
Biofabrication 14 (2022) 015011 https://doi.org/10.1088/1758-5090/ac3b92

Biofabrication

RECEIVED

3 June 2021

REVISED

14 November 2021

ACCEPTED FOR PUBLICATION

19 November 2021

PUBLISHED

3 December 2021

PAPER

Compensating the cell-induced light scattering effect
in light-based bioprinting using deep learning
Jiaao Guan1, Shangting You2, Yi Xiang2, Jacob Schimelman2, Jeffrey Alido2, Xinyue Ma3, Min Tang2

and Shaochen Chen2,∗

1 Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093,
United States of America

2 Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
3 Division of Biological Science, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: chen168@eng.ucsd.edu

Keywords: 3D bioprinting, cell printing, digital light processing, machine learning, deep learning, neural network, genetic algorithm

Abstract
Digital light processing (DLP)-based three-dimensional (3D) printing technology has the
advantages of speed and precision comparing with other 3D printing technologies like
extrusion-based 3D printing. Therefore, it is a promising biomaterial fabrication technique for
tissue engineering and regenerative medicine. When printing cell-laden biomaterials, one challenge
of DLP-based bioprinting is the light scattering effect of the cells in the bioink, and therefore
induce unpredictable effects on the photopolymerization process. In consequence, the DLP-based
bioprinting requires extra trial-and-error efforts for parameters optimization for each specific
printable structure to compensate the scattering effects induced by cells, which is often difficult
and time-consuming for a machine operator. Such trial-and-error style optimization for each
different structure is also very wasteful for those expensive biomaterials and cell lines. Here, we use
machine learning to learn from a few trial sample printings and automatically provide printer the
optimal parameters to compensate the cell-induced scattering effects. We employ a deep learning
method with a learning-based data augmentation which only requires a small amount of training
data. After learning from the data, the algorithm can automatically generate the printer parameters
to compensate the scattering effects. Our method shows strong improvement in the intra-layer
printing resolution for bioprinting, which can be further extended to solve the light scattering
problems in multilayer 3D bioprinting processes.

1. Introduction

Three-dimensional (3D) bioprinting is one of the
most important tools for tissue engineering, drug
development, and regenerative medicine, due to its
excellent ability to build 3D biomimetic tissue con-
structs and promising potential for printing patient-
specific 3D tissues or organs [1–4]. There have been
many different bioprinting systems like extrusion-
based, inkjet-based, and light-based [5–8]. Because
light can be precisely manipulated to induce mater-
ial polymerization and solidification in micro- and
even nano-scale [9–11], light-based systems have
been the most promising method for high-resolution
biofabrication. Among the different 3D printing

methods, the digital light processing (DLP) 3D print-
ing method, which uses a digital micromirror device
(DMD) to control the light pattern and photopoly-
merize the entire layer of the exposed region in the
bioink, is getting more popular thanks to its fine
resolution (a few micrometers) and high printing
speed (a few seconds to a few minutes printing time)
[7, 8, 12–15].

For 3Dbioprinting, the printing solution (bioink)
typically consists of a hydrogel prepolymer biomater-
ial, a photo-initiator, and cells. The cells in the bioink
will induce a strong scattering effect of the incident
light during the photopolymerization process, which
may disturb the light pattern and thus result in a
undesired print [16, 17]. Such scattering arises from
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refractive indexmismatch between the cytoplasm and
the external hydrogel environment [18, 19], from
the Mie scattering caused by the nucleus and organ-
elle, and from the Rayleigh scattering caused by the
macro-molecule [20]. The scattering effect will scat-
ter light from the target location, causing reduced
light exposure at target location while adding expos-
ure to the surroundings. Therefore, the undesired sur-
rounding locationmay be polymerized, and some tar-
get locationmay fail to polymerize due to the reduced
light exposure (figure 3(a)).

There have been a few methods on improving the
3D printing fidelity to mitigate the scattering effect
of the turbid bioink. Enhancing the material absorp-
tion by adding light absorbing species (e.g. food dye)
is the most common practice to mitigate the scatter-
ing effects [21, 22]. In more light-absorbing materi-
als, light, including the scattered photons, will travel
a shorter distance. However, the improvement on
fabrication resolution is limited, and it also leads to
a slower printing speed. A prolonged printing time
can significantly reduce the cell viability. You et al
introduced a flashing photopolymerization technique
to avoid the scattering effect caused by the hydro-
gel polymer, however, the scattering caused by cells
cannot be resolved by this method [17]. Recently,
machine learning algorithms were used to improve
3D printing fidelity by compensating the scattering
effect, which shows a promising approach to address
this cell-induced scattering problem [16].

