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Abstract: Sample entropy, an approximation of the Kolmogorov entropy, was proposed to characterize
complexity of a time series, which is essentially defined as — log(B/A), where B denotes the number
of matched template pairs with length m and A denotes the number of matched template pairs with
m + 1, for a predetermined positive integer m. It has been widely used to analyze physiological
signals. As computing sample entropy is time consuming, the box-assisted, bucket-assisted, x-sort,
assisted sliding box, and kd-tree-based algorithms were proposed to accelerate its computation.
These algorithms require O(N?) or O(N zfﬁ) computational complexity, where N is the length of
the time series analyzed. When N is big, the computational costs of these algorithms are large. We
propose a super fast algorithm to estimate sample entropy based on Monte Carlo, with computational
costs independent of N (the length of the time series) and the estimation converging to the exact
sample entropy as the number of repeating experiments becomes large. The convergence rate of the
algorithm is also established. Numerical experiments are performed for electrocardiogram time series,
electroencephalogram time series, cardiac inter-beat time series, mechanical vibration signals (MVS),
meteorological data (MD), and 1/ f noise. Numerical results show that the proposed algorithm can
gain 100-1000 times speedup compared to the kd-tree and assisted sliding box algorithms while
providing satisfactory approximate accuracy.

Keywords: entropy; sample entropy; fast algorithm; Monte Carlo method

1. Introduction

Kolmogorov entropy is a well-suited measure for the complexity of dynamical sys-
tems containing noises. Approximate entropy (AppEn), proposed by Pincus [1], is an
approximation of the Kolmogorov entropy. To overcome the biasedness of AppEn caused
by self-matching, Richman proposed sample entropy (SampEn) [2] in 2000. SampEn is
essentially defined as —log(B/A), where B denotes the number of matched template pairs
with length m and A denotes the number of matched template pairs with m + 1. SampEn
has prevailed in many areas, such as cyber-physical systems, mechanical systems, health
monitoring, disease diagnosis, and control. Based on AppEn and SampEn, multiscale
entropy [3] and hierarchical entropy [4] were developed for measuring the complexity of
physiological time series in multiple time scales. Since low-frequency filters are involved,
multiscale entropy can weaken the influence of meaningless structures such as noise on
complexity measurement. By adding the sample entropy of the high-frequency component
of the time series, the hierarchical entropy provides more comprehensive and accurate
information and improves the ability to distinguish different time series. Multiscale entropy,
hierarchical entropy, and their variants have been applied to various fields such as fault
identification [5,6] and feature extraction [7], beyond physiological time series analysis.

Computing SampEn requires counting the number of similar templates of time series.
In other words, it requires counting the number of matched template pairs for a given
time series. Clearly, direct computing of SampEn requires computational complexity of
O(N?), where N is the length of the time series analyzed. To accelerate the computation of
SampEn, kd-tree based algorithms for sample entropy were proposed, which reduce the
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time complexity to O(N*~ i1 ), where m is the template (also called pattern) length [8,9]. In
addition, box-assisted [10,11], bucket-assisted [12], lightweight [13], and assisted sliding box
(SBOX) [14] algorithms were developed. However, the complexity of all these algorithms
is O(N?). Recently, an algorithm proposed in [15] for computing approximate values of
AppEn and SampEn, without theoretical error analysis, still requires O(N?) computational
costs in the worst scenario, even though it requires only O(N) number of operations in
certain best cases. Developing fast algorithms for estimating SampEn is still of great interest.

The goal of this study is to develop a Monte-Carlo-based algorithm for calculating
SampEn. The most costly step in computing SampEn is to compute the matched template
ratio B/ A of length m over length m + 1. Noting that m (resp. m) is the proba-
bility that templates of length m (resp. m + 1) are matched, the ratio B/ A can be regarded
as a conditional probability. From this viewpoint, we can approximate this conditional
probability of the original data set by that of a data set randomly down-sampled from the
original one. Specifically, we randomly select Ny templates of lengths m and Ny templates
of m + 1 from the original time series. We then count the number A (resp. B) of matched
pairs among the selected templates of lengths m (resp. m + 1). We repeat this process N;
times, and compute the mean Ay (resp. By, ) of A (resp. B). Then, we use — log(By, /AN, )
to approximate —log(B/A) for the time series to measure its complexity. We establish
the computational complexity and convergence rate of the proposed algorithm. We then
study the performance of the proposed algorithm, by comparing it with the kd-tree-based
algorithm and the SBOX method on the electrocardiogram (ECG) time series, electroen-
cephalogram time series (EEG), cardiac inter-beat (RR) time series, mechanical vibration
signals (MVS), meteorological data (MD), and 1/ f noise. Numerical results show that
the proposed algorithm can gain more than 100 times speedup compared to the SBOX
algorithm (the most recent algorithm in the literature to the best of our knowledge) for a
time series of length 2!¢ — 218, and more than 1000 times speedup for a time series of length
219 — 220, Compared to the kd-tree algorithm, the proposed algorithm can again achieve
up to 1000 times speedup for a time series of length 220

This article is organized in five sections. The proposed Monte-Carlo-based algorithm
for estimating sample entropy is described in Section 2. Section 3 includes the main results
of the analysis of approximate accuracy of the proposed algorithm, and the proofs are given
in the Appendix A. Numerical results are presented in Section 4, and conclusion remarks
are made in Section 5.

2. Sample Entropy via Monte Carlo Sampling

In this section, we describe a Monte-Carlo-based algorithm for estimating the sample
entropy of a time series.
We first recall the definition of sample entropy. For all k € N, let Z; := {1,2,...,k}.
The distance of two real vectors a := [g; : | € Zy] and b := [b; : | € Zj] of length k is
defined by
p(a,b) := max{|a; — ;| : | € Z}.

Welet u := (u; € R : i € Zy) be a time series of length n € N. For m € N, we let
N := n—m —1. We define a set X of N vectors by X := {x;:i € Zy}, where x; :=
[Uir1—1 : | € Zy) is called a template of length m for the time series u. We also define a set Y
of Nvectorsby Y := {y; :i € Zy}, where y; := [u;y; 1 : 1 € Zy,11] is called a template of
length m 4 1 for u. To avoid confusion, we call the elements in X and Y the templates for
the time series u. We denote by #E the cardinality of a set E. We use A;, i € Zy, to denote
the cardinality of the set consisting of templates x € X \ {x;} satisfying p(x;, x) < r, that is,

Aj=#{xe X\ {x}:p(x;,x) <r}.
Likewise, for i € Zy, we let

Bi:=#y e Y\{yi}:po(yiy) <r}.
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1 1
i€ZN i€Zn

we define the sample entropy of time series u by

—log(£), ifA>0B>0,
SampEn(u, m,r) ::{ géA)

—log m) , otherwise.

The definition of sample entropy yields the direct algorithm, which explicitly utilizes
two nested loops, where the inner one computes A; and B;, and the outer one computes
A and B. Algorithm 1 will be called repeatedly in the Monte-Carlo-based algorithm to be
described later.

Algorithm 1 Direct method for range counting

Require: Sequence u := (u; : i € Zn4y), subset s C Zy, template length m and threshold
r.

1: procedure DIRECTRANGECOUNTING(u, s, 1, 1)
2 Set count = 0,

3 Set L = #s,

4 fori=1toLdo

5: Seta = [us, 1 :1 € Zn),

6 forj=i+1toLdo

7 Setb = [us].+1_1 21 € Ly,

8 if o(a—b) < r then

9 count = count + 1,

10: return count

The definition of sample entropy shows that sample entropy measures the predictabil-
ity of data. Precisely, in the definition of sample entropy, B/ A measures a conditional
probability that when the distance of two templates a and b is less than or equal to , the
distance of their corresponding (m + 1)-th component is also less than or equal to 7. From
this perspective, we can approximate this conditional probability of the original data set by
computing it on a data set randomly down-sampled from the original one. To describe this
method precisely, we define the notations as follows.

