL
site is also in good agreement with measured data, though soil moisture
does not seem to react as sharply to precipitation as the measured data.
Also towards the end of June, simulated soil temperature is slightly
lower compared to measured and in general does not see as strong
diurnal variations. In Fig. 8b, we show topography of the plot and the
heterogeneity of soil moisture over the plot at various depths. Simulated
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soil moisture is able to capture soil moisture heterogeneity due to large
scale topographic gradient as well as micro-topographic variability.
However, soil moisture simulation does not show as much spatial vari-
ability as is measured by the five soil moisture sensors. In Fig. 8c, we
compare diurnally averaged simulated latent heat flux from the plot
with that of the measured data from the flux tower. We find that
simulated latent heat flux is in good agreement with measured.

5. Discussion and model sensitivities

The canopy component of MLCan3D is strongly affected by vegeta-
tion’s physical properties and its photosynthetic parameterization.
Important physical properties includes LAI and canopy height, which
specify the structure of the vegetation. Important photosynthetic pa-
rameters, for C3 plants as simulated in our study, include maximum
rubisco limited carboxylation rate (Vimg) and maximum electron
transport rate (Jyqx)-

A few parameters are important in facilitating the interaction of
canopy, land surface, and soil. Soil moisture is sensitive to the amount of
throughfall, the precipitation that reaches the ground after canopy
interception, and the thickness of the surface litter layer since these
components directly influence the amount of infiltration. Soil moisture
is also affected by root water uptake, as determined by vegetation
properties discussed above and conductivity of roots. Manning’s coef-
ficient n,, affects the overland flow, and thus influence heterogeneity of
infiltration into the subsurface.

Soil moisture is most directly affected by the soil moisture retention
curve parameters used in Equations (2) and (3). Simulation results tends
to be the most sensitive to K; where water travels faster through soils
with larger K;, leading to sharper peaks during precipitation and faster
drainage. The residual and saturated soil moisture, 6;, 65, are important
in bounding the range of soil moisture, and larger ¢; will lead to higher
soil moisture, and similarly for 6,, when all other parameters remain
constant. n, and a also have small affects on soil moisture. Larger n,
leads to drier conditions. Larger a produces slightly higher peaks during
precipitation and less dry down, leading to more water retention over
time. However, the effect is not very significant when varying a within
the reasonable range for the given soil texture.

We parameterize the application cases of our model using parame-
ters found in existing literature when available and do not calibrate the
model to fit measured data. From the results, we find that on average,
the model can closely estimate soil moisture levels compared to sensor
measured values. Vertical movement of moisture in the soil column also
seems reasonable from comparing with deeper layer results in the OSBS
site. Canopy level latent heat flux is also comparable with measured
values. Based on current results, the model performs well in general, but
have a few issues that warrants further discussion.

One noticeable difference between the simulated soil moisture and
measured soil moisture curves is that sensor measurements register

Table 2

Parameters used for model applications at OSBS and ORNL sites.
Parameter Units OSBS ORNL
Horizontal mesh size Ax = Ay m 1 1
Vertical mesh size® Az m 0.1+ 0.1+
Timestep At hr 0.5 0.5
Saturated hydraulic conductivity K; mhr ! 0.60 0.026
Porosity @ - 0.45 0.40
Specific storage S, m? 5x 1074 5x 107
Manning’s coefficient T m Y3 hr 46735 x 10°° 4.6735 x 10°°
vanGenuchten parameters
Alpha a cm™? 0.035 0.01
Pore-size distribution n, - 2.5 1.5
Residual water content 0, - 0.01 0.05
Saturated water content O - 0.45 0.40

