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Abstract
The goal of this study is to develop a new computed tomography (CT) image
reconstruction method, aiming at improving the quality of the reconstructed
images of existing methods while reducing computational costs. Existing CT
reconstruction is modeled by pixel-based piecewise constant approximations
of the integral equation that describes the CT projection data acquisition pro-
cess. Using these approximations imposes a bottleneck model error and results
in a discrete system of a large size. We propose to develop a content-adaptive
unstructured grid (CAUG) based regularized CT reconstruction method to
address these issues. Specifically, we design a CAUG of the image domain to
sparsely represent the underlying image, and introduce a CAUG-based piece-
wise linear approximation of the integral equation by employing a colloca-
tion method. We further apply a regularization defined on the CAUG for the
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resulting ill-posed linear system, which may lead to a sparse linear representa-
tion for the underlying solution. The regularized CT reconstruction is formu-
lated as a convex optimization problem, whose objective function consists of
a weighted least square norm based fidelity term, a regularization term and a
constraint term. Here, the corresponding weighted matrix is derived from the
simultaneous algebraic reconstruction technique (SART). We then develop a
SART-type preconditioned fixed-point proximity algorithm to solve the opti-
mization problem. Convergence analysis is provided for the resulting iterative
algorithm. Numerical experiments demonstrate the superiority of the proposed
method over several existing methods in terms of both suppressing noise and
reducing computational costs. These methods include the SART without regu-
larization and with the quadratic regularization, the traditional total variation
(TV) regularized reconstruction method and the TV superiorized conjugate
gradient method on the pixel grid.

Keywords: CT reconstruction, integral equation, unstructured grid,
regularization, precondition, fixed-point algorithm

(Some figures may appear in colour only in the online journal)
1. Introduction

We develop in this paper a new regularized computed tomographic (CT) image reconstruc-
tion method, aiming at improving the quality of the reconstructed images and reducing its
computational costs. CT has been widely used in clinical medicine since it quickly and
visually provides patients’ anatomical information for evaluating various clinical symptoms
[15, 17, 19]. The anatomical information is contained in the image produced through the
reconstruction from measured projection data [13, 17].

Iterative CT reconstruction techniques have been widely studied in academic field [17, 53]
and some vendors have adopted this idea to their reconstruction methods [35, 51]. Specifically,
iterative methods are studied to improve the quality of the reconstructed images from low-
dose or incomplete CT data through removing noise and artifacts [15, 17, 41]. Much work
in the literature focused on the development of optimization models for CT reconstruction
problems [12, 14, 52, 57, 61], and fast iterative algorithms were also studied for accelerated
CT reconstruction [40, 42, 56]. In particular, work [60] considered a fast model-based x-ray
CT reconstruction method, and paper [48] investigated the effect on patient radiation dose and
image quality in pediatric body CT for model-based iterative reconstruction. Recently, a CT
reconstruction on a low dimensional manifold was studied in [11] and a total variation (TV)
superiorized conjugate gradient method for CT reconstruction was presented in [62].

Most iterative reconstruction methods are based on the pixel-based piecewise constant
approximation of the continuous projection data acquisition process in an integral equation
formulation. This approximation is consistent with the uniform sampling, and convenient
in its implementation [30, 31]. However, it brings several challenges. The use of piecewise
constant basis functions yields a bottleneck model error which leads to low accuracy in recon-
struction [31]. The use of the pixel grid results in a discrete linear system of a large size, which
requires much computing time to solve. Moreover, with the increase of image resolution and
the number of iterations, the ill-posedness and large computational costs of the CT reconstruc-
tion problem make it difficult to widely apply the iterative reconstruction method in clinical
practice.
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Itis necessary to discretize the corresponding integral equation by an approximation method
with high order accuracy to overcome the model error of tomographic image reconstruction.
High-order approximations of integral equations for emission CT (ECT) reconstruction were
studied in [5, 8, 21, 50]. As introduced in [5, 8], using the unstructured grid yielded a high-
order linear imaging model through solving an integral equation with the grid based accurate
approximation of the underlying solution. In particular, the unstructured grid (e.g., triangu-
lar or tetrahedral grid) has been shown to be a compact representation of tomographic image
[5, 8,32, 33, 47]. In terms of CT, few theoretical studies have been done on CT reconstruction
on the unstructured grid. Buyens et al [6] studied an adaptive triangular mesh reconstruction
method for CT, and Chen et al [9] briefly investigated a regularized CT reconstruction method
on a content-adaptive unstructured grid (CAUG). Furthermore, there was no systematic study
on the CAUG-based regularized CT reconstruction method, including the design of a CAUG
and the development of a high-order approximation for the related integral equation.

The preconditioning strategies have been studied for acceleration of iterative algorithms.
Using the preconditioning strategy may result a numerical solution in less time for a problem
via preconditioning matrices applied for matrix computing [7]. It is the key to choose
proper preconditioning matrices for the preconditioning strategy. Pock and Chambolle [39]
studied simple diagonal preconditioning matrices for first order primal-dual algorithms in
convex optimization. In the field of medical imaging, the expectation—maximization (EM)
preconditioner [8, 23, 26, 27] and its improved version [29, 43] were designed for the develop-
ment of fast ECT reconstruction algorithms. Numerical experiments in the works mentioned
above demonstrated the effectiveness of these preconditioners for ECT reconstruction prob-
lems. However, the preconditioner based on EM may not be suitable for CT reconstruction
when Gaussian model is considered. In general, CT projection data acquisition process can be
characterized as a linear system equation. It has been widely recognized that the simultane-
ous algebraic reconstruction technique (SART) [1, 2, 28] is an effective approach for solving
the equation for CT. For this reason, we introduce a new CT regularization model using the
SART-based weighted matrix and the SART-based preconditioning iterative algorithm for
solving the resulting optimization problem.

