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6.1 Introduction

The study of biogeochemistry in intensively managed landscapes (IMLs)—those
landscapes which are dramatically altered and managed through human effort to
provide economic benefit—is a study of transitions. Large-scale industrialized agri-
cultural practices have induced significant shifts in the transport and transformation
of water, carbon, and nutrients across landscapes in order to maximize our ability to
extract from the land the richest, most fruitful agricultural and bioenergy products to
address the food and energy needs of an ever-growing global population. Since the
Industrial Revolution, the Earth has seen a five-fold surge in land cover dedicated for
agricultural use, and recent estimates of crop- and pastureland area range between
500 million and 2.7 billion hectares (5 and 27 million km?) globally (Ramankutty
et al. 2018) [However, it should be noted that conversion of natural landscapes to
IMLs has slowed in recent decades, due most likely to technological and engineering
advances that increase yield and production efficiency (Ramankutty et al. 2018)].
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In IMLs, the Critical Zone (CZ), the bedrock-to-canopy top living layer of Earth’s
crust, encompasses not only the landscape’s natural underlying lithology, evolving
land surface, and energy, nutrient, and hydrologic flows and fluxes, but also incorpo-
rates human amendments to the natural system. These include seasonal changes in
land cover and vegetation type associated with, for example, row crop agriculture and
chemical treatments like soil liming or fertilization, which can have an overwhelming
effect on natural biogeochemical processes. Understanding CZs experiencing inten-
sive management and characterizing them through modeling can lead to improved
management techniques and improved insights into their long-term sustainability. In
the Chapter, we discuss the unique challenges to studying the biogeochemistry of
CZs in IMLs and summarize several recent modeling efforts made by researchers
in the Intensively Managed Landscape Critical Zone Observatory (IMLCZO) http://
criticalzone.org/iml/.

The degree and manner by which a natural ecosystem is modified to become an
IML depends on both the pre-existing topographic and climatological characteristics
inherent to the landscape as well as the ultimate purpose for which it is modified.
Two contrasting IMLs located in the American Midwest and in China’s Loess Plateau
illustrate this accelerated give-and-take relationship between humans and their envi-
ronments. IMLs typical of the Midwestern United States, which are host to billion
dollar annual food, feed, and biofuel crop production, are generally topographically
planar with rich, deep soil horizons (Wilson et al. 2018). They are subject to pre-
cipitation and temperature fluctuations characteristic of humid-continental climates.
Poorly drained soils means that intensive management practices in this region are gen-
erally aimed at artificially promoting drainage and reduction of long residence times
of water, carbon, and nutrients. Farmers and landowners in the Midwestern US began
in the 1820s the practice of removing excess moisture from the soil via tile drains
(Fig.6.1), comprised of perforated tubes installed over a meter beneath the ground
surface (Woo et al. 2019; Kratt et al. 2020). Twelve American Midwestern states are
presently implemented with tile drainage systems to the extent that more than half
of the total 170 million ha of cropland shared between them is artificially drained
(Nakagaki and Wieczorek 2016). The presence of tile drains enables improved crop
productivity and nitrogen use efficiency through increased rooting depth. However,
extensive tile drainage results in unintended consequences. Tile drains increase nutri-
ent losses through channelized subsurface water fluxes (Castellano et al. 2019) and
disrupt the landscape’s moisture and transport dynamics by dramatically increasing
drainage rates and overall moisture efflux (Davis et al. 2014). They flush fields of car-
bon, nutrients, and excess fertilizer, which are then swiftly deposited into receiving
waterways adjacent to fields. Topographic dips associated with constructed roadside
and agricultural ditches support rapid surface water removal and nutrient movement,
as well (Rhoads et al. 2016).

In addition to tile drains, other surficial anthropogenic inputs such as fertilizer
application and mechanical tillage accelerate nutrient and sediment flux. The land-
scape’s naturally-occurring nutrient cycling is often overhauled by widespread fer-
tilizer application. However, only about 40% of nitrogen fertilizer applied to grain
crops is ultimately used by the grain crops (Gardner and Drinkwater 2009). The
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Fig. 6.1 a Perforated tile (a)
drain tube [Picture credit:

What is a tile drain? 2021)];

b video still of tile drain

outflow immediately

following a rain event

(Courtesy: Bruce Rhoads

2016); ¢ edge-of-field

drainage ditch (Courtesy:

Praveen Kumar 2016)

ensuing large scale excessive losses of chemicals from fields have resulted in well-
documented water quality issues, such as blue baby syndrome (Mahvi et al. 2005)
and ongoing challenges such as the Gulf of Mexico Dead Zone (Fausey et al. 1995;
‘Woo and Kumar 2019; Li et al. 2008; Radcliffe et al. 2015).

The above-mentioned human inputs are in no way an exhaustive list of anthro-
pogenic amendments to the landscape. It has been estimated that in American Mid-
western IMLs, humans directly input and expend nearly 2 MJ per m? of cropland in
order to overcome rate-limiting processes associated with water, nutrients, and bio-
geochemical cycling (Richardson and Kumar 2017). This massive energetic influx
converts the planar landscape into one that is more productive than the Amazon
(Guanter et al. 2014), and importantly, it catalyzes a “critical transition” in the over-
all function of the landscape, converting it from one which had longer residence times
to one that swiftly moves water, nutrients, and carbon through it. This transition is
referred to as the transformer-to-transporter hypothesis (Kumar et al. 2018).