2 Vertical mesh size is 0.1 m for the top 1 m of soil, then increases in size as depth increase.
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Fig. 7. Comparison of simulation results with measured data for NEON OSBS site. (a) Top two plots show observed precipitation and air temperature, and simulated
soil moisture profile over depth for June 2018. Bottom two plots show simulated soil moisture and temperature results for the first soil layer with 10 cm depth
compared with measured data from five sensors (S1 to S5 with locations shown in Fig. 6) at 6 cm depth; (b) topography of the simulation domain and simulated soil
moisture over the plot at various depths for DOY = 171.2; (c) simulated and measured diurnal latent heat flux averaged over the simulation period with standard
deviation shown by the shaded regions.
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deviation shown by the shaded regions.
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faster response to precipitation when compared with that of the model
simulation. We believe two factors contribute to the more rounded peaks
in the simulated soil moisture. One factor is that since the curve is an
aggregation of the plot where the variable response from different lo-
cations in the plot are averaged, the less sharp peaks reflects the vari-
ability within the plot. Another factor is that the modeled canopy and
litter layer attenuation of the precipitation signal is not representative of
individual sensor locations. If a sensor is not located under vegetation,
then it does not experience attenuation of precipitation and will exhibit
different behavior compared to locations under vegetation and the
average behavior of the plot.

While simulated soil temperature is generally close to measured values,
and shows correct diurnal oscillations, the magnitude of simulated oscil-
lations are much less than that of the sensor measurements. This difference
may be due to the insulating effects of the litter layer or the limited
parameterization of soil heat capacity based on soil texture in the model.

From Figs. 7b and 8b, we see that while micro-topographic effects on
soil moisture are evident, the variability of soil moisture across the study
plots is not as significant as demonstrated by the measured data. One
possibility is that due to the homogeneous initial conditions we
currently use for our simulations, soil moisture gradient across each plot
has not had time to form during the spin up period. This can be tested
with a longer simulation or heterogeneous initial conditions. Another is
that there is notable heterogeneity in soil texture that our available data
does not capture which influences soil moisture. However, there may
also be special unknown conditions influencing individual soil moisture
sensors. For example, soil moisture sensor 3 (S3) in the ORNL case
measures soil moisture at around 0.1, barely above the residual soil
moisture, for the entire duration of the simulation, and does not respond
significantly to precipitation. While simulated soil moisture at the
location of sensor 3 is drier due to elevation (Fig. 6), this extremely dry
soil moisture measurements seems unlikely to be solely caused by
topography. Similarly, the low elevation of sensor 5 in the ORNL case
(Fig. 6) does not corroborate its low soil moisture measurements and
suggests additional factors that can contribute to the large variations we
see in soil moisture measurements.

In general, initial simulations using MLCan3D shows that models
results are consistent with measured data on average, but do not capture
as much variability, both in time and space. This demonstrates there is
still a need for further studies to understand and draw connections be-
tween in-situ sensors measurements and models simulations. Using
MLCan3D as a virtual laboratory, we can conduct virtual experiments
that explore this issue. For example, in this work, we find that using
topography as the only source of heterogeneity is not enough to capture
the variability in the field. We hypothesize that model parameterization
may contribute to the discrepancy between measured and modeled soil
moisture variability across the study plots. Therefore, we can conduct a
virtual experiment using user-specified heterogeneous soil parameters
to test this hypothesis.

However, topography is readily available for large extents at high
resolutions while soil parameters are not. Therefore, we can also use
MLCan3D to ask questions such as how topographic variability interacts
with ecohydrologic processes to affect soil moisture and other ecohy-
drologic fluxes, and to what extent can topography inform heterogeneity
in ecohydrologic fluxes. Remotely sensed heterogeneity in vegetation,
which leads to variability in throughfall, infiltration, and water uptake,
can also be included in future works.

With the ability to model across scales, from micro-topographic to
larger scales, and across ecosystems, MLCan3D can also be used to
explore how model scale affects heterogeneous ecohydrologic process
behaviors and their interactions at different scales. By gaining better
understanding and quantification of outstanding scale issues such as
how fine scale dynamics amplify or attenuate as scale increases, simu-
lation experiments from MLCan3D can contribute to the hyper-
resolution land surface modeling effort in quantifying high resolution
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heterogeneity over large extents.
6. Conclusion

In this work, we presented MLCan3D, an integrated ecohydrologic
model that focuses on high fidelity physical process representation,
greater accessibility, and wider applicability. It couples existing
advanced ecohydrologic process model MLCan with new state of the art
topography aware 3D flow model. MLCan models vegetation, land sur-
face energy fluxes, and above-ground moisture processes. The 3D flow
model simulates surface and subsurface moisture dynamics with 2D
diffusive overland flow and 3D terrain-following Richards’ Equation for
subsurface flow. The 3D flow model is in good agreement with other
similar models when compared in standard benchmark tests, and when
coupled with MLCan, the resulting MLCan3D model enables high reso-
lution ecohydrologic modeling that accounts for micro-topographic
variability in the land surface.

