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A B S T R A C T   

Hyper-resolution land surface models can explicitly represent landscape scale heterogeneity, but the complexity 
of representing finer scale processes and meeting computational needs makes them inaccessible to the general 
scientific community and limits their adoption. In this work, we present the Multi-layer Canopy and 3D Soil 
(MLCan3D) model, which is a high resolution, high fidelity, physical ecohydrologic model that aims to maintain 
accessibility. MLCan3D implements detailed physical process representations, is accessible through graphical 
user interface, and is tested using comparisons with other models and field data. This work demonstrates the 
feasibility of using MLCan3D to produce simulations close to real systems and the potential of the model to 
perform virtual experiments to explore model results. Our goal is for MLCan3D to serve as a virtual laboratory 
that enables virtual experiments from the broader scientific community and contribute to our understanding of 
ecohydrologic process heterogeneity, dynamics, and interactions across scales.   

1. Introduction 

Modeling of ecohydrologic processes is important in quantifying the 
water resource dynamics such as prediction of floods and droughts, and, 
among others, in understanding vegetation processes and ecosystem 
carbon fluxes. Accurate quantification of land surface processes is also 
important for weather and climate predictions because of the strong 
interaction and feedback between land surface and atmospheric pro
cesses (Walker and Rowntree, 1977; Shukla et al., 1990). Fine scale 
ecohydrologic heterogeneity such as those related to topography, soil 
moisture and water flux has been shown to significantly influence larger 
scale ecosystem water and energy fluxes (Le and Kumar, 2017; Riley and 
Shen, 2014; Vivoni et al., 2010), runoff and streamflow (Arrigo and 
Salvucci, 2005; Barrios and Francés, 2012), and atmospheric feedback 
and circulation (Nykanen and Foufoula-Georgiou, 2001). Current 
models tend to focus on their ability to simulate large domains and 
computation efficiency. They make sacrifices such as simplification of 
process representations, reduction of process complexity and the range 
of processes captured, and are often limited by computing hardware 
constrains (Maxwell et al., 2015; Le et al., 2015). In this work, we pre
sent a high-resolution and high fidelity ecohydrologic model that 

focuses on detailed physical process representation, ease of use, and 
broad applicability to serve as a virtual laboratory. It is aimed to enable 
the general scientific community to use it to explore the interactions 
between topographic variability and ecohydrologic processes where 
complex feedback between these processes lead to non-linear ecohy
drologic dynamics. 

With recent advances in environmental data availability and 
computational capability, there is a call for hyper-resolution land sur
face models over the regional to global extent that can more explicitly 
represent ecohydrologic heterogeneity to better understand and predict 
the non-linear interactions between spatial variability and ecohydro
logic processes (Bierkens et al., 2015; Wood et al., 2011). Hydrologic 
and land surface models are starting to become available at the ~100 m 
resolution for continental extent and ~1 km resolution for global extent 
(Maxwell et al., 2015; Sutanudjaja et al., 2018; de Graaf et al., 2017). 
Subgrid-scale processes, such as those associated with 
micro-topographic variability, are generally simplified with subgrid 
parameterizations or ignored (Clark et al., 2015). However, current 
understanding and model representation of many ecosystem processes 
are developed and validated with sensor measurements at the meter 
scale (Wood et al., 2011), and understanding and quantifying how 
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processes behave at the ~100 m scale remains an issue (Clark et al., 
2015). Some hypothesize that current model formulations relating to 
ecohydrologic processes are applicable and meaningful up to ~100 m 
resolution as the limit (Wood et al., 2011; Riley and Shen, 2014). 
However, other works find that meter scale micro-topographic features 
influence stream flow (Dunne et al., 1991; Frei et al., 2010; Thompson 
et al., 2010), infiltration (Frei and Fleckenstein, 2014; Le and Kumar, 
2017), and vegetation (McGrath et al., 2012). Therefore, 
micro-topographic variability is important for better understanding of 
heterogeneous ecohydrologic processes and how they behave at larger 
scales. 

In order to better understand the complex interactions between 
topographic variability and ecohydrologic processes, we need models 
that can capture the influence of micro-topographic variability and 
represent physical processes that couples heterogeneity with other 
ecohydrologic dynamics. While such models are starting to emerge, the 
increases in model resolution, fidelity of process representation, and 
range of processes represented incur significant computational costs. 
Many models prioritize the ability to simulate large domains and effi
cient computation, (Maxwell et al., 2015; Le and Kumar, 2017), and they 
are effective for their purpose and necessary for advancement of the 
science. However, to meet computation needs, they may simplify pro
cess representations and reduce process representations and couplings. 
They also extensively leverage advanced hardware and computation 
methods, and thus tend to be less accessible to general scientific com
munity due to the learning curve needed to set up the models, 
complexity of the code, and limiting knowledge to exploit advanced 
hardware such as hybrid computing involving both CPU (central pro
cessing units) and GPU (graphical processing units) (Le and Kumar, 
2017). Due to such complexity, these models are also often only tested 
on individual or limited number of sites (Baatz et al., 2018), further 
limiting their adoption by general users. In order to stimulate scientific 
exploration of how fine scale landscape heterogeneity affects ecohy
drologic process dynamics, a model that overcomes the above issues and 
focuses on physical process representation, greater accessibility, and 
wider applicability is needed. 

Therefore, in this work, we present the Multi-layer Canopy and 3D 
Soil (MLCan3D) model: a high-resolution, high fidelity, but easy to use 
ecohydrologic model for simulating heterogeneities from micro- 
topographic scale to larger scales and their interactions with coupled 
ecohydrologic processes. Our goal is to provide an accessible model for 
the general scientific community that can be used as a virtual laboratory 
for testing scientific hypotheses, investigating knowledge gaps, and 
understanding ecohydrologic process interactions and dynamics (Fatichi 
et al., 2016). In MLCan3D, we implement topography aware surface and 
subsurface moisture dynamics with 2D diffusive overland flow and 3D 
terrain-following Richards’ Equation for subsurface flow. We model 
vegetation, energy, and above-ground moisture processes with an 
advanced ecohydrologic process model, the Multi-Layer Canopy 
(MLCan) model, that has been tested on a wide range of ecosystems 
(Drewry et al., 2010a,b; Quijano et al., 2012, 2013; Quijano and Kumar, 
2015). We tightly integrate our state of the art 3D flow model with 
MLCan through root-soil moisture exchange and fully coupled surface 
flow and land surface water and energy processes. To keep the model 
accessible, we improve upon the Graphical User Interface (GUI) devel
oped for MLCan (Le et al., 2012) to facilitate model setup, and we use the 
Advanced Iterative Alternating Direction Implicit (AIADI) method (An 
et al., 2011; Douglas and Rachford, 1956) to solve the subsurface flow so 
that the model can be run without stringent computing hardware con
straints. We simulate two very different ecosystems to test and demon
strate the broad applicability of MLCan3D. 

With the availability of extensive ecohydrologic observations from 
observational networks such as the Critical Zone Observatories (CZOs) 
(Brantley et al., 2006), the Long-Term Ecosystem Research (LTER) 
network (Callahan, 1984), and the National Ecological Observatory 
Network (NEON) (National Research Council, 2004), we have the ability 

to develop simulations that capture real world behavior with high fi
delity (Baatz et al., 2018). Based on these simulations, we can then 
perform virtual experiments to gain understanding about processes in 
temporal and spatial extents and resolutions that cannot be measure
ment in the field (Fatichi et al., 2016) or guide the design of new ex
periments. By focusing on process representation, accessibility, and 
wide applicability, we believe that MLCan3D can serve as a virtual 
laboratory that encourage such experiments by the scientific 
community. 

