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We present a passive and non-intrusive sensing system for monitoring hand washing activity using structural vibration

sensing. Proper hand washing is one of the most efective ways to limit the spread and transmission of disease, and has

been especially critical during the COVID-19 pandemic. Prior approaches include direct observation and sensing-based

approaches, but are limited in non-clinical settings due to operational restrictions and privacy concerns in sensitive areas

such as restrooms. Our work introduces a new sensing modality for hand washing monitoring, which measures hand washing

activity-induced vibration responses of sink structures, and uses those responses to monitor the presence and duration of

hand washing. Primary research challenges are that vibration responses are similar for diferent activities, occur on diferent

surfaces/structures, and tend to overlap/coincide. We overcome these challenges by extracting information about signal

periodicity for similar activities through cepstrum-based features, leveraging hierarchical learning to diferentiate activities

on diferent surfaces, and denoting łprimary/secondaryž activities based on their relative frequency and importance. We

evaluate our approach using real-world hand washing data across 4 diferent sink structures/locations, and achieve an average

F1-score for hand washing activities of 0.95, which represents a 8.8X and 10.2X reduction in error over two diferent baseline

approaches.

CCS Concepts: ·Human-centered computing→Ubiquitous andmobile computing systems and tools; ·Computing

methodologies→ Classiication and regression trees; · Applied computing→ Health care information systems.

Additional Key Words and Phrases: Hand Washing, Hand Hygiene, Structural Vibration Sensing

1 INTRODUCTION

Proper hand washing is critical for prevention of healthcare-associated infections (HCAIs) (those that occur in or
around healthcare settings) and reducing disease transmission rates. During the 2020 COVID-19 outbreak, hand
washing was identiied as one of the best practices for reducing transmission [24]. Despite this, recent studies
have shown that HCAIs afect millions of persons each year, with an estimated incidence rate of 4.5% (1.7 million
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patients) annually in the United States of America [74]. To combat these HCAIs and help reduce the spread
of COVID-19, the World Health Organization (WHO) and Centers for Disease Control (CDC) have published
guidelines for hand washing in healthcare settings as well as for the general public [24, 34, 57]. Despite this,
studies show that some healthcare providers only practice proper hand washing less than 50% of the time [11].
As a result, there is a clear need for hand washing detection and monitoring systems.

Existing approaches for detection and monitoring of hand washing in healthcare settings include direct
observation as well as sensing-based techniques such as vision, radio frequency (RF), acoustics, and wearables [4,
12, 26, 40, 47, 48, 58, 61]. However, each of these prior approaches is limited in many real-world applications due to
deployment restrictions such as line of sight/perceived privacy concerns (vision), sparse/insuicient monitoring
(direct observation), sensitivity to ambient noise (acoustics), and requiring users to wear and/or carry a device
(RF, wearables). These limitations restrict the ability to accurately and ubiquitously monitor hand washing, which
reduces their ability to improve hand hygiene practices.
To overcome the limitations of these prior works, we introduce a new approach which leverages structural

vibration sensing to monitor hand washing activity. The primary insight behind this approach is that the various
phases of hand washing (i.e., walking to the hand washing station, turning on water, using soap, and rinsing hands
in the water), all generate excitations in the sink structure and/or surrounding loor structure. By measuring
vibrations of the sink structure, our approach can accurately detect whether each activity has occurred, and
monitor its duration to ensure proper compliance with hand washing guidelines. This sensing system enables
ubiquitous, non-intrusive monitoring of hand washing in a variety of settings without the need for persons to
wear or carry a device. In our prior work, we have shown that structural vibration sensing can accurately detect
and classify hand washing activity at small scale (i.e., with one person at one sink structure) [22]. In this work,
we expand that work to additional locations and additional users, and modify our approach to one that enables
an accurate and robust approach for detecting and monitoring hand washing activities.

The challenges with expanding the system, however, are three-fold as follows:

(1) Human behavior similarities: we observe that hand washing activities generate similar vibration responses.
For example, footsteps and using a soap dispenser both generate impulsive responses, water running and
rinsing hands both generate periodic and less impulsive responses. As such, it is diicult to accurately
detect and monitor each phase of hand washing using time series data alone. Figure 1 shows an example of
this challenge. In this hand washing-induced vibration signal, we observe that the łwaterž and łrinsingž
responses are very similar and diicult to distinguish using time series data or traditional frequency-based
features alone, making it diicult to detect and monitor each stage of hand washing.

(2) Varying interaction surfaces: the various human activities associated with hand washing typically occur on
diferent surfaces within the building structure. For example, footsteps occur on the loor, soap dispensers
are either on a wall or on the sink, and water runs in the sink basin. As a result, the vibration signals received
by the sensors are a mixture of the responses from each structure/surface that the human activity-induced
excitation passes through when it propagates. This efect introduces additional noise, changes the signal
characteristics, and makes it challenging to characterize the response from each activity.

(3) Concurrent activities: various hand washing activities may overlap, which increases the diiculty in uniquely
identifying and monitoring their duration. For example, if a person leaves the water running while using a
soap dispenser, these two diferent activities are now overlapping one another, making them more diicult
to track individually.

.
To address these research challenges, we introduce a cepstrum-based hierarchical learning approach, which

extracts unique signal characteristics for diferent activities and characterizes responses on diferent surfaces.
This hierarchical approach irst determines the presence of hand washing activities, then uses two additional
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Fig. 1. Vibration response from hand washing activities. Note the similarity between diferent activity’s responses (water,
rinsing) and that some are overlapping (e.g., soap and water)

layers to classify those activities that happen away from the sink (i.e., footsteps of someone approaching the
sink), and then those activities that occur on/around the sink. For these models we extract unique aspects of
each activities’ vibration response using a cepstrum analysis. Cepstrum analysis is mostly used in the speech
recognition domain to identify and emphasize periodicity in time domain signals [62]. It difers from other
approaches for identifying signal periodicity (e.g., Fourier analysis and autocorrelation) by taking the logarithm
of Fourier transform amplitudes and then computing the inverse Fourier transform of those values. By combining
a Fourier analysis with a logarithm, the periodic components of the signal are emphasized and visible as peaks in
the quefrency (time) domain. In the context of hand washing activities, this enables better distinction between
seemingly similar activities (i.e., footsteps vs. soap; rinsing vs. water running) because each of these diferent
activities changes the periodicity of the signal. For example, rinsing ones hands in running water interrupts the
normal, periodic low of the water itself, which changes the vibration excitation and response. In this way, our
approach is better able to characterize these łsimilarž activities and achieves a higher accuracy in classifying each.
By leveraging a hierarchical learning approach, we are able to characterize the responses from each interaction
surface independently. We create one layer for łidlež activities, which is a mixture of each surrounding structure
response, one layer for loor interactions like footsteps, and another for sink interactions like water, rinsing, and
using a soap dispenser. With this hierarchical approach, we characterize the diferences in the signals for hand
washing activities by introducing an independent classiication layer for each interaction surface. In this way,
we overcome the challenge associated with interactions on multiple surfaces. Lastly, to address the challenge of
overlapping signals, we identify that the overlapping activities typically consist of a łprimaryž and łsecondaryž
activity (i.e., water running in the background when soap is being used). Therefore, we label hand washing
activities by their primary activity only. In this way, we can robustly monitor hand washing practices and
accurately detect/monitor the primary actions.
To validate robustness in diferent structures and diferent hand-washing behavior, We have conducted real-

world hand washing experiments in four diferent buildings (with varying sink type and soap dispenser type),
with four experimental participants, and with approximately 40 minutes of hand washing activities.