We choose a positive integer Ny, randomly draw Ny numbers from Zy without
replacement, and form an Np-dimensional vector. All of such vectors form a subset 2 of
the product space

ZN = IN@LN® - @ Ly (No-folds),

that is,
Q:={s:= [sl,...,SNO] € Z%(] 1s; # 5j forall i # j}.

Suppose that F is the power set of () (the set of all subsets of (), including the empty
set and Q) itself). We let P be the uniform probability measure satisfying P(s) = 1/ (#Q)
for all s € () and define the probability space {Q), F, P}. The definition of () implies

#(O) = %, and thus the probability measure satisfies P(s) = w foralls € Q.
The definition of F means all events that may occur in the sample space (2 are considered
in the probability space {Q), F, P}. We randomly select Nj templates of length m and Ny
templates of length m + 1 from the original time series. We then count the number A (resp.

B) of matched pairs among the selected templates of lengths m (resp. m + 1). That is,

A(s) := %#{(i,]’) :1,j € Zyn, with i # j, and p(xsi,xs].) < r}, scQ),
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and
~ 1of o . e
B(s) := E#{(z,]) 11,] € Ly, withi # j, and p(ys,, ys;) < r}, s € Q.

We repeat this process Nj times.

Note that A and B are random variables on the probability space {Q), F, P}. Let Ay,
and By, be the averages of random variables A and B, respectively, over the N; repeated
processes. That is,

_ 1 M _ 1 Mo
An, = ﬁlk;A(Sk), and By, := ﬁlk:le(sk),

where {s; : k € Zy,} is a subset of (). With ANl and BN1/ we can estimate the sample
entropy —log(B/A) by computing —log(By, /Ay, ). We summarize the procedure for
computing — log(By, / AN, ) in Algorithm 2 and call it the Monte-Carlo-based algorithm for
evaluating sample entropy (MCSampEn). In MCSampEn, si, k € Zy,, are selected by the
Hidden Shuffle algorithm proposed in [16].

Algorithm 2 Monte-Carlo-based algorithm for evaluating sample entropy

Require: Sequence u = (u; : i € Zn44y), template length m, tolerance r € R, sample size
Np and number of experiments Nj, probability space {Q), F, P}
1: procedure MCSAMPEN(u, m, r, Ny, Np)
2 Set Ay, = 0and By, =0,
3 fork =1to N; do
4: Select s € (), randomly, with uniform distribution,
5 Compute A(sy) by calling DirectRangeCounting(u,s*), m, ),
6 Compute B(sy) by calling DirectRangeCounting(u,s*), m 4 1,7),
7 ANl = ANl + NilA(S(k)),
8 BNl = BNl + Nilg(s(k)),
Bn
9: entropy = —log A—Nll,

10: return entropy

We next estimate the computational complexity of MCSampEn measured by the
number of arithmetic operations. To this end, we recall Theorem 3.5 of [16] which gives the
number of arithmetic operations used in the Hidden Shuffle algorithm.

Theorem 1. The Hidden Shuffle algorithm generates a random sample of size Ny sequentially from
a population of size N with O(Ny) arithmetic operations in total.

Theorem 2. The total number of arithmetic operations needed in Algorithm 2 is O(N; (N2 + Np)).

Proof. For each k € Zy,, according to Theorem 1, the number of arithmetic operations
needed for selecting s(¥) on line 4 of Algorithm 2 is O(Np). Moreover, from Algorithm 1 we
can see that for each k € Zy;,, the number of arithmetic operations needed for computing
A(sy) and B(sy) on lines 5 and 6 is O(N3?). Thus, by counting the number of arithmetic
operations needed for lines 7, 8, and 9 of Algorithm 2, we obtain the desired result. O

Theorem 2 indicates that the computational complexity of MCSampEn is controlled
by setting appropriate sampling parameters Ny and N;. When Ny and Nj are fixed, the
computational complexity of MCSampEn is independent of the length N of time series u.
Meanwhile, we can also select Ny and N; depending on N to balance the error and compu-
tational complexity of MCSampEn. For example, we can set Ny := max{1024, |[v/N |} and
N; := min{5+1log, N, [N/Np]}, where |a| denotes the greatest integer no bigger than
a € R. In this case, the computational complexity is O(N log, N).



Entropy 2022, 24, 524

50f 25

Noting that MCSampEn provides an approximation of the sample entropy, and not
the exact value, convergence of MCSampEn is an important issue. We will discuss this in
Section 3.

3. Error Analysis

In this section, we analyze the error of MCSampEn. Specifically, we will establish an
approximation rate of MCSampEn in the sense of almost sure convergence.

A sequence of {Vj : k € N} of random variables in probability space {Q}, F, P} is said
to converge almost surely to V € {Q), 7, P}, denoted by

Vi £V,
if there exists a set A" € F with P(N) = 0 such that forall w € Q\ N,

lim Vi (w) = V(w).

k—o0
It is known (see [17]) that {V : k € N} converges almost surely to V € {Q, F, P} if and
only if
lim P<{Sup|Vi -V|> e}) =0, forall € > 0.

Furthermore, we can describe the convergence rate of {V; : i € N} by the declining rate of
the sequence {P({supiszi V> e}) ke N} foralle > 0. If fora > 0,

P({supﬂ/i -V > e}) =0(k™%), forall € >0,

i>k

we say {V; : i € N} converges to V almost surely with rate .

To establish the approximation error of MCSampEn, we first derive two theoretical
A B

No—
these results with the results of the almost sure convergence rate in [18] and the local
smoothness of logarithm functions, we obtain the approximation rate of { —log(Bn, /AN, ) :
N; € N} in the sense of almost sure convergence, which is the main theoretical result of

this paper. We state these results below and postpone their proofs to the Appendix A.

B . . .
and Ny(N,—1T) are givenin the following theorem.

. .. A o
results for the expectations and variations of No(No=T) and No(No=T7" Then, by combining

- A
The expectations of No(No=T)

Theorem 3. It holds that for all Ny € Zy with Ng > 1,

A A
E = 1
{No(Nol)} N(N-1) M
and _
B B
E{No(No—l)} - N(N-1) ?
g A B
The next theorem presents the variations of No(Ng=1) and No(No=T)*
Theorem 4. It holds that for all Ny € Zy with Ng > 1,
A Cn,
Var| —— | = =2, 3
[No(No—l)] No o
and B c
B N,
Var| ———~| = —2, 4
[No(No—l)] No @
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CNO T (NO — 1)N(N — ]) + (NO _ 1)N(N — 1)(N — 2) (lzzl Bl — 2B>
(NO - 2) (N() — 3) 9 N 5 N()Bz
+(No —1)N(N —1)(N —2)(N —3) (B - ;Bz + B) NN (5)

Moreover, thereis 0 < Cn, < 1+ 2(1\]37_1)

By, as. B
A—Nll — log 1 by the Kolmogorov
strong law of large numbers and the continuous mapping theorem. However, in practice

it is desirable to quantify the approximation rate in the sense of almost sure convergence,
. B . .

so that we can estimate the error between log Aﬂ and log 8. To this end, we define

A B B A

Np
- A N —
o = | et — vt | and = Bt - o] Letra = s
and yp = m. Forall  >1and 0 < e <1, we also let

Nep = max{6el,exp<(9[31el>ﬁ1/(1_ﬁl)> } 6)

With the notation defined above, we present below the main theoretical result of this paper,

Based on Theorems 3 and 4, we can obtain log

which gives the rate of {—log %’; : k € N} approximating — log £ in the sense of almost
sure convergence.