The machine learning algorithms and espe-
cially the deep learning algorithms, branching from
machine learning based on the use of deep neural net-
work (NN), have been demonstrated for applications
in many different fields [23, 24]. Machine learning in
general is a computer algorithm that learns patterns
or rules from the given data or from interacting with
a responsive environment without any prior know-
ledge. The deep learning algorithm uses various NN
models to more effectively extract and store informa-
tion. Researchers have been applying machine learn-
ing algorithms to improve the dimensional accuracy
in traditional 3D printing [25–28]. Machine learning
has also been applied for 3D printing in-situ monit-
oring and correction [29, 30]. In our previous work,
NN-based deep learning method was introduced to
learn the shape transformation between output struc-
ture and input design when using light scattering
material for printing. Three hundred trial printings
were printed on the actual 3D printer using the light
scattering material, and the microscopic images of
the printed structures togetherwith their correspond-
ing input digital masks were used to train the NN.
The structure images were cropped and resized to
match the location and resolution of the input masks.
After training, to compensate the scattering effect, the
NN was able to generate a digital mask that differs
from the original designed pattern. Compare to the
conventional method of using a mask that is identical

to the designed pattern, using the NN generatedmask
helps the printer to print the pattern with higher
fidelity [16].

While the previous work was applied on a pho-
topolymer material mixed with glass microbeads
mimicking a generic class of scattering payload in
the printing materials, in this paper, we apply the
deep learning method to cell-loaded bioprinting and
show the capability of improving bioprinting qual-
ity. We 3D print different structures using various
predesigned digital masks, take microscopic images
of the structures, and use the mask-structure image
pairs as our data set to train the NNs. The trained
algorithm can generate a deformed mask for any
given target structure to compensate the scattering
effect of the cell-loaded bioink. Furthermore, we fur-
ther improve the previous deep learningmethod with
an additional learning step, which learns parameters
from a 3D printer simulator. This simulator serves as
a data augmentation tool, which allows us to greatly
reduce the required training samples by tenfolds. We
show that using only 32 trial printings, which got aug-
mented to 4000 data pairs, is sufficient to train our
NN. This reduction of training data requirement is
very significant in bioprinting due to the high cost of
biomaterials and bioreagent (such as growth factor),
limited supply of cells (such as stem cells and primary
cells), and the long cell culture time (weeks of culture
time).

After we compared our optimized prints guided
by machine learning with the conventional printing
result, we can see that our deep learning method can
indeed improve the printing fidelity for the highly
scattering cell-loaded material.

2. Methods

2.1. 3D printing method
Our samples are printedwith a customDLP-based 3D
printer (figure 1). A 385 nm wavelength light source
first projects the light onto a DMD chip, which con-
tains an array of 2560 by 1600micro-mirrors. The on-
off state of each individual micro-mirror is controlled
by flipping the mirror angle, and a pattern will then
appear on the micro mirror array. A grayscale pattern
can be displayed by controlling the duty ration of the
flipping of the mirrors. The patterned light reflected
from the DMD is guided by a series of lenses and pro-
jects onto the holder with the prepolymer solution.
Polymerization occurs at the exposed region, and a
solid thin layer of the structure forms. The motorized
stage then lifts the solidified structure, normally by
tens or hundreds of microns, and leaves space for the
solution to refill and then start the next layer of print-
ing. The process is repeated for all the cross sections
of an object model in order to print a 3D object. Our
study is focused on the printing process of an indi-
vidual layer.
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Figure 1. Schematic of the DLP-based 3D bioprinting setup.

