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patients) annually in the United States of America [74]. To combat these HCAIs and help reduce the spread
of COVID-19, the World Health Organization (WHO) and Centers for Disease Control (CDC) have published
guidelines for hand washing in healthcare settings as well as for the general public [24, 34, 57]. Despite this,
studies show that some healthcare providers only practice proper hand washing less than 50% of the time [11].
As a result, there is a clear need for hand washing detection and monitoring systems.

Existing approaches for detection and monitoring of hand washing in healthcare settings include direct
observation as well as sensing-based techniques such as vision, radio frequency (RF), acoustics, and wearables [4,
12, 26, 40, 47, 48, 58, 61]. However, each of these prior approaches is limited in many real-world applications due to
deployment restrictions such as line of sight/perceived privacy concerns (vision), sparse/insufficient monitoring
(direct observation), sensitivity to ambient noise (acoustics), and requiring users to wear and/6z carry a device
(RF, wearables). These limitations restrict the ability to accurately and ubiquitously monitor hand ashmg, which
reduces their ability to improve hand hygiene practices.

To overcome the limitations of these prior works, we introduce a new approach which 1
vibration sensing to monitor hand washing activity. The primary insight behind this aj
phases of hand washing (i.e., walking to the hand washing station, turning on
in the water), all generate excitations in the sink structure and/or surround
vibrations of the sink structure, our approach can accurately detect wh
monitor its duration to ensure proper compliance with hand washing

jon sensing can accurately detect
ink structure) [22]. In this work,

For example, footsteps and using a
rinsing hands both generate perio
shing using time series data alone. Figure 1 shows an example of
uced vibration signal, we observe that the “water” and “rinsing”

nd difficult to distinguish using time series data or traditional frequency-based
cult to detect and momtor each stage of hand Washmg

this challenge. In this
responses are very simil
features alone, maki
(2) Varying interacti
different surfages ¥

characteristics, and makes it challenging to characterize the response from each activity.

(3) Concurrent activities: various hand washing activities may overlap, which increases the difficulty in uniquely
identifying and monitoring their duration. For example, if a person leaves the water running while using a
soap dispenser, these two different activities are now overlapping one another, making them more difficult
to track individually.

To address these research challenges, we introduce a cepstrum-based hierarchical learning approach, which
extracts unique signal characteristics for different activities and characterizes responses on different surfaces.
This hierarchical approach first determines the presence of hand washing activities, then uses two additional
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Fig. 1. Vibration response from hand washing activities. Note the similarity between,di
rinsing) and that some are overlapping (e.g., soap and water)

someone approaching the
e extract unique aspects of

layers to classify those activities that happen away from the sink (i.e
sink), and then those activities that occur on/around the sink. Fo
each activities’ vibration response using a cepstrum analysis.
recognition domain to identify and emphasize periodicit
utocorrelation) by taking the logarithm
of Fourier transform amplitudes and then computin, , urier transform of those values. By combining
a Fourier analysis with a logarithm, the periodic co i signal are emphasized and visible as peaks in
activities, this enables better distinction between
#ising vs. water running) because each of these different
sxample, rinsing ones hands in running water interrupts the
changes the vibration excitation and response. In this way, our

s like footsteps, and another for sink interactions like water, rinsing, and
hierarchical approach, we characterize the differences in the signals for hand

overlapping s e identify that the overlapping activities typically consist of a “primary” and “secondary”
activity (i.e., r running in the background when soap is being used). Therefore, we label hand washing
activities by their primary activity only. In this way, we can robustly monitor hand washing practices and
accurately detect/monitor the primary actions.

To validate robustness in different structures and different hand-washing behavior, We have conducted real-
world hand washing experiments in four different buildings (with varying sink type and soap dispenser type),
with four experimental participants, and with approximately 40 minutes of hand washing activities.

In summary, the primary research contributions of this work are as follows:

(1) We introduce a novel approach for passive and ubiquitous monitoring of hand washing activities using
structural vibration sensing.
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(2) We extract unique signal components corresponding to each hand washing-associated activity using a
cepstrum-based feature extraction to reduce signal similarity and improve monitoring robustness.

(3) We evaluate our system and approach with real-world hand washing experiments in four buildings and
with four different experimental participants.

The remainder of the paper is organized as follows. First, in Section 2 we explore the relevant related work
in the areas of hand washing monitoring and structural vibration sensing. Next, in Section 3 we explore the
physical insights that enable our approach. In Section 4 we provide a detailed description of our hand washing
monitoring approach. Then, in Section 5 we present our real-world experimental evaluation. Finally, in Section 7
we discuss future work and summarize our work.

2 RELATED WORK

In our work, we monitor hand washing activities using structural vibration sensing
related to two main areas of research: 1) hand washing monitoring approaches, and 2)
analysis for feature extraction. In this section we will explore relevant pri
discuss the research gaps that our work addresses.