In summary, the primary research contributions of this work are as follows:

(1) We introduce a novel approach for passive and ubiquitous monitoring of hand washing activities using
structural vibration sensing.
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(2) We extract unique signal components corresponding to each hand washing-associated activity using a
cepstrum-based feature extraction to reduce signal similarity and improve monitoring robustness.

(3) We evaluate our system and approach with real-world hand washing experiments in four buildings and
with four diferent experimental participants.

The remainder of the paper is organized as follows. First, in Section 2 we explore the relevant related work
in the areas of hand washing monitoring and structural vibration sensing. Next, in Section 3 we explore the
physical insights that enable our approach. In Section 4 we provide a detailed description of our hand washing
monitoring approach. Then, in Section 5 we present our real-world experimental evaluation. Finally, in Section 7
we discuss future work and summarize our work.

2 RELATED WORK

In our work, we monitor hand washing activities using structural vibration sensing. This work is primarily
related to two main areas of research: 1) hand washing monitoring approaches, and 2) approaches using cepstrum
analysis for feature extraction. In this section we will explore relevant prior works in each of these areas and
discuss the research gaps that our work addresses.

2.1 Hand Washing Monitoring Approaches

Hand washing monitoring is a very active research area in the medical domain, particularly in light of the
COVID-19 pandemic. Traditionally, the most prominent approach for monitoring hand washing in medical
settings is observation-based, where staf migrate through the hospital/care facility and mark instances of proper
compliance with hand washing policies [9]. However, these approaches require designated staf and it is not
practical or possible for these staf members to directly observe all instances where hand washing is required.

To address the limitations of observation-based approaches, numerous sensing-based approaches have emerged.
Vision-based approaches rely on motion tracking to verify compliance with hand washing recommendations [4,
26], or are combined with ultraviolet (UV) lights to determine how well hands were cleaned [48]. These vision-
based approaches, however, are limited by requiring a direct and unobstructed line-of-site at the hand washing
station, and raise privacy concerns. Other sensing-based approaches utilize wearable sensing including smart-
watches and RFID tags to both track hand washing-associated hand/wrist motion as well as proximity-based
detection (i.e., determine when someone is at the hand washing station) [40, 47, 58, 61]. In real-world settings,
these wearable-based approaches are limited due to the coarse-grained information (RFID) and/or the requirement
that staf wear or carry a device at all times and keep the device charged. Lastly, acoustic-based systems have
been introduced for monitoring activities of daily living (ADLs), with some showing promise for monitoring
bathroom activities including hand washing[12]. This system, however, was limited to general łhand washingž
and did not distinguish between diferent phases of hand washing (e.g., soap use, rinsing hands, etc.). Further,
acoustic-based systems are sensitive to the presence of ambient noise such as people speaking, objects falling,
and operation of machines/medical devices (e.g., beeping noises from monitoring machines, etc.). As such, in
clinical settings, many of these acoustic-based sensing systems would be signiicantly afected by ambient noise
and have lower performance.
To overcome these limitations, our approach leverages structural vibration sensing to enable passive and

continuous monitoring of hand washing activities. Structural vibration sensing has been shown to accurately
monitor indoor human occupants’ activities [6, 51, 53, 54], identity [55, 56], location/presence [2, 16, 39, 43ś
46, 50, 52, 59, 60], and gait health [14, 17ś21, 33, 36]. These prior works, however, focus on general occupant
activities and information and do not account for similarity in signals due to hand washing activities, nor do
they account for signal characteristics with concurrent activities. In this work, we address these research gaps
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through a cepstrum analysis-based approach which enables robust hand washing monitoring in a variety of
indoor settings and across diferent persons.

2.2 Cepstrum Analysis-based Approaches

Cepstrum analysis is a common approach for analyzing the periodicity of time series signals. It is a prominent
approach in the ields of speech/natural language processing (NLP), earthquake/seismic analysis, and in the
medical ield for digital signals such as Electromyography (EMGs) [62]. In natural language processing, works
have used cepstrum-based techniques for diferentiating between languages [27, 41, 73], speech analysis [70], and
emotion recognition [63]. In the earthquake/seismic analysis domain, researchers have shown the potential for
cepstrum coeicients to be used as features for determining the locations and characteristics of seismic events, as
well as distinguishing them from other high intensity events such as quarry blasts [3, 8, 28, 72]. In the medical
domain, cepstrum analysis is typically associated with processing imaging and/or time series signals, and has
shown promise for applications in using EMGs for activity monitoring [32], neurological signal monitoring [75],
detecting neuromuscular diseases [15], and to assist with analyzing ultrasound images [68, 71].

In this paper, we leverage cepstrum analysis to diferentiate between structural vibration signals due to various
hand washing activities. This represents a new domain and application for cepstrum analysis. The challenge with
this approach is that many of the hand washing activities generate similar vibration responses, and may overlap
each other. By extracting cepstrum-based signal features, our work is able to isolate signal components that difer
in each activity and detect/classify hand washing activity with high accuracy.

3 BACKGROUND AND PHYSICAL INSIGHTS

To enable our hand washing activity monitoring system, our work combines data driven approaches with physical
insights. In this section we explore these underlying physical insights and discuss how they assist with addressing
the primary research challenges of our work. First, we describe the structural vibration sensing system used in
our approach and the physical insights that enable us to extract hand washing activity information from the
vibration signals (Section 3.1). Then, in Section 3.2, we present an overview of cepstrum analysis and the physical
insights related to how it can be used for diferentiating between similar and overlapping hand washing activities.