A computer software controls the light expos-
ure on the target region. The software controls the
light source power, the exposure duration, the DMD
mirror array pattern, and local light exposure dose
on each micro mirror. A digital mask with grayscale
pixel values is used to represent the DMD pattern
and the local exposure dose. In this study, the light
source power and the exposure duration are set to
be constant. We are only controlling a square region
in the center of the DMD array, which is repres-
ented by a 512-by-512-pixel mask. The rest of the
DMD array is set to a fixed state that is designed
to localize the center region. In this setup, our 3D
printing system can be abstracted as a nonlinear
time-invariant system, where the input of the sys-
tem is a 512 × 512 grayscale image representing the
digital mask, and the output is a 512 × 512 bin-
ary image where 0 and 1 represent void and solid
region, respectively (figure 3(a)). The size is chosen
as multiples of 8 (a byte) for efficient CPU and
GPU processing, and it is also chosen to not exceed
our 8 GB GPU memory during the NN training
process.

Our prepolymer printing solution is com-
posed of 5% (v/v) gelatin methacryloyl (GelMA) in
phosphate-buffered saline solution, 1% (w/v) lithium
phenyl-2,4,6-trimethylbenzoylphosphinate as the
photoinitiator, and 10 million ml−1 C2C12 mouse

myoblast cells as the scattering load. The source of
our C2C12 cell line was purchased from American
Type Culture Collection.

The 3D printed structures are imaged with
a fluorescent microscope. Due to the transparent
nature of the GelMA polymer, it is hard to detect
the printed structures’ contour under a bright field
microscope. Hence, we apply fluorescent staining
to the material in order to obtain high quality
images distinguishing the printed and unprinted part.
We obtained the fluorescein (FAM) NHS ester, 6-
isomer from Lumiprobe (MD, USA). The FAM-
labeled GelMA was synthesized in accordance to the
manufacturer’s general NHS ester conjugation pro-
tocol. We always wash away the residual solution after
printing to avoid the false positive detection of the
fluorescent signal in the residual solution. Thanks
to the FAM label, the brightness of the fluorescence
can directly translate to the density of the structure
being polymerized. The fluorescent structure image
is cropped, rotated, and resized to match the size and
location of the input mask. We use the intensity on
the fluorescent image as a measure of the polymeriz-
ation completeness, and we take a threshold on the
fluorescent image to obtain a binary image repres-
enting whether each part of the structure is prop-
erly polymerized (true, white) or not (false, black)
(figure 3(a)).
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Figure 2. Data flow and schematic of the learning process. (a) Thirty-two sample masks are used to print 32 single-layer trial
prints for training the algorithm. (b) The trial prints calibrate the printer simulator, and the calibrated simulator generates
thousands of new training data. (c) The printed samples and the simulator generated samples are used to train the neural
network, the trained network calculates the appropriate masks that compensate the cell scattering effect, and the final print
quality is tested with some predefined target designs.

The goal of our method is to find an optimal
design mask for any printable structure, which rep-
resent the light exposure dose on every pixel loca-
tion with a grayscale value, that help compensate the
scattering effect of the cell-loadedmaterial during 3D
printing. Our machine learning algorithm is com-
posed of two learning steps, the simulator calibra-
tion step for generating augmentation data, and the
NN training step to generate desired grayscale masks
(figure 2). The overall workflow of our algorithm is
to first acquire image data of real 3D printed struc-
tures with a variety of sample masks. Then we use
these trial data and apply generic algorithm to learn
the parameters of a mathematical simulator to sim-
ulate the 3D printer with scattering effects from the
cell loading. With the calibrated simulator, we gen-
erate thousands of simulated data and train a spe-
cially designed deep NN to learn the optimal mask
choice for any desired target structure. For simpli-
city, all our experiments were done with a single layer
of printing instead of multilayer 3D structures. It is
worth noting that ourmethod can easily extend to 3D
cases by upgrading the simulator and NN design, and
the overall learning process remains the same. The
design region is fixed to 512 × 512 pixels in terms of
the mask size with 2.96 µm per pixel, which is about
1.5× 1.5 mm2 in physical size of the printing region.

2.2. Trial data acquisition
The first stage of our algorithm is to acquire real 3D
printed structures (figure 2(a)). The goal of this stage

is to collect data for analyzing the inner-layer scatter-
ing effects of cell loading. We first generate 32 pre-
designed masks as demonstrated in figure 3(a) with
MATLAB code. These sample masks have three dif-
ferent types of randomized feature shapes, includ-
ing random grayscale valued checkerboard shapes,
randomly positioned and randomly sized rectangles,
and randomly positioned variety of circular shapes.
The design purpose of these masks is to provide vari-
ous smooth and sharp features as represented by the
circles and rectangles.