In this study, we propose a CAUG-based regularized CT reconstruction method for the
improvement of imaging quality and the reduction of its computational costs. Specifically, we
design a CAUG for the image domain to represent underlying images, and discretize the Radon
integral equation using a collocation method with the CAUG-based piecewise linear basis func-
tions. To overcome the ill-posedness of the resulting linear system, we employ a regularization
defined on the CAUG. We further formulate the regularized CT reconstruction problem as a
convex optimization model, containing a weighted least square norm based fidelity term, a
regularization term and a nonnegative constraint term. We characterize a solution of the result-
ing model as a system of two fixed-point equations through the proximity operators of two
non-differentiable functions in the resulting model. Using the preconditioning matrix from
the SART and the fixed-point characterization, we then develop a SART-type preconditioned
fixed-point proximity algorithm to solve the optimization model. The resulting algorithm inher-
its the advantages of the SART and the fixed-point proximity algorithm. Convergence analysis
is performed for the developed iterative algorithm. Numerical experiments are presented to
show that the proposed method performs better than several existing methods in terms of sup-
pressing noise and reducing computational costs. These methods include the SART with no
regularization (NR) and the quadratic regularization on the CAUG, the traditional TV regular-
ized reconstruction method and the TV superiorized conjugate gradient method on the pixel
grid.
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We organize this paper in seven sections. In section 2, we describe the CT reconstruction
model, including a continuous CT imaging model and its discrete linear system by employing
the CAUG-based piecewise linear basis functions. We review the SART and present an opti-
mization model for solving the resulting linear system in section 3. Section 4 is devoted to
developing a SART-type preconditioned fixed-point iterative algorithm to solve the optimiza-
tion model. We provide in section 5 convergence analysis of the proposed iterative algorithm.
Numerical experiments are presented to compare the proposed method with several existing
methods for CT reconstruction in section 6. In section 7, we conclude the paper.

2. CT modeling

We describe in this section models for CT reconstruction, including the Radon integral equation
and its discrete linear system. We first review the CT integral equation model. We then present
anovel discrete linear system of the integral equation through designing a CAUG for the image
domain.

CT seeks a function representing the attenuation distribution of a phantom from measured
projection data. Mathematically, the CT projection acquisition process can be modeled as
an integral equation [13, 37]. Some notation is necessary to describe the integral equation.
Let T C R be the interval on the detector, © :=[0,27] be the angular rotation range, and
A C R? be the square image domain. The projection data p/ : ¥ x © — R is obtained by calcu-
lating a line integral of the attenuation distribution function f : A — R along a line L, defined
for (v,0) € T x O by

fedx = p'(v,0), M
L(v.0)

where x = (x,y) € A is the spatial position on the domain A, L(v, §) denotes the path of x-ray
corresponding to the lateral position v at projection angle 6. Equation (1) is called the Radon
integral equation [13, 37].

We further consider an integral equation model for solving (1) with a collocation method.
To this end, we use the smoothing technique to revise the delta function §(x cos 6 + ysin 6 — v)
characterizing the straight line L(v, #) in (1) through the convolution of the delta function and
a Gaussian kernel with small standard deviation o, defined by

K=K ®§,

with the Gaussian kernel

2
Ki(v):= exp {—7‘2} s

where ® is the convolution notation, and (x,y) € A. The resulting kernel K is denoted by

_(xcos9+ysin9—v)2}

K(v,0;x,y) =exp { 252

This smoothing technique revises the projection function to be smooth and the range space of
the projection operator is in the continuous function space. Associated with the kernel K, we
then define the integral operator K : C(A) — C(T x ©) by

KHw,0) = /OO /Oof(x,y)K(V,H;x,y)dx dy, (v,0)e Y x 0O,

4



Inverse Problems 38 (2022) 035005 Y Chen et al

(a)

Figure 1. CAUG: (a) original image; (b) resulting CAUG.

where C(Y) denote the space of all continuous functions on Y. As a result, the projection data
acquisition process can be reformulated as the following integral equation model

Kf = p. 2

where p:= p(v, 0) is the projection data. Note that equation (2) is the first-kind Fredholm inte-
gral equation [10], which is often ill-posed. Finding the underlying solution f from equation (2)
requires discretization which projects the solution f into a finite dimensional space. Traditional
methods for solving equation (2) employ the pixel-based piecewise constant basis functions
to represent the underlying solution and the integral operator. This leads to a discrete linear
system for CT. This discretization suffers from the model error and requires more computing
time to solve.

We introduce a CAUG of the image domain for solving equation (2), aiming at overcoming
the above drawbacks of the existing discrete system. First of all, we apply the method described
in [8] which is based on the quadtree scheme [4, 58] and the force equilibrium method [38] to
design a CAUG. Figure 1(b) illustrates the CAUG for the image domain of the given image
shown in figure 1(a). The resulting grid is denoted by G :={A; : / € N,,} with A, as the Ith
grid element, and let

Vi={v, = (x,y):reN,}, with Nj:={1,2,...,d},

be the set of the vertices in G. The use of the CAUG can substantially reduce the number
of spatial samples on the image domain, which can in turn reduce computational costs and
alleviate the ill-posedness of the reconstruction problem [5, 22]. It may also provide an accu-
rate approximation to the underlying solution on the image domain in a finite dimensional
space, for example, if a piecewise linear approximation is employed. To obtain the CAUG-
based piecewise linear representation of the underlying solution, we let {e;: j € N, } with
ej(v,) = 0 forv, € V be piecewise linear basis functions on the CAUG [49], where J ;- denotes
the Kronecker delta function.