In Section 2, we first discuss the theory, numerical implementation, 
and benchmark verification of the coupled surface-subsurface 3D flow 
model that captures topographic heterogeneity. Next, we discuss the 
integration of the flow model with the MLCan model in Section 3. Then 
in Section 4, we apply the model to two very different NEON sites to test 
and demonstrate model capability. We close with Sections 5 and 6 with 
discussion of model sensitivity, results, and next steps. 

2. Surface-subsurface 3D flow model 

2.1. 3D subsurface flow 

In many diverse fields of study, Richards’ equation is seen as the 
standard for modeling water flow in the near surface soil layers (Hillel, 
2013). There are three forms of the equation used in existing studies, the 
‘h-based’ form solving for pressure head, the ‘θ-based’ form solving for 
soil moisture, and the ‘mixed-form’ using both pressure and moisture as 
dependent variables. Studies have shown that the ‘mixed-form’ 
Richards’ equation is perfectly mass conserved using finite difference 
and gives better performance over the other forms at no additional 
computational cost (Celia et al., 1990; An et al., 2011). Therefore, in this 
work, we use the ‘mixed-form’ Richards’ equation that is generally 
written as follows (Celia et al., 1990): 

∂θ
∂t

= ∇⋅K(ψ)∇ψ −
∂K
∂z

. (1)  

Here, θ is the volumetric soil moisture content. K(ψ) is the unsaturated 
hydraulic conductivity which depends on soil matric potential ψ . The 
relationships between K, θ and ψ are calculated using the well known 
soil moisture retention curve from van Genutchen (Van Genuchten, 
1980) and the unsaturated hydraulic conductivity function from Mua
lem (1976): 

Θ =
θ − θr

θs − θr
=

1
[1 + (αψ)

nv ]
mv , (2)  

K(Θ) = KsΘ1/2[1 − (1 − Θ1/mv )
mv ]

2
. (3)  

θr, θs are the residual and saturated soil moisture. Ks is the saturated 
hydraulic conductivity. α is a parameter corresponding to the inverse 
air-entry value. nv is the pore-size distribution, and mv = 1 − 1/nv. All 
parameters can be found based on soil type or composition. 

To generalize the Richards’ equation to be applicable to model a 
natural environment, we modify Equation (1) to account for plant root 
uptake, elastic storage, and topography as follows: 

∂θ
∂t

+
θ
φ

Ss
∂h
∂t

= ∇⋅K(ψ)[∇hcos ϑ + sin ϑ] − qt. (4)  

The inclusion of flux due to transpiration qt accounts for vegetation root 
uptake. θ

φSs
∂h
∂t accounts for elastic storage (Bear et al., 1979) where φ is 

the porosity, and Ss is elastic storage coefficient. To account for changes 
in elevation within the domain, we use h, the total pressure head, where 
h = ψ + z. ψ is the soil matric head as previously defined, and z is the 
gravity head, the elevation above a given datum. We further apply a 
terrain following transform to better account for topography in the 
domain (Maxwell, 2013; Childs, 1971; Sloan and Moore, 1984; 
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Brutsaert, 1994). A representation of the 3D subsurface model with 
terrain following transform is shown at the top of Fig. 1. The terrain 
following transform [∇h cos ϑ + sin ϑ] modifies horizontal fluxes to 
follow local topographic slope with angle ϑ assuming local slope is 
constant over depth. Angles of local slope in the horizontal directions are 
calculated as ϑx = tan −1(∂z

∂x) and ϑy = tan −1(∂z
∂y). Since there is no need to 

account for slope for vertical fluxes ϑz = 0. Compared to traditional 
orthogonal fluxes, the terrain following implementation improves in 
accuracy and is better suited to modeling complex terrains or at coarse 
spatial resolutions (Maxwell, 2013). 

We solve Equation (4) using Backward Euler for the time dis
cretization and finite difference for space discretization. The bottom of 
Fig. 1 shows the finite difference stensil in the x − z plane. Since the 
Richards’ equation is non-linear due to the relationship between θ, K and 
h, we use the modified Picard method (Celia et al., 1990) to linearize the 
equation and solve each time step iteratively. Please refer to 
Appendix A.1 for more details on the discretization of Equation (4). 

2.1.1. AIADI 
Due to considerations for ease of use and computational effort, an 

ADI scheme is used to solve Equation (4) one dimension at a time instead 
of the full implicit solution. Previous studies have compared ADI with 
full implicit implementations for multi-dimensional Richards’ Equation 
and found ADI method to be faster with similar simulation results (An 
et al., 2011). However, traditional ADI methods (Peaceman and Rach
ford, 1955; Rubin, 1968) can encounter instabilities and difficulty in 
convergence when solving higher dimension problems (Clement et al., 
1994). To overcome these issues, we use the Advanced Iterative Alter
nating Direction Implicit (AIADI) method (An et al., 2011; Douglas and 
Rachford, 1956), which was first developed for linear parabolic partial 
differential equations and is unconditionally stable in 2D and 3D 
(Douglas and Rachford, 1956). In non-linear cases, stability is not 
guaranteed, but is improved over traditional ADI methods (An et al., 
2011). We adapt the AIADI method to solve the generalized Richards’ 
Equation (4) for natural environments. 

Our modified AIADI method uses three passes as follows: 

First pass in x-direction:

θn+1,3m − θn

Δt
+

(
Cn+1,3m

Δt
+ ImKn+1,3m

)

⋅
(
hn+1,3m+1 − hn+1,3m)

+
θn+1,3m

φ
Ss

Δt
(
hn+1,3m+1 − hn)

=
∂
∂x

[

Kn+1,3m

(
∂h
∂x

⃒
⃒
⃒
⃒

n+1,3m+1

cos ϑx + sin ϑx

)]

+
∂
∂y

[

Kn+1,3m

(
∂h
∂y

⃒
⃒
⃒
⃒

n+1,3m

cos ϑy + sin ϑy

)]

+
∂
∂z

(

Kn+1,3m∂h
∂z

⃒
⃒
⃒
⃒

n+1,3m
)

− qt,

(5)  

second pass in y-direction: 
(

Cn+1,3m

Δt
+ ImKn+1,3m

+
θn+1,3m

φ
Ss

Δt

)
(
hn+1,3m+2 − hn+1,3m+1)

=
∂
∂y

[

Kn+1,3m

(
∂h
∂y

⃒
⃒
⃒
⃒

n+1,3m+2

cos ϑy + sin ϑy

)]

−
∂
∂y

[

Kn+1,3m

(
∂h
∂y

⃒
⃒
⃒
⃒

n+1,3m

cos ϑy + sin ϑy

)]

=
∂
∂y

(

Kn+1,3m∂h
∂y

⃒
⃒
⃒
⃒

n+1,3m+2

cos ϑy

)

−
∂
∂y

(

Kn+1,3m∂h
∂y

⃒
⃒
⃒
⃒

n+1,3m

cos ϑy

)