In contrast, IMLs such as those found in the arid Loess Plateau of China aim to
achieve a transporter-to-transformer transition in order to overcome high erosion
rates and limitations in arable space that accompany the region’s hilly topography
(Kumaretal. 2018). The Loess Plateau, which has been referred to as “the most erodi-
ble area on earth” (Tian and Huang 2000), is located in the highly tectonically active
North Central China. Itis characterized by steep hills and valleys and an abundance of
highly erodible, largely degraded loess deposits (Li and Shao 2006). Intense rainfall
in summer months accounts for 60-70% of annual precipitation, which contributes
to soil erosion problems (Shi and Shao 2000). The average annual rate of soil loss
from the region has been estimated to be between 2000 and 2500 tons per km? (Shi
and Shao 2000), which inhibits much-needed agricultural and industrial activity in
the region. The most widely used management practice to combat such high erosion
has been the implementation of check-dams (Chen et al. 2007), dams constructed
across drainage structures to trap sediment and mitigate losses (Wang et al. 2014a).
Although check-dam construction began over 400 years ago, its implementation has
dramatically increased in recent decades: over 110,000 check-dams were constructed
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between 1962 and 2012 alone (Jin et al. 2012). Check-dams, which can essentially
act as depositional centers, alter the landscape’s soil organic carbon stocks, nitrogen
stocks, and pH (Liu et al. 2017). Additional measures to combat erosion, including
vegetation rehabilitation, strategic artificial irrigation, limited ploughing, and terrac-
ing impact the region’s biogeochemical profile, as well (Qiang-guo 2001; Zhao et al.
2017).

Regardless of overall land-use aims, massive efforts across IMLs in more recent
times have led to the widespread adoption of an additional goal: to protect and
maintain the long-term resilience of ecosystems under intensive management. Com-
prehensively addressing this goal requires an understanding of the interplay between
underlying natural processes, which have occurred over geologic time scales, relative
to the overprinting of intensive agricultural practices that have dominated the land-
scape in recent centuries. This interplay has a unique and fascinating effect on the
biogeochemistry of IMLs, particularly in the notoriously complex and poorly con-
strained section of the near surface CZ. The shallow CZ is an interface across which
mass and energy are transferred and transformed from surface to subsurface through
both biotic and abiotic pathways according to natural forcings, such as hydroclima-
tological variability, and anthropogenic forcings, such as tile drainage or check-dam
usage. A suite of top-down impetus associated with surface transformations propa-
gate the reactive signal from nutrient and solute responses to surface inputs through
the dynamic shallow subsurface CZ. These top-down impetus can take the form of
seemingly innocuous, centuries-long spatiotemporal patterns of deposition or ero-
sion of sediment, or the swift, violent passage of a mechanical plough. Water also
routinely infiltrates this zone and promotes biological activity and chemical trans-
formations, only to be redistributed or transpired back out of the soil surface. Carbon
enters the shallow subsurface CZ daily or seasonally in the form of litter, roots, and
associated exudates only to be re-emitted as a terrestrial CO, flux or stored in the
shallow subsurface over a wide range of timescales. The solid phase soil itself is the
product of a series of water-rock-life hydrobiogeochemical interactions emanating
from an unweathered supply of fresh reactive material at the base of the weather-
ing zone. The modern-day biogeochemistry of IMLs is, therefore, the result of the
convolution of long-term dynamics, such as soil formation, long-term carbon stock
replenishment or depletion, and landscape evolution, with short-term dynamics, such
as seasonal or intra-annual land management practices, natural and human inputs at
the soil surface, and vegetation dynamics such as root exudation.

Long-term biogeochemical dynamics are imbued with the geologic legacy of the
landscape’s development. In IMLs in the Midwestern United States, the natural pro-
gression and evolution of CZs in prairie and mesic hardwood forests has shaped the
development of floodplains and gradual establishment of native grasses and vegeta-
tion since the last glacial retreat (Pielou 2008; Kumar et al. 2018). After European
settlement began in the mid to late 1800s, the landscape experienced rapid erosion
and deposition of sediment commonly referred to as Post Settlement Alluvium (PSA)
(Hansel and Mckay I112010). The massive shift from natural riparian wetland to agri-
cultural land resulted in PSA effectively burying pre-existing soils (Yan et al. 2019).
In some areas, PSA deposits reach up to 4 m of thickness (Knox 1989). PSA essen-
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tially constitutes modern-day initial soil conditions, and we can expect that it reflects
dramatically shifted rates and magnitudes of hydrologic, geomorphologic, and eco-
biologic cycles affecting soil organic carbon transport and transformation compared
to pre-existing soils. In addition to direct alterations of hydrologic and sediment
fluxes, human replacement of natural vegetation by annual crops with vastly different
nutritional needs and rooting depths contributes to dramatic subsurface biochemical
changes, as well. Higher biodiversity associated with natural vegetation supports a
more diverse soil microbiome (Dornbush and Wilsey 2010). Therefore, conversion
from natural prairie grasses, whose rooting depths often extend well past two meters
below the surface (Nippert et al. 2012), much deeper than the roots of annual crops
like maize and soybean, can change biogeochemical processes deep into the CZ.
Indirect effects associated with the reduction of subsurface biodiversity can induce
significant changes in above- and below-ground productivity, carbon sequestration
rates, and other ecosystem services (Allan et al. 2015).