3.1 Structural Vibration Sensing

As previously discussed, our hand washing monitoring system uses structural vibration sensing to detect and
measure the duration of hand washing activities. The main intuition behind this approach is that, when individuals
conduct hand washing activities, their movements excite the surrounding structure, causing it to displace. In a
linear-elastic structure (which we assume to be the case for any sink structure), the structure then restores to its
original state. Repeated cycles of displacement-restoration result in vibrations of the structural material.
In this work, we are using the insight that we can measure these vibration responses due to handwashing

activities to detect and measure the duration of the activities themselves, in an inverse manner. The foundation of
this insight builds of of the common convolution integral, which is used to describe the relationship between a
structure’s vibration response, the structure’s properties, and the forcing/excitation function. This convolution
integral is given by the following expression [67, 69]:

x (t ) = h(t ) ∗ f (t ) (1)

where x (t ) is the time history of the structural vibration response,h(t ) is the structure’s impulse response function
(i.e., a characterization of its dynamic properties), f (t ) is the vibration forcing/excitation function (i.e., the hand
washing activities in our case), and ∗ is a symbol representing the convolution integral. From this expression, we
can observe that, if the structure’s impulse response function remains constant, we can record vibration responses

ACM Trans. Comput. Healthcare



1:6 • Fagert, et al.

due to various hand washing activities, learn the diferences in the ensuing signal from each (i.e., diferences in
f (t )), and generate a model which detects and classiies each hand washing activity given a structural vibration
response signal.

3.2 Cepstrum Analysis

As discussed previously, cepstrum analysis extracts the periodicity of the frequency spectrum of a signal. In this
section, we provide a brief overview of how cepstrum analysis can be used to extract signal features, and discuss
how these cepstrum-based features enable our hand washing monitoring approach.
The concept of cepstrum analysis was irst developed by Bogert as a way to study seismic signals. Cepstrum

coeicients were deined as the power spectrum of the log of the power spectrum of a signal [5, 49, 62]. This was
later revised by Oppenheim and Burgess to be the inverse Fourier transform of the log of the Fourier Transform
of a signal [10, 62]. In this work, we use the latter deinition and use the real-valued cepstral coeicients as signal
features, as such, the cepstrum coeicients of a given vibration signal are obtained using the following expression:

Cr = ℜ

{

F
−1
{
loд

���F [x (t )]
���

}}
(2)

where Cr are the real-valued cepstral coeicients for the vibration response x (t ) as a function of the time, t , F is
a Fourier transform operator, andℜ is an operator denoting the real values from the expression.

We combine the expressions from Equation 1 and Equation 2 by leveraging the properties of the convolution
integral and Fourier transform operations, similar to the approach taken in [62]. For our work, we make an
approximation of the full derivation by using the absolute values of the Fourier transform of the measured
vibration response. As a result, we observe that real-valued cepstral coeicients of the measured vibration
response x (t ) are a function of the structure’s dynamic properties and the forcing/excitation functions (f (t )). In
the case of hand washing activity-induced vibrations, we can then infer that the diferent activities will each
have their own forcing function, and, therefore, the real-valued cepstral coeicients for each will difer.

In this work, we leverage this insight that diferent hand washing activities will generate diferent real-valued
cepstral coeicients to train a model which uses cepstral coeicients as features and outputs the associated hand
washing activity for a given time domain vibration signal. Further details for this approach are in Section 4.3.

4 HAND WASHING MONITORING APPROACH

Our approach for monitoring hand washing activities leverages cepstrum-based signal features to detect the
presence of activities, classify them, and record their duration. This enables our system to determine if someone
is washing their hands and then if they are adequately following the WHO and CDC recommendations. Our
approach consists of three main modules: 1) a sink vibration sensing module (Section 4.1), 2) a hand washing event
detection module (Section 4.2), and 3) a cepstrum-based hand washing activity classiication module (Section 4.3).
The second and third modules are each part of our hierarchical classiication approach which contains three
independent models for determining the presence of hand washing, and then which activity is occurring at any
given time. Figure 2 shows an overview of our approach including each module and the hierarchical classiier. In
this section, we explore each of these modules in more detail and describe our overall approach for monitoring
hand washing activities using structural vibration sensing.

4.1 Sink Vibration Sensing

The irst module of our approach measures the structural vibration responses due to hand washing activities.
In this section, we provide an overview of the sensing modality and describe how we collect and process the
structural vibration signals.

ACM Trans. Comput. Healthcare
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Fig. 2. Our cepstrum-based hierarchical hand washing monitoring approach. The let hand figure shows an approach overview
and the right hand figure shows the hierarchical classification framework.

To measure these vibration responses, our system uses geophone sensors. Geophone sensors are low-cost
vibration sensors which measure the vertical velocity of vibration. These sensors are mechanical sensors which
rely on the vertical displacement of a suspended mass within the sensing element [29]. As such, they require
a coupling with the structure. To accomplish this, we adhere the geophone sensors to the structure (i.e., sink)
using bees wax; this ensures that the sensors will record all of the vertical vibrations that the sink structure
undergoes from each of the hand washing activities. The beneit of this system is that the geophone sensors can
be retroitted onto any existing sink structure with little efort.

To increase the resolution of the vibration signals, we amplify them using a variable gain operational ampliier.
The gain for the sensing system can be manually calibrated when initially deployed based on observed magnitudes
of the vibration responses in that area. Ideally, the operational ampliier gain is maximized to provide the most
signal resolution while also preventing clipping of signals (i.e., when signal values exceed the limit that the
analog-to-digital converter can read). Typical values for ampliication range from 100-1000X. Once the structural
vibrations are induced and measured by the geophone sensors, they are converted to a digital signal and
transmitted to a computer for further processing. An example of a typical sensor coniguration is shown in
Figure 3.

4.2 Hand Washing Event Detection

The irst layer of our hierarchical classiier determines if there is any type of hand washing activity in the region.
We describe this process as łhand washing event detectionž. In this section, we describe the process by which we
distinguish hand washing activities from łidlež behavior (i.e., when no hand washing is occurring).

4.2.1 Vibration Signal Preprocessing. The signal-to-noise ratio (SNR) of hand washing activity-induced structural
vibration signals has a large variance depending on the characteristics of the sink and surrounding structure.
As such, it is often necessary to remove/reduce the ambient noise levels in the measured vibration signals. In
particular, the activities that take place away from the sink (i.e., footsteps) typically have a low SNR because the
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Fig. 4. Example of the wavelet-based filtering on hand washing-induced vibration signals. The top figure shows the raw
vibration data due to a soap dispenser being used, and the botom figure shows the same signal ater being filtered. Note
that ater filtering, the soap activity is easily distinguishable from the ambient noise levels

vibration signals have to travel through multiple mediums to be recorded by the vibration sensors (e.g., from the
loor to a wall to the sink). To increase the signal SNR, our approach uses a data preprocessing step where we
reduce signal noise using a continuous wavelet transform (CWT)-based iltering approach.
The continuous wavelet transform is a time-frequency signal transformation that is well-suited to non-