Theorem 5. Let f > 1and Ny € Zy with Ng > 3. If A, B > 0, then there exist constants Dg
and D/g (depending only on ) such that for all 0 < € < 1and Ny > ne g, such that

P<sup log % —log i’ > max{TA,TB}€>

k>Np k

72Cx, ) o[ 1 1

e (Dp + Dyllog N1)P!) ot ) @)

The proof for Theorems 3-5 are included in the Appendix A. Note that Theorem 5
indicates that — log i-—’; approximates — log % in the sense of almost sure convergence of
order 1.

4. Experiments

We present numerical experiments to show the accuracy and computational complex-
ity of the proposed algorithm MCSampEn.

As sample entropy has been prevalently used in a large number of areas, we con-
sider several series with a variety of statistical features, including the electrocardiogram
(ECG) series, RR interval series, electroencephalogram (EEG) series , mechanical vibration
signals (MVS), meteorological data (MD), and 1/ f noise. The ECG and EEG data can be
downloaded from PhysioNet, a website offering access to recorded physiologic signals
(PhysioBank) and related open-source toolkits (PhysioToolkit) [19]. The MVS data can
be found in [20] and the website of the Case Western Reserve University Bearing Data
Center [21]. The MD data can be downloaded from the website of the Royal Netherlands
Meteorological Institute [22]. The databases used in this paper include:

Long-Term AF Database (Itafdb) [23]. This database includes 84 long-term ECG record-
ings of subjects with paroxysmal or sustained atrial fibrillation (AF). Each record
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contains two simultaneously recorded ECG signals digitized at 128 Hz with 12-bit
resolution over a 20 mV range; record durations vary but are typically 24 to 25 h.

Long-Term ST Database (Itstdb) [24]. This database contains 86 lengthy ECG recordings
of 80 human subjects, chosen to exhibit a variety of events of ST segment changes,
including ischemic ST episodes, axis-related non-ischemic ST episodes, episodes of
slow ST level drift, and episodes containing mixtures of these phenomena.

MIT-BIH Long-Term ECG Database (Itecg) [19]. This database contains 7 long-term ECG
recordings (14 to 22 h each), with manually reviewed beat annotations.

BIDMC Congestive Heart Failure Database (chfdb) [25]. This database includes long-
term ECG recordings from 15 subjects (11 men, aged 22 to 71, and 4 women, aged 54
to 63) with severe congestive heart failure (NYHA class 3—4).

MGH/MF Waveform Database (mghdb) [26]. The Massachusetts General Hospital/ Mar-
quette Foundation (MGH/MF) Waveform Database is a comprehensive collection of
electronic recordings of hemodynamic and electrocardiographic waveforms of stable
and unstable patients in critical care units, operating rooms, and cardiac catheteriza-
tion laboratories. Note that only the ECG records were considered in our experiments.

RR Interval Time Series (RR). The RR interval time series are derived from healthy sub-
jects (RR/Health), and subjects with heart failure (RR/CHF) and atrial fibrillation
(RR/AF).

CHB-MIT Scalp EEG Database (chbmit) [27]. This database contains (EEG) records of
pediatric subjects with intractable seizures. The records are collected from 22 subjects,
monitored for up to several days.

Gearbox Database (gearbox) [20]. The gearbox dataset was introduced in [20] and was
published on https:/ /github.com/cathysiyu/Mechanical-datasets (accessed on 27
March 2022).

Rolling Bearing Database (RB) [21]. This database as a standard reference for the rolling
bearing fault diagnosis is provided by the Case Western Reserve University Bearing
Data Center [21].

Meteorological Database (MD) [22]. The meteorological database used in this section
records the hourly weather data in the past 70 years in the Netherlands.

As each database consists of multiple records from different subjects, we select one
record randomly from each database. Specifically, we choose record “00” from ltafdb,
“s20011” from ltstdb, “14046” from ltdb, “chf01” from chfdb, “mgh001” from mghdb,
“chb07_01" from chbmit, “Miss_30_2" from gearbox, “XE110_DE_Time” from RB, and
“380_t” from MD. Moreover, 1/ f noise signal, an artificial signal, is studied to increase
diversity. The time series considered in this section are illustrated in Figure 1, where all
samples are normalized to have a standard deviation of 1, since the parameter threshold
is proportional to the standard deviation of the records, and thus the whole range of the
records is negligible.
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Figure 1. Samples of the dataset records.

4.1. Approximation Accuracy

In the experiments presented in this subsection, we examine the approximation accu-
racy of the MCSampEn algorithm. Specifically, we set ¥ := 0.15 and m := 4,5. We vary the
sampling size Ny and the number N; of computations to study the approximation accuracy
of the proposed algorithm. In this experiment, records with lengths exceeding 10° are trun-
cated to have length 10°; otherwise, the entire records are used. Since in the MCSampEn
algorithm, s; € () are selected randomly, the outcome of the algorithm depends on the
selected value of s;. To overcome the effect of the randomness, for every specified pair of
(No, N1), we run the algorithm 50 times and calculate the mean errors (MeanErr) and the
root mean squared errors (RMeanSqErr) of the 50 outcomes.

In our first experiment we consider series “mghdb/mgh001”, select parameters
Ny € {200i : i € Z3,}, Ny € {10i : i € Z5}, and show in Figure 2 the mean errors and the
root mean squared errors of the MCSampEn outputs as surfaces in the Ny-N;j coordinate
system. Images (a) and (c) of Figure 2 show the values of MeanErr and images (b), (d), and
(f) of Figure 2 show the values of RMeanSqErr. Figure 2 clearly demonstrates that both
the mean errors and the root mean squared errors of the MCSampEn outputs converge to
0 as Ny or Nj increases to infinity. This is consistent with our theoretical analysis in the
previous section.

In the second experiment, we consider all series illustrated in Figure 1 and show
numerical results in Figures 3 and 4. Images (a), (c), and (e) of Figure 3 show the values
of MeanErr, and images (b), (d), and (f) of Figure 3 show the values of RMeanSqErr, with
Ny € {200i : i € Z3,} and fixed Ny = 250. Images (a), (c), and (e) of Figure 4 show the
values of MeanErr, and images (b), (d), and (f) of Figure 4 show the values of RMeanSqErr,
with Ng = 4000 and N; € {10i : i € Zj.}. Figure 3 indicates that the outputs of the
MCSampEn algorithm converge as Ny increases. We can also see from Figure 3 that when
Ny > 1500, N1 = 150, and m = 4, both MeanErr and RMeanSqErr are less than 1 x 102
for all tested time series. In other words, the MCSampEn algorithm can effectively estimate
sample entropy when Ny > 1500, N; = 150, and m = 4. From Figure 4, we can also observe
that the outputs of the MCSampEn algorithm converge as Nj increases. This is consistent
with the theoretical results established in Section 3.
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Figure 2. The values of MeanErr and RMeanSqErr for time series “mghdb/mgh001” with respect to

the sample size Ny and the number of computations N7, where parameters r = 0.15 and m = 4,5.
(a) MeanErr with m = 4. (b) RMeanSqErr with m = 4. (¢) MeanErr with m = 5. (d) RMeanSqErr

with m = 5.
1
10 O Ttafdh/00 [~ Ttafdb 00
B B
M
&
-
4 b
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g g
S
a4
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a4
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No No
(c) (d)

Figure 3. The values of MeanErr and RMeanSqErr with respect to Ny € {200i : i € Z;ro} and
N; = 150, where parameters r = 0.15 and m = 4,5. (a) MeanErr with m = 4. (b) RMeanSqErr with

m = 4. (c¢) MeanErr with m = 5. (d) RMeanSqErr with m = 5.