We now derive the CAUG-based piecewise linear approximation of the integral equation
through a collocation method. To this end, we denote the set of linear functionals by
{l,; : t € Ny,,i € Ny, }, defined for a function p € C(Y x ©) by

<lt,i, p(V, 9)) ::/ p(V, et)dy, 4 e NNI’ l e NNz,

Wi
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where w; denotes the interval of the ith detector bin, #, denotes the rth projection angle,
N is the number of projection angles and N, is the number of detector bin. Let X,, be an
n-dimensional subspace of C(R?), spanned by the basis functions {e;: j € N, }. Hence, the
collocation method for equation (2) is to find a function f € X,,, given by

=Y xe;, 3)
j=1
such that the following finite dimensional operator equation holds

<lt,i, ’C‘}‘> - <lt,ia p>a te NNI, le NNQ; (4)

where each x; := f(x},y,) is the representation coefficient of the function f associated with the
Jjth basis. We introduce the notation

Ar=[(A)ij:i € Ny,,j € N,1, with (A);j= (I.;, Ke;),

b, :=[(b);:i € Ny,1, with (b);:= (s, p),
and
X=[X1,Xa,...,%,]", )

where xT is the transpose of x. Note that A, is the system matrix at the angle 6;, b, is the
projection data at the same angle, and x is the vector of representation coefficients of f under
the above basis. This notation leads to a compact formula

Ax=b,, t € Ny, (6)
for system (4). To assemble equation (6) for all angles in column wise, we define

A=[A]A},..., Ay 1", and b:=[b{,b},....by 1" @)
We then have the assembled discrete linear system

Ax = b, (8)

for equation (2). Here, b € RY, g:= NN, is the detected projection data related to the rep-
resentation coefficients x € R” through the system matrix A € R?*". For the convenience of
developing iterative algorithm, we can rewrite

A=[As;:1 €Ny jeN,],
with Ay = 0, where for i’ € Ny, there exist a unique ¢ € Ny, and i € Ny, such that
i =@t—1)-Ny+i.

To close this section, we discuss the computation of the entries (A,);; of the CAUG-based
system matrix. The entry (A,);; of A; represents the value of projecting the jth basis onto the
ith detector bin at the angle 6,. It can be calculated by the following formula

6
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X-rays with the
projection angle 8,

(be):

Detector

(a) (b)

Figure 2. Scheme of calculating the CAUG-based system matrix for the parallel-beam
projection. (a) Projecting the jth (j € N,) basis onto the ith (i € Ny, ) detector bin at the
angle 0; (t € Ny, ), resulting the projection (b,);; (b) for a grid element case under this
basis.

@i=[ (] [ eutrrresixase | . ©)

keR;

where R denotes the index set of all grid elements having the common vertex v, v;x(x,y)
is the linear function determined by three vertices of the kth grid element having the ver-
tex v;. In fact, a few detector bins at some angles may not receive x-rays passing through
all vertices of the CAUG. This implies that the sum of (4,);; from j=1 to j=n is zero
for some elements in index sets Ny, and Ny,. Figure 2 illustrates the scheme for calculating
parallel-beam projection on the CAUG for CT. For parallel-beam geometry, projection piece-
wise linear basis function on triangle can be analytically formulated and we do not need to
compute the integration. Compared to parallel-beam case, fan-beam geometry (figure 3) are rel-
atively more complicated. This means that we have to apply numerical quadrature to calculate
the projection of the piecewise linear basis functions.

3. Optimization model based on the SART

We introduce in this section a regularization model for solving the linear system (8) obtained
in the last section. Inspired by the SART for CT reconstruction, we propose to use a weighted
L?-norm for the fidelity term of the model by using the matrix that results from the SART.
This formulation will allow us to develop SART-based preconditioned algorithms later, aiming
at accelerating convergence of the iteration.

We first recall a classical iterative scheme for solving the resulting linear system. Motivated
from the least squares method for solving the linear system (8), we consider the equation

ATAx = A™p.
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X-rays with the
projection angle 6,

Detector (bt )T

Figure 3. Scheme of calculating the CAUG-based system matrix for the fan-beam
projection.

This leads to the classical iteration scheme
1 = xk — gAT(Ax* — b), k e N, (10)

where the parameter 8 >0 and No:={0,1,...}. Implementation of the above itera-
tion requires high computational costs due to computing the matrix multiplication ATA.
Furthermore, the correction AT(Ax* — b) is acquired by the error between the detected projec-
tion b and the reprojection Ax* following & steps, and is added to form the updated coefficient
x**1 directly. The least square solution may converge slowly because of large condition number
of A. The pioneer researchers proposed the SART in later years to accelerate the convergence.

The SART [1, 2, 20, 59] was used to solve equation (8) instead. To describe the SART, we
write (10) in its component form

q
X =xb = BY " Ar((AXH)y —by), jEN,, ke N (11)
i'=1

Associated with scheme (11) we may define two matrices from the system matrix A. To this
end, we let

€, if Ay; =0 forall j € N,,
Ail = "
. Z Ayj, otherwise,

=1

fori’ € N, and

q
A_;,_,j = ZA,-/j, JjEN,,
i'=1
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where Ay | > 0 forall i’ € N, due to the use of the small positive value £, and A, ; > 0 for all
j € N,.. We then define two matrices

1 1
= dia, o, 12
s (Al + Aq,+> (12)

and
Q=0 x*diag(Ay1,..., A4 ).
The SART for solving the CAUG-based linear system (8) can be described by
X =xk — 0 "ATHUAX* —b), k € N,. (13)

In its component form, iteration scheme (13) may be written as

1 (A X ) I) il
k+1 _ k § : i’ .
X] Xj 31 ‘-‘r,] o Ai/j > J N"’

In the implementation described by [1, 2], H(Ax* — b) denotes the weighted error between
the detected projection b and the reprojection Ax* following k steps, and multiplying it by AT
results the correction. With the matrix Q !, the average correction to each component of x* is
calculated and added to yield the updated coefficient x**!. This is good to improve the quality
of the reconstructed images, and to accelerate convergence of the iterative sequence.

With the above discussion, we can consider a weighted norm for the development of the
underlying model solving (8). As mentioned in [20, 59], the SART is rooted from the weighted
L?-norm based optimization problem, given by

1
min{§|Ax—b|f{: xeR"}, (14)

where the weighted norm is denoted by || -||%:=(-,-)y with (-,-)y:=(,H-). Applying
Fermat’s rule to the optimization problem, we have the following equation

ATHAx = ATHb. (15)

Compared to the classical iteration (10) from the least square norm, the matrix H is used to
yield the weighted error between the reprojection and the detected projection, which may lead
to images of high quality. Consequently, we next develop the optimization model for (8) based
on the weighted L?-norm.