After we designed the sample masks, we use them
as input into our DMD 3D printer. The grayscale
value on each pixel of the mask image represents the
percentage of light exposure dose of the 3D printer,
which is controlled by the duty ration of the flip-
ping of the DMD mirrors. A full valued pixel, which
is 255 in 8-bit unsigned integer representation, rep-
resents a 100% exposure dose. The maximum light
exposure dose is also controlled by the exposure time,
light source power. For simplicity, we use a constant
light source power and manually fix the exposure
time to 20 s, and the maximum light intensity (at
255 grayscale value on the mask) is measured to be
20.8 mW cm−2.

The printed structures are imaged using a fluor-
escencemicroscope. The intensity of fluorescence can
translate to the completeness of polymerization. After
a thresholding operation, we obtain the binary image
with 0 and 1 representing void and polymerized state
respectively. The processed structure images as well as
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Figure 3. Examples of the calibration and training data. (a) The calibration data for the simulator. (b) The training data generated
from the calibrated simulator for NN training. Scale bar is 200 µm.

their corresponding masks are then used as input to
train our algorithm (figure 3(a)).

2.3. Simulator calibration
The data augmentation stage is the first learning step
that takes the real printing data as input and generates
various virtual data as output. The input data, includ-
ing the sample masks and the postprocessed prin-
ted structure images, came from the previous data
acquisition stage. The input data is used to calibrate
a mathematical simulator that models the local and
global deformation caused by the scattering effect of
the cell-loaded material during the printing process.
We have developed the simulation function accord-
ing to the interpretation to the physical 3D printing
process (equation (1)):

P= Sim(M; c0, c1, c2, c3, c4,σ,T)

= ThresholdT
(
Gaussσ

(
ReLU

(
c1X

2 + c2Y
2 + c3X

+c4Y+ c0)×M)) . (1)

The simulator takes a grayscale mask imageM of size
512 × 512 as the input variable, and outputs a bin-
ary image P of the same size that shows the poly-
merization condition of each pixel point on the given
region. A true or 1 represents fully polymerized unit,
while a false or 0 represents an under-polymerized
or unpolymerized unit. The mask is first element-
wise multiplied by a basic light absorption matrix
ReLU

(
c1X2 + c2Y2 + c3X+ c4Y+ c0

)
. This matrix is

composed of a linear combination of X and Y as well
as their quadratics, where X is the first coordinate of
each point on the mask, and Y is the second coordin-
ate. Both X and Y are of the same dimension as M.
The basic light absorption matrix serves to mimic the
light emitting and absorbing process of the DMD 3D
printer under a mask with no patterns on it. When
it multiplies M pixelwise, the result should represent

the light energy absorbed on each patterned pixel
without considering the scattering effect. The basic
light absorption matrix also provides the simulator
the ability to mimic certain locational variant charac-
teristics of the 3Dprinter, for example the light energy
could be slightly stronger at the center of the exposed
region compared to the side. The rectifier linear unit
(ReLU) function zeros out all the negative values,
since we know the light absorption is physically non-
negative. After that, we have a 2D Gaussian kernel
Gaussσ (·) with standard deviation σ, that simulates
the light scattering effect of the cell-loaded material.
Finally, the ThresholdT (·) function sets a threshold
T that decides under what degree of light exposure
should the material be considered as being success-
fully polymerized. After all the function processes in
the simulator, it will calculate a binary map of poly-
merized versus under- or unpolymerized for eachunit
area.

The calibration of this simulator is done by
optimizing the seven parameters in equation (1) with
genetic algorithm, which is a commonly used non-
gradient optimization method in many fields [31].
The optimization objective is set to be the mean
squared distance between the real printed structure
and the simulator output, averaging among all 32
trial data pairs. Optimization was implemented with
MATLAB and the global optimization toolbox [32].

After calibration, we apply a new set of 4000
masks to the simulator and obtain their corres-
ponding simulated structures. These new masks are
designed with the same scheme as the sample masks
with a greater variety feature numbers and sizes as
well as four additional feature types, vertical lineswith
different spacing, horizontal ones, the combination of
two, and 2D vasculature shapes. After we get all the
simulation results, we proceed to use this data to train
the NNs in the final stage.
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Figure 4. Architecture of the deep neural network. The neural network is composed of 14 convolution or deconvolution layers
with batch normalization, ReLU and Tanh activation function, as well as U-net style skip connections. The cuboids represent the
feature maps of the input, intermediate, and output layers of the network. The feature resolution is denoted at bottom of each
cuboid, and the corresponding channel size is on the top.