We next explain how the randomness of a time series effects the accuracy of the
MCSampEn algorithm by applying the algorithm to the stochastic process MIX(p), which
has been widely applied to studies of sample entropy [1,2,28]. The MIX(p) is defined as
follows. Let x; := a~12sin(127j/12) for all j € Zy where

12
w:= | Y sin’*(27j/12) | /12.
j=1
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Let {y; : j € Zn} be a family of independent identically distributed (i.i.d) real random

variables with uniform probability density on the interval [—+/3, 1/3]. Note that {xj:je
Zy} and {y; : j € Zn} are sequences with contrary properties: the former is a completely
regular sine sequence, and the latter is completely random. Let p € [0,1], and {z; : j € Zn}
be a family of i.i.d random variables satisfying z; = 1 with probability p and z; = 0 with
probability 1 — p. Then, the MIX(p) process is defined as {m; := (1 —z;)x; +zjy; : j € Zn}-
It’s not hard to find that the parameter p controls the ratio of sine sequence and random
noise in the MIX(p) process and the increase in p makes the MIX(p) process more random.
When p = 0, the MIX(p) process is a deterministic sine sequence. Meanwhile, when p =1,
the MIX(p) process turns out completely unpredictable uniform noise. This feature makes
it an ideal series to study how randomness affects the accuracy of the MCSampEn algorithm.

=
& RR/Health
RR/AF

Hv A

MeanErr
RMeanSqErr

MeanErr

0 50 100 150 200 250
M

(d)
Figure 4. The values of MeanErr and RMeanSqErr with respect to Ny = 2 x 103 and N; € {10i :

ie ZZFS}, where parameters r = 0.15 and m = 4,5. (a) MeanErr with m = 4. (b) RMeanSqErr with
m = 4. (¢) MeanErr with m = 5. (d) RMeanSqErr with m = 5.

Here, we apply MCSampEn to MIX(p), p € {0.5+0.5i : i € Z19} and show the results
of RMeanSqErr versus p in Figure 5. From Figure 5, we can observe that the values of
RMeanSqErr increase linearly with a very small growth rate when p < 0.5. When p > 0.5,
the values of RMeanSqErr are significantly faster than that of p < 0.5. Therefore, we believe
that when the randomness of a time series is weak, the error of the MCSampEn algorithm
is small; as the randomness of the time series increases, the error of the MCSampEn grows.

0.1p

o o

o o

=) 3
i !

RMeanSqErr
o
=)
=

Figure 5. The values of RMeanSqErr with respect to p, where parameters r = 0.15,m = 4,5, N = 220,

Np = 2000, and N; = 150.
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4.2. Time Complexity

In the experiments presented in this subsection, we compare the computing time of the
MCSampkEn algorithm with that of the kd-tree algorithm [8] and SBOX algorithm [14], under
the condition that the value of sample entropy computed by the MCSampEn algorithm is
very close to the ground truth value. The computational time experiments are performed
on a desktop computer running Windows 11, with an Intel(R) Core(TM) i5-9500 CPU,
and 32GB RAM. The implementations of the kd-tree-based algorithm and the MCSampEn
algorithm are available on the website https://github.com/phreer/fast_sampen_impl.git
(accessed on 30 March 2022). As for the SBOX method, we utilize the implementation
given by the original author, published on website https:/ /sites.google.com/view /yhw-
personal-homepage (accessed on 25 October 2021). To demonstrate the validity of the
MCSampEn algorithm, we also show both the sample entropy estimated by MCSampEn
and the corresponding ground truth.

As we have discussed above, the time complexity of the MCSampEn algorithm de-
pends on the parameters Ny and Nj. In this subsection, we discuss two strategies for
choosing Ny and Nj:

S1 Choose Ny and Nj to be independent of N, for example Ny = 2 x 10% and N; = 150.

S2 Choose Ny = max{1024, |v/N|} and N; = min{5+1log, N, [N/Np]}, depending
on N.

An intuitive explanation of the second strategy is shown below. We would like to
choose Ny and Nj such that the overall time complexity of executing the algorithm is
O(Nlog N). For this purpose, we expect Ny to grow like v/N and Nj to grow logarithmi-
cally in N. However, when N is not large enough, lack of sampling templates can seriously
impair the accuracy of the algorithm. To overcome this problem, we set a lower bound of Ny
to 1024, which is a good trade-off between accuracy and time complexity. The experimental
results in this subsection show that this strategy can produce satisfactory output even when
N is small.

The results on different signals “Itafdb/00”, “1/ f noise”, “chbmit/chb07_01", and
“ltecg/14046” are shown in Figure 6, where the first strategy is adopted by setting
Ny = 2 x 103 and N; = 150, and the results for m = 4 are marked by red color, and
the results for m = 5 are marked by blue. In the left column of Figure 6, the values of
computation time consumed by the kd-tree, SBOX, and MCSampEn algorithms are plotted,
respectively, with the dashed lines marked “x”, the dash-dot lines marked “+”, and the
solid lines marked “0”. From the results shown in the left column of Figure 6, we can find
that MCSampkEn is faster than the SBOX algorithm when N is greater than 2!°. We also
can see when the time series “chbmit/chb07_01” and “ltecg/14046” have length N of 220,
MCSampkEn is nearly 1000 times faster than the SBOX algorithm. Compared to the kd-tree
algorithm, the MCSampEn algorithm can still achieve up to hundreds of times acceleration
when N = 2%. In addition, the time complexity of MCSampEn algorithm is close to a
constant relative to m, and is much smaller than the kd-tree and SBOX algorithms when N
is large enough. Meanwhile, the computational time (shown in the left column of Figure 6)
required is hardly affected by the times series length N.

The right column of Figure 6 shows the average of 50 outputs of the MCSampEn
algorithm for different time series under the settings of Ny = 2 x 10% and Ny = 150, where
the red solid lines plot the average for the cases of m = 4, and the blue solid lines plot the
average for the cases of m = 5. In the right column of Figure 6, the values of ground truth
for the cases of m = 4 and m = 5 are plotted by the red and blue dashed lines, respectively.
Meanwhile, in the right column of Figure 6, we use error bars “I1” to represent the values of
RMeanSqErr, where the larger the value of RMeanSqErr, the longer the error bar “1”. From
the length of error bar “1”, we can see that the values of RMeanSqErr are small compared
to the ground truth. Especially on the time series “Itafdb/00”, “chbmit/chb_0701", and
“ltecg/14046”, the values of RMeanSqErr are negligible compared to the values of ground
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truth. These results imply that when Ny = 2 x 10% and N; = 150, the sample entropy
estimated by the MCSampEn algorithm can effectively approximate the ground truth value.

1.1
e kd tree (m = 4) — Cround truth (m = 4)
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Figure 6. The left column shows the results of computational time versus data length N on different
signals. In the right column, the values of RMeanSqErr are presented by error bars “I”, where
the larger the value of RMeanSqErr, the longer the error bar “I”. In this figure, we set m = 4,5,
Np =2 x 10%, and N; = 150. (a) Time for “ltafdb/00”. (b) Sample entropy “Itafdb/00”. (c) Time for
1/ f noise. (d) Sample entropy for 1/ f noise. (e) Time for “chbmit/chb07_01". (f) Sample entropy for
“chbmit/chb07_01". (g) Time “ltecg/14046”. (h) Sample entropy for “ltecg/14046”.