Short-term dynamics encompass the immediate response of biotic and abiotic
features in the shallow CZ to both natural and anthropogenic inputs. Microbially-
mediated processes are strongly influenced by temperature and moisture fluctuations
in the soil, as well as changes in land cover (Herzberger et al. 2014), vegetation type
(Kim et al. 2020), and management practices (Kraut-Cohen et al. 2020). In the
presence of tile drains, moisture removal rates can exceed the rates of assimilatory
processes. The structure and function of the soil microbiome is also heavily influ-
enced by root exudation, the highly variable process by which roots deposit organic
C into the soil (Sasse et al. 2018; Vives-Peris et al. 2020). Root exudates can also
affect soil pH and drive the weathering of solid phase soil (Hinsinger et al. 2003;
Hagque et al. 2019).

Despite the advances that new technologies afford [e.g. extensive data collection
via sensor networks and flux towers (Wilson et al. 2018; Math and Dharwadkar
2017; Vuran et al. 2018), utilization of autonomous vehicles and drones (Candi-
ago et al. 2015; Bacco et al. 2018), GIS-based services (Sharma et al. 2018), and
even smartphone-based tools (Mendes et al. 2020)], a knowledge gap remains in our
ability to determine the long-term impacts of overprinted anthropogenic activity on
the natural CZ architecture and function (Anders et al. 2018; Kumar et al. 2018).
We identify several key areas that have emerged from research at the IMLCZO that
have challenged our ability to interpret biogeochemical transformations: (1) The co-
evolution of surface transport of soil and soil organic carbon and its influence on
the dynamics of soil carbon profiles; (2) The ability of (a) microtopographic surface
features and (b) natural and artificial subsurface drainage pathways to reroute sub-
surface hydrology and drive below-ground geochemical gradients and reactivity; and
(3) Vegetation dynamics—particularly root exudation—and their role in shaping the
soil microbiome and subsurface biogeochemical environment subject to the unique
seasonal cycles of growing and harvesting crops. While not necessarily a compre-
hensive list for IMLs with fundamentally different features than the IMLCZO (e.g. a
forested IML), these areas, which encapsulate both surface and subsurface features
and inputs, are important segments of a vast, interconnected landscape in transition.
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Disentangling the signals from natural biogeochemical cycling and human-
imposed alterations to the rates of mass transport and transformation through manage-
ment practices, phreatic tile drain surface depth, fertilizer nutrient loading, and sea-
sonal disturbances from cropping systems (from planting through harvest) requires
the use of novel, comprehensive tools. Models can synthesize and help us visual-
ize simultaneous signals recorded through extensive data collection to improve our
interpretations of those measurements and inform subsequent experimental design.
In this chapter, we highlight modeling efforts from the IMLCZO which have made
advancements in the study of biogeochemistry in intensively managed landscapes.

6.2 Long-Term Carbon Dynamics

Piecing together the backstory of the legacy of a modern landscape’s C content holds
an important key to understanding its present-day biogeochemical properties. To
this end, C stocks and vertical C profiles across a landscape can serve as historical
landmarks built into the landscape that can potentially anchor back-calculations of
a landscape’s evolution over long periods of time. While researchers are in general
agreement that the dynamics of soil organic carbon (SOC) stocks and vertical profiles
are determined by their physical transport and biogeochemical transformation (Stal-
lard 1998; Van Oost et al. 2007; Doetterl et al. 2016; Quinton et al. 2010), exactly how
the interplay of the lateral, vertical, and biogeochemical processes affects landscape
evolution has long remained unclear.

We may expect in an undisturbed natural system that this interplay would exist
in a dynamic equilibrium (Amundson et al. 2015). Surface roughness characteris-
tics determine overland flow pathways and dictate where and how soil and SOC
are redistributed through lateral fluxes. These lateral fluxes break aggregates apart,
mobilize SOC through erosion, redistribute SOC, and bury already existing layers of
SOC in depositional areas. Erosional sites formed up-slope by soil transport generate
concentrated locales of newly exposed subsoil across a landscape, which could favor
C sequestration and even provide local net sinks of atmospheric C given a slower
rate of decomposition than accumulation (Van Oost et al. 2007; Doetterl et al. 2016;
Quinton et al. 2010). At depositional sites down-slope, topsoil layers with relatively
high SOC content are gradually buried, increasing the total amount of SOC while
suppressing SOC turnover rates. This imbalance can either reduce or enhance SOC
decomposition rate, meaning that depositional sites could either serve as local net
sinks or sources of atmospheric CO, (Van Oost et al. 2007; Berhe et al. 2008; Berhe
and Torn 2017; Wiaux et al. 2014; Wang et al. 2014b; Zieger et al. 2017; David et al.
2009). Acting simultaneously with physical transport processes, the biogeochemical
transformation of SOC can be described as a bi-directional vertical flux of C at the
soil-atmosphere exchange: carbon is either inserted into the soil system via plant
litter or rhizodeposition and allowed to accumulate, or it is decomposed by the soil
microbiome and released into the atmosphere as CO;. The rate of accumulation or
decomposition of C in the soil is regulated by soil physical properties, such as aggre-
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gate size (Wilson et al. 2009), soil moisture content and fluxes, and overall land use
and land cover changes. It is also indirectly controlled by lateral soil transport, which
alters the turnover rate of SOC.