,

and third pass in z-direction: 
(

Cn+1,3m

Δt
+ ImKn+1,3m

+
θn+1,3m

φ
Ss

Δt

)
(
hn+1,3m+3 − hn+1,3m+2)

=
∂
∂z

(

Kn+1,3m∂h
∂z

⃒
⃒
⃒
⃒

n+1,3m+3
)

−
∂
∂z

(

Kn+1,3m∂h
∂z

⃒
⃒
⃒
⃒

n+1,3m
)

,

where 

Kn
i,j,k = Kn

i−1/2,j,k + Kn
i+1/2,j,k + Kn

i,j−1/2,k + Kn
i,j+1/2,k 

+Kn
i,j,k−1/2 + Kn

i,j,k+1/2,

and 

Im = 0.55m. (6)  

Here n is the timestep index, and m is the Picard iteration level index. Im 
is an iteration parameter for the disturbance term in the AIADI scheme. 
0.55 is chosen in this work following previous studies (An et al., 2011; 
Weeks et al., 2004). Each time step is iterated until |hn+1,3m+3 − hn+1,3m| 
is less than the tolerance value given by the user. 

2.2. 2D overland flow 

Overland flow is simulated using the St. Venant Equations which 
consists of the continuity equation and two momentum equations. The 
continuity equation for 2D application is: 

∂W
∂t

+
∂
∂x

(Wu) +
∂
∂y

(Wv) − qi + qo = 0, (7)  

where W is the depth of water; u and v are velocities in the x and y 

Fig. 1. In this figure, the top shows the grid formulation for the 3D subsurface 
model with terrain following transform. The bottom depicts a detailed 2D view 
of the discretization used in the finite difference solution. i, j, k are cell indices 
in the x, y, and z directions respectively. Horizontal grid size (Δx, Δy) are 
constant over space, but the depth of each layer (Δz) can vary. 
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direction respectively; and qi and qo are the inflow and outflow flux term 
contributing to the overland flow. These terms, in units of length/time 
account for sources and sinks in the overland flow process and facilitate 
the exchange of water between overland and subsurface components of 
the model. Detailed physical processes included in each term is dis
cussed in section 2.3. 

In this work, we use diffusion flow to model the overland flow pro
cess. While omitting the inertial terms in the St. Venant Equations, 
diffusion flow is still capable of accurately representing many natural 
flow situations (Lal, 1998; Fennema et al., 1994; Akan and Yen, 1981; 
Hromadka and Lai, 1985). The momentum equations are reduced to: 

∂H
∂x

= −Sfx and
∂H
∂y

= −Sfy, (8)  

where H = W + z is the depth of the water, W, in addition to surface 
elevation, z, above a given datum. Thus, Sfx, Sfy, the friction slopes are 
the same as the slope of the water surface Sw in 2D, where Sw =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Sfx)
2

+ (Sfy)
2

√

. Combined with Manning’s equation, flow velocity can 
be expressed in terms of H (Hromadka and Lai, 1985): 

u = −
W2/3

nm
̅̅̅̅̅
Sw

√
∂H
∂x

= −
D
h

∂H
∂x

, (9)  

v = −
W2/3

nm
̅̅̅̅̅
Sw

√
∂H
∂y

= −
D
h

∂H
∂y

, (10)  

where nm is the Manning’s coefficient, and D, the diffusion coefficient, is 
expressed as: 

D =

⎧
⎪⎨

⎪⎩

W5/3

nm
̅̅̅̅̅
Sw

√ , for |Sw| > Smin and |W| > Wmin

0, otherwise  

Parameters Smin and hmin are both user defined. Smin is used to keep D 
within a finite limit, and Wmin facilitates wetting and drying. 

Using Equations (9) and (10), the governing equation, based on 
continuity (Equation (7)), is written as: 

∂H
∂t

=
∂
∂x

(D
∂H
∂x

) +
∂
∂y

(D
∂H
∂y

) + qi − qo. (11)  

The overland flow equation can be linearized and solved with a wide 
variety of approaches (Lal, 1998). In this work, we use a linearized 
implicit method where Equation (11) is linearized using explicit D and 
then solved using the implicit backward Euler and finite difference in 
2D. Please refer to Appendix A.2 for the discretization of Equation (11). 

2.3. Surface-subsurface coupling 

Infiltration and evaporation, determined by surface processes and 
subsurface moisture conditions, couple the overland flow and subsur
face components of the 3D flow model. The amount of water exchanged 
between the two model components is calculated at each timestep. It is 
included in the sink term in the overland flow model, qo in Equation 
(11), and it is a source to the subsurface model by serving as the top 
boundary condition. We use a switching top boundary condition in the 
subsurface where, depending on moisture conditions, the top boundary 
of any cell is Dirichlet or Neumann (Paniconi and Wood, 1993; Cam
porese et al., 2010, 2014; Sulis et al., 2010; Le et al., 2015). Dirichlet 
boundary condition applies when infiltration and evaporation becomes 
limited by soil moisture conditions, such as in the case of saturation 
excess. Otherwise, Neumann boundary condition applies. Precipitation 
contributes to the overland flow model through the term qi from Equa
tion (11), and excess water that does not infiltrate into the soil is 
included in qi at the next timestep of the simulation. Additional pro
cesses contributing to sources and sinks for the coupled 3D flow model 

are discussed in Section 3 where the 3D flow model is integrated with a 
1D ecohydrologic model. 

2.4. Flow model benchmarks 

We use a set of benchmarks as preliminary tests for our coupled 3D 
flow model. These benchmark simulations have been established 
through previous works and are designed to compare the physical re
sponses of models (Kollet and Maxwell, 2006; Sulis et al., 2010; Maxwell 
et al., 2014). We use two established test cases, infiltration excess and 
saturation excess, to examine the most prevalent hydrologic responses 
and the interaction between overland flow and subsurface flow com
ponents of the model. 

Both test cases use a domain that slopes in one direction as shown in 
Fig. 2. The soil depth is 5 m with no water flowing through any 
boundaries of the domain except the outlet on the right side as depicted 
in Fig. 2. They both use the same van Genuchten parameters, except for 
saturated hydraulic conductivity Ks, based on values for sandy-loam soil 
estimated by Schaap and Leij (1998). Both tests consists of a 300 min 
simulation that starts with 200 min of rainfall followed by 100 min of 
recession. Parameters used are shown in Table 1, and the two cases differ 
in their parameterization for the saturated hydraulic conductivity and 
initial water table depth as follows:  

1. The infiltration excess case tests for runoff before the soil column is 
saturated due to rainfall rate that is higher than the infiltration rate. 
Therefore, this case tests two saturated hydraulic conductivity (Ks) 
values that are smaller than the rainfall rate shown in Table 1.  

2. The saturation excess case tests for runoff when the soil column is 
saturated. This is simulated with a Ks that is larger than the rainfall 
rate. Two values for initial water table depth are tested given in 
Table 1. 