2.4. Neural network training
The next step of our machine learning method is the
NNs training, which is the key part of our algorithm.
We are looking to train an NN that can automatically
calculate the appropriatemask for any potential target
structure. We are supplying the 4000 simulated data
pairs from the data augmentation stage to train the
NN.

Our NN method is composed of two U-Net-like
NNs which we call the master NN and the slave NN
[16, 33]. The slave NN learns the transformation of
our physical 3D printer, which is similar to the func-
tion of the simulator in the previous stage. The major
difference is that the slave NN is a differentiable func-
tion, which provides gradient information to support
the training of the master NN. The master NN serves
to learn the inverse transformation of the 3D printer.
For any given target structure, themasterNNwill sug-
gest a deformed mask that could allow the printer to
print out this target structure under the highly scat-
tering condition.

The network architecture of the master NN is
shown in figure 4. This architecture reproduces the
U-net style encoder-decoder architecture with some
adaptations [33, 34]. The network consists of 14
building blocks. The network takes a 512 × 512
single-channel image as the input. The first seven
blocks each has a convolution layer with stride 2 to
down-sample the images and features, and the con-
volution layer is followed by a batch normalization
layer and a ReLU function [35, 36]. The other seven
blocks each has a deconvolution layer with stride
2 to up-sample the features and ensure the output
resolution is the same as input. The deconvolution
layers are again followed with batch normalization

and ReLU, except the last layer uses the hyper-
bolic tangent function (Tanh) instead of the ReLU.
The U-Net style skip connections copy the feature
map from the first six block outputs to the last six
blocks’ input features respectively. These skip con-
nections help the network to learn the local details
in the earlier feature maps while retaining the global
information extracted from the later features. The
slave NN has almost the same architecture as the
master NN except the final output layer of the slave
NN has two channels for the pixel-wise classific-
ation output, which outputs the binary structure,
instead of the single channel regression output of the
master NN.

To train the NNs, we randomly divide the 4000
data pairs into 3600 pairs of training data and 400 as
testing data. The testing data is used to verify the con-
vergence of the networks. Since we already have the
simulator generated data as the augmented data, we
are not applying other data augmentation techniques.
The training process is achieved by backpropagation
of the following loss function:

Loss= Ey
[
LCrossentropy (Slave(Master(y)) ,y)

]
+λ1 ∗ Ex,y [LL1 (Master(y) ,x)]

+λ2 ∗ Ex,y
[
LCrossentropy (Slave(x) ,y)

]
+λ3 ∗ Sparsityy (Master(y)) . (2)

In equation (2), the loss function is the sum of four
loss terms, the slave supported master loss, the data
supported master loss, the data supported slave loss,
and the sparsity loss. The details of the first three loss
terms can be found in the appendix section of [16].
The x here stands for the grayscale mask, which is res-
caled to a range between −1 and 1, and y stands for
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the 3D printer output structure, which is represented
in a binary class map with two channels. E represents
the expectation operator. The LCrossentropy calculates
the cross-entropy loss between the two arguments,
and LL1 is the L1 loss function or the least absolute
deviations.Master is themasterNN forward pass, and
the Slave is the slave NN forward pass. The Sparsity
is a sparsity loss term that sums the pixel grayscale
values of a given region. In this case, the sparsity loss
sums up the pixel values in the master NN generated
mask, where it is outside of the target structure region
of y. This term ensures that the NN generated mask
does not give unwanted exposure far away from the
target structure region. λn is the tradeoff coefficient
for different loss terms. We are setting the tradeoff
coefficients λ1, λ2, λ3 to be 1, 1, and 0.05 respectively.
We also decay the λ1 term with factor 0.98 on every
training iteration, so that the master NN relies on the
training data initially, and it will gradually rely more
on the slaveNNgradients in the later epochswhen the
slave NN becomes more trained. This will improve
the generalizability of the master NN by promoting it
to spend more time on learning the 3D printer trans-
formation instead of repeatedly looking at the train-
ing data.