To make MLCan3D easily accessible we provide a GUI to facilitate
the initialization and the full simulation of the model. We also use the
AIADI method for the 3D subsurface flow to reduces computation cost
without sacrificing numerical stability. The guidance from the GUI and
lack of stringent computing hardware constraints makes MLCan3D more
accessible to the general scientific community thus encouraging wider
adoption of the model.

We apply MLCan3D to two NEON sites with very different charac-
teristics to demonstrate the broad applicability of the model. Model
results are comparable with field measured data at the plot scale and
demonstrate the effect of micro-topographic variations on soil moisture.
Model simulations did not capture as much heterogeneity as demon-
strated by in-situ sensors, a reflection of the fact that topography is not
the only source of heterogeneity that contributes to variability of soil
moisture in the field. We aim to further explore this result using
MLCan3D by investigating additional factors contributing to land sur-
face heterogeneity as well as how topographic variability affects
modeled ecohydrologic fluxes.

This work demonstrated the feasibility of using the MLCan3D model
as a virtual laboratory that enables a range of virtual experiments by the
broader scientific community and contribute to the advancement of our
understanding of ecohydrologic process heterogeneity, dynamics, and
interactions.

Software and data availability

MLCan3D is written in MATLAB and is tested for MATLAB version
R2018b. It is first made available in 2021, requires MATLAB to run and
has no strict hardware requirements. MLCan3D is open source and
available for education and research uses at https://github.com/Hydr
oComplexity/MLCan3D. Developers’ contact information is provided
in the MLCan3D readme on GitHub.
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Appendix

A. Flow Model Discretization

A.1. Subsurface

Backward Euler scheme is used for the time discretization and finite difference for space discretization. Since the Richards equation is non-linear
due to the relationship between 6, K and h, the modified Picard method (Celia et al., 1990) is used to linearize the equation and solve each time step
iteratively.

Discretizing Equation (4) with backward Euler and Picard linearization gives:
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A.2. Overland
We linearize Equation (11) by using explicit D and then solved using the implicit Backward Euler and finite difference in 2D. Discretized Equation
(11) is written as:
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where n is the current timestep.
B. GUI for 3D Flow Model

In this section, we provide details on setting up the 3D flow model, including 2D overland flow and 3D subsurface flow, within MLCan3D. Main
steps to set up the 3D flow model include enabling the model in the Options window, loading topography data and initial conditions in Forcing and

Initial Conditions window, then specifying parameters for the model in Parameters window. More details on setting up the other model components are
discussed in Le et al. (2012).
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(O Elevated 1 [cl
Models

Check boxes to include/exclude sub-models in MLCan
[] Soil Nutrient Model
- Soil Nutrient Medel: Simulating seil carbon and
- nitrogen process

Soil Heat Model - Soil Heat Model: Simulating hest transfer within the
soil

- 3D Flow Model: Simulate 2D overland flow and 2D
subsurface flow

- Ely i transport of scalar

using a first-order canopy closure

Turbulence

model.
[ Hydraulic Redistribution (HR) P Rt i e

of soil maisture via plant root systems.

Cancel oK

Fig. 9. Screenshot of the model Options window. Users can select which model components to include in the simulation, such the 3D Flow Model consisting of 2D
overland flow and 3D subsurface flow.

First, to simulate 2D overland flow and 3D subsurface flow, users must enable the 3D Flow Model option by selecting the model in the Models panel
within the Options window as shown in Fig. 9. This step enables users to proceed to the following steps in setting up the 3D Flow Model. Other
subsurface models, including the Nutrient Model, Soil Heat Model, and Hydraulic Redistribution, are coupled with the 1D aggregated soil moisture
profile for the domain, and if the 3D Flow Model checkbox is not selected, soil moisture is simulated in 1D (Amenu and Kumar, 2008; Drewry et al.,
2010a; Quijano et al., 2012; Woo and Kumar, 2016).
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(4] model_forcings - X