This give-and-take becomes more convoluted in intensively managed systems
where agricultural practices accelerate soil erosion rates by up four orders of magni-
tude compared to rates in relatively undisturbed landscapes (Amundson et al. 2015;
Papanicolaou et al. 2015). In particular, mechanical tillage, the process by which
land managers agitate the top layers of soil in order to improve certain physical char-
acteristics for the benefit of planting, modifies surface roughness and accelerates
soil and associated organic carbon redistribution in the vertical profile, which also
indirectly influences the organic matter transformation rate. Tillage is not the only
culprit, however; the formation and maintenance of grassed waterways significantly
modifies overland flow pathways and material transport rates, altering where on the
landscape material is delivered and the rate at which it is delivered (Papanicolaou
et al. 2018). These surface disruptions happen in tandem with natural disturbances to
surface roughness, including raindrop splashes and overland flow, which redistribute
SOC by controlling lateral fluxes across interconnected soil-scapes (i.e., vertical soil
columns).

Yan et al. (2019) developed the first process-based model of its kind to describe the
interplay of lateral and vertical transport with biogoechemical processes (Fig.6.2).
The SCALE (Soil Carbon and Landscape co-Evolution) model (Yan et al. 2019) cou-
ples hydrologic, biogeochemical, and geomorphologic processes to characterize how
soil transport, biogeochemical transformation, and the emergent landscape evolution
born of the interplay of these processes affect the lateral and vertical SOC dynamics
under both natural and human influences. SCALE’s quasi 3-D framework couples
five major components (Fig. 6.2): 2-D overland flow, 2-D SOC lateral transport, 1-D
soil moisture dynamics, 1-D soil organic matter (SOM) transformation, and 2-D soil
transport and resultant landscape evolution. SCALE additionally considers spatial
and temporal variability in the water cycle, C cycle, and topographic evolution on
temporal scales varying from days to centuries. While previous models have quan-
titatively assessed SOC budgets based on erosion, respiration, mineralization, and
litter incorporation (Van Oost et al. 2007; Doetterl et al. 2016), SCALE additionally
incorporates the enrichment ratio (ER) concept, which considers preferential carbon
mobilization and deposition based on an empirically-determined ratio of the con-
centration of SOC in the eroded material to the concentration of SOC of the in-situ
soil (Papanicolaou et al. 2018). SCALE uniquely quantifies the carbon exchange
fluxes between the soil and atmosphere, and provides insights into the locations of
hotspots of sinks and sources of atmospheric CO,. Most importantly, SCALE can
target broader questions regarding landscape evolution, the impact of mechanical
mixing, and their resultant implications to SOC heterogeneity in IMLs.

Many previous conceptual models of SOC dynamics have been built on the con-
cepts of ‘humification’, disregarding the idea that SOC is a continuum of progres-
sively decomposing organic components ranging from labile compounds that rapidly
decompose to recalcitrant compounds which, in turn, decompose extremely slowly
(Lehmann and Kleber 2015). SCALE addresses SOC characterization by categoriz-
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Fig. 6.2 Illustration of the modeling framework that couples biogeochemical transformation related
processes of SOC throughout the soil columns with geomorphological transport at the surface.
The computational approach discretizes the surface processes as 2-D matrix and below-ground
processes using a 1-D array, where the surface processes include overland flow, soil transport and
surface SOC transport, and below-ground processes include soil moisture and SOC transformation.
SOC turnover is controlled by plant residue input (e.g. leaf litter-fall, dead root, and stover), soil
water content, bioturbation via soil fauna, mechanical tillage, and SOC surface erosion/deposition.
Overland flow depth and soil water content are co-dependent through precipitation, infiltration and
evaporation. Soil transport and resultant landscape evolution are directly controlled by overland
flow, wind, and rain splash. The associated SOC transport provides an upper boundary condition
for the below-ground biogeochemical transformation [Figure is modified from (Yan et al., 2019)]

ing SOC into three pools—fast (C;), slow (C}), and microbial biomass (Cp) (Por-
porato and Odorico 2003)—and their feedbacks between each other. Combining the
biogeochemical transformation, soil erosion/deposition (and resultant landscape evo-
lution), and bioturbation by soil fauna, the SOC mass conservation in a soil column
is summarized as (Yan et al. 2018):

z
a VA zZ
3 / Cdz = / gdz —V -q¢ —I—/ V. [D(z)VC]dz 6.1)
0 0
0

where C = [C}, Cy,, Cp]7 is the SOC concentration, C;, C;,, Cj, represents the fast (or
litter), slow (or humus), and microbial biomass pool, respectively [M L3,V qc is
the sum of surface SOC flux by overland flow erosion and diffusive-like erosion (e.g.
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Fig. 6.3 Simulation results from the SCALE model in a sub-catchment in the Clear Creek Water-
shed (CCW), Iowa. a and b are from (Yan et al., 2019), and ¢ is under preparation (Yan and Kumar,
2020)). Subfigure a shows four ensemble simulations of SOC profiles in areas in CCW that are
highly eroded (red), moderately eroded (yellow), moderately depositional (green), and highly depo-
sitional (blue). Simulations for the area with highest levels of deposition (blue) are validated by
the field sampling data collected in CCW. b Comparison of the SOC fluxes bestween the lateral
redistribution (driven by soil transport) and the vertical carbon exchange (the net carbon change rate
between litter input and decomposition rate). Colors indicate erosional/depositional areas as indi-
cated in (a), and grey dots encompass all possible points in the study area. This shows that erosional
areas tend to accompany positive SOC vertical flux, meaning that those areas can be sources of
atmospheric C. Depositional areas generally indicate negative SOC vertical flux, meaning that they
can be atmospheric C sinks. ¢ The SOC decomposition rate (i.e., the CO> production from soils)
changes at a mean monthly rate. At year-100, a mechanical mixing experiment (which uniformly
mixes 20 cm of near-surface soil) is conducted to the subcatchment at DOY 104