In terms of training implementation, we used
the PyTorch framework GPU version 1.2 with Adam
solver for the back-propagation process [37, 38]. We
set the batch size to 10, learning rate to 10−5, gradi-
ent decay factor to 0.9, and the squared gradient decay
factor to 0.999. A Gaussian noise term is added to
the input x to avoid overfitting of slave NN, while the
training error of slave NN itself could help avoid the
master NN from overfitting [39]. The initialization
of model weights is done by sampling from normal
distribution with zero mean and 0.02 standard devi-
ation. The training was executed on a desktop com-
puter with Intel i5-7500 CPU and GTX 1070Ti GPU.
We trained the networks for 200 epochs for about
26 h. After the network is trained, it will only require a
few seconds on a CPU only machine to execute a for-
ward pass of the master NN, while the GPU enabled
machine can process the forward pass in less than a
second.

3. Results

3.1. 3D printing with NN-generated masks
To verify our trained NN, we set several testing
designs that are unseen from the training data
(figures 5(a) and 6). The test structure designs mainly
demonstrate various concave and convex sharp fea-
tures as well as the ring shape that could potentially be
used to print biological tissue models. We then input
these target structures one-by-one to the master NN
and get their corresponding NN-calculated masks as
the output (figures 2(c) and 5(b)).

The NN-calculated masks are indeed different
from the target structure. We can interpret that the

NN-calculated mask tends to ‘stretch out’ at the pro-
truded sharp regions and ‘shrink’ at the denting
regions (figure 5(e)). The overall behavior of how the
NN tries to compensate the scattering effect is similar
to our previous research [16]. It is important to note
that these kind of mask designs are usually not pos-
sible even for an experienced expert in 3D printing.

After we obtain all the NN-calculated masks,
we apply each mask to the DMD 3D printer and
take microscopic fluorescent images as well as post-
process the images into binary representation, in
the same way as we did in preparing the trial data
(figures 5(c) and (d)). The resulting binary images
matches nicely to the input target structures.

3.2. Printing quality comparison
To better demonstrate the power of our method, we
compare the printing results between using the NN-
calculated masks and using the traditional identical
masks. Traditionally, an operator of the DMD 3D
printer usually sets the DMD mask identical to the
target design and only changes the overall light expos-
ure dose by tuning the light power and print time.
Therefore, we use the 100%, 75%, 70%, and 50%
grayscale mask values to mimic the overall light
exposure changes of the traditional tuning. Later
experiment shows that grayscale value of lower than
50% will hardly print any obvious structures, there-
fore, we choose 70% as the lower bound of intens-
ity dose (figure 6). The printing results of these
identical masks are then used as benchmark print-
ing samples for comparison with the printing result
of NN-calculated masks.

From the results in figure 6, we can easily see
that theNN-calculatedmasks performbetter than the
traditional masks across all the testing target struc-
tures we had. In the first three rows, we can see
that the NN results greatly reserves the sharp fea-
tures of the target, while the benchmark results always
lost the sharpness to the rounded smooth features.
For the ring shapes in the bottom two rows, we find
that although similar quality has shown on the big-
ger rings across the different masks, the smaller rings
can only be properly printed with the NN-calculated
masks. The ring shape with varying diameters shows
an example that different patterns would require dif-
ferent manual tuning of the printer settings, since the
varying rings under the same printing condition with
identical masks would never show the same printing
quality. With our machine learning method, we can
see that different rings have a more consistent qual-
ity. Comparing the smooth ring patterns with the pat-
terns with sharp features, we can see that the smooth
features are easier to print even with the traditional
identical mask method, while the more complex fea-
tures can only be properly printed with NN masks to
reserve the fine features. The size of the overall pat-
terns also effects the print quality. From the various
ring shapes, we can find that the large features are
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Figure 5. NN-calculated masks and the corresponding images of printing results. (a) The target structures. (b) The grayscale
masks calculated by the trained NN. (c) The fluorescent images of the 3D printed structures using the masks from (b). (d) The
binarized images of (c) for easier comparison with the target. (e) The NN-calculated mask overlaid with a red contour showing its
corresponding target structure. Scale bars are 200 µm.