stationary signals such as those induced by hand washing activities [1, 30, 31]. In our preprocessing step, we
irst decompose the vibration signal window using a CWT with a Morse mother wavelet [37]. We choose a
Morse wavelet based on the insight that Morse wavlets provide a broad range of wavelet shapes and are well
suited to the varying excitation types encountered from hand washing activities (i.e., impulsive and continuous
excitations) [37]. In this work, we use a sliding window with a size of 0.5s to extract features. This window size is
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chosen empirically based on the observed duration of impulsive activities (e.g., footsteps and soap), and to ensure
adequate data resolution for the continuous activities (e.g., water and rinsing).
Once the signal window has been decomposed, we ilter it by selecting a frequency band and performing

an inverse wavelet transform with only that frequency band. This frequency band can be chosen empirically
during initial calibration and setup based on the observed vibration responses. For our work, we have selected
a frequency band of 70 to 450Hz based on the observation that this band contains the most information about
the activities of interest (i.e., footsteps, soap, rinsing, water running), and also removes/reduces the amount of
ambient noise in the signal. An example of this CWT-based iltering is shown in Figure 4, where a raw vibration
signal generated from a soap excitation is shown both before and after iltering. After iltering, we observe a
much higher SNR and the soap activity is easily distinguishable from the ambient noise levels. Note that, for some
structures, if the observed SNR is high, this iltering step may not be necessary and the raw signals can be used
for the hierarchical learning approach below. The ensuing iltered signals are then used in the irst two stages of
our hierarchical learning to determine the presence of any hand washing activity, and then to distinguish footstep
responses from other activities that occur on/around the sink structure. Figure 5 shows an example of the iltered
vibration signal for each of the hand washing activities. Note the similarity between the łFootstepž and łSoapž
activity and the łRinsingž and łWaterž activity. In the following sections, we describe how our cepstrum-based
hierarchical learning approach overcomes the challenges associated with these similar vibration responses.

4.2.2 Idle Classification. To classify łidlež and łactivityž events, our system uses a binary Support Vector Machine
(SVM) classiier [13, 25]. We choose to use a SVM classiier based on the insight that SVM classiiers are well-suited
to small datasets and those without a well-deined feature distribution. Based on our preliminary observations,
we infer that our data its these two descriptors well. To train this classiier, we extract features based on the
standard deviation of the signal window. In this work, we have a limited amount of data, and, therefore, use the
sample standard deviation of the window (as opposed to the population standard deviation) [35]. We then use
the sample standard deviation from each sensor in the sink area as the feature values from each signal window
and the system outputs a label of either łidlež or łactivityž. If the label is łidlež, the system outputs this label as
the inal prediction for the window, otherwise, the data is sent to the next layer in the hierarchical classiier.

4.3 Cepstrum-Based Hand Washing Activity Classification

In the third module of our approach, our system uses the inal two layers of the hierarchical classiier to determine
if detected activities are footsteps, soap, water, or rinsing. In the following section, we describe this process in
more detail.

4.3.1 Footstep Classification. Once a signal window has passed through the irst layer of our hierarchical classiier
and did not get classiied as an łidlež event, it is passed to the next layer, which focuses on distinguishing footstep
activities from other hand washing activities. This layer, therefore, partially addresses the challenge related to
activities on diferent surfaces/structures discussed above. By comparing footsteps (which occur on the ground)
to other hand washing activities (which occur at/around the sink), we can better characterize the diferences in
their signals resulting from the diferent mediums.

Detecting footstep events is an important component of monitoring hand washing activity so that the system
can tell if a person is walking to/from the sink/hand washing area. Additionally, in our prior work, we have used
footstep-induced structural vibration responses to uniquely identify and track individuals [42, 56]. Therefore,
we can combine this work and our prior work to track individuals and determine whether they have properly
adhered to hand washing protocol (e.g., in hospital settings).

In this layer of our hierarchical learning approach, we classify vibration signal windows as footsteps or łhand
washing activitiesž using a binary SVM model. For features, we extract cepstral coeicients from the iltered
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(a) Example of an łIdlež signal collected by our
sensing system. In these cases, our system detects
that there is not any hand washing activity.
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(b) Example of a łFootstepž signal collected by our
sensing system.
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(c) Example of a łSoapž signal collected by our
sensing system.
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(d) Example of a łRinsingž signal collected by our
sensing system.

0 0.1 0.2 0.3 0.4 0.5

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

V
ib

ra
ti
o
n
 S

ig
n
a
l 
A

m
p
lit

u
d
e
 (

m
/s

)

10
-4 Water Signal

(e) Example of a łWaterž signal collected by our
sensing system.

Fig. 5. Example of vibration signals collected by our sensing system for each of the hand washing activities. Note the similarity
between the impulsive signals (e.g., łFootstepsž and łSoapž) and the continuous signals (e.g., łRinsingž and łWaterž). Our
cepstrum-based features highlight the diferences between these similar signals to enable accurate and robust detection and
monitoring of hand washing activities.
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(a) Fourier transform-based features for rinsing and wa-
ter running activities.

(b) Cepstrum-based features for rinsing and water run-
ning activities. Note the clear separation between each
activity in the two areas highlighted by the red circles.

Fig. 6. Fourier transform- and Cepstrum-based features for rinsing and water running activities. We note that there is litle or
no separation between these activities using a Fourier transform alone, while cepstrum coeficients highlight the diferences
in periodicity of the two activity’s signals, enabling accurate detection and classification of those activities.

signal in the current window. We use these iltered signals based on the insight that the wavelet-based ilter helps
to reduce the noise in the system, and provides more information about the signal variations due to each type of
excitation. This is especially important for situations like the one shown in Figure 4, where the SNR is so low that
activities are barely observable. We calculate the cepstral coeicients using the process outlined in Section 3.2
and use a linear kernel when training the SVM model. We choose a linear kernel based on the observation that
the data is largely separable in this layer, and the linear kernel has lower model complexity as compared to higher
order kernels (which reduces the risk of overitting) [25]. Similar to the approach taken in the irst layer, we
combine the cepstral coeicient features for each sensor in the sink/sensing area for our training and predictions.

The output of this hierarchical model layer is the binary prediction of łfootstepž or łhand washing activityž. If
the layer prediction is a footstep, then this is the inal system output and the window is classiied as a footstep.
Otherwise, the system moves to the third and inal layer of our approach to determine if the hand washing
activity is best classiied as łsoapž, łwaterž, or łrinsingž.

4.3.2 Hand Washing Activity Classification. The inal layer of our hierarchical learning approach classiies hand
washing activities as łwaterž, łrinsingž, and łsoapž. These activities are deined by water running directly into the
sink, water running over a person’s hands to rinse them, and a person pumping a soap dispenser. As previously
discussed, there is a possibility that individuals may leave the water running while using the soap dispenser - in
these cases our primary interest is in detecting the usage of soap. As such, these activities are labeled as łsoapž
for the purpose of model training and prediction.