raindrop splash and wind) (Yan et al. 2018); V - [D(z)VC] is the vertical diffusion
process resulting from bioturbation by soil fauna, where D(z) is the bioturbation
diffusivity, parameterized as D(z) = Dmpe’o'lz (Quijano et al. 2013a), where D,,,
is the bioturbation diffusivity at the surface [M 2T7-1; and g is the net carbon flux
of the biogeochemical transformation process.

More recently, numerical modeling of SOC dynamics have moved away from
characterizing fast and slow C pools in favor of active or passive pools or more
measurable pools (Abramoff et al., 2018). Future funding permitting, the SCALE
model will be updated to incorporate more accurate approaches. Nevertheless, the
novel simulation capabilities of SCALE help elucidate differences in spatio-temporal
patterns of SOC content in erosional and depositional sites and how those patterns are
affected by mechanical tillage. It also provides researchers a tool to help determine C
hotspots across a landscape which could potentially lead to better land management
practices. A 100-year SCALE model simulation based on an IMLCZO hillslope
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Fig. 6.4 The total SOC stock change after a 50-years evolution in the Reference Watershed (a),
GLC Watershed excluding the consolidated gully (b), and the consolidated gully only (c). (al—1)
Spatial map of total SOC stock change. (a2—c2) Probability distribution functions (PDFs). The
dashed lines represent spatial mean values. The purple line corresponds to the PDF of total SOC
stock change, the orange line corresponds to lateral transport, and the green line corresponds to
biogeochemical transformation. Shared with permission from (Yan et al., 2020)

demonstrated the give-and-take between transport and transformation of SOC stocks
in intensively managed Midwestern soils (Fig. 6.3). Figure 6.3a reveals lower SOC
content in depositional centers relative to their initial SOC profile and higher SOC
content associated with eroded soils. Figure 6.3b echoes this spatiotemporal result,
indicating that erosional sites correspond to a positive SOC vertical flux (meaning
SOC accumulation is higher than decomposition), while depositional sites tend to lose
SOC through decomposition (Yan et al. 2019). Further, SCALE results suggest that
this spatiotemporal difference in the rates of accumulation/decomposition vs lateral
transport is exacerbated by the practice of mechanical tillage (Fig.6.3c) (Yan and
Kumar 2020). When applied to a natural watershed and consolidated gully in China’s
Loess Plateau, the SCALE model was able to highlight mechanistic differences
between SOC stock changes in natural watersheds and consolidated gully areas. A
50-year simulation indicates that although the consolidated gully experiences higher
rates of SOC transport than in the natural watershed, it had a relatively lower effect on
SOC transformation rates (Fig. 6.4). This implies that the consolidated gully behaves
as a sink for atmospheric carbon in addition to serving as a depositional area (Yan
et al. 2020).



6 Advances in Biogeochemical Modeling for Intensively ... 155

6.3 Event-Scale Biogeochemical Dynamics: The Impact
of Microtopography and Artificial Drainage

Ultimately, linking the lateral and vertical flux of C with its turnover is an important
step towards merging long timescale processes and landscape evolution with short
time scale transformations. The landscape resulting from the above co-evolutionary
processes directly influences the biogeochemical dynamics occurring at shorter time
scales. These can be seasonal or intra-annual in scale, such as seasonal climate
fluctuations whose signals propagate into the soil, or daily or subdaily processes,
such as rates of infiltration, biotic transformations, and vegetation dynamics. One
prime example of this link between landscape evolution and resulting biogeochemi-
cal traits can be found in Midwestern IMLs, which are typically situated on converted
prairie land and floodplains and are characterized by flat to mild topographic inclines
capping deep layers of post-settlement alluvium and glacial till. The generally flat
topography typical of the region presents a uniquely challenging geospatial system:
micro-topographic features, such as topographic depressions and drainage struc-
tures, govern the landscape’s ecohydrologic and biogeochemical dynamics through
their influence over the water balance and associated response of inorganic nitrogen
dynamics. Surface heterogeneity associated with these areas contributes to unique
biogeochemical traits, such as localized nutrient hot-spots and dramatic gradients
in nutrient and moisture availability. Surface ponding, a keystone feature of micro-
topographic depressions, creates pockets of prolonged anoxic conditions which result
in reduced aerobic microbially-facilitated processes, such as nitrification and miner-
alization (Li et al. 1992; Grant 2004; Grant et al. 2010). The reduction of microbial
activities, in turn, results in a decrease in the concentration of inorganic soil nitrogen
(Woo and Kumar 2017).