Fig. 3 compares the outflow rate from our model with that of five 
other models for the infiltration excess benchmark test case. Our model 
generally agrees well with other models. Especially for the magnitude of 
the peak outflow and the recession curve, our model matches other 
model outputs very closely or is within the range of variability of the 
other models. The largest discrepancy occurs in the rising limb of the 
outflow for the low Ks case. Our model produces a slightly steeper rising 
limb compared to other models tested and thus plateaus faster where the 
outflow is equivalent to rainfall rate. One possible cause of this is nu
merical differences in the overland flow model implementation. Another 
possible cause is the difference in mesh size and timestep for our model. 
Based on the comparison of a similar test case with different mesh sizes 
and the analytical solution from Kollet and Maxwell (2006), we see that 
the analytical solution and simulations with very fine mesh tend to also 
have a steeper rising limb and plateau faster than models with coarser 
grids. 

Fig. 4 compares the outflow rate from our model with that of other 

Fig. 2. Domain used for the benchmark tests based on Sulis et al. (2010) and 
Maxwell et al. (2014). Outflow used for comparison in benchmarks are 
measured for the gray cells at the bottom of the slope. 
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models for the saturation excess benchmark test case. Our model also 
agrees well with other models for this case. Similar to the infiltration 
excess test case, our model matches other model outputs very closely or 

is within the range of variability of the other models for the peak outflow 
and the recession curve. The largest difference occurs at the rising limb 
for the case with initial water table at 1.0 m where our model produces 
outflow slightly slower than other models and have a steeper rising limb 
similar to the infiltration excess case. Cause for the discrepancy is also 
likely a combination of differences in numerical implementation and 
mesh size, same as that of the infiltration excess case. However, in 
general, results from our model match with other models in the 
benchmark tests reasonably closely and show expected model behavior 
which provides confidence in the validity of our model. 

3. A virtual laboratory 

3.1. Canopy and flow model process integration 

In order to simulate land surface processes, we integrate our flow 
model into the existing Multi-Layer Canopy (MLCan) model (Drewry 
et al., 2010a,b; Quijano et al., 2012; Le et al., 2012; Quijano et al., 2013; 
Quijano and Kumar, 2015). MLCan is a high fidelity, high complexity 1D 
model that simulates above-ground canopy processes by (1) fully 
coupling leaf biophysical processes including photosynthesis, leaf sto
matal conductance, leaf boundary layer conductance and leaf energy 
balance, (2) scaling from leaf to canopy level with a multi-layer 
approach using sunlit and shaded leaf fractions for each layer, and (3) 
resolving the vertical profiles of radiation, water storage, energy bal
ance, and CO2 flux. MLCan also describes surface and below ground 
processes such as water storage and energy balance in the litter and 
snow layers, root and soil water interactions that couples to photosyn
thesis, soil heat transport, and 1D soil water movement. 

We integrate our 3D flow model with MLCan by replacing the orig
inal 1D soil moisture model with our 3D subsurface model and adding 
the 2D overland flow model as shown in Fig. 5. We maintain all process 
interaction in the original MLCan model such as soil water interactions 
with plant roots. The transpiration flux, qt in Equation (4), is modeled as 
a sink term in the subsurface model, and it is generally uptake of water 
by plants determined by the canopy transpiration. However, due to the 
hydraulic redistribution incorporated in the model (Amenu and Kumar, 
2008; Quijano et al., 2012), where water travels through plant roots 
from wet to dry parts of the soil upwards or downwards, qt can be both 
sink or source in different parts of the model domain at any timestep. 

We also implement additional process interactions with the addition 
of the 2D overland flow model. Sinks in the overland flow model, qo from 
Equation (11), include evaporation and infiltration, as described in 
Section 2.3, to couple overland flow with subsurface processes. Evapo
ration from the overland flow model is integrated into MLCan canopy 
processes. To further integrate the 3D flow model into MLCan surface 

Table 1 
Parameters used for test cases.  

Parameter  Units Infiltration Excess Saturation Excess 

Horizontal mesh size Δx = Δy m 20 20 
Vertical mesh size Δz m 0.1 0.1 
Timestep Δt min 0.5 0.5 
Initial water table depth wt m 1.0 1.0, 0.5 
Saturated hydraulic conductivity Ks m min−1 6.94 × 10−5, 6.94 × 10−6 6.94 × 10−4 

Porosity φ – 0.4 0.4 
Specific storage Ss m−1 5 × 10−4 5 × 10−4 

Manning’s coefficienta nm m−1/3 min 3.31 × 10−4 3.31 × 10−4 

x direction slope  % 0.05 0.05 
y direction slope  % 0 0 
Rain rate  m min−1 3.30 × 10−4 3.30 × 10−4 

vanGenuchten parameters 
Alphaa α cm−1 0.01 0.01 
Pore-size distribution nv – 2.0 2.0 
Residual water content θr – 0.08 0.08 
Saturated water content θs – 0.4 0.4  

a Values do not match those of previous publications due to confirmed typos in previous works. 

Fig. 3. Comparison of outflow for the infiltration excess test case. Two different 
values of saturated hydraulic conductivity are tested where our 3D flow model 
is compared with other similar models. Data of other models are from Maxwell 
et al. (2014). 

Fig. 4. Comparison of outflow for the saturation excess test case. Two different 
values of initial water depth are tested where our 3D flow model is compared 
with other similar models. Data of other models are from Maxwell et al. (2014). 
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and canopy processes, qo includes the contribution of overland flow to 
water stored in the litter layer, and precipitation which contributes to qi 
from Equation (11) is determined by throughfall from the canopy model 
and uptake by the litter and snow model. Drainage of excess water from 
the litter and snow layer, as well as overland flow, contributes to infil
tration into the subsurface. 

The resulting Multi-layer Canopy and 3D Soil (MLCan3D) model has 
the capability to represent vegetation dynamics with high fidelity, 
including acclimation response of vegetation to changes in atmospheric 
CO2 (Drewry et al., 2010a,b) and its consequent impact in water and 
energy partitioning, capture high resolution heterogeneity in the 
topography and subsurface, and maintains the tight process interactions 
between vegetation and soil moisture. Fig. 5 shows the schematic of 
process interactions of the MLCan3D model with the new coupled 3D 
flow model and associated process interactions highlighted in blue. 

3.2. Model capabilities 

A detailed physical process model such as MLCan3D inevitably need 
a lot of data to set up and is computationally demanding. To encourage 
the use of MLCan3D as a virtual laboratory by the broader scientific 
community, we develop MLCan3D with an emphasis on accessibility, 
where the model is easy to set up and understand as well as run without 
stringent computing hardware constraints. 

We use a Graphical User Interface (GUI) to guide users step-by-step 
through the model setup process. The GUI was first developed for 
MLCan (Le et al., 2012) and is now modified to include setup of the 

coupled surface and subsurface flow components. In setting up the 
model, users first specify the simulation location as latitude and longi
tude, plant species composition, and vegetation structure through leaf 
area index (LAI) and vertical leaf area density (LAD) profile for each 
species. Then, users have the ability to specify which modules to include 
in the simulation, such as using the 3D flow model (2D overland and 3D 
subsurface) or the 1D soil moisture module in the original MLCan model. 
MLCan3D then takes available eddy-covariance flux tower data as model 
forcings and uses lidar derived Digital Elevation Models (DEMs) to 
characterize topography for the 3D flow model. For initial soil moisture 
conditions, users have the option to use a vertical profile that is homo
geneous over the domain or input 3D data as a grid of user specified 
values. Similarly, users can specify 3D heterogeneous soil parameters for 
soil moisture retention and hydraulic conductivity as described in 
Equations (2) and (3). Appendix B contains details on how to use the GUI 
to set up the 3D flow model. MLCan3D outputs water, CO2, and energy 
fluxes for the canopy and the soil as well as vegetation dynamics and 
microclimate conditions. In addition, MLCan3D outputs moisture con
ditions from the 3D flow model including ponded water depth on the 
land surface and subsurface soil moisture. 