Regularization method is an effective way to alleviate the ill-posedness of the linear system
(8). It is also applied to suppress noise of the reconstructed image by the SART. Regular-
ization methods suitable for the pixel-based piecewise constant approximation of the integral
equation cannot be directly used to the resulting linear system due to irregular distribution of the
CAUG. In our previous work [8], inspired by the anisotropic TV [44, 45] we developed a regu-
larization method defined on the CAUG as the following description. For the above piecewise
linear function f on the domain Q:={ Ajeg A\;, we write the restriction of the function f on

A; C Qas f\A, = fl and define

Fix,y) = aix + by + ¢y,
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for (x,y) € Ay, a, by, c € R, [ € N,. Based on thAe definition of the anisotropic TV, the
proposed regularizer R(f) suitable for the function f on {2 can be described as

R(f) = Z(\aﬂ + |bi]) - S,

IS\

where S; is the area of the /th grid element. Work [8] showed that R(f) can be reformulated as
the composition ||B - ||; of the £'-norm and the constructed matrix B with respect to the values
of the underlying solution at all vertices. Here, B is given by

1
B:= E[BT,B; ...,BM", (16)

with its component form

B — Oui-1) CIZ‘ Ow—n-1 CZQ Ouz—2-1) CIZ3 On—13) ,
Ou-y € Ow—n-1y Cp Owpn-1y Ci Oup-n

forl € N,,, where Cf\ :==yp — yi3, Ch ==yi3 — yu1. Cly =y — Yo, Chy :=x13 — xpo, Cpp ==Xy —
X3, Cf3 = xp — x1, 0. is the vector with all components equal to O for a positive integer ¢, and
(x15,¥15), 8 € N, is the coordinate of the sth vertex of the /th grid element on the resulting grid.
By proposition 5.1 in [8], we have the following corollary for the regularizer of f

Corollary 3.1. Let B € R*™" be the matrix given by (16) for the grid G. If the solution Vi of
equation (4) is defined by (3) and the vector x € R" is given by (5), then the regularizer R(f)
of f can be identified as

R(f) = || Bx|;. (17)

‘We now present an optimization model for solving the resulting linear system. Specially, by
(14) we should describe a fidelity term based on the weighted L>-norm. In fact, the coefficient
x given in (5) is a vector consisted of the values of the underlying solution at all vertices
of the CAUG. The regularizer (17) suitable for the CAUG is used to the underlying model
as the regularization term, where we choose ¢ as the £'-norm. We further need to describe a
constraint function for characterizing the nonnegativity of the coefficient x as

0, ifxe R,
ww:{ "

+00, otherwise,

with the nonnegativity constraint set R”, := {x € R" : x > 0}. We thus obtain a CAUG-based
optimization model for solving (8) as the following formula

min{%|Ax—b|%{+u<p(Bx)+1/J(x): X € ]R"}, (18)

where B is the above 2m x n matrix, u is a regularization parameter, ¢ € I'o(R*"), and
1 € To(R™). Note that I'o(R?) denotes the space of all proper lower semi-continuous convex
function mapping from R to R U {+occ} in [3].

10
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4. Preconditioned fixed-point algorithm

We develop a SART-type preconditioned fixed-point proximity algorithm to solve the result-
ing optimization model in this section. We first introduce a fixed-point characterization for a
solution of the optimization model through two proximity operators. We then develop the
iterative algorithm based on the characterization and the preconditioning matrix.

Some basic definitions and notation are necessary to describe the underlying fixed-point
characterization. Let Si denote the set of d x d symmetric positive definite matrices. For
a function ¥ € To(RY), its proximity operator with respect to a matrix J € Si, denoted by

proxy [23], is a mapping from R to itself, defined for a given vector v € R? by
1
proxy ;(v) ;= arg min{i |z —v|?+9@):z e Rd} .

In particular, proxy(v) = proxy,(v) for the vector v € R? when J is the identity matrix 1.
The subdifferential of ¥ € T'y(RY) at a given vector v € R? is the set defined by

(V) :={z € R?: Y(w) = I(V) + (z,w — V), forall w € R},
and the conjugate ¥* of the function ¥ is defined at v € R? by
9*(v) = sup{(z,v) — ¥(z) : z € R}

Furthermore, there are the following relationships based on the above definitions. The subdif-
ferential of ¥ and its proximity operator with respectto J € S‘i have the following relationship

Jz € 99(v) if and only if v = proxy (v + z). (19)

There exists an equivalent relationship between proximity operators of ¢ and ¢*, denoted for
a parameter v > 0 by

Id = prox,y + yprox g o ~1d, (20)
o

where Id is the identity operator on RY. An equivalent relationship of 9 and 99" is given by
z € 09(v) if and only if v € 99"(z), (21)

for v € dom(?)) and z € dom(¢*). For a discussion of these definitions and relations, see, e.g.,
[3,23].

We further need to describe a preconditioning matrix for the development of this char-
acterization. Recalling the SART (13), its iteration is based on the following equation

—14T —14T o b 1 1

Q 'A"HAx=Q A Hb, Q B*dlag<A+,1””’A+,n>’
where Q plays a role of obtaining the average correction to each component of the coeffi-
cients to be updated. Inspired by the SART, the matrix Q can be considered as a precon-
ditioning matrix which is applied for matrix computing, aiming at seeking a solution of the
resulting linear system in less time. Combining the preconditioning matrix with the weighted
matrix, we can develop a SART-type preconditioned iterative algorithm for solving model (18)
as follows.
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We now introduce the description of the fixed-point equation for a solution of the result-
ing optimization model. To yield this equation, we first recall Fermat’s rule as the following
theorem [3]. Let ]—o0, +00] =R |J{+o0} and H be a real Hilbert space.

Theorem 4.1. Let g : H — ] —00, +<] be proper. Then
Argming = {x € H:0 € dg}.

With the above preconditioning matrix Q, we then characterize a solution of model (18) as
the following theorem using an approach similar to [ 8, 23, 24].