These modest topographic features are often ignored in models that utilize lower
resolution or coarse computational grids, which limits our understanding of bio-
geochemical dynamics in the root zone. However, the advent of high-resolution
measurements of topographic features enables us to resolve micro-scale structural
characteristics over large areas, providing an opportunity to capture the hydrologic
and biogeochemical responses to micro-topographic variability. These high resolu-
tion measurements are incorporated into the Dhara model (Le and Kumar 2017)
(Fig.6.5), which links the vertically-resolved canopy-root-soil biophysical vegeta-
tion model MLCan (Drewry et al. 2010a) with a 3-D coupled surface and subsurface
transport model (Le et al. 2015). MLCan resolves the vertical radiation, thermal, and
environmental regimes of the canopy and soil-root system of both C3 and C4 pho-
tosynthetic pathways (Drewry et al. 2010a), and can be parameterized for a variety
of row crops, including soybean and corn (Drewry et al. 2010a,b) and bioenergy
crops, such as switchgrass and miscanthus (Le et al. 2011; Woo et al. 2014), and
forest (Quijano et al. 2012, 2013a). In addition to plant water uptake, hydraulic
redistribution (Quijano et al. 2012) is included to simulate the passive transport of
moisture throughout the root and soil column according to water potential gradi-
ents. The model also incorporates carbon and nitrogen dynamics for multi-species
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Table 6.1 List of key governing equations in Dhara
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Here, ¢ represents time and t represents age. (Left column) H: water elevation above the datum;
D: diffusion coefficient; ¢.: exchange fluxes between surface and sub-surface domains; ¢,: gen-
eral source/sink term; {: sub-surface pressure head; 6: is the soil moisture; ¢: porosity; k: unit-
upward vector, S : the specific storage coefficient, K : unsaturated hydraulic conductivity, g, : general
source/sink term for subsurface, T: soil temperature., C;: soil volumetric heat capacity. (Right col-
umn) ¢; represents a concentration density of a ¢; (¢, z, T) of a reactive constituent that depends on
time ¢, depth z, and age t; C; represents concentration; E;: age concentration. Constituents mod-
eled include: nitrate (z ™), immobile ammonium (n:jn), and mobile ammonium (n,,,,); D; represents
diffusion coefficient for a particular constituent i; u: velocity; g: gain rate; /: loss rate, T : water
flux, Cg/: concentration of glucose, Dg;: diffusivity coefficient of glucose, Cfyq4y: the concentra-
tion of flavonoids, D f;4,: the diffusivity coefficient of flavonoids. See references (Le and Kumar
2017; Woo and Kumar 2017, 2019; Roque-Malo et al. 2020) for more details about the governing
equations

vegetation compositions that share common resources, such as below-ground soil
moisture and nutrient pools (Quijano et al. 2013a; Woo et al. 2014). It includes a
coupled surface-subsurface model that simulates hydrologic and thermal processes
below the vegetation canopy. Dhara utilizes a Compute Unified Device Architecture
(CUDA) interface on Graphics Processing Units (GPUs) to exploit high resolution
lidar topographic data to simulate integrated surface and subsurface transport of soil
moisture and heat.

The governing equations for overland flow on the land surface and mixed form,
variably saturated subsurface flow in the soil domain is shown in Table 6.1 (left col-
umn). Soil temperature regimes, primarily driven by downward ground heat fluxes,
are modeled by solving the three-dimensional diffusive heat equation (Table6.1).
The biogeochemical module in Dhara captures the coupled dynamics of nitrogen
(nitrate, mobile and immobile ammonium, and ammonia) and carbon mediated by
microbial action in the soil. These processes are coupled to below-ground moisture
transport to understand the distribution of concentration (hot spots) and timing (hot
moments) across landscapes (Woo and Kumar 2017).

To go beyond the spatial characterization of microtopographic features themselves
and examine their role in observed nutrient dynamics, researchers at the IMLCZO
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incorporated another variable into the equation: age (Table 6.1 right column). Woo
and Kumar (2016) connect the prevalence of microtopographic features in Midwest-
ern agricultural areas to the spatial distribution of nitrogen age in the soil, positing
that age of inorganic nitrogen, the time elapsed since its introduction into a control
volume, is a uniquely useful tool for the characterization of soil nitrogen dynamics.
For a transient system driven by storm events and periodic application of fertilizers,
the spatial distribution of age provides a dynamic attribute not captured by estimates
of residence times, which are better suited for systems in equilibrium. Examina-
tion of subsurface nutrient concentration-age dynamics allows for (i) analysis of the
historical footprint of nitrogen dynamics (Woo and Kumar 2016), and (ii) for explo-
ration of the spatial and temporal distributions of nutrient stagnation and expulsion
(Woo and Kumar 2017). Taken together, knowledge of both age and concentration
of inorganic nitrogen can serve as an indicator for spatially-variable efficiency of
nitrogen use and mobility through the soil matrix. Analysis of age along with its
concentration is particularly important for any reactive constituents where different
chemical species (i.e. nitrate, ammonia, and ammonium) can have widely varying
age dynamics due to their varying solubility, mobility, and reactivity through the
soil matrix, thereby introducing significant lateral and vertical heterogeneity. Higher
concentration and age would reflect low mobility and low utilization by vegetation
and, therefore, greater availability. Lower concentration and age would correspond
to high mobility and/or high utilization. Age studies using reactive constituents are
distinctive from age analysis using nonreactive tracers, such as chloride and bro-
mide (Delhez et al. 1999; Duffy 2010), which flow through the system as dissolved
constituents and are an indicator of the travel time of the solvent (water).