We distinguish between each of the aforementioned hand washing activities using a multi-class SVM classiier.
Similar to the previous layer of our approach, we use cepstrum-based features in this layer by calculating the
cepstrum coeicients for the signal window using Equation 2. By using cepstrum-based features, our approach is
better able to distinguish between similar vibration responses (i.e., rinsing and water). Figure 6 shows an example
of the cepstrum-based feature extraction for several łrinsingž and łwaterž signals. In Figure 6a, we observe that
the Fourier transform fails to ind unique signal components for each activity (there is a spike for łwaterž around
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Sensor

(a) Porter Bathroom experimental setup.

Sensor

(b) Doherty Hall experimental setup.

Sensor

(c) Porter Hall kitchen experimental setup.

Sensor

(d) Tepper Hall experimental setup.

Fig. 7. Experimental setup for each of the four experimental locations. In each location, vibration sensors were mounted on
the sink structure.

20 Hz for some signals, but many others do not have this spike, so it cannot be used for training a classiier).
In contrast, with cepstrum-based features, our approach is able to ind consistent separation between the two
similar activities. Figure 6b shows an example of these features, with the red circles highlighting instances where
there is clear separation between each activity.

For the SVM model, we use a Gaussian kernel based on the observation that our feature values are not linearly
separable in the original feature space and due to the insight that a Gaussian kernel has lower model complexity
than polynomial or non-parametric kernels, therefore reducing the risk of overitting [38]. With this model, our
system outputs the inal window label of łwaterž, łrinsingž, or łwaterž. Using the approach described above, our
system is able to detect and diferentiate hand washing activities using structural vibration sensing. Through a
sliding window, we can then monitor the duration of each activity (i.e., count the number of consecutive windows
with łrinsingž or łwaterž. This allows our system to record the presence of hand washing as well as its duration
to ensure that individuals follow the guidelines for proper hand hygiene set by the Centers for Disease Control
and the World Health Organization [24, 34, 57].

5 EXPERIMENTAL EVALUATION

To validate the performance of our hand washing monitoring approach, we conducted real-world hand washing
experiments with 4 total participants and across 4 diferent experimental locations. In this section, we discuss
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Fig. 8. Total performance of our approach compared to the baseline approaches. We observed an 8.8X and 10.2X error
reduction respectively over the FFT and logFFT approaches. The baselines efectively detected footsteps, but struggled to
detect classes that may overlap or have a wide range of vibration response, such as soap, water, and rinsing.

the overall performance of our approach (Section 5.2), then with regards to diferent structures (Section 5.3),
diferent amounts of training data (Section 5.4), and through an uncontrolled hand washing experiment involving
3 diferent individuals (Section 5.5).

5.1 Experimental Setup

As described above, we evaluated our system in four experimental locations. For each location, vibration signals
were collected using two sink- or counter-mounted SM24 geophone sensors [29]. In this work, geophone sensors
are chosen over other vibration-based sensing modalities (such as acoustic sensors and accelerometers) due
to their low installation cost, and based on observations that they are sensitive to the frequency bands that
are typically excited by human activity [54]. The operational ampliier gain was separately calibrated for each
sensor and for each location to maximize the signal resolution while also preventing clipping (typical range of
ampliication was 100-1000X). For data collection, we selected a sampling frequency of 25600 Hz. This sampling
frequency was selected to ensure adequate time and frequency resolution for monitoring hand washing activities,
and so that, in future work, this approach can be combined with our prior work for occupant localization and
identiication [42, 56], which requires a higher sampling frequency.

The four experimental locations were: 1) a bathroom in the Porter Hall building at Carnegie Mellon University
(Figure 7a), which consists of a wall-mounted ceramic sink and separate wall-mounted soap dispenser, 2) a
bathroom in the Doherty Hall building (Figure 7b), which consists of a counter-mounted stainless steel sink and
separate wall-mounted soap dispenser, 3) a department kitchen area in Porter Hall (Figure 7c), which consists of
a cabinet counter-mounted stainless steel sink and counter-mounted soap dispenser, and 4) a bathroom in the
Tepper Quad building (Figure 7d), which consists of a wall-mounted ceramic sink and separate wall-mounted
soap dispenser. At each location we collected an average of 12 repetitions of data for each hand washing activity
(with approximately 10 seconds of data in each repetition) for an average total of approximately 120s of data per
activity per location that we used for training and testing our approach performance. The following sections
provide a summary of the evaluation results with respect to varying performance factors.
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Fig. 9. Confusion Matrices showing the prediction accuracy for all locations, with separate models trained independently for
each location in 9a (Scenario 1), and with a shared model trained on the combined location data in 9b (Scenario 2).

5.2 Hand washing Monitoring Performance

We irst consider the performance of our approach across all experimental locations. In this evaluation, we
combine the results from each of the four experimental locations when: 1) independent models are trained and
tested for each location; and 2) when all of the training data from each location is combined to create one model
for testing. In each scenario, we are using the controlled experimental data collected with one experimental
participant. Additionally, we evaluate each scenario using a 5-fold cross validation of the available data, where
the data is randomly partitioned into 5 train/test splits, with each split using 80% of the data for training, and 20%
of the data for testing. In this way, all of the available data is both used for training, and for testing.

5.2.1 Independent Models Performance. For Scenario 1, we independently train and test our approach for each
of the four experimental locations and compute the per-class accuracy for each of the hand washing activities
of interest (footsteps, soap, water, rinsing) as well as how well our model distinguishes these activities from
łidlež states. In addition, we compare our results to two diferent baseline approaches: łFFTž and łlogFFTž. These
baseline approaches use the same detection layer of our hierarchical learning (i.e., with data standard deviation
as a feature), but for the łFFTž baseline, we compute the model feature values for the other two layers as the
Fourier Transform amplitudes at each discrete frequency (frequency resolution of approximately 2Hz for a
0.5s data window). Then, for the łlogFFTž baseline, we instead compute the feature values as the log of the
Fourier Transform amplitudes at each discrete frequency. These two baseline approaches allow us to compare
the cepstrum features from our approach with similar features and show that the cepstrum-based features are
more suitable for diferentiating hand washing activities.
When comparing to the baseline approaches (Figure 8), we observe a signiicant performance increase with

our approach over each of the two baseline approaches for each class, and on average across each class. In this
igure, we are showing the per-class F1 scores and an average F1 score. The F1 score is a common metric for
evaluating classiication performance and is deined by the following expressions:
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F1n = 2 ∗
Precisionn ∗ Recalln

Precisionn + Recalln
(3)

Precisionn =
TruePositiven

TruePositiven + FalsePositiven
(4)

Recalln =
TruePositiven

TruePositiven + FalseNeдativen
(5)

where TruePositiven represents the number of correctly identiied data windows for activity n, False Positiven
represents the number of data windows belonging to activity n, but classiied as a diferent activity, and
FalseNeдativen represents the number of data windows belonging to a diferent activity, but identiied as
activity n.
In this way, we compute F1 scores for each activity and observe that our approach achieves F1 scores of

0.96 (Water), 0.95 (Rinsing), 0.90 (Footsteps), 0.98 (Soap), and 0.96 (Idle). Then, on average, we observe an F1
score of 0.95, which is a 8.8X error reduction over the łFFTž baseline (0.56 avg. F1 score), and a 10.2X error
reduction over the łlogFFTž baseline approach (0.49 avg. F1 score). These results show that our approach is able
to accurately monitor hand washing activities in a variety of settings, and that the cepstrum-based features used
in our approach overcome the challenge of similar vibration responses from diferent hand washing activities.
Figure 9a shows a confusion matrix summarizing the total performance for the independent models across

each of the 5 classes. From this igure, we observe that our approach achieves a very high accuracy for each
class associated with hand washing (i.e., soap, water, rinsing), and a high accuracy for distinguishing footstep
responses as well.