Theorem 4.2. Let o € To(R*™), ¢ € Ty(R"), H € S, A € R?", B € R " b € RY, and
i, A > 0. Ifx € R" is a solution of model (18), then for Q € S, there exists a vectory € R>"
such that

X = proxy,o(x — A\Q 'ATHAx — Q7'BTy + \Q 'ATHD), (22)
Y = ProXoyupy- (¥ + Bx). (23)

Conversely, if there exist Q € S, x € R" and y € R*" satisfying (22) and (23), then X is a
solution of model (18).

Proof. Suppose that x is a solution of model (18), by theorem 4.1 and the chain rule of the
subdifferential we have the following inclusion relation

0 € AATHAX — AATHb + BT O(\j1p)(Bx) + d(A))(x), (24)
for all A > 0. For (24), there existy € d(Aup)(Bx) and d € O(A\)(x) such that
0=MA"HAXx - )M'Hb+B'y +d. (25)

Moreover, using the characterization (21) toy € d(Aup)(Bx), we know that Bx € O(Aup)*(y),
which yields (23) by (19) with J = I,,. With (19) and (25), we find that for Q € S",

Q0 'd € d(\)(x) ifand only if x = prox,, o(x + Q~'d),

which results (22).
Conversely, if there exist Q € S| such that (x,y) € R+ satisfies (22) and (23), then all
the arguments discussed above are reversible. (]

Furthermore, the above coupled equations can be reformulated as a compact representation
for developing an iterative algorithm. It is necessary to define an operator for integrating the
two proximity operators in the above equations. We may define an operator 7 : R" x R?" —
R” x R¥" at a vector w:= (X, y) € R” x R>" as

T (W) == (ProX,0(X), ProXug)* (¥))-
We thus obtain the following fixed-point equation

w=T(Gw+ O), (26)
with

G: 27)

B Iy, 0
12
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Algorithm 1. SART-PFPA.

Input: the initial vector (x°,y°) € R” x R?",
Fork=0,1,2,...do

ZF — x* — \Q 'ATHAx' — b);

X prox,y.o(z" — Q7' BTyh);

R oxk D _ xk

YA < prox gy (y% + B,
Until ‘convergence’

where the vector C is independent of w. Compared to the compact formula of the fixed-point
characterization in [8, 25, 29, 55], equation (26) is more simple in form and more convenient
in convergence analysis of the underlying algorithm. Obviously, equation (26) can lead to the
following explicit iteration

wt = T(GWr + ©), k e N.

However, as indicated in [24, 34] the above explicit iteration may not be convergent due to
T = proxy,p and ||G||p > 1, where

B(w) := Ap(x) + (M) (y), D = diag(Q, Lom)- (28)

We then investigate an implicit iterative scheme based on the fixed-point characterization,
and develop an iterative algorithm for solving model (18). In particular, the resulting scheme
can be implemented explicitly through a splitting strategy of the involved matrix. To this end,
we employ a splitting strategy for the matrix G, given by

B [0 0 [, —X0'ATHA —Q7'BT
G=Gy+G1,Gy = |:ZB 0], G = [ _B Dy .
(29)
This means that the fixed-point equation (26) is equivalent to
w = T(Gow + Giw + C). (30)

Hence, an implicit iterative scheme for finding a fixed point of the operator 7 can be developed
as the following form

This leads to the SART-type preconditioned fixed-point proximity algorithm (SART-PFPA),
described by algorithm 1.

The resulting algorithm involves a preconditioning strategy due to the use of the pre-
conditioning matrix. It has the advantages of the fixed-point proximity algorithm and the
SART through the weighted matrix and the preconditioning strategy. It overcomes the
difficulty arising from two non-differentiable terms in model (18). Furthermore, it can be used
to the reconstruction problem on the pixel grid when we consider the pixel-based piecewise
constant approximation of the integral equation (2) and choose B as the first-order difference
matrix. In order to implement the resulting algorithm, as mentioned in [23, 34] we have that
forx € R”,

13
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(proxm,Q(x))j = max{x;,0}, jEN,,
and fory € R?>",

T
ProXy(¥) = [ProX,((¥1)s ProXyu)(¥2)s - - - » ProXy).| (Ya,)]

with

prox|.(y,) = max{[y,| — Au, 0} sign(y,), h € Nay,
where | - | is the absolute value function. Hence, we set v = 1 in (20), and obtain that for
ye< RZm,

(Proxougy (1)), = ¥4 — max{|y,| — A, 0} sign(y,), i € Na.

5. Convergence analysis

We provide in this section convergence analysis of the resulting iterative algorithm.

We first recall a result about a firmly nonexpansive operator. Denote a fixed-point set of the
operator F : H — H by Fix F, where H is a nonempty closed convex subset of R?. Motivated
by the definition of the firmly nonexpansive operator, the operator F is firmly nonexpansive
with respect to a weighted matrix U € Si [23], which means that for all v;, v, € R?,

[F(vi) — FW)[[j < (F(vi) — F(v2), vi — Va)u. (32)

From Krasnosel’skii—Mann algorithm described in [3], there exists the following result for the
firmly nonexpansive operator.

Lemma 5.1. Let D be a nonempty closed convex subset of R, F:D — D be a firmly
nonexpansive operator with respect to U € S’i such that Fix F # @, let ug € D, and set
U1 = Fuy (Vk € Ny). Then {uy : k € No} converges to a point in Fix F.

Proof. Following the proof of corollary 5.16 in [3], it can be verified that (u)ren, converges
to a fixed point of F. O

Before using lemma 5.1, we should define an operator for transforming the implicit iterative
scheme to an explicit iteration. Suppose that for any u € R” x R>", there exists a unique w €
R” x R such that

w = T(Gow + Giu + C). (33)
We define an operator
F:R"x R 5 R" x R :u— w, (u,w) satisfies (33). (34)

This means that the implicit iterative scheme (31) can be characterized as an explicit iteration
wit! = Fwk, Hence, by lemma 5.1 the resulting iterative scheme is convergent if we can
prove that the operator F is firmly nonexpansive with respect to a symmetric positive definite
matrix.