Both lower nitrate concentration and age were modeled in areas that are classi-
fied as topographic depressions due to surface flow convergence (Fig.6.6). That is,
nitrate leaching from these areas is higher than elsewhere, reducing the amount of old
nitrate from the soil. This consequence, combined with increased soil moisture and
lower soil temperature in the low-lying areas of flow convergence catalyze denitrifi-
cation. However, for the case of mobile ammonium, lower concentration and higher
age are observed in depression areas relative to other locations. Cation exchange
partitions ammonium between mobile and immobile pools, leading to an increased
mobile ammonium age in topographic depression areas. The estimation of nitrogen
age along with its concentration can thus serve as a tool to further disentangle com-
plex nitrogen dynamics by providing the time-scales of nitrogen transformation and
transport processes. However, the data necessary to validate nitrogen age simulations
is not yet available.

While the spatial distribution of surface topographic depressions determine the
overall dynamics of soil inorganic nitrogen across the landscape, the short-term
hydrologic and nutrient fluxes of Midwestern IMLs are governed by the overwhelm-
ing effect of another anthropogenic structure: subsurface tile drainage systems. The
Dhara framework allows researchers to show that the presence of subsurface tile
drainage systems reduces the age of nitrate in the soil. Results indicate that at the
rising limb of tile drainage, relatively young nitrate, such as that derived from fertil-
izer application and mineralization, is associated with drainage flux (Fig.6.7). After
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the peak of tile drainage, however, the drainage flux carries relatively old soil nitrate
to receiving surface water. In the case of ammonium, results showed an unexpected
trend: tile drains increase the age of soil mobile ammonium. This surprising result is
rooted in the cation exchange of ammonium: an increase in the loss of mobile ammo-
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nium leads to increased ammonium flux from immobile ammonium to mobile. Since
the age of immobile ammonium is approximately 10 times older than that of mobile
ammonium, this flux increases mobile ammonium age in the soil. Dhara simulations
also show that the age of nitrate in tile drain flow ranges from 1 to 3 years while
that of mobile ammonium is less than a year (Woo and Kumar 2019). One of the
nitrate sources is nitrification, a nitrogen transformation from mobile and immobile
ammonium to nitrate. The age of immobile ammonium in the soil is the oldest among
nitrogen species because its positive charge causes it to adhere to clay in the soil.
Therefore, the age of nitrate in tile drainage is older than that of mobile ammonium.
The rapid transport of mobile ammonium through tile drainage leads to a decrease in
immobile ammonium and thus an increase in the age of mobile ammonium. These
results indicate that practices and policies for reducing nitrogen loading have time
lags between the implementation of mitigation plans and their responses, thus requir-
ing mid- and long-term strategic plans. The research found in this study can be used
as a guide for iterative and interactive learning processes to refine recommendations
for adaptive management.



6 Advances in Biogeochemical Modeling for Intensively ... 161

6.4 Root Zone Biogeochemistry

Another actor in biogeochemical processes in the short term is vegetation. Vege-
tation and their roots serve as dynamic bi-directional conduits linking above- and
below-ground processes. Roots and rhizosphere processes, such as root exudation, are
fundamental regulators of microbial activity and the movement and transformation
of moisture and nutrients (Li et al. 2017; Lynch 2007; Manzoni and Porporato 2009;
Philippot et al. 2009; Wieder et al. 2013; Vereecken et al. 2016). Root exudation, the
process by which plant roots secrete an array of organic chemical compounds into the
soil to influence and optimize their immediate environment, is a particularly impor-
tant component of biogeochemical cycling. Nutrient gradients and fluxes across the
vertical structure of the CZ are heavily influenced by root exudation, also called
rhizodeposition. Root exudation is a highly variable but ubiquitous process which
serves as an active driver for soil C and nutrient cycling (el Zahar Haichar et al. 2014)
and of the structure of the rhizome, influencing the appearance and sustenance of the
soil microbiome and the rate and magnitude of their functions (Sasse et al. 2018). It
has been recognized as one of the central factors in maintaining healthy ecosystem
functioning under future climate, particularly in terms of sustaining healthy microbial
biomass populations under extreme conditions (Preece and Pefiuelas 2016). Rumpel
and Kogel-Knabner (2011) identify root exudates as one of the four main sources of
organic matter in soil, along with plant roots, dissolved organic matter, and mixing
of surface C through bioturbation. Root exudates commonly include sugars, amino
acids, vitamins, and other organic compounds (Shukla et al. 2011). The concentra-
tion, type, and purpose of these exudates can vary as a function of plant phenology
and species (Baetz and Martinoia 2014). Additional factors such as age of the root,
vegetation type, bacterial growth, soil/regolith type and structure, and water avail-
ability (Toal et al. 2000; Jones et al. 2004) all contribute to make rhizodeposition a
highly variable process that is not easily generalized between different study sites.
Vegetation in agricultural landscapes is no different. Crops like soybean and maize
are known to secrete compounds that assist in nutrient acquisition (Cesco et al. 2010;
Wen et al. 2019; Li et al. 2016), plant defense (Kidd et al. 2001), and induction of soil
microbial community behaviors and structure (Guo et al. 2011; Wang et al. 2012;
Sugiyama 2019; Zhalnina et al. 2018). Switchgrass, a bioenergy crop, promotes
soil carbon sequestration and significantly alters soil carbon and nutrient cycling
below-ground (Garten and Wullschleger 2000; Ma et al. 2000). Perennial crops,
too, can increase labile carbon in soil and strongly influence the soil microbiome,
possibly to a greater degree than annuals (Sprunger et al. 2019; Szymanski et al.
2019). A growing body of literature recognizes these features as a potential avenue
to exploit with respect to agricultural crop improvement and protection (Rasmann and
Turlings 2016; Lanfranco et al. 2018; Zhalnina et al. 2018). This is especially true for
agricultural plant species for which it has been suggested that a better understanding
of root exudation and its effects on soil nutrient cycling can lead to reduced N
runoff via better-informed plant breeding and land management practices (Lynch and
Whipps 1990; Sugiyama et al. 2014; Bodner et al. 2015). However, in addition to the



162 S. Roque-Malo et al.

above-mentioned subsurface dynamics, the below-ground biogeochemical systems
of IMLs are subjected to drastic episodic overhauls characterized by bursts of carbon
and nutrient inputs from post-harvest litterfall or root death, soil priming practices
and fertilization, and supplantation of plant species.