Since we use the Advanced Iterative Alternating Direction Implicit 
(AIADI) method (An et al., 2011; Douglas and Rachford, 1956) to solve 
the subsurface flow, the model is significantly less memory intensive 
than fully implicit methods and is easily parallelized. Therefore, 
MLCan3D can be run on personal computers for small virtual experi
ments or in highly parallel computing environments for large experi
ments. With the help of the GUI and limited hardware constraints, 

Fig. 5. This figure illustrates the MLCan3D model. The left side is a graphical representation of MLCan3D depicting the integration of the Multi-Layer Canopy model 
with our new 3D flow model including 2D overland and 3D subsurface flows overlaid with major modeled ecohydrologic processes. The right sides is a schematic 
showing the coupling of processes in the model with the integration of the 3D flow model into original MLCan shown in blue (adapted from Drewry et al. (2010a); Le 
et al. (2012)). 
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MLCan3D can be more accessible to users from broader range of back
grounds and encourage virtual experiments to answer more questions 
from diverse disciplines. MLCan3D is open source and available for 
download at https://github.com/HydroComplexity/MLCan3D. 

4. Model application 

MLCan3D can be applied to a wide range of ecosystems. To 
demonstrate its applicability, we simulate, without calibration, two very 
different ecosystems to test MLCan3D in real world situations using data 
from NEON (National Ecological Observatory Network) (National 
Research Council, 2004). NEON, funded by NSF, consists of a network of 
long term data collection facilities that provides comprehensive data for 
quantifying land surface ecological processes. NEON has sites across the 
US and covers a range of ecosystems and climates. They collect 
long-term open access data and provide more than 175 data products for 
ecologic and biological studies, and their standardized data collection 
and processing protocols can provide comparable data across different 
sites. 

At each NEON site, an eddy covariance flux tower collects weather 
data needed as forcings for MLCan3D such as radiation, precipitation, 
air temperature, and wind speed. The tower also collects ecosystem 
fluxes of water, energy, and carbon which can be used to compare with 
model output. At each site, there is also an array of soil plots near the 
tower (Fig. 6) that have sensors at various depths in the soil to measure 

soil variables such as water content, salinity, and temperature. NEON 
also collects, processes, and provides high resolution airborne remote 
sensing data, including hyperspectral, lidar, and digital photography for 
each site around the time of peak greenness each year. Hyperspectral 
and lidar remote sensing products are provided at 1 m resolution. The 
hyperspectral data products include leaf area index (LAI), and lidar data 
products include canopy height (CHM) and surface elevation (DEM). 
Observational samples are also taken for a variety of ecosystem factors 
such as plants, soil, and organisms. Relevant data include plant species, 
soil texture, and litter layer information. We apply MLCan3D to two sites 
in order to test model performance for different conditions of vegetation, 
topography, and soil textures. NEON datasets used to set up model 
simulations and verify model results are listed in Table 3 in the 
Appendix. 

4.1. Ordway-swisher biological station site 

The Ordway-Swisher Biological Station (OSBS) site is located in 
central Florida (Lat/Long: 29.689 27, −81.993 43). Mean annual pre
cipitation is 1290 mm with more rain in the summer months. It consists 
of fairly homogeneous evergreen forests dominated by longleaf pine 
(pinus palustris) within the eddy-covariance flux tower airshed. Average 
canopy height, based on airborne lidar data, is 23 m with relatively open 
canopy and low Leaf Area Index (LAI) of 0.79 (ORNL DAAC, 2018a; 
Myneni et al., 2015). 

We use 1 m resolution DEM from airborne Lidar to characterize the 
topography of the site for the 3D flow model. While the OSBS site has 
limited elevation changes, it consists of very fast draining deep sandy 
soils whose sharp changes in soil moisture conditions really test the 
numerical stability of the subsurface model. According to soil sample 
measurements, the OSBS soil contains more than 95% sand and is 
therefore a sandy textured soil. Texture based soil parameters for 
Equations (2) and (3) found in literature are used as model parameters as 
shown in Table 2 (Dingman, 2015; Clapp and Hornberger, 1978; Leij, 
1996; Ghanbarian-Alavijeh et al., 2010). 

In this work, we model a 150 × 60 m2 plot at 1 m2 resolution covering 
all soil moisture sensor as shown in Fig. 6. The site has a slight topo
graphic gradient of about 2.5 m going down slope from the north east to 
the south west. We run the model for June 2018 at 30 min timesteps 
with a 10 day spin up period. The 3D flow model’s initial soil moisture 
condition is homogeneous with volumetric soil moisture of 0.1, and 
measured forcing data from May 2018 is used for the spin up period. Due 
to the fast draining nature of the soil, initial soil moisture conditions do 
not significantly affect results after the spin up period. 

The summary of model results for the simulation period is shown in 
Fig. 7 where we compare our model simulation with field measured data 
from NEON. In Fig. 7a, we compare simulated plot-average results of soil 
moisture and temperature with measured data from five soil plots at 6 
cm depth, corresponding to the first layer of 10 cm in our model. We also 
display the vertical profile of plot-average soil moisture over time. We 
find that on the plot level average, our model simulation is in good 
agreement with measured data, though simulated soil temperature does 
not show diurnal variations as strong as that of the observed data. In 
Fig. 7b, we show topography of the plot and the heterogeneity of soil 
moisture over the plot at various depths. Here we observe that simulated 
soil moisture varies at fine scales that corresponds to heterogeneity due 
to micro-topographic variability (on the order of a few meters). How
ever, soil moisture does not change significantly over the domain, and 
the variance of the top layer soil moisture shown in 7b is less than what 
is observed by the five soil moisture sensors ploted in 7a. This indicates 
that simulated soil moisture for the OSBS site does not react to larger 

Fig. 6. Illustration of NEON ORNL (top) and OSBS (bottom) sites with their 
locations on the US map from NEON (NEON, 2020) circled in red. This figure 
shows the digital elevation model for each site based on Lidar data from NEON 
(Table 3) and the five soil plots where moisture and temperature measurements 
are used to compare with model output. The eddy-covariance flux tower lo
cations are also marked. 
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scale topographic features, such as the gradual slope in the plot, as much 
as what the soil moisture sensors measure. In Fig. 7c, we compare 
diurnally averaged simulated latent heat flux from the plot with that of 
the measured data from the flux tower. We find that simulated latent 
heat flux is in good agreement with measured. 

4.2. Oak ridge national laboratory site 

The Oak Ridge National Laboratory (ORNL) site is located in Ten
nessee (Lat/Long: 35.964 12, −84.282 6). Mean annual precipitation is 
1222 mm with slightly more precipitation in the winter and spring. It 
consists of mainly mixed deciduous forests dominated by oaks, maples, 
and hickories within the flux tower airshed with average canopy height 
of 28 m and LAI of 5.2 (ORNL DAAC, 2018b; Myneni et al., 2015). 