From equation (32), we need to describe a lemma about a symmetric positive definite matrix
before giving the proof of firmly nonexpansibility of the operator F. Let W := DG for the

14
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above matrices D in (28) and G in (29), and J ~1/2 pe the square root inverse of the matrix
Jest.

Lemma 5.2. If for A € R?”*", B € R*™" Q€ Si and H € S‘i, two parameters A and (3
satisfy

0<A<fand HB(Q — MATHA)

<1, (35)
2

then W € S’fzm.
Proof. By the definition of two matrices D and G, we have that

[0-)A"HA BT
W_{ MiHA B

We first need to prove that Q — MATHA is an n x n symmetric positive definite matrix. For the
multiplication HA in W, we find that

A AL A
Ay Ay Ay

HA = | : : : :
Aq1. Agj Agn
Agr Agr T Ag.

We further analyze each row of Q — M HA as the following formula

q

q
Ail Ai/ Ai/ Ai’n
5A+,j—)\ (214]/;++ZAJ,+> :BA+,j—>\A+,j

i=1 =1
for j € N,. Clearly, Q — MTHA is a main diagonally dominant matrix due to A\ < /. This

means that (Q — MATHA) € S.
We then give the proof of W € S’_’fzm as follows. To this end, we let

C=B(Q — MTHA) 2 E:—

(O — ) MTHA 2 0
C(Q — MTHAY I, |’

It can be verified that
EWE™ = diag(l,, Ir,, — CC™).

This implies that W and diag(Z,,, I>,, — E‘Z’T) are congruent. Therefore, this leads to the result
by the second inequality in (35). (]

We now introduce a lemma that the operator F is firmly nonexpansive with respect to the
matrix W. Recalling the operator 7, we find that 7 = proxy p is firmly nonexpansive with
respect to D by [24]. This will be used to the proof of the following lemma.

15
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Lemma 5.3. Ifthe operator F is defined by (34), then for the matrix W € S'_’ﬁ'zm, F is firmly
nonexpansive with respect to W.

Proof. Forany w; :=(x;,y,),u; € R" x R?" (i = 1,2),note that w; = Fu;, which implies that
w; = T(Gow; + Giu; + C).

Since the operator 7 is firmly nonexpansive with respect to D, by equation (32) we have that
Wi — wa|7, < (Wi — W2, Go(W; — W2) + Gi(u; — w))p.

Moreover, by the splitting strategy of the matrix G, we substitute Go = G — G into the above
inequality and obtain that

Wi — wal7, <(Wi — w2, G(W; — W2))p — (Wi — Wa, Gi(W; — W2))p
+ (Wi — w2, Gi(u; —w))p.
Using the matrix G in (27), we further find that
(Wi — w2, G (W) — W2))p

< (Wi — w2, Gi(u; — w))p — A(x1 — X2)"ATHA(x| — o).

Since W = DG, € S’fzm and ATHA is a symmetric positive semi-definite matrix, we obtain
that

lwy — W2||%4/ < (W) — wo,uy — o).

Hence, this leads to the result via equation (32). U

Following the above lemmas, we thus obtain the following convergence theorem for the
resulting iterative algorithm.

Theorem 5.4. Suppose that {w* = (x,y*) : k € Ny} is the iterative sequence yielded by the
SART-PFPA, the operator F is defined by equation (34) and its fixed-point set is nonempty. If
equation (35) holds, then the sequence {w*} converges to a fixed point of F and {x*} converges
to a solution of model (18).

Proof. Since F is defined by (34), using lemmas 5.2 and 5.3 we have that F is firmly nonex-
pansive with respect to W. Therefore, by lemma 5.1, it can be verified that the sequence {w*}
converges to a fixed point of F. Moreover, {x*} converges to a solution of model (18) due to
the fixed-point equation and the definition of F. (]

6. Numerical experiments

We focus on numerical experiments of simulating CT reconstruction, and demonstrate the fea-
sibility of the developed methods. Specially, we first describe the related iterative methods
used in this experiment, including reconstruction methods on the pixel grid and on the CAUG.
Several metrics are applied to quantitatively evaluate images reconstructed by different meth-
ods. With simulating parallel-beam and fan-beam scan, we further perform the comparison
among different iterative methods through reconstruction from the resulting projection data.
The involved reconstruction methods include the developed methods, the SART with NR,
the quadratic regularized reconstruction method (QR), the traditional discrete TV regularized
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reconstruction method (DTV) and the TV superiorized conjugate gradient method on the pixel
grid. In these methods, the involved optimization models have model (18) and the pixel-based
model, where the latter means that the related matrices and vectors in model (18) are based on
piecewise constant basis function on the pixel grid. These methods are listed as follows:

e SCGCD: apply the superiorized conjugate gradient conjugate descent given by algorithms
9 and 10 in [62] to solve the least square problem on the pixel grid, where the per-
turbed step of the SCGCD arises from the superiorized process in figure 1 of [18] and
an approximation formula (i.e., (5) in [62]) of the discrete anisotropic TV;

DTV: apply the developed SART-PFPA to solve the pixel-based model (18), where the
regularization matrix arises from the Kronecker product of the 512 x 512 identity matrix
and the 512 x 512 first-order difference matrix;

NR: use the first two step of the developed SART-PFPA to solve model (18) without the
regularization term;

QR: use the gradient descent algorithm to solve the model yielded by replacing the
regularization term in model (18) with the quadratic regularization;

RUG: the regularized reconstruction method on the CAUG, applying the developed SART-
PFPA to solve model (18).

The metrics using to quantitatively assess the reconstructed images have the root mean

square error (RMSE), the structural similarity index (SSIM) [54] and the peak signal to noise
ratio (PSNR). Specially, with mean square error

N N
1 . ..
MSE(X,Z)::]WE > X, j) — 20, ),
=1 j=1

RMSE is defined by

RMSE(X, Z) := /MSE(X, Z),

and PSNR is denoted by

max (X)?