The results of the second strategy are shown in Figure 7, where Ny = max{1024, | v/N|}
and N; = min{5 +log, N, [N/Ny]}. The results for m = 4 are marked by red color, and
the results for m = 5 are marked by blue color. The left column of Figure 6 shows the
values of computation time consumed by the kd-tree, SBOX, and MCSampEn algorithms,
which are presented by the dashed lines marked “x”, the dash-dot lines marked “+”, and
the solid lines marked “0”, respectively. From the left column of Figure 7, we also can see
that with the second strategy, the computational time of MCSampEn algorithm is much
less than that of the kd-tree and SBOX algorithms, since the computational complexity of
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Algorithm 2 is O(Nlog N). Furthermore, we observe that MCSampEn achieves a speedup
of more than 100 compared to the SBOX algorithm when N goes from 2'° to 218, and it is
over 1000 times faster when N = 22°. Compared to the kd-tree algorithm, the MCSampEn

algorithm can still obtain up to 1000 times acceleration when N = 220
1.1
- kd tree (m = 4) — Ground truth (m = 4)
104 [|-* kd tree (m = 5) — Ground truth (m = 5)
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Figure 7. The left column shows the results of computational time versus data length N on different
signals. The right column shows the values of RMeanSqErr by error bar, where the larger the value
of RMeanSqErr, the longer the error bar “I”. In this figure, we set m = 4,5, Ny = max{1024, L\/ﬁ 1}
and N; = max{1, [N/Np|}. (a) Time for “ltafdb/00”. (b) Sample entropy “ltafdb/00”. (c) Time for
1/ f noise. (d) Sample entropy for 1/ f noise. (e) Time for “chbmit/chb07_01". (f) Sample entropy for
“chbmit/chb07_01". (g) Time “ltecg/14046”. (h) Sample entropy for “ltecg/14046".

In the right column of Figure 7, we plot the average of 50 outputs of the MCSampEn
algorithm for different time series by the red and blue solid lines for m = 4 and m = 5,
respectively. At the same time, the values of ground truth for the cases of m =4 and m =5
are plotted by the red and blue dashed lines, respectively. As in Figure 6, we use the error
bar “1” to represent the values of RMeanSqErr. Comparing the error bar “I” in Figure 6, we
can see that the values of the RMeanSqErr in this experiment are larger than that shown in
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Figure 6. However, the value of RMeanSqErr is still small in terms of the values of ground
truth. Moreover, we can observe that the length of the error bars decreases as N increases.
This means that we can obtain a better approximation of sample entropy as the time series
length increases.

To reveal the effect of randomness on the speedup, we compare the time taken by
the kd-tree and MCSampEn algorithms to compute the sample entropy of the time series
MIX(p), p € {054 0.5i : i € Z19}. The experimental results are shown in Figure 8, where
the results for m = 4 are marked by red color, and the results for m = 5 are marked by
blue. The values of computation time consumed by the kd-tree and MCSampEn algorithms
are plotted, respectively, with the dashed lines marked “x” and the solid lines marked
“0”. In this experiment, we set N = 220 and r = 0.15. We also let Ny = 1000 + 3000p and
N; = 80+ 70p to ensure that the relative error RMeanSqErr/SampEn is no greater than
0.02. From Figure 8, we can see that when the value of p is less than 0.2, compared with the
kd-tree algorithm, the MCSampEn algorithm can achieve 300 to 1000 times speedup. When
the value of p is greater than 0.8, our algorithm can still obtain a 10x speedup relative to
the kd-tree algorithm.

3% wo -%-kd tree (m = 4)
10 d
Frk X -e-MCSampEn (m = 4)
Bt SR - kd tree (m = 5)
/%T x‘%“’q,‘\* -o-MCSampEn (m = 5)
2 4821 \.’&“&:;{;—n.
g 10 HEEEE e
9]
w0
)
E o
=10 ¢
10° ‘ ‘ ‘ ‘ ‘
0.2 0.4 0.6 0.8 1
p

Figure 8. The results of computational time with respect to p, where parameters r = 0.15, m = 4,5,
N =220, Np, and Nj are selected such that relative error RMeanSqErr/SampEn < 0.02.

From the experiments in this subsection, we can observe that the MCSampEn algo-
rithm can achieve a high speedup when it is applied to different types of signals. In fact,
compared with kd-tree algorithm, the MCSampEn algorithm can achieve high accuracy
and more than 300 times acceleration when the time series has less randomness. When the
randomness of the time series is high, our algorithm can still obtain a speedup of nearly
10 times.

4.3. Memory Usage

In order to show the performance of the MCSampEn algorithm more comprehensively,
we also compare the memory usage of the kd-tree and MCSampEn algorithms. The memory
usage on signal “Itstdb/s20011” is shown in Figure 9, where the memory usage for m = 4
and m = 5 is shown in Figure 9a,b, respectively. In this figure, the memory usage of the
kd-tree algorithm is plotted by the blue dash-dot lines marked “x”. The memory usage
of the MCSampEn algorithm with the first and second strategies is plotted by the green
dashed lines marked “+” and the red dotted lines marked “0”, respectively. In Figure 9,
the first strategy is adopted by setting Ny = 2048 and N; = 150, and the second strategy is
adopted by Ny = max{1024, |[v/N |} and N; = min{5 + log, N, | N/Np| }. We also present
the memory usage for storing the data by the black solid lines marked “[1”.

From the results shown in Figure 9, it can be seen that when the size of the data is
220, the memory required by the kd-tree algorithm is almost 36 times that of the memory
required by the MCSampEn algorithm. This is because the kd-tree algorithm requires a
large memory space to save the kd-tree. Meanwhile, the experimental results in Figure 9
also show that the amount of memory required by the MCSampEn algorithm is only about
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15 MB more than the amount of memory required to store the data when the length of
data is between 2! and 2%4. This is because the MCSampEn algorithm requires additional
memory for storing Ny templates and to execute the subroutines that generate random
numbers.

(MB)

Memory Usage (MB)

Memory Usage

=
= = Data Storage+15MB

14 16 18 20 22 24

logy, N log, N
@) (b)
Figure 9. The results of memory usage versus data length N with m = 4,5. (a) Memory usage for
m = 4. (b) Memory usage for m = 5.

Because the MCSampEn algorithm is based on Monte Carlo sampling and the law of
large numbers, it is an easily parallelizable algorithm. Therefore, combined with distributed
storage techniques, the idea of the MCSampEn algorithm can be used to compute sample
entropy for large-scale data (for example, where the size of data is larger than 1 TB). Parallel
algorithms for computing sample entropy of large-scale data will be our future work.

5. Conclusions

In this paper, we propose a Monte-Carlo-based algorithm called MCSampEn to esti-
mate sample entropy and prove that the outputs of MCSampEn can approximate sample
entropy in the sense of almost sure convergence of order 1. We provide two strategies
to select the sampling parameters Ny and Nj, which appear in MCSampEn. The exper-
iment results show that we can flexibly select the parameters Ny and Nj to balance the
computational complexity and error. From the experimental results, we can observe that
the computational time consumed by the proposed algorithm is significantly shorter than
the kd-tree and SBOX algorithms, with negligible loss of accuracy. Meanwhile, the com-
putational complexity of our MCSampEn method is hardly affected by the time series
length N. We also study how the randomness of the time series affects the accuracy and
computation time of the MCSampEn algorithm by applying the algorithm to the stochastic
process MIX(p). The results indicate that the proposed algorithm performs well for time
series with less randomness.
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Appendix A

In this Appendix, we provide proofs of Theorems 3-5, where Theorems 3 and 4

A
(No—1)

describe the expectations and variances of No and No(No=T)" and Theorem 5 presents
B
the convergence rate of {—log A’il,i :k e N}

Note that the only difference in the definitions between

A B ;
No(No=T) and No(No=T) 18 the
template length. Without loss of generality, we discuss the expectation (2) and variation (4)

B . A . . ..
No(Ne=T)" The Equations (1) and (3) of~m can be obtained in a similar way.
To analyze the expectation of m, we define the following notation. For all

j € Zx,, we define random variable B; on the probability space {Q), F, P} by

of

Bi(s) := #{i € Zn, :1# jand p(ys;, ys;) < r}, s e . (A1)

For all j € Zy,, the definition of Ej indicates that B]'(s) is the number of elements in
{ys; 1 i € Zn,} that satisfy p(ys;, ys;) < rand i # j. From the definitions of B and B;, we
have that forall s € Q),

N agks

B(s) = % Bi(s).