5.2.2 Combined Model Performance. For the second performance scenario, we evaluated the accuracy of our
model if the data from each of the four experimental locations was combined to create one uniied hand washing
event detection/classiication model. Figure 9b provides a summary of the model performance. From this analysis,
we observe that our model achieves a high accuracy for the sink area activities (95.0% rinsing, 96.4% water, 90.1%
soap), but a lower accuracy for detecting footsteps and distinguishing them from łidlež data windows (70.4% and
75.0%, respectively). In addition, there is more confusion between łsoapž and łrinsingž compared to independently
trained models discussed above. It is likely these decreases in model performance are due to the diferences in
data/feature distribution for each location. When a diferent sink/structural material or coniguration is present,
it changes the dynamic properties of that structure, and, therefore, the ensuing vibration signals. As a result, a
łfootstepž or łsoapž response in one structure may be signiicantly diferent than one in a diferent structure. In
our future work, we plan to explore ways to transfer models across diferent structures, which will reduce this
efect and improve model performance. We discuss this in more detail in Section 6.1.

5.3 Robustness to Diferent Structures

In this section, we take a detailed look at the performance of our approach in each of the four experimental
locations. Similar to the approach taken in Section 5.2.1, we independently trained and tested for each experimental
location. Also, for each model, we perform a 5-fold cross validation to iteratively train and test on all of the data.
Additionally, we compared our results with the same two baseline approaches, łFFTž and łlogFFTž.

Figure 10 provides a confusion matrix for each structure summarizing the results of this evaluation. Of all
the locations, the Doherty Hall location had the best overall performance, with 100% accuracy for every activity
except łfootstepsž. In this structure, footsteps were occasionally confused with łsoapž, which is likely due to the
fact that each of these represents a more impulsive excitation, and, therefore, has a similar vibration response.
Despite these similar responses, we are still able to identify both łfootstepsž and łsoapž with high accuracy. In
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Fig. 10. Performance of our cepstrum-based hierarchical classification approach for detecting and classifying hand washing
activities in four diferent structures.

both the Porter Hall Kitchen and Tepper Quad locations, we observe some confusion between the łrinsingž and
łwaterž activities, which likely resulted from the similar nature of their responses as well. In particular, the low
rate of the water and the amount of hand motion while rinsing can cause each of these activities to exhibit a
wide range of vibration responses and confusion between the two activities. We discuss our plans to further
characterize characteristics such as water low rate in Section 6.2.
Of all the four experimental locations, the Porter Hall Bathroom location displays the worst performance of

detecting and classifying footstep responses and soap activities. In this location, we note that the signal-to-noise
ratio (SNR) is very low, to the point where footstep and soap activities are not visible in the raw signals alone. As
such, it is diicult for the model to accurately model them and distinguish them from other activities. In particular,
due to the very low SNR, the footstep activities are efectively always classiied as łidlež. To reduce/eliminate
these types of classiication errors from our system, part of our future work will explore combining this work
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Fig. 11. Our approach compared to the two baseline approaches in each of the four experimental structures. In each structure,
our approach significantly outperforms the baseline approaches for average classification performance.

with our prior work in footstep detection/classiication using loor-mounted vibration sensing [43]. For this work,
we have focused on placing sensors only on the sink structure, but, if this system were deployed throughout a
building, the sink-mounted sensors could be networked with loor-mounted sensors to improve the detection
and classiication of footstep activities.

In addition, we compared the average per-class F1 score for our approach in each experimental location with
the average per-class F1 score obtained using each of the two baseline approaches. Figure 11 shows a summary
of this comparison. We observe that, despite the lower performance in the Porter Hall Bathroom for footsteps,
and Porter Kitchen/Tepper Quad for distinguishing rinsing and water, our approach signiicantly improves
over the two baseline approaches. We observe average error reductions over the two baseline approaches of
46X (Doherty), 10.6X (Tepper), 2.7X (Porter Bathroom), and 8.2X (Porter Kitchen), which indicates that our
cepstrum-based approach is efective for detecting and distinguishing between hand washing and robust to
diferent sink/structural environments.

5.4 Sensitivity to Training Data Availability

In this section, we explore the sensitivity of our model performance to the amount of available training data.
As previously described, we train our models using 80% of the available data, and test with 20% using a 5-fold
cross validation. This equates to an average of approximately 100s of training data for each class (idle, footsteps,
soap, water, rinsing). To understand the sensitivity of the model performance to the amount of training data, we
randomly select subsets of this training data at increasing ratios. We consider 20% (20s average/class), 40% (40s
average/class), 60% (60s average/class), and 80% (80s average/class), and compare the 5-fold cross validation
performance of each with the performance when the entire set of training data is used. Additionally, we recognize
that the sensitivity to the amount of training data may vary in diferent structures/locations; as such, we perform
this analysis separately for each of the four experimental locations.
Figure 12a, Figure 13a, Figure 14a, and Figure 15a summarize the results of this analysis for each of the four

experimental locations by showing the per-class average F1 scores for each level of training data, as well as the
average F1 score across all classes. As expected, the model performance generally increases with each additional
amount of training data. However, for the Porter Hall bathroom location, we note that the overall (average)
performance is slighly lower for the total data (100s) than for the lower amounts of data. In particular, the
model performance for łfootstepsž decreases from 80% of the data to 100% of the data. Additionally, the łsoapž
performance with 60% of the data is higher than with 100%. This indicates that some of the training data is
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Varying Training Data: Porter Bathroom
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(a) Performance in the Porter Hall bathroom location
with varying amounts of training data.

Porter Bathroom: Other Struct. Data
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(b) Performance in the Porter Hall bathroom location
with 60% of training data and with the addition of train-
ing data from other locations.

Fig. 12. Performance in the Porter Hall bathroom location with respect to the amount of training data used to train the hand
washing monitoring model.

Varying Training Data: Doherty
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(a) Performance in the Doherty Hall bathroom location
with varying amounts of training data.