PSNR(X, 2):= 10logi0 yrep v 7

where X is the reference image with size N x N, Z is the reconstructed image, and max(X) is
the maximum value of X. Furthermore, SSIM is the mean of local similarity indices [52, 54],
given by

M
1 .
SSIM(X, Z) := m E ssim(x, 7;),
=1

where x; and z; are the image contents at the jth local window, and M is the number of local
windows of the image. The local similarity index is defined by

(2/~L.X,U/z +¢1)20oy; +2)
(12 + p2 +c)o2 + o2+ c2)’

ssim(x, z) :=

where the averages/variances of x and z are denoted by 4i,/0? and f1,/0?, respectively; let
¢; = 0.01% and ¢, = 0.03? via the Matlab function.
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Source

Detector

(a) (b)

Figure 4. Parallel-beam CT projection. (a) A simple parallel-beam geometry;
(b) Shepp—Logan phantom; (c) the simulated projection data.

Figure 5. Projection data without noise and with noise in the upper and lower rows,
respectively, and the corresponding CAUGs. (a) Projection data by parallel-beam
scan of Shepp—Logan phantom; (b) the corresponding initial images; (c) CAUGs for
Shepp—Logan phantom (with 25208 and 25 968 vertices in the upper and lower rows,
respectively).

We first simulate parallel-beam projection of Shepp—Logan phantom with size 512 x 512
(figure 4). Here, the simulated projection data are obtained via the matrix—vector multiplica-
tion on the pixel grid through MATLAB 2016a, where the scatter and other image degradation
factors of CT are not considered in the simulation. To obtain accurate projection data, we sim-
ulate parallel-beam scan of Shepp—Logan phantom with size 2048 x 2048, and subsequently
transform the resulting projection to the projection data with 729 detector bins and 120 angles
(figure 4(c)) under size 512 x 512. The system matrix is calculated by Siddon’s algorithm [46]
due to the use of piecewise constant basis functions on the pixel grid. Moreover, we add Gaus-
sian noise (mean = 0) with variance = 10 to the projection data, leading to projection data
with noise (figure 5(a)).
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Table 1. The iteration numbers and the computing time (second) of meeting the tolerance
level (Tol) or the stopping criteria by different methods for parallel-beam projection with

noise free.
Iteration number Computing time

Tol SCGCD DTV RUG SCGCD DTV RUG
102 11 29 25 5 7 1
1073 34 163 106 16 38 5
10-* — 728 579 2847 163 24
1073 — 3635 2409 2847 885 100
107° — — — 2847 1480 248

Table 2. Evaluation of the images yielded by the above iterative methods for parallel-

beam case.
SSIM RMSE
Tol SCGCD DTV RUG SCGCD DTV RUG
1072 0.5209 0.7317 0.8777 0.0702 0.1116 0.0681
1073 0.4953 0.9150 0.9609 0.0690 0.0599 0.0435
1074 0.9258 0.9661 0.9796 0.0562 0.0502 0.0385
1073 0.9258 0.9699 0.9805 0.0562 0.0532 0.0393
107°° 0.9258 0.9694 0.9804 0.0562 0.0539 0.0395

We further generate the related CAUGS for the following reconstruction experiments. We
reconstruct the initial images (figure 5(b)) from projection data with different noise levels by
the DTV (with a few iterations 30 steps and 50 steps for projection data without noise and with
noise, respectively) through C++. Then the corresponding CAUGs (figure 5(c)) are yielded
by the method described in [8] through MATLAB 2016a. Figure 5(c) shows that using CAUG
reduces the number of spatial samples on the image domain by at least eight times compared
to the use of the pixel grid.

We now carry on reconstruction experiments from parallel-beam projection data through
C++. Specially, we compare the developed method to the SCGCD and the DTV in terms
of computational costs and image quality (tables 1 and 2, figure 6). Here, we obtain the
CAUG-based system matrix by calculating (9) directly. We use the noise-free projection data
of Shepp—Logan phantom and set the zero initial value for these methods. Iterations stop
when the relative error of the iterative sequence given by ||x*! — x¥||,/||x¥*!]|, is less than
the setting tolerance, and the corresponding reconstructed images are evaluated by the overall
SSIM and the RMSE. The phenomenon that a method cannot meet the tolerance within the
given stopping criteria (the number of iteration is 6000) is marked by —. Parameters used in
these methods are tuned to achieve the best overall SSIM in search intervals. In particular,
with choosing parameters and the stopping criteria, the relative error for the SCGCD is less
than 7 x 10~* within 50 iterations, and subsequently approaches 10~* slowly.

In passing, the RUG is used to compare with the DTV and the QR for reconstruction from
parallel-beam projection data via C++-. Here, we set the initial values of reconstructions on the
CAUG by the above initial images, and choose 0 as the initial value for the DTV. We further
may set A/ < 0.75with 0.01 < 8 < 1,and 0.005 < A\ < 0.25 such that these methods yield
images (figure 7) with the best normalized mean square error. Iterations stop when the relative
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(a) (b) ()

Figure 6. (a) Reconstructed images by the SCGCD; (b) reconstructed images by the
DTYV; (c) reconstructed images by the RUG.

D D
(b) (c) (d)

Figure 7. The reconstructed images from parallel-beam projection data. (a) Projection
data without noise and with noise in the upper and lower rows, respectively; (b) recon-
structions on the CAUG by the QR; (c) reconstructions on the pixel grid by the DTV;
(d) reconstructions on the CAUG by the RUG.

error of the iterative sequence is less than 10~*. For image visualization, the discrete forms of
the reconstructed functions by the methods on the CAUG are their samplings on the pixel grid
with size 512 x 512. We then assess the reconstructed images from projection data with noise
via the above metrics (table 3), where region of interest (ROI) is indicated in figure 8.

We now consider the CAUG-based reconstruction from fan-beam projection data for show-
ing the advantage of the regularization defined on the CAUG, compared to methods with NR
and the quadratic regularization. Here, a simulated CT image with size 512 x 512 is used to
simulate fan-beam projection by equal-spaced fan-beam geometry (figure 9(a)), where the dis-
tance between the source and the detector is 1040 mm, and the distance between the source
and the isocentre is 570 mm [36]. To cover the scanned object, the projection data is col-
lected by the sampling of 120 angles and 860 detector bins with bin width of 2 mm. We
then apply numerical quadrature to calculate (9) because of piecewise linear basis functions
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Table 3. Evaluation of the reconstructed images by three iterative methods from parallel-
beam projection data with noise.