FORCINGS / INITIAL CONDITIONS  wuititayer Canopy and 3D Soil Model

FORCINGS ICs FOR CANOPY ICs FOR NUTRIENT ICs FOR 3D FLOW

ICs FOR 3D FLOW

Topography Initial moisture conditions
~
D:Users\Kunxuan\Code\MLCal || | e Specify 2D ponding depth
L
nx ny D:Wsers\Kunxuan\Code\MLCz 7 g

Domain Size | 30

X | 200 | cells

ax &y D Specify 30 initial soil moisture:

£
Grid Size 1 X 1 meter Load Theta’ in MAT file R 4 Q

View initial conditions

Topography [m] Distribution
Plot options.
T
345
Panding =
60
340 T
o I
50 100 150 200 |
y[m)
—_—— e I
|
335 340 35 *
330
DEM
Forcing View Load from file Cancel OK

Fig. 10. Screenshot of the model Forcing and Initial Conditions window. Here, users must specify topography data, and have the option to use 3D heterogeneous initial
conditions. The GUI also provides visualization for the uploaded data.

Once the 3D flow model is enabled, to set up the model, users must first use the Forcing and Initial Conditions window to specify the topography of
the simulated area (Fig. 10). Topography can be uploaded as a 2D matrix with variable name ‘dem’ in a .mat file or as a .tiff (or .tif) file. The domain
size (nx, ny) of the simulation is determined based on the size of the uploaded topography data, and the user must specify the size of each grid in
meters. The number of layers (nz) and the depth of each layer is specified by the root structure earlier in the model setup process (Le et al., 2012). By
default, initial conditions for the overland flow assumes no ponded water, and soil moisture is specified as a 1D vertical profile in the ICs For Canopy tab
found at the top of the window. The 1D profile is then extrapolated to the 3D domain. However, users have the option to specify more complex initial
conditions including 2D ponded water depth and 3D soil moisture by checking each option and uploading the corresponding data in .mat files. Details

on the file structure requirements can be found by clicking the help buttons at each step. The View initial conditions panel provides options to visualize
the uploaded data for easy verification of the data.

4] model_parameters = X

‘t PARAMETERS Multi-Layer Canopy and 3D Soil Model

Species 2 Species 3 Species 4
SOIL & RADIATION RESPIRATION & MICROENVIRONMENT 3D FLOW MODEL

LEAF & CANOPY CONDUCTANCE PHOTOSYNTHESIS NUTRIENT
3D FLOW MODEL
Numerical
Name Value Default Unit

AIADI iteration parameter 0.5500 0.5500 unitiess A
Maximum iterations in subsurface routine 20 20 iterations
Tolerance for convergence of total head 1.0000e-04 1.0000e-04 m
Interval for saving 3D flow output 10 10 timesteps
Subsurface Bottom Boundary: 0-No Flow, 1-Free flow L 1 unitiess
Narth Ranndarn Calls n n rells
< >

Soil Properties

Name | Data Format | Single Value| Defautt | Unit
Inverse of the air entry suction: alpha 2D/3D mai 0.0100 0.0100 licm ~
Pore-size distribution: n 2D/3D mal 1.4000 1.4000 unitless
Saturated water content: theta_S 2D/3D mal 0.4000 0.4000 unitless
Residual water content: theta_R 2Di3D... ~ 0.0500 0.0500 unitless
Saturated hvdraulic conductivite Kaat Texture based‘ 0 03nn 00300 mthr i
< >
Single value i
: 2 D3 : -