0
j=1
For p,q,1 € N, we say random variable V follows the hypergeometric distribution H(p, q,1)
if and only if the probability of V = k

@@

]

0, otherwise.

Pr(V =k) = { , if max{0,q+1—p} <k <min{g,1},

See Section 5.3 of [29] for more details about the hypergeometric distribution. For all
l€Zn,letB;:={i € Zy:i# land p(y;,y;) < r}, which is the index set of elements of Y
satisfying p(y;, y;) < r. From the definition of B;, we have that B; = #B;. For the purpose

of analyzing the expectation of Not B, we recall the expectation of the hypergeometric

No-1)
distribution H(p, g,1) (see Theorem 5.3.2 in [29]) and prove a technical lemma as follows.

Theorem A1l. For p,q,1 € N, the expectation of the hypergeometric distribution H(p,q,1) is %

Lemma Al. Let Ny € Zy with Ng > 1. For any fixed j € Zn, and | € Zy, the conditional
probability distribution of B; given s; = 1 is the hypergeometric distribution H(N — 1, B;, No — 1).
Moreover, for all j € Zy;,, the expectation of random variable B]- is

2(Ng—1)

ElB] = Xv—1)

B. (A2)

Proof. Letj € Zy, and | € Zy. From the definition of Bj, we can see that for all s € () with
sj =1, Bj(s) < min{B;, Ng — 1}. On the other hand, since for all s € Q withs; =,

{i € Zny 1 p(ysi y1) > r} € {i € Zn p(yiyn) > 1},

from the definitions of B I and B;, we have that Ny — B]- < N — B;. Thus, we can see that for
all s € Q with s; = I, max{0, No — N + B;} < Bj < min{Np — 1, B;}. This means that for
k < max{0, Ny — N + B;} or k > min{Ny — 1, B;},

#{s € O : Bj(s) =kands; =1} = 0.
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Meanwhile, it can be checked that for all s € Q) with s; = [ and max{0,No — N+ B;} <
k < min{Np — 1, B;}, Bj(s) = k if and only if vector s contains k components belonging to
B;, and Ny — 1 — k components belonging to Zy / (B; U {l}). Note that there are (E,il) ways
of drawing k elements from set B;, and (?\]]0:11_ f,é) ways of drawing Ny — 1 — k elements

from set Zy /(B; U {I}). Thus, by noting that each element in () is a permutation formed
by extracting Ny numbers from Zy, we have that for all max{0,Np — N + B;} < k <
min{No — 1, Bl}/

#{s € 0 Bj(s) = kand's; = I} = (Np — 1)! @) (ZO__ll__BD. (A3)

Note that #{s € O :s; = I} = %, and the elements in {s € Q) : 5; = I} are of equal
probability. Hence, dividing the right term of (A3) by %, we obtain

Eiy(N-1-B

“1g) :
(B —k|s 1) = % max{0, Ngo — N + B;} <k < min{Np — 1, B},
] ] Np-1

0, otherwise.

This indicates that the conditional probability distribution of B; given s; = I is the hyperge-
ometric distribution H(N — 1, B;, Ny — 1) (see [29]).

Since the conditional probability distribution of B]- given s; = | is the hypergeometric
distribution H(N — 1, B;, Ny — 1), from Theorem Al we have for any j € Zy, and | € Zy,

E[Bj|s;=1] = %. Thus, by noting Yjcz, Bj =2Band P(s; = 1) = 4 forall | € Zy,
from the law of total expectation we obtain (A2). O

The proof for Theorem 3 is shown as follows.

Proof. From the definitions of B and Bj, we know

R (N
E[B] = 5 ;E[Bj]. (A4)
]:
Substituting (A2) into (A4) leads to (2). O
Next we consider the variance of m. Since B = % ZjEZNO Bj, the variance of

W can be obtained by summing the covariances E [le Bj,l, j1,j2 € Zn;,. This motivates
us to compute these covariances. As a preparation, we establish two auxiliary lemmas. For

all k,I € Zy with k # [, we define By, := B, N B; and By, := #By;.
Lemma A2. [t holds that

Y By= ) Bf-2B (A5)

keZn 1€Zn\{k} leZn

Proof. Note that By, By is not necessarily empty for (k,1) # (k’,1"). For By, we define
new sets I so that they mutually disjoint and have the same cardinality as By;. In this
way, the formula (A5) will be proved by establishing a set identity and counting their
cardinality. To this end, we define I'Ty; := {(p,k, 1) : p € By}, for each k,I € Zy with k # [,
and IT, := {(p, k1):kl1€ B, with k # l}, for each p € Zy. From the definition of I'ly;, we
have that #Hkl = Bkl and Hkl ﬂ Hk’l’ =Qif (k, l) 7é (k’, l,) Thus,

Y. Bu= #< U U Hkl)' (A6)

keZy 1eZy\{k} keZy 1€Zn\{k}



Entropy 2022, 24, 524

18 of 25

Likewise, the definition of TT, ensures that #IT, = B, (B, — 1) and IT, 11, = Qif p # p.
Thus, by noting that 2B = ZPGZN By,

Y B;—-2B=Y B,,(Bp—1)_#( U Hp). (A7)

PEZN pPELN PELN

Combining Equations (A6) and (A7), we see that it suffices to prove

U U u= U 10, (A8)

k€Zn 1eZn\{k} pPEZN

Forallk,] € Zy with k # 1, and (p, k,1) € I, the definitions of ITy; and By, ensure

p#k p#L p(ypye) <7 and p(yp,y1) <. (A9)
In other words, there are k € By, | € B, and k # . Thus, for all k,I € Zy with k # [, and
(p,k,1) € Iy, there has (p,k,I) € IT,,. Thus, we obtain

U U Tuwc U 1, (A10)

keZy 1€ZN\{k} PELN

On the other hand, for all p € Zy and (p, k,[) € I1,, we know (A9) holds and k # [ from the
definitions of I, and B,. This means that (p, k,I) € ITy; and k # 1. Hence, we obtain that

Umc U U Hu (A11)
pPELN keZy ZEZN\{](}
From (A10) and (A11) we obtain (A8), which leads to the desired result (A5). O

For i, j € Zn, with i # j, we define random variable Z;; on the probability space
{Q, F,P} by

Zi(s) = 4 b HeGsuys) <7 seq. (A12)
4 0, ifp(ysl.,ys].) > 7,

From the definition of Bj, we can see that Bj = ZiGZNO\ (jy Zij- Thus, in order to compute
=1z

the covariance E[B; Bj,], we next show the values of P(Z

and iy,ip € ZNO \ {jler} with iy # 1.

i1j1 injp — 1) for j1.J2 € ZNO

Lemma A3. It holds that for jy, j» € ZNU with j1 # jo, and iy,iy € ZNO \ {jl/jZ} with i1 # iy,

4(B*+ B — Ycz, B?)