Shepp—Logan ROI
Metics QR DTV RUG QR DTV RUG
RMSE 0.0566 0.0530 0.0433 0.1150 0.1367 0.0859
SSIM 0.8986 0.9558 0.9655 0.8368 0.8724 0.9381
PSNR 24.95 25.52 27.29 18.78 17.28 21.32

(a)

Figure 8. (a) ROI of size 85 x 45 indicated in Shepp—Logan phantom; (b) ROI of size
130 x 130 indicated in the simulated CT image.

defined on the CAUG, leading to the CAUG-based system matrix. This results the corre-
sponding projection data by the matrix—vector multiplication on the CAUG through MATLAB
2016a, and the projection data with noise is obtained by adding Gaussian noise (mean = 0 and
variance = 10). In this experiment, we compare the RUG to the NR and the QR, where the
initial value is 0. Here, we may set A = 0.056, 5 = 0.06, and 0.0001 < Ap < 0.007 such that
these methods can yield images (figure 10) with the best overall SSIM. Iterations stop when
the relative error of the iterative sequence is less than 1075, We then assess the reconstructed
images from projection data with noise via the above metrics (table 4), where ROl is indicated
in figure 8.

We then conduct numerical experiment for the comparison of reconstructions on the dif-
ferent image domains in terms of computational costs and image quality. For reconstruction
on the pixel grid, we use the available CT data sets [16] to yield the reconstructed images by
the pixel-based iterative methods. We obtain the CAUG-based system matrix and the simu-
lated projections using the above fan-beam scan of the reference image with size 328 x 328
(figure 11(a)) due to the lack of the related real physics parameters. In this experiment, with the
zero initial value, the involved methods have the pixel-based NR (pNR) and the DTV on the
pixel grid, the NR and the RUG on the CAUG. Moreover, parameters used in these methods are
tuned to achieve the best SSIM for ROI in search intervals, where the pNR and the NR have the
same step length. For the acceleration of algorithms, GPU implementation for reconstruction
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1040 mm

ST0mm

Detector
Source

(a) (b) (d)

Figure 9. Fan-beam projection data. (a) A simple fan-beam geometry; (b) a simulated
CT image; (c) the generated CAUG with 50 805 vertices via this image; (d) the simulated
projection data.

(a) (b) (c)

Figure 10. The reconstructed images from fan-beam projection data. (a) projection data
without noise and with noise in the upper and lower rows, respectively; (b) recon-
structions on the CAUG by the NR; (C) reconstructions on the CAUG by the QR;
(d) reconstructions on the CAUG by the RUG.

on unstructured grid has been studied in [33], and in this experiment the C++ OpenMP paral-
lel is used to accelerate these reconstruction methods (table 5). The above metrics are applied
to access the reconstructed images (figure 12) by these iterative methods (table 6).

The above experiment results demonstrate the superiority of the developed RUG over sev-
eral existing methods through evaluation of the computing time and three metrics. In particular,
tables 1 and 5 show that using the CAUG can significantly reduce the computing time of recon-
struction due to the sparse representation of images, compared to reconstruction on the pixel
grid. For Shepp—Logan phantom with piecewise smoothness, the use of the CAUG is good
to improve the quality of the reconstructed images via table 2. From tables 3, 4 and 6, we
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Table 4. Evaluation of the reconstructed images by three iterative methods from fan-
beam projection data with noise.

Simulated CT image ROI
Metrics NR QR RUG NR QR RUG
RMSE 0.0776 0.0750 0.0239 0.1095 0.01043 0.0263
SSIM 0.6316 0.6358 0.9167 0.3279 0.3378 0.8571
PSNR 22.21 22.50 3242 19.21 19.64 31.61

Figure 11. (a) A CT image with size 328 x 328 for a walnut, where ROI of size 70 x 30
indicated in this image; (b) the generated CAUG with 31043 vertices; (c) the simulated
projection data.

Table 5. The computing time (second) of reconstructions on the different image domains
for the walnut image, where the following pNR is the pixel-based NR.

Pixel grid CAUG
Parallel pNR DTV NR RUG
Without omp parallel 63 117 18 20
With omp parallel 24 39 6 7

Table 6. Evaluation of the reconstructed images by different methods for the walnut
image.

Walnut image ROI

Metrics pNR NR DTV RUG pNR NR DTV RUG

RMSE 0.1412 0.1095 0.1045 0.1089 0.1616 0.0673 0.0710 0.0630
SSIM 0.2414 0.3516 0.4392 0.3645 0.4109 0.7786 0.7710 0.8027
PSNR 17.00 19.21 19.62 19.26 15.83 23.44 22.98 24.01

see the developed regularization defined on the CAUG is better than NR and the quadratic
regularization on the CAUG.
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A K

(c) (d)

Figure 12. The reconstructed images from projection data of a walnut. (a) Reconstruc-
tions on the pixel grid by the pixel-based NR; (b) reconstructions on the CAUG by the
NR; (c) reconstructions on the pixel grid by the DTV; (d) reconstructions on the CAUG
by the RUG.

7. Conclusions

We presented in this paper a CAUG-based regularized CT reconstruction method to improve
the quality of the reconstructed images and to decrease the computing time of the reconstruction
process. Specially, to reduce the model error of conventional CT reconstruction, we introduced
a new linear system equation for CT by the CAUG-based piecewise linear approximation of
the Radon integral equation model. In order to seek a better solution of the resulting equation,
we developed an optimization problem through the SART and a regularization suitable
for the CAUG, and proposed a SART-type preconditioned fixed-point proximity algorithm to
solve the optimization problem. Numerical experiments show that the developed methods have
advantages in reduction of computational costs compared to reconstruction on pixel-based grid
and noise suppression of reconstruction on the unstructured grid.
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