Doherty: Other Struct. Data
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(b) Performance in the Doherty Hall bathroom location
with 60% of training data and with the addition of train-
ing data from other locations.

Fig. 13. Performance in the Doherty Hall bathroom location with respect to the amount of training data used to train the
hand washing monitoring model.

decreasing the model performance. This is likely a result of the comparatively low SNR for footstep responses in
this location. If a footstep response has a particularly low SNR, it may contain much of the same information
as the łidlež data (i.e., the ambient vibrations), which causes the model to have a diferent decision boundary
between the two classes, resulting in increasing prediction error. There are a number of potential solutions for
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Varying Training Data: Porter Kitchen
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(a) Performance in the Porter Hall kitchen location with
varying amounts of training data.

Porter Kitchen: Other Struct. Data
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(b) Performance in the Porter Hall kitchen location with
60% of training data and with the addition of training
data from other locations.

Fig. 14. Performance in the Porter Hall kitchen location with respect to the amount of training data used to train the hand
washing monitoring model.

overcoming this challenge of łbadž training data, including the naive approach of introducing additional loor
mounted sensors (as described previously), and also to leverage some active learning approaches, such as ones
described in our prior work [65, 66], which involve incrementally choosing training data that best describes
the class distribution and improves model performance. In our future work, we plan to explore these types of
approaches to improve model performance and decrease the training data requirements.

Of additional interest is the observation that, with approximately 60% of the total training data (60s/class avg.),
the models in each structure achieve similar accuracy as the models trained with the full set of training data. This
observation suggests that as little as 60s/1 min of training data could be collected for each hand washing activity
during initial calibration/deployment, and the system can achieve high accuracy for detecting and monitoring
hand washing activities with that limited amount of training data. This observation suggests that our system can
be easily deployed and scaled in real-world structures with little cost associated with initial calibration/training.
We discuss the scalability of our system further in Section 6.1.

We additionally explored the model performance if training data from other structures was added to the training
data from the test structure. With this analysis, we explore if the amount of training data can be reduced if
additional data from other structures is used for training the hand washing activity models. Figure 12b, Figure 13b,
Figure 14b, and Figure 15b show a summary of these results by providing the average F1 scores for each activity,
as well as the average across all activities for each model. In this analysis, we considered the 60% model from the
previous analysis (given that this achieved nearly the same accuracy as the 100% model), and added training data
from each of the other three structures; we then compared the 60% model, and the 60% plus other structures
model. From these results, we observe that, in each structure with the exception of the Porter Hall bathroom, the
introduction of training data from other structures decreases model performance. This result is consistent with
the observations in Section 5.2.2, where the combined model had decreased performance over the independent
models. This indicates that the feature data from diferent structures has a diferent distribution, and, therefore,
does not help with deining the model decision boundaries for the test structure. However, in some instances (e.g.,
water and rinsing for Tepper and Porter Kitchen), the addition of training data from other locations increases
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Varying Training Data: Tepper

Water Rinsing Footsteps Soap Idle Avg.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
g

. 
F

1
 S

c
o

re

20s Avg.

40s Avg.

60s Avg.

80s Avg.

100s Avg

(a) Performance in the Tepper uad bathroom location
with varying amounts of training data.

Tepper: Other Struct. Data
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Fig. 15. Performance in the Tepperuad bathroom location with respect to the amount of training data used to train the
hand washing monitoring model.

(a) First person’s predictions. (b) Second person’s predictions. (c) Third person’s predictions.

Fig. 16. Examples of time series predictions of our hand washing monitoring approach for each of the three experimental
participants. Our approach is able to detect and monitor the duration of hand washing activities from each person.

performance. This indicates that there may be some beneit of additional data from other structures if their data
can be transformed into one uniied feature space that is transferable across structures/locations (similar to the
approach taken in [43]). As discussed above, part of our future work will be to explore approaches to transfer
models across structures.

5.5 Robustness to Diferent People

Our inal experimental evaluation involves uncontrolled hand washing experiments with three individuals in our
Porter Hall kitchen experimental location. These experiments were conducted in accordance with our approved
Internal Review Board (IRB) study (STUDY2018_00000515). Each person was instructed to walk across the loor
for several steps to the sink area, wash their hands, and then walk away. This process was completed 10 times by
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(a) Overall performance: Person 1. (b) Overall performance: Person 2. (c) Overall performance: Person 3.

Fig. 17. Overall model performance for the time series predictions of the three experimental participants. We note that, in
these instances, there is some overfiting of the model for rinsing or soap (depending on the person). This is likely due to the
limited training data for each individual.

each person. We then applied our approach to the ensuing time series data from each person to determine the
accuracy in detecting and monitoring the hand washing activities. Each person’s data was analyzed independently
with a 10-fold cross validation where 9 of the 10 repetitions were used for training, and the last repetition was
used for testing. This was repeated 10 times so that every repetition was used for both training and testing for
each person. Ground truth information was collected using a camera and labeled in 0.5s increments (to match the
window size used in our approach).

We compared our results with the time series predictions to the ground truth labels, and also compared the
overall prediction accuracy using a confusion matrix for each person. Figure 16 shows an example of the time
series data, ground truth labels, and model predictions for each of the three walkers. From these examples, we
can observe that there is some diference in hand washing behavior for each person; for example, persons 1 and
2 used soap while the water was continuously running, while person 3 turned the water of to use the soap.
Our model was able to adapt to these styles for accurate monitoring of hand washing activities. In addition,
we computed the overall time series prediction performance for each person across all 10-fold predictions with
respect to the ground truth labels. These results are summarized in the confusion matrices in Figure 17. Overall,
the most confusion was with predicting łsoapž. This is likely due to the observation that, in most instances, the
łsoapž activity occurred while the water was running in the background. When this occurs, it is diicult to isolate
the soap efects in the signal from those corresponding to the water itself. In this work, we address that challenge
by labeling the łprimaryž activity of soap in these overlapping/concurrent activity windows. This approach
works for scenarios when the soap is still visible i.e., with high SNR), but has reduced performance in scenarios
with low SNR and/or when the water response dominates the signal. In our future work, we plan to address these
łoverlappingž activity scenarios by modeling the combined efects of concurrent activities to distinguish them
from the independent ones and improve overall classiication performance.

The best performance was observed with Person 3, where our model had high accuracy for łidlež, łfootstepsž
and łrinsingž. However, in each person’s results, there appears to be overitting in the last layer of the hierarchical
classiier. As a result, the models tend to predict either łrinsingž or łwaterž for the majority of the cases of
łrinsingž, łsoapž, and łwaterž. We expect that this deviation from the performance of our approach in diferent
structures and with combining all structures is due to these experiments having less training and test data. For
example, each individual used the soap dispenser just one time during each repetition (total of 10 data points per
person). As a result, it is more diicult for the algorithm to determine an accurate decision boundary, and it tends
to overit to the classes with more training data (i.e., rinsing and/or water). These results also appear to conlict
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with the time series predictions shown in Figure 16. This is likely due, in part, to the fact that we are predicting
on small windows (0.5s), while the duration of some activities like rinsing and water last for several seconds. As
a result, while our approach may generally detect both łrinsingž and łwaterž, it may also alternate predictions for
consecutive windows, resulting in a łlower performancež. To address this, we plan to incorporate a time series
smoothing/updating step to our approach that incorporates the likelihood of diferent activities at diferent times.
This is discussed in more detail in Section 6.2.