P2 =V 20 =D = NS (N—2)(N=3)° (A1
Moreover, for all j € Z, and i,i" € Zy, \ {j} with i # i', it holds that
B? — 2B
P(Zij=1,2Zyj=1) = Liczy By (A14)

N(N-1)(N-2)
Proof. We first prove (A13). Let

LNy := {(i1, j1,i2,j2) : j1,j2 € Zn, With ji # jo, and i1, iy € Zn, \ {1, ]2} withiy # ip}
and for all (iy, jy, iz, jo) € Ly, we define

Q = {S c Q : Ziljl(s) - 1/ and Zizjz(s) = 1}

i1j1,2]2
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We prove (A13) by counting the cardinality of ()
the union of disjoint subsets of ;. ;, ;,;,- From the definition of Z; ;, and Z;,;,, we know for
all (i1, j1,12,j2) € Ly, and s € Qi j,inj, thats;, € IB%SJ.1 and s;, € IB%sjz. At the same time, note
that for (ilrjll iz,jz) S LNO and s € Qiljllizjz’
Thus, for all (i, j1,i2,j2) € Ly, and s € Q)
and Si, € BS]’Z \ {Sil’sfl}' Namely,

ivj1,injo- 1O this end, we identify Q) ;, ;,;, as

the numbers in set {s 1752, Sivs si, ; are distinct.
, it holds that 5j; # Sj,, Si; € Bsh \ {sz},

i1j1,42]2
Qiivinjy C {8 € Qrsjy #5),,81, € Bs, \ {sj,}, and s;, € Bs, \ {si,,55, } }-
On the other hand, it is easy to check that
Qi1j1/i272 D) {S eQ: Sy 75 Sjyr iy € stl \ {sz}’ and Si, € stz \ {Si],S]‘]}}.

Thus, for all (i1, j1,12,j2) € L, Q can be rewritten as

i1j1.i2]2

Qi1j1/i2j2 = {S eO: Sj * Sj,,8i; € ]Bsfl \{sz}’ and Si, € Bsz \ {Sil’sjl}}‘

. k1 . L e a. — N i
For k # I, we define QiljlziZjZ ={s € Qirjiinip * Sjp = ks, = I}. Then, we can rewrite
Qilj]riZjZ as
_ k1
Qilh,izjz = U U Qiljl,izjz' (A15)
keZn 1€Zy\{k}
. k1 K R T

Since O .. NG5 0 =@ if (k, 1) # (K',1"), from (A15) we can see that

k,1
#Oi i = Y, Y HO i i (A16)
keZn ZEZN\{k}

Note that forallk € Zy and I € Zy \ {k},
k1 _ . — —
Opiny, = {8€Qus; =ks; =15 € B\ (ByU{l})ands;, € B\ {k}}
U{S e O: Sj, = k,S]'Z = Z,Si1 € By and 5i, € B, \ {Sil,k}},

and the two sets on the right-hand side of the above equation are disjoint. Thus, it holds
thatforallk € Zy and I € Zy \ {k},

koo (N—4)

i ivisiy = m((Bk — By — Zi)(B; — Zu) + Bu(B; — Zy — 1)). (A17)

Substituting (A17) into (A16) leads to
(N —4)!

#Oij iy = N=N)! Y. Y. ((Bc—Bu—Zu) (B — Zu) + Bu(B — Ziy — 1)).
0)* keZy 1eZy\{k}

By direct computation with noting ZI%I = Zy;, we obtain from the equation above that

N —4)!
#Qij iy = (7); Y. Y (BB —BiZy —BiZy — By + Zp). (A18)
(N = No)! ke€Zn leZn\{k}

Note that Ykeza\{1} Zk = By and Yiezy\{k} Bl = 2B — By. We then have that

Y BZu=Y ) BZy=) B ). Zkl) =Y B,

keZy 1€Zy\{k} 1€ZN keZy\{1} 1€Zy  \keZy\{I} 1€Zy
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Y BB = Y Bi(2B—B,)=4B*— Y B,

keZn 1eZy\{k} keZy leZn

and

Y. Zy=2B.
keZn ZEZN\{](}

Substituting (A5) and the above equations into (A18), we obtain that

AN-4) [ 2
#Qi]-,i]-:<B +B— ) B (A19)
1J1/42)2 (N—No)' 1570,
#Qj) i) inj .
By noting that #Q) = - ) and P(Z; ;, = 1,Z;,j, = 1) = —4&*2, we obtain (A13) from

(A19).
We now turn to prove (A14). Letj € Zy, and i,i’ € Zy;, \ {j} with i # i’. Note that

#{S e O): Zl']'(S) = Z,»/]'(s) = 1} = Z #{S e O: s = l,s; € Bjand sy € B; \ {S,‘}}
ZEZN
(N-3)!
—_— B;(B; —1).
(N NO) le% l( 1 )
Thus, it holds that

Yiezy Bi(Br—1)
N(N-1)(N—2)

Since ) j¢7,, B; = 2B, from (A20) we obtain (A14). [

P(Zij=1,Zyj=1) = (A20)

With the help of Lemma A3, we can calculate E[B;, Bj, | in the following lemma.

Lemma A4. If Ny € Zy with Ng > 3, then for all jy, j» € Z, with j1 # ja,

. 4(Np—2)(Np — 3
E[B;B),] = N(N(_O1)(N)<—20)(N)—3) <B2 P _leZZ:N Blz) (A21)
3(Ng —2) (ZZGZN B12 _ZB) 2B
NN-D(N-2) N{N-1)
and for all j € 7y,
- 2(Np—1)B No—1
o[o] - W Rheg (Ls) e

Proof. We first prove (A21). Let ji,jo € Zy, with ji # j». From the decomposition
B; = ZiGZNO\{j} Zij, we obtain for all j1, jo € Zn, with j; # jp that

E [Bh sz] = Z Z E [leh le]z] :
i1 €ZNy \{j1} 2€ZNy \ {12}

We further rewrite the right-hand side of the above equation to obtain

B]Z] = 2 Z E [leh le]z]

i1€ZNy \{jr 2} 2€ZNy \{j1 f2/01}
+ Z E [le]l le]z] Z E [leh Z]Uz]
i1 €ZNy \{j1.12} i1 €ZNy \{j1.12}

+ Y. E[Z,,Zy,] +E[Z;;,2;,]- (A23)
€Ly \{j1.12}

E[B;
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We next compute the terms on the right hand side of (A23) one by one. Since for all
j,j, S ZNori S ZNO \ {]} and i’ € ZNO \ {jl},

E[Zijzi/j/} = P(Zj=1,Zy =1),
from Equation (A13) of Lemma A3, we know the first term in the right-hand side of (A23)
satisfies

4(B*+ B — Yeyz, B
Ziziz] = N(I(\] __;)(N_ZZ)Z(N 1_)3) (Ng —2)(Ng — 3).

E[Z
n€Zng \{jrj2} i2€Zng \{jr 2

i11

(A24)
Likewise, by noting that Zij =Z jis from Equation (A14) of Lemma A3, we obtain the second,
third, and fourth terms on the right-hand side of (A23),

E[Zilhziljz] = 2 E[Zilhzflfz] = Z E[ijjl izfz]
i1€ZNy\{j1j2} i1€ZNy\{j1j2} heZng\{jrj2}

Yiez, Bf —2B
N(N-1)(N—2)°

(No —2) (A25)
Note that for all i,j € Zy, with i # j, it holds that Z;; = Z;; and Z?j = Zjj. Thus, the last
term on the right-hand side of (A23) satisfies

2B
7.

E(Z;;,Z;,),] = NIN=1)

it (A26)
Substituting (A24), (A25), and (A26) into (A23) leads to (A21).

It remains to prove (A22). Since for all j € Zy;,, B]- = ZiEZNO\{j} Zij = ZiEZNO\{j} Zl.zj,
there has

E[B]z} = E Z Z12j+ Z Z ZiljZizj p
| i€Znp\{j} i1 €ZNy \{j} 12€ZNy \{j/in }

= E|Bi+ ), Y. ZnjZy
i1€Zng \{j} i2€Zng \{jiin }

= E[B]+ ) Y. E[z

1 €ZNy \{j} i2€Znp \{jiin }

Ziyi].- (A27)

i1]

Note that for all j € Zy, i1 € Zn, \ {j} and i» € Zn, \ {j, i1},

E(Zi;Zyyj] = P(Zi,; = 1,Ziy; = 1).