As part of the Ridge-and-Valley Appalachians, the site is situated 
within five parallel ridges and valleys with dramatic variations in 
elevation. Therefore, this site allows us to test the model’s ability to 
capture the effects of topographic variations. Due to the large topo
graphic variability at the ORNL site, soil texture also varies dramatically 
from sandy loam and silt loam to clay according to soil sample mea
surements from NEON. NEON does not have soil sample measurements 
very close to the eddy-covariance flux tower, but we know from litera
ture and measured data that the soil at the top of the ridges, where the 
tower is, tends to be more coarse and well drained compared to soil in 
valleys (Solomon et al., 1992). Therefore, for this study, we use silt loam 
soil with low porosity as described in Solomon et al. (1992). Texture 
based soil parameters for Equations (2) and (3) found in literature are 
shown in Table 2 (Dingman, 2015; Clapp and Hornberger, 1978; Leij, 
1996; Ghanbarian-Alavijeh et al., 2010). 

For the ORNL site, we model a 200 × 80 m2 plot at 1 m2 resolution 
covering all soil moisture sensor and the eddy-covariance flux tower as 
shown in Fig. 6. The site has topographic changes of over 17 m over the 
plot, much larger than that of the OSBS site. We run the model for June 
2020 at 30 min timesteps with a 20 day spin up period. Initial soil 
moisture condition is homogeneous with volumetric soil moisture set to 
0.2. To mitigate effects of the initial condition, we use a longer spin up 
period to compensate for the slower draining soil at the site. 

The summary of model results for the simulation period is shown in 
Fig. 8 where we compare our model simulation with field measured data 
from NEON. In Fig. 8a, we compare simulated plot-average results of soil 
moisture and temperature with measured data from five soil plots at 
0.06 m depth, corresponding to the first layer of 0.1 m in our model. We 
find that on the plot level average, our model simulation for the ORNL 
site is also in good agreement with measured data, though soil moisture 
does not seem to react as sharply to precipitation as the measured data. 
Also towards the end of June, simulated soil temperature is slightly 
lower compared to measured and in general does not see as strong 
diurnal variations. In Fig. 8b, we show topography of the plot and the 
heterogeneity of soil moisture over the plot at various depths. Simulated 

soil moisture is able to capture soil moisture heterogeneity due to large 
scale topographic gradient as well as micro-topographic variability. 
However, soil moisture simulation does not show as much spatial vari
ability as is measured by the five soil moisture sensors. In Fig. 8c, we 
compare diurnally averaged simulated latent heat flux from the plot 
with that of the measured data from the flux tower. We find that 
simulated latent heat flux is in good agreement with measured. 

5. Discussion and model sensitivities 

The canopy component of MLCan3D is strongly affected by vegeta
tion’s physical properties and its photosynthetic parameterization. 
Important physical properties includes LAI and canopy height, which 
specify the structure of the vegetation. Important photosynthetic pa
rameters, for C3 plants as simulated in our study, include maximum 
rubisco limited carboxylation rate (Vcmax) and maximum electron 
transport rate (Jmax). 

A few parameters are important in facilitating the interaction of 
canopy, land surface, and soil. Soil moisture is sensitive to the amount of 
throughfall, the precipitation that reaches the ground after canopy 
interception, and the thickness of the surface litter layer since these 
components directly influence the amount of infiltration. Soil moisture 
is also affected by root water uptake, as determined by vegetation 
properties discussed above and conductivity of roots. Manning’s coef
ficient nm affects the overland flow, and thus influence heterogeneity of 
infiltration into the subsurface. 

Soil moisture is most directly affected by the soil moisture retention 
curve parameters used in Equations (2) and (3). Simulation results tends 
to be the most sensitive to Ks where water travels faster through soils 
with larger Ks, leading to sharper peaks during precipitation and faster 
drainage. The residual and saturated soil moisture, θr, θs, are important 
in bounding the range of soil moisture, and larger θs will lead to higher 
soil moisture, and similarly for θr, when all other parameters remain 
constant. nv and α also have small affects on soil moisture. Larger nv 
leads to drier conditions. Larger α produces slightly higher peaks during 
precipitation and less dry down, leading to more water retention over 
time. However, the effect is not very significant when varying α within 
the reasonable range for the given soil texture. 

We parameterize the application cases of our model using parame
ters found in existing literature when available and do not calibrate the 
model to fit measured data. From the results, we find that on average, 
the model can closely estimate soil moisture levels compared to sensor 
measured values. Vertical movement of moisture in the soil column also 
seems reasonable from comparing with deeper layer results in the OSBS 
site. Canopy level latent heat flux is also comparable with measured 
values. Based on current results, the model performs well in general, but 
have a few issues that warrants further discussion. 

One noticeable difference between the simulated soil moisture and 
measured soil moisture curves is that sensor measurements register 

Table 2 
Parameters used for model applications at OSBS and ORNL sites.  

Parameter  Units OSBS ORNL 

Horizontal mesh size Δx = Δy m 1 1 
Vertical mesh sizea Δz m 0.1 + 0.1 +
Timestep Δt hr 0.5 0.5 
Saturated hydraulic conductivity Ks m hr−1 0.60 0.026 
Porosity φ – 0.45 0.40 
Specific storage Ss m−1 5 × 10−4 5 × 10−4 

Manning’s coefficient nm m−1/3 hr 4.673 5 × 10−6 4.673 5 × 10−6 

vanGenuchten parameters 
Alpha α cm−1 0.035 0.01 
Pore-size distribution nv – 2.5 1.5 
Residual water content θr – 0.01 0.05 
Saturated water content θs – 0.45 0.40  

a Vertical mesh size is 0.1 m for the top 1 m of soil, then increases in size as depth increase. 
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Fig. 7. Comparison of simulation results with measured data for NEON OSBS site. (a) Top two plots show observed precipitation and air temperature, and simulated 
soil moisture profile over depth for June 2018. Bottom two plots show simulated soil moisture and temperature results for the first soil layer with 10 cm depth 
compared with measured data from five sensors (S1 to S5 with locations shown in Fig. 6) at 6 cm depth; (b) topography of the simulation domain and simulated soil 
moisture over the plot at various depths for DOY = 171.2; (c) simulated and measured diurnal latent heat flux averaged over the simulation period with standard 
deviation shown by the shaded regions. 

Fig. 8. Comparison of simulation results with measured data for NEON ORNL site. (a) Top two plots show observed precipitation and air temperature, and simulated 
soil moisture profile over depth for June 2020. Bottom two plots show simulated soil moisture and temperature results for the first soil layer with 10 cm depth 
compared with measured data from five sensors (S1 to S5 with locations shown in Fig. 6) at 6 cm depth; (b) topography of the simulation domain and simulated soil 
moisture over the plot at various depths for DOY = 163.4; (c) simulated and measured diurnal latent heat flux averaged over the simulation period with standard 
deviation shown by the shaded regions. 
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faster response to precipitation when compared with that of the model 
simulation. We believe two factors contribute to the more rounded peaks 
in the simulated soil moisture. One factor is that since the curve is an 
aggregation of the plot where the variable response from different lo
cations in the plot are averaged, the less sharp peaks reflects the vari
ability within the plot. Another factor is that the modeled canopy and 
litter layer attenuation of the precipitation signal is not representative of 
individual sensor locations. If a sensor is not located under vegetation, 
then it does not experience attenuation of precipitation and will exhibit 
different behavior compared to locations under vegetation and the 
average behavior of the plot. 