Figure 6. Postprocessed microscopic images of the test printing results. The first column shows the designed target structures. The
second column shows the printed structure using NN-calculated masks. The third to fifth column are the printing results using
the identical masks with 100%, 75%, and 70% exposure dose respectively. Scale bar is 200 µm.
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always easier to print, and the small features are very
challenging to print under the high scattering effect
even with the help of NN (figure 6).

4. Discussion

As 3D bioprinting attracts more and more industrial
applications, key challenges emerge: how to improve
printing fidelity when cell-induced light scattering
effects dominate? How to minimize the traditional
trial and error operation in optimizing the printing
parameters? As shown in our results, the NN-based
deep learning method demonstrate great success on
advising the 3D bioprinter by providing the optimal
optical masks to improve the printing fidelity when
scattering cells present.

One major benefit of our method is the high data
efficiency. Common machine learning algorithms
would require a large amount of data (i.e. printed
samples) in order to get reliable performance. In
our algorithm, we are only using 32 actual printing
samples as training data, which is an extremely small
number compared to the common machine learning
data sets that have thousands or even hundreds of
thousands of samples. Even with such a small num-
ber of trial data, our trained NN showed its power
to greatly improve the printing quality. Considering
that the 3D bioprinting is normally very expensive to
produce many samples due to the cost of the cells,
bioinks, and cell cultures, our method is more prac-
tically applicable than the normal data heavy deep
learning methods. If we are accessible to more print-
ing data, our method can still be applied, and the res-
ulting accuracy could be improved according to the
central limit theorem considering the random selec-
tion of initial masks and the potential production and
imaging noises.

The way we utilize the limited amount of data
is to introduce a simple equation, being calibrated
with the trial data, to simulate the process of the 3D
printer and the scattering effect. Although different
from the common data augmentation methods [40],
our approach of calibrated simulations can be seen
as a heuristic way of data augmentation. By incor-
porating the understanding of the physical processes
of the DMD 3D printing, our simulator only con-
siders seven parameters. Compare to the basic image
manipulation type of augmentations like flipping
or rotation, our augmentation method shows many
more different features by introducing a great variety
of new masks than the sample masks in the simula-
tion, which prevents the further overfitting thatmight
be caused with simple augmentations [40].

Beside the calibrated simulation, our slave part of
the NN can also be considered a kind of data aug-
mentation, since it predicts the output structure for
the input of master NN generated mask which can

be potentially unseen from the training data. The
slave NN can also be interpreted as a noise term
that will gradually decrease with the training pro-
cess, since the randomly initialized slave NN can pro-
duce very wrong prediction of the output structure at
the beginning and improves through training. Adding
noise to the NN training process is a known tech-
nique to improve the generalization performance of
the trained NN [41]. The benefit of the slave NN has
been experimentally studied in our previous paper
[16].

Although our current experiment is on a single-
layer basis, our method can easily be extended to
apply on multilayer 3D structures. The only changes
in the algorithm will be that the 2D convolution lay-
ers in the NNs will be replaced by 3D convolutions,
and the simulation function will need to add an extra
dimension. The difficulty we foresee is the way to
properly image or scan the printed 3D structure. Also,
the size of the data we are going to process will be a lot
larger if wewant to keep the resolution of each dimen-
sion. The huge data size could cause trouble in NN
training.

Our current experiment is working on a cus-
tom DMD based 3D printer, and we are only print-
ing with one specific material and cell composition.
However, our method could easily adapt to a dif-
ferent printer or material composition with a new
set of sample prints. Our requirement of 32 data
samples is relatively easy to obtain comparing to
some other deep learning methods that relies on
big data [42]. Further online training to improve
the performance and the generalizability across
different settings would be an interesting future
improvement.

5. Conclusion

Our deep learning method with learning-based
data augmentation greatly improves the fidelity of
bioprinting with as few as 32 sample prints to
train the learning system. Our experiment shows
that using the grayscale masks generated from our
trained NN, we can print fine detailed structures
surpassing the traditional manual tuning method
with identical masks. Our method allows the use
of a very small amount of trial data, which is
usually not possible for the common deep learn-
ing applications that relies on big dataset. Further-
more, our method could easily be applied on dif-
ferent materials or different printer settings with
a new set of sample prints. Considering the high
cost of cells, reagent, and bioinks, our deep learning
method provides a powerful solution for bioprinting
with reduced cost, high fidelity, and shorter time to
product, paving the way for future large scale organ
printing.
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