Thus, substituting (A2) and (A14) into (A27), we obtain (A22). O

. . B
Now, we are ready to discuss the variance of No(No=T)*

The proof for Theorem 4 is shown as follows.

Proof. To prove this theorem, we compute E[B2]. Noting that B = 1 Z]N:Ol Bj, we have

E|5] :i< LEB+ Y ¥ E[Bflgjz]) (A28)

JE€LN, heZng 2€ZNy\ {1 }



Entropy 2022, 24, 524

22 of 25

Substituting (A21) and (A22) into (A28) leads to

21 No(No—1) .  No(No—1)(N,
flo] = N S (5 ) 2
No(No — 1)(No — 2)(Np — 3)
FRNIN=D(N =2)(N—3) <BZ_;B§+B>'

Since

by conducting some computation, from (A29) and the definition of Cy, (5), we obtain (4).
We next estimate Cy;,. It can be checked that

(No —2)(Xiezy BY) No—3
o = (Ng—l)(N—l)N(Nl—Z) (1_ 1\?—3>

n B N0—2+(N0—2)EN0 3))

(No—l)N(N—1)<1_ N-2 " (N-2)(N-3)
B2 (No—2)(No—3) No(No—1)
RO T (NN T NS 4

+

B? o) (N
By noting (ZGZN Lo<q, Do=2IN=D 1 4nd 0 < 1— N=3 < 1, we know the first

N-1)2N — (No—1)(N-2)
term in (A30) is not greater than 1. Since < % and 1 — ZNO 7+ (é\lj\(}_ggﬁog) <

B
N(N-T)

(1 — Do ) < 1, we have that the second term in (A30) is not greater than N . Note

N—2
that (( N 2;8\]]0 33)) — I\I]\[}EII:]][J_ll)) < 0. Thus, we know the third term in (A30) is not posmve.
Therefore, we conclude that Cy, <1+ m O

To analyze this almost sure convergence rate of {— log %’; :keN }, we require Theo-
rem 2 of [18], which is recalled as follows.

Theorem A2. Let {V; : i € N} U{V} be a sequence of independent and identically distributed
random variables in probability space {Q), F, P} with expectation y, o := Var[V;| and T :=
E[|V; — pl]. If o < +o0and T < +oo, then forall 0 < € < 1and B > 1, there are constants Dg
and Dﬁ; (depending only on B) such that for all i > n g,

(sup
k>i

where ne g is defined by (6).

ZVz

720 ~ B
> T€> S .2 (D,B + D,B(logl)ﬁ 1),

B
Combining Theorems 3, 4, and A2 leads to the almost sure convergence of m

and in the next lemma.

AN]
No(No—1)

Lemma A5. Let B > 1and No € Zy with Ng > 3. Then, there are constants Dg and Dﬁ
(depending only on B) such that for all 1 > € > 0and Ny > ne g,

P| sup
k>N

A A 72C, ) »
- < 0 B
No(No—1) N(N—-1) ‘ ” TA€> = 2NN, (Dﬁ +Dg(log Ni1) ) (A31)
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and

B 72Cn; N B
> <% (D D.(loe N- B—1 . (A32
(ksffg ‘ No(No —1) N(N —-1) ’ TBe) N T§€2N0N1 ( Bt ﬁ( og Ni) ) ( )

where ne g is defined by (6).
_ B } _ N
No(No—D)| — ™o
A _ A _ B A
o0, E[ (No 1)} = NN=T) andE[ (No 1)} = N[N 1) Meanwhile, since 0 < Not

—L <

No—-1) =

1’OSW<1O< <land0 < < 1, we know that 74 < 1 and
7 < 1. Thus, by Theorem A2, we obtain (A32) and (A31). O

Proof. From Theorems 3 and 4, we know that Var [ﬁ;—l)} Var[

N(N 1) N(N 1)

We next consider the almost sure convergence rate of {f log %’; :keN } To this end,
we introduce the following lemma.

Lemma A6. Let Ny € Zy with Ng > 3. If A > 0and B > 0, then forall Ny € Nand1 > € > 0,

Pz o s ry) s )| <)
: P(EB& N W] N i1>e>' 9
and
o o s =) s (s )| <)
- P(E’fﬁ oD~ N=T)| i1>e>' Ay

Proof. Note that forall0 < a,b <1and 0 < # <1, when
[loga —logb| > 1, (A35)
it holds that a > be'l, or a < be™ . Hence, when (A35) holds, there is
a—b>ble"—1), ora—b<ble™-1). (A36)

By noting thate’ —1>1—-¢7and1—¢77 > e~ 1y, from (A36), we know that when (A35)
holds, there has a — b > be~', ora — b < —be~ 'y, that is,

la —b| > be 7. (A37)

Note that whena = 0,forall 0 < b < 1and 0 < y < 1, inequality (A37) always holds.
Thus, we know that forall0 <a < 1 and 0 < b, <1, when (A35) holds, inequality (A37)

holds. Then, replacing 4, b, and 7 by Ny ( B

and €, we know for all N; € N and

—1)’ N(N-1)
0 < e <1,when
B B

sup |lo <> ~1lo ()‘ >e, A38
oo B\ No(Np — 1) B\N(N-1) (A38)

there has 5 5 5

k €
s > . A39
o No(No — 1) N(N—l)‘ N(N —1)e (A39)
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References

Let F7 be the set of the events satisfying (A38), and J, be the set of the events satisfying
(A39). From (A38) and (A39), we know that /7 C F,. Thus, we can obtain (A34) (see
Theorem 1.5.4 in [29]). Similarly, we can obtain (A33). O

Combining Lemmas A5 and A6, we obtain the almost sure convergence rate of

By
—log— :keN
{ OgAk © }
in Theorem 5.

The proof of Theorem 5 is provided as follows.

Proof. Note that for all N; € N,

sup |lo &—lo B‘ < sup|lo <Bk>—lo <B>’
8 A, 8] = IR OB\ Ny (N — 1) B\N(N-1)
+ sup log(Ak) —log(A)‘.
P No(No —1) N(N-1)

Thus, we know that forall N; € Nand 1 > € > 0, if

sup |log B _ log B’ > max{7ta, T }e€, (A40)
k>Nq Ak A
then
By ) ( B ) ‘ max{Ta, Tg}€ _ TgE
sup |log| ———~ ) —log| =~ || > —2—"— > —, A4l
e g(NO(NO—l) B\N(N-1) 2 =7 (A41)
A ) ( A ) ‘ max{Tu, Tg}€ _ Ta€
sup |log| —— | —log| v || > —2L 7 > 2. A42
s g(NO(NO—l) B\N(N-1) 2 =72 (A42)

Let /7 be the set of the events satisfying (A40), JF, be the set of the events satisfying (A41),
and F3 be the set of events satisfying (A42). Then, from the above inequalities, we have
F1 C F, U F3. Hence, we have P(F;) < P(F;) + P(F3) (see Theorems 1.5.4 and 1.5.7
in [29]), that is,

P| sup logﬁ — logB' > max{T4, Tp}€
k>Nq Ak A
o=n) ~s(svn)| >
< Plsup|log| == ) —log| =< || > =
= (b}j’l g(1\70(1\101) B\N(N D) 2
Ak A TAE
+ sup og (=7 ) o8 (=3 )| > 5 )
<k>l\1:1)1 E\ No(No — 1) E\NN=T) 2

Substituting (A34) and (A33) into above inequality, from Lemma A5 and the definitions of
Y4 and 7yg, we obtain the desired result (7). O
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