While simulated soil temperature is generally close to measured values, 
and shows correct diurnal oscillations, the magnitude of simulated oscil
lations are much less than that of the sensor measurements. This difference 
may be due to the insulating effects of the litter layer or the limited 
parameterization of soil heat capacity based on soil texture in the model. 

From Figs. 7b and 8b, we see that while micro-topographic effects on 
soil moisture are evident, the variability of soil moisture across the study 
plots is not as significant as demonstrated by the measured data. One 
possibility is that due to the homogeneous initial conditions we 
currently use for our simulations, soil moisture gradient across each plot 
has not had time to form during the spin up period. This can be tested 
with a longer simulation or heterogeneous initial conditions. Another is 
that there is notable heterogeneity in soil texture that our available data 
does not capture which influences soil moisture. However, there may 
also be special unknown conditions influencing individual soil moisture 
sensors. For example, soil moisture sensor 3 (S3) in the ORNL case 
measures soil moisture at around 0.1, barely above the residual soil 
moisture, for the entire duration of the simulation, and does not respond 
significantly to precipitation. While simulated soil moisture at the 
location of sensor 3 is drier due to elevation (Fig. 6), this extremely dry 
soil moisture measurements seems unlikely to be solely caused by 
topography. Similarly, the low elevation of sensor 5 in the ORNL case 
(Fig. 6) does not corroborate its low soil moisture measurements and 
suggests additional factors that can contribute to the large variations we 
see in soil moisture measurements. 

In general, initial simulations using MLCan3D shows that models 
results are consistent with measured data on average, but do not capture 
as much variability, both in time and space. This demonstrates there is 
still a need for further studies to understand and draw connections be
tween in-situ sensors measurements and models simulations. Using 
MLCan3D as a virtual laboratory, we can conduct virtual experiments 
that explore this issue. For example, in this work, we find that using 
topography as the only source of heterogeneity is not enough to capture 
the variability in the field. We hypothesize that model parameterization 
may contribute to the discrepancy between measured and modeled soil 
moisture variability across the study plots. Therefore, we can conduct a 
virtual experiment using user-specified heterogeneous soil parameters 
to test this hypothesis. 

However, topography is readily available for large extents at high 
resolutions while soil parameters are not. Therefore, we can also use 
MLCan3D to ask questions such as how topographic variability interacts 
with ecohydrologic processes to affect soil moisture and other ecohy
drologic fluxes, and to what extent can topography inform heterogeneity 
in ecohydrologic fluxes. Remotely sensed heterogeneity in vegetation, 
which leads to variability in throughfall, infiltration, and water uptake, 
can also be included in future works. 

With the ability to model across scales, from micro-topographic to 
larger scales, and across ecosystems, MLCan3D can also be used to 
explore how model scale affects heterogeneous ecohydrologic process 
behaviors and their interactions at different scales. By gaining better 
understanding and quantification of outstanding scale issues such as 
how fine scale dynamics amplify or attenuate as scale increases, simu
lation experiments from MLCan3D can contribute to the hyper- 
resolution land surface modeling effort in quantifying high resolution 

heterogeneity over large extents. 

6. Conclusion 

In this work, we presented MLCan3D, an integrated ecohydrologic 
model that focuses on high fidelity physical process representation, 
greater accessibility, and wider applicability. It couples existing 
advanced ecohydrologic process model MLCan with new state of the art 
topography aware 3D flow model. MLCan models vegetation, land sur
face energy fluxes, and above-ground moisture processes. The 3D flow 
model simulates surface and subsurface moisture dynamics with 2D 
diffusive overland flow and 3D terrain-following Richards’ Equation for 
subsurface flow. The 3D flow model is in good agreement with other 
similar models when compared in standard benchmark tests, and when 
coupled with MLCan, the resulting MLCan3D model enables high reso
lution ecohydrologic modeling that accounts for micro-topographic 
variability in the land surface. 

To make MLCan3D easily accessible we provide a GUI to facilitate 
the initialization and the full simulation of the model. We also use the 
AIADI method for the 3D subsurface flow to reduces computation cost 
without sacrificing numerical stability. The guidance from the GUI and 
lack of stringent computing hardware constraints makes MLCan3D more 
accessible to the general scientific community thus encouraging wider 
adoption of the model. 

We apply MLCan3D to two NEON sites with very different charac
teristics to demonstrate the broad applicability of the model. Model 
results are comparable with field measured data at the plot scale and 
demonstrate the effect of micro-topographic variations on soil moisture. 
Model simulations did not capture as much heterogeneity as demon
strated by in-situ sensors, a reflection of the fact that topography is not 
the only source of heterogeneity that contributes to variability of soil 
moisture in the field. We aim to further explore this result using 
MLCan3D by investigating additional factors contributing to land sur
face heterogeneity as well as how topographic variability affects 
modeled ecohydrologic fluxes. 

This work demonstrated the feasibility of using the MLCan3D model 
as a virtual laboratory that enables a range of virtual experiments by the 
broader scientific community and contribute to the advancement of our 
understanding of ecohydrologic process heterogeneity, dynamics, and 
interactions. 

Software and data availability 

MLCan3D is written in MATLAB and is tested for MATLAB version 
R2018b. It is first made available in 2021, requires MATLAB to run and 
has no strict hardware requirements. MLCan3D is open source and 
available for education and research uses at https://github.com/Hydr 
oComplexity/MLCan3D. Developers’ contact information is provided 
in the MLCan3D readme on GitHub. 
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Appendix 

A. Flow Model Discretization 

A.1. Subsurface 
Backward Euler scheme is used for the time discretization and finite difference for space discretization. Since the Richards equation is non-linear 

due to the relationship between θ, K and h, the modified Picard method (Celia et al., 1990) is used to linearize the equation and solve each time step 
iteratively. 

Discretizing Equation (4) with backward Euler and Picard linearization gives: 
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where n is the time step, and m is the iteration level of the Picard iteration. 
Next, as shown in (Celia et al., 1990), dependent variable θn+1,m+1 can be written in terms of ψ and h using its Taylor series expansion about ψn+1,m: 
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Notice that the temporal difference of ψ is equivalent to that of h because the gravitational potential component of h does not change in time and 

cancels out. Using C = ∂θ
∂ψ and with higher order terms omitted, we can plug Equation (13) into Equation (12) to replace θn+1,m+1: 
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Applying finite difference, we can write Equation (14) as: 
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1
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]
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1
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+
1
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]
+

1
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1
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[
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]
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(15)  

A.2. Overland 
We linearize Equation (11) by using explicit D and then solved using the implicit Backward Euler and finite difference in 2D. Discretized Equation 

(11) is written as: 

Hn+1 − Hn

Δt
=

1
Δx2

[
Dn

i+1/2,j(Hn+1
i+1,j − Hn+1

i,j ) − Dn
i−1/2,j(Hn+1

i,j − Hn+1
i−1,j)

]
+

1
Δy2

[
Dn

i,j+1/2(Hn+1
i,j+1 − Hn+1

i,j ) − Dn
i,j−1/2(Hn+1

i,j − Hn+1
i,j−1)

]
+ qi − qo, (16)  

where n is the current timestep. 