6 DISCUSSION AND FUTURE WORK

In this paper, we presented a novel approach for monitoring hand washing activities using structural vibration
sensing. Through real-world experimental validation, we showed that our approach is able to accurately detect,
classify, and monitor hand washing activities in a variety of settings, and with multiple diferent persons. In
this section, we discuss some of the assumptions and limitations of our approach, and how those relate to areas
of future work. These areas of future work can be categorized into two main sections: 1) large-scale system
deployment, and 2) indoor occupant activity monitoring.

6.1 Large-scale System Deployment

One of the primary considerations for a hand washing monitoring system is its ability to be deployed at building-
scale in a variety of settings. In this section, we explore some of the assumptions and limitations of our approach
with regard to the system scalability, and how our future work will address those limitations.

As discussed in the experimental evaluation, our approach performs best when the system is trained with
data collected at each location independently. Additionally, when data from other structures was introduced,
it reduced the overall performance of the model. This result implies that our system would require calibration
at each new location when it is installed. At the scale of an entire oice building or hospital, this calibration
requirement may be time-consuming and costly. To address this, we showed that reduced amounts of training
data (as low as 60s per activity) can be used to train the model and achieve similar performance. For large-scale
deployments, this approach can be used to reduce the training cost.
In addition, our future work aims to improve the model performance for large-scale deployments in several

ways: 1) loor-mounted sensors: as discussed in the evaluation section, we plan to leverage our prior work using
loor-mounted vibration sensors to create a large-scale deployment with both loor-mounted and sink-mounted
sensors. This combination will enable our model to achieve higher accuracy for detecting and classifying footstep
responses, and can also use those footstep responses for tracking/localizing and identifying the individuals. This
is particularly useful in hospital settings for monitoring each employee’s adherence to proper hand hygiene
practices. 2) model transfer: another approach for improving large-scale performance and reducing training
requirements is to develop an approach for transferring models across structures/locations. This will enable a
model to be trained in one location and then used for each new location without requiring extensive re-training.
In our prior work, we have shown that this can be useful for detecting footstep-induced vibration signals and
diferentiating them from other impulsive signals (e.g., objects falling, doors closing, etc.) [43]. In our future work,
we plan to adapt this or other, similar approaches to transfer hand washing activity monitoring models across
structures/locations. 3) active/online learning: in this work, we assume that the amount of training/calibration
data and the ensuing hand washing activity model is ixed at the time of initial deployment/calibration. In our
future work, we plan to explore methods for active and/or online learning to update the hand washing activity
models over time as more instances of hand washing occur at each location. This can be done by choosing new
training data in an unsupervised manner based on highest prediction conidence, or in a semi-supervised manner
(e.g., with active learning) by manually selecting the training data that improves overall model performance.
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6.2 Indoor Occupant Activity Monitoring

In this work, we assume that the only types of human activities to be detected are those associated with hand
washing. As such, any other activity that is recorded by the vibration sensors in the area will be classiied either
as łidlež or one of the hand washing activities. At large scale and in real-world scenarios, this assumption will
likely result in false-positives of hand washing activities and decrease the overall performance of our hand
washing monitoring system. Additionally, to address the challenge of overlapping/concurrent activities, we
deine łprimaryž and łsecondaryž activities in this work. As we observed in the evaluation with diferent persons,
this treatment can successfully overcome the challenge of overlapping activities in some instances, but does
not perform well when one activity dominates the other (i.e., if the łsoapž signal is signiicantly lower than
the łwaterž signal). Lastly, in real-world scenarios, there may be instances where multiple sinks are side-by-
side, and hand washing may occur concurrently at each sink. These situations represent an additional form of
overlapping/concurrent activities (i.e., multiple concurrent users), and make it diicult to separate and monitor
each individual activity.
In our future work, we plan to address these system limitations and assumptions by leveraging prior works,

which use structural vibration sensing to monitor indoor occupant activity and consider situations with multiple
concurrent occupants [6, 7, 23, 64]. In these works, we characterize the diferences in numerous human activities
in indoor environments, and explore the efect of overlapping/concurrent activities. We plan to incorporate this
into our hand washing monitoring system to reduce/eliminate the assumption of only hand washing activities
occurring in the sensing area, and to help with characterizing overlapping/concurrent hand washing activities.
For example, by incorporating behavioral models that describe the order and likelihood of diferent activities in
diferent settings, we can eliminate the assumption of only hand washing activities without overwhelming our
classiiers with all possible indoor activities, many of which may cause similar vibration responses. By expanding
our hierarchical classiication framework to include parallel models, we can detect multiple activities happening
concurrently without having to train for every activity combination. In doing this, we will improve the real-world
performance of our system and enable it to be applied in a variety of indoor environments.
Lastly, in our future work we plan to explore techniques for giving feedback to individuals who are washing

their hands to educate them on proper practices and inform them when they are not adhering to the CDC and
WHO guidelines. This feedback can come in many forms including audible reminders and/or visual cues. For
example, incorporating a small light that turns green when the individual has satisfactorily washed their hands.
The challenge with these feedback systems is how to implement them in a way that encourages good hand
washing practices, and is not seen as a nuisance or detractor. This may involve pilot studies using diferent
feedback systems in real-world settings to evaluate how efective each system is. In our future work, we plan to
explore these systems and leverage our collaborations with nearby healthcare facilities to evaluate each.

7 CONCLUSIONS

In this paper, we present a novel approach for monitoring hand washing activities using structural vibration
sensing. We overcome system challenges of similar and overlapping hand washing activities which occur on
multiple diferent surfaces/structures through a cepstrum-based hierarchical learning approach. This approach
extracts the diferences in the signal periodicity from diferent hand washing activities to enable accurate detection
and classiication of a person walking to the hand washing station (footsteps), turning on the water, using a
soap dispenser, and rinsing their hands. This approach enables non-intrusive and accurate monitoring of hand
washing activities in a variety of settings. We evaluate our approach with real-world hand washing experiments
across 4 structures, and with uncontrolled experiments involving 3 diferent experimental participants. Through
these evaluations, we show that our approach achieves an average F1 score of 0.95 across all four structures,
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which represents an error reduction of 8.8X and 10.2X from baseline approaches which use FFT and logFFT-based
features.
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