Despite the recognition of the role of root exudation as a driver of critical biogeo-
chemical processes, it is not entirely well modeled (Bardgett et al. 2014). The com-
putational characterization of rhizosphere processes generally falls into two broad
categories: either high-resolution models describe root behavior in detail or roots are
crudely represented or are fixed as non-dynamic factors in global-scale models (Finzi
etal. 2015). In arecent review of nine different agroecosystem biogeochemical mod-
els frequently implemented by the European Union’s Joint Programming Initiative
on Agriculture, Food Security and Climate Change (FACCE-JPI), researchers found
that root distributions (but not their chemical contributions to the soil microbiome)
were included in seven of nine models and that all of the models were found to
over- or underestimate total nitrate leaching (Brilli et al. 2017). The absence of roots
and root exudation in ecosystem- and larger-scale models is thought to be one of
many factors contributing to shortcomings in predictions regarding biogeochemical
cycling and transformations (Finzi et al. 2015).

The biogeochemical models described in previous sections of this chapter sim-
ilarly represent vegetation as passive features in subsurface nutrient cycling. To
address this, the model REWT (Root Exudation in Watershed-scale Transport) devel-
oped by Roque-Malo et al. (2020) builds upon the ecohydrologic framework devel-
oped by Drewry et al. (2010a); Le et al. (2015); Quijano et al. (2013b); Woo and
Kumar (2017), and others and incorporates the active role of vegetation in driving bio-
geochemical and nutrient dynamics through root exudation. REWT characterizes the
bidirectional feedbacks between microbial biomass dynamics, organic C turnover,
root exudation, and subsurface water and nutrient transport. It is presently coupled
to the 1-D MLCan model with plans to couple to the 3-D Dhara model(Le et al.
2015). REWT’s forward predictive framework makes it the first of its kind to offer
prognostic capabilities regarding vegetation-driven hydrobiogeochemical dynamics.
However, as is the issue with many root exudation models, the data necessary to val-
idate such a model is not readily available. The model is expected to contribute to
experimental design.

REWT models the transport dynamics of root exudates, such as glucose (a polysac-
charide that directly fuels microbial biomass growth) and flavonoids (a type of bio-
logical nitrification inhibitor). The basic form of these exudates’ transport equation
is provided in Table 6.1. A thorough description of REWT’s governing equations are
presented in Roque-Malo et al. (2020). Descriptions of rhizodeposit transport fit into
a suite of equations describing the transport and transformation of carbon and other
nutrients in a spatially heterogeneous framework. REWT simulations indicate that
the explicit consideration of root exudation in shallow subsurface biogeochemistry
can result in dramatic differences in the estimation of microbial biomass or solute
export (Fig. 6.8(a, c) and (b, d), respectively). By mapping the effect of root exudates
on biogeochemical transformations, REWT’s simulations can inform the design of
experiments related to notoriously difficult in-situ root exudation sampling. They can
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Fig. 6.8 Sensitivity analyses for change in microbial biomass and leached nitrate for corn (a, b)
and soybean (a, ¢) based on varying rates of exudation of glucose and flavonoids. Percent changes
in microbial biomass and percent reduction in nitrate leaching are calculated with respect to model
results in which root exudation was not considered. Red, orange, and yellow lines in a and c¢ indicate
rates of exudation of glucose that are larger than the one found in literature. Blue, cyan, and green
lines indicate rates of glucose smaller than those found in literature. The blue arrow in b and d
indicates the exudation rate found in literature. Shared with permission from (Roque-Malo et al.,
2020)

also assist researchers in determining the role of vegetation on solute fluxes, which
ultimately informs the interpretation of concentration-discharge relationships.

Future work

The grand challenges faced by IMLs, including long term soil health, agroecosystem
resilience, and perturbation responses in row crop agriculture, can be studied more
effectively with improved simulations of evolving land surface topography and dis-
turbance, subsurface hydrologic fluxes and flow pathways, and plants’ active role in
shaping the biogeochemical landscape. In particular, the theoretical constructs pre-
sented in the above modeling frameworks offer an advantage to understanding the
region at the core of these challenges: while empirical, point-scale measurements
may capture signals from many different physical and biogeochemical drivers, the
above models can synthesize and help us visualize simultaneous signals in the shal-
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low subsurface to improve our interpretations of those measurements. Additionally,
we need a new type of model that can embrace a new era of data growth since models
evolve as the quantity, quality, resolution, and density of data increases. To expand
and explore opportunities across a vast variety of data sources, models like MLCan,
Dhara, SCALE, and REWT have potential to inform laboratory and field-scale exper-
imental design necessary for more sophisticated characterization of biogeochemical
dynamics.
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