B. GUI for 3D Flow Model 

In this section, we provide details on setting up the 3D flow model, including 2D overland flow and 3D subsurface flow, within MLCan3D. Main 
steps to set up the 3D flow model include enabling the model in the Options window, loading topography data and initial conditions in Forcing and 
Initial Conditions window, then specifying parameters for the model in Parameters window. More details on setting up the other model components are 
discussed in Le et al. (2012).   
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Fig. 9. Screenshot of the model Options window. Users can select which model components to include in the simulation, such the 3D Flow Model consisting of 2D 
overland flow and 3D subsurface flow.  

First, to simulate 2D overland flow and 3D subsurface flow, users must enable the 3D Flow Model option by selecting the model in the Models panel 
within the Options window as shown in Fig. 9. This step enables users to proceed to the following steps in setting up the 3D Flow Model. Other 
subsurface models, including the Nutrient Model, Soil Heat Model, and Hydraulic Redistribution, are coupled with the 1D aggregated soil moisture 
profile for the domain, and if the 3D Flow Model checkbox is not selected, soil moisture is simulated in 1D (Amenu and Kumar, 2008; Drewry et al., 
2010a; Quijano et al., 2012; Woo and Kumar, 2016).   
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Fig. 10. Screenshot of the model Forcing and Initial Conditions window. Here, users must specify topography data, and have the option to use 3D heterogeneous initial 
conditions. The GUI also provides visualization for the uploaded data.  

Once the 3D flow model is enabled, to set up the model, users must first use the Forcing and Initial Conditions window to specify the topography of 
the simulated area (Fig. 10). Topography can be uploaded as a 2D matrix with variable name ‘dem’ in a .mat file or as a .tiff (or .tif) file. The domain 
size (nx, ny) of the simulation is determined based on the size of the uploaded topography data, and the user must specify the size of each grid in 
meters. The number of layers (nz) and the depth of each layer is specified by the root structure earlier in the model setup process (Le et al., 2012). By 
default, initial conditions for the overland flow assumes no ponded water, and soil moisture is specified as a 1D vertical profile in the ICs For Canopy tab 
found at the top of the window. The 1D profile is then extrapolated to the 3D domain. However, users have the option to specify more complex initial 
conditions including 2D ponded water depth and 3D soil moisture by checking each option and uploading the corresponding data in .mat files. Details 
on the file structure requirements can be found by clicking the help buttons at each step. The View initial conditions panel provides options to visualize 
the uploaded data for easy verification of the data.  

Fig. 11. Screenshot of the model Parameters window. Under the 3D FLOW MODEL tab, users must specify parameters needed in the model 
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The finial step in setting up the 3D flow model is to specify the parameters used by the 3D flow model in the 3D Flow Model tab of the Parameters 
window as shown in Fig. 11. There are two main sections for the 3D flow model parameters. The first section includes parameters for the numerical 
model, such as the maximum number of iterations for the subsurface model, boundary conditions, parallel computing, and how often to save results. 
Choices for boundary conditions are no flow (0) or free flow (1) for the subsurface bottom boundary, and no flow for side boundaries of the domain. To 
simulate free flow side boundaries for both overland and subsurface, users can use specify additional boundary cells at each side of the simulation 
domain. The number of boundary cells can be specified as parameters with value 0, no boundary cells, being the default no flow condition, or any 
integer for the corresponding number of boundary cells from each edge of the domain. When boundary cells are used, values in those cells are 
initialized and parameterized similar to other cells in the domain. Their values are also saved in the 3D output so that boundary fluxes can be 
calculated as needed. However, boundary cells are not considered in the feedback of the 3D flow model with other MLCan3D processes such as root 
water uptake. Users can also set the number workers used to run the 3D flow model in parallel. Outputs from the 3D flow model, including the depth of 
ponded water W from equation (7), the soil moisture θ, the total head h, and the hydraulic conductivity K(ψ) from Equation (4) are saved at user 
defined intervals.  

The second section of the Parameters window contains detailed specification of parameters for soil moisture retention and hydraulic conductivity as 
described in Equations (2) and (3). Users have three options for specifying the soil parameters: 1) use the texture based option where no additional data 
input is needed, and the soil parameters are determined based on the soil texture specified by the user during the model setup; 2) use the single value 
option where the entire simulation domain is set to one homogeneous value based on user input; and 3) use the 2D/3D matrix option where users can 
specify 3D heterogeneous soil parameters. When using the 2D/3D matrix option for certain parameters, the user must load a .mat file containing data 
for each parameter. Help windows and error messages are available to direct users during the setup process.  

Table 3 
Data sets from NEON used for model applications at OSBS and ORNL as model forcings and model verification.  

Data Product ID Name OSBS Date Range ORNL Date Range 

DP4.00 200.001 Bundled data products - eddy covariance 2018/05/01–06/30 2020/05/01–06/30 
DP1.00 003.001 Triple aspirated air temperature 2018/05/01–06/30 2020/05/01–06/30 
DP1.00 004.001 Barometric pressure 2018/05/01–06/30 2020/05/01–06/30 
DP1.00 023.001 Shortwave and longwave radiation (net radiometer) 2018/05/01–06/30 2020/05/01–06/30 
DP1.00 006.001 Precipitation 2018/05/01–06/30 2020/05/01–06/30 
DP1.00 098.001 Relative humidity 2018/05/01–06/30 2020/05/01–06/30 
DP1.00 001.001 2D wind speed and direction 2018/05/01–06/30 2020/05/01–06/30 
DP1.10 058.001 Plant presence and percent cover 2016/05/01–06/30 2020/06/15 − 06/29 
DP3.30 015.001 Ecosystem structure 2018/09 2016/06 
DP3.30 024.001 Elevation - LiDAR 2018/09 2016/06 
DP1.10 047.001 Soil physical properties (Distributed initial characterization) 2016/03 2016/08 
DP1.00 094.001 Soil water content and water salinity 2018/05/01–06/30 2020/05/01–06/30 
DP1.00 041.001 Soil temperature 2018/05/01–06/30 2020/05/01–06/30   

Table 4 
Selection of model vegetation parameters.  

Parameter  Units OSBS ORNL 

Canopy Structurea 

Canopy Height h m 25 28 
Leaf Area Index LAI − 0.74 5.2 
Foliage clumping factor Ω − 1.0 0.9 
Flux tower observation height − m 35 40 
Canopy roughness length z0 m 2.5 2.8 
Maximum water storage capacity of a leaf Sm mm/LAI 0.2 0.3 
Leaf Photosynthesisb 

Maximum Rubisco limited carboxylation rate at 25◦C Vcmax,25 μmol/m2s 60 80 
Maximum electron transport rate at 25◦C Jmax,25 μmol/m2s 110 140 
Leaf respiration rate at 25◦C Rd,25 μmolCO2/m2s 0.3 0.3 
Root Structurec 

Root depth rd m 4.5 4.7 
50th percentile rooting depth z50 m 0.6 0.5 
95th percentile rooting depth z95 m 2.5 2 

a Jensen (2002); Brutsaert (2013); Campbell and Norman (2012); Kitchings and Mann (1976) and NEON eddy covariance (DP4.00 200.001) and ecosystem 
structure (DP3.30 015.001) data shown in Table 3. 
b Wright et al. (2013); Sampson et al. (2006); Walker et al. (2014). 
c Heyward (1933). 
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