Specity fie containing data for 1y oy EERAMEIUA|) 30 3D\DataNEON_ORNLPE ([ Q

chosen 20/30 parameters

Cancel OK

Fig. 11. Screenshot of the model Parameters window. Under the 3D FLOW MODEL tab, users must specify parameters needed in the model
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The finial step in setting up the 3D flow model is to specify the parameters used by the 3D flow model in the 3D Flow Model tab of the Parameters
window as shown in Fig. 11. There are two main sections for the 3D flow model parameters. The first section includes parameters for the numerical
model, such as the maximum number of iterations for the subsurface model, boundary conditions, parallel computing, and how often to save results.
Choices for boundary conditions are no flow (0) or free flow (1) for the subsurface bottom boundary, and no flow for side boundaries of the domain. To
simulate free flow side boundaries for both overland and subsurface, users can use specify additional boundary cells at each side of the simulation
domain. The number of boundary cells can be specified as parameters with value 0, no boundary cells, being the default no flow condition, or any
integer for the corresponding number of boundary cells from each edge of the domain. When boundary cells are used, values in those cells are
initialized and parameterized similar to other cells in the domain. Their values are also saved in the 3D output so that boundary fluxes can be
calculated as needed. However, boundary cells are not considered in the feedback of the 3D flow model with other MLCan3D processes such as root
water uptake. Users can also set the number workers used to run the 3D flow model in parallel. Outputs from the 3D flow model, including the depth of
ponded water W from equation (7), the soil moisture 6, the total head h, and the hydraulic conductivity K(y) from Equation (4) are saved at user
defined intervals.

The second section of the Parameters window contains detailed specification of parameters for soil moisture retention and hydraulic conductivity as
described in Equations (2) and (3). Users have three options for specifying the soil parameters: 1) use the texture based option where no additional data
input is needed, and the soil parameters are determined based on the soil texture specified by the user during the model setup; 2) use the single value
option where the entire simulation domain is set to one homogeneous value based on user input; and 3) use the 2D/3D matrix option where users can
specify 3D heterogeneous soil parameters. When using the 2D/3D matrix option for certain parameters, the user must load a .mat file containing data
for each parameter. Help windows and error messages are available to direct users during the setup process.

Table 3
Data sets from NEON used for model applications at OSBS and ORNL as model forcings and model verification.

Data Product ID

Name

OSBS Date Range

ORNL Date Range

DP4.00 200.001
DP1.00 003.001
DP1.00 004.001
DP1.00 023.001
DP1.00 006.001
DP1.00 098.001
DP1.00 001.001
DP1.10 058.001
DP3.30 015.001
DP3.30 024.001
DP1.10 047.001
DP1.00 094.001
DP1.00 041.001

Bundled data products - eddy covariance

Triple aspirated air temperature

Barometric pressure

Shortwave and longwave radiation (net radiometer)
Precipitation

Relative humidity

2D wind speed and direction

Plant presence and percent cover

Ecosystem structure

Elevation - LIDAR

Soil physical properties (Distributed initial characterization)
Soil water content and water salinity

Soil temperature

2018/05/01-06/30
2018/05/01-06/30
2018/05/01-06/30
2018/05/01-06/30
2018/05/01-06/30
2018/05/01-06/30
2018/05/01-06/30
2016/05/01-06/30
2018/09

2018/09

2016/03

2018/05/01-06/30
2018/05/01-06/30

2020/05/01-06/30
2020/05/01-06/30
2020/05/01-06/30
2020/05/01-06/30
2020/05/01-06/30
2020/05/01-06/30
2020/05/01-06/30
2020/06/15 — 06/29
2016/06

2016/06

2016/08
2020/05/01-06/30
2020/05/01-06/30

Table 4
Selection of model vegetation parameters.

Parameter Units OSBS ORNL
Canopy Structure®

Canopy Height h m 25 28
Leaf Area Index LAI — 0.74 5.2
Foliage clumping factor Q - 1.0 0.9
Flux tower observation height - m 35 40
Canopy roughness length 20 m 2.5 2.8
Maximum water storage capacity of a leaf Sm mm/LAI 0.2 0.3
Leaf Photosyrlthesisl7

Maximum Rubisco limited carboxylation rate at 25°C Vemax,25 umol/mzs 60 80
Maximum electron transport rate at 25°C Jmax,25 ymol/mzs 110 140
Leaf respiration rate at 25°C Rg25 umolCOy/m?s 0.3 0.3
Root Structure®

Root depth rq m 4.5 4.7
50th percentile rooting depth 250 m 0.6 0.5
95th percentile rooting depth 295 m 2.5 2

@ Jensen (2002); Brutsaert (2013); Campbell and Norman (2012); Kitchings and Mann (1976) and NEON eddy covariance (DP4.00 200.001) and ecosystem
structure (DP3.30 015.001) data shown in Table 3.

b Wright et al. (2013); Sampson et al. (2006); Walker et al. (2014).

¢ Heyward (1933).

Amenu, G., Kumar, P., 2008. A model for hydraulic redistribution incorporating coupled
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