2.1 Hand Washing Monitoring Approaches

Hand washing monitoring is a very active research area in th i pain, particularly in light of the
COVID-19 pandemic. Traditionally, the most prominent app
settings is observation-based, where staff migrate through
compliance with hand washing policies [9]. However, t}
'instances where hand washing is required.

rous sensing-based approaches have emerged.
¢ompliance with hand washing recommendations [4,
mine how well hands were cleaned [48]. These vision-
“a direct and unobstructed line-of-site at the hand washing
sing-based approaches utilize wearable sensing including smart-
shing-associated hand/wrist motion as well as proximity-based

To address the limitations of observation-based a
Vision-based approaches rely on motion, ing
26], or are combined with ultraviolet (U
based approaches, however, are limited by
station, and raise privacy concerns. Other
watches and RFID tags to batl
detection (i.e., determine wh

nited due to the coarse-grained information (RFID) and/or the requirement
times and keep the device charged. Lastly, acoustic-based systems have
activities of daily living (ADLs), with some showing promise for monitoring

acoustic-base
and operatio achines/medical devices (e.g., beeping noises from monitoring machines, etc.). As such, in
clinical settingg, many of these acoustic-based sensing systems would be significantly affected by ambient noise
and have lower performance.

To overcome these limitations, our approach leverages structural vibration sensing to enable passive and
continuous monitoring of hand washing activities. Structural vibration sensing has been shown to accurately
monitor indoor human occupants’ activities [6, 51, 53, 54], identity [55, 56], location/presence [2, 16, 39, 43—
46, 50, 52, 59, 60], and gait health [14, 17-21, 33, 36]. These prior works, however, focus on general occupant
activities and information and do not account for similarity in signals due to hand washing activities, nor do
they account for signal characteristics with concurrent activities. In this work, we address these research gaps

ystems are sensitive to the presence of ambient noise such as people speaking, objects falling,

ACM Trans. Comput. Healthcare



Clean Vibes: Hand Washing Monitoring Using Structural Vibration Sensing « 1:5

through a cepstrum analysis-based approach which enables robust hand washing monitoring in a variety of
indoor settings and across different persons.

2.2 Cepstrum Analysis-based Approaches

Cepstrum analysis is a common approach for analyzing the periodicity of time series signals. It is a prominent
approach in the fields of speech/natural language processing (NLP), earthquake/seismic analysis, and in the
medical field for digital signals such as Electromyography (EMGs) [62]. In natural language processing, works
have used cepstrum-based techniques for differentiating between languages [27, 41, 73], speech analysis [70], and
emotion recognition [63]. In the earthquake/seismic analysis domain, researchers have shown the potential for
cepstrum coefficients to be used as features for determining the locations and characteristics of se mic events, as
well as distinguishing them from other high intensity events such as quarry blasts [3, 8, 28, 7 the medical
domain, cepstrum analysis is typically associated with processing imaging and/or time ser )
shown promise for applications in using EMGs for activity monitoring [32], neurologic

detecting neuromuscular diseases [15], and to assist with analyzing ultrasound i imag

In this paper, we leverage cepstrum analysis to differentiate between structu
hand washing activities. This represents a new domain and application for cep
this approach is that many of the hand washing activities generate similar

3 BACKGROUND AND PHYSICAL INSIGHTS

To enable our hand washing activity monitoring system, o 3]
insights. In this section we explore these underlying ph insights and discuss how they assist with addressing
the primary research challenges of our work. Firstywe deseribe fhe structural vibration sensing system used in
our approach and the physical insights that enable us to extract hand washing activity information from the
vibration signals (Section 3.1). Then, in Sé ’ nt an overview of cepstrum analysis and the physical
insights related to how it can be used for dif ing between similar and overlapping hand washing activities.

3.1 Structural Vibration Sensing

As previously discussed, ou
measure the duration of h
conduct hand washing

linear-elastic structuge (v

d washing monitoring system uses structural vibration sensing to detect and
ng activities. The main intuition behind this approach is that, when individuals
their movements excite the surrounding structure, causing it to displace. In a
g assume to be the case for any sink structure), the structure then restores to its
original state. les of displacement-restoration result in vibrations of the structural material.

,'ng the insight that we can measure these vibration responses due to handwashing
, asure the duration of the activities themselves, in an inverse manner. The foundation of
this insight builds off of the common convolution integral, which is used to describe the relationship between a
structure’s vibration response, the structure’s properties, and the forcing/excitation function. This convolution
integral is given by the following expression [67, 69]:

x(t) = h(t) = f(¢) (1)
where x(t) is the time history of the structural vibration response, h(t) is the structure’s impulse response function
(i.e., a characterization of its dynamic properties), f(¢) is the vibration forcing/excitation function (i.e., the hand
washing activities in our case), and * is a symbol representing the convolution integral. From this expression, we
can observe that, if the structure’s impulse response function remains constant, we can record vibration responses

ACM Trans. Comput. Healthcare



1:6 « Fagert, etal

due to various hand washing activities, learn the differences in the ensuing signal from each (i.e., differences in
f(1)), and generate a model which detects and classifies each hand washing activity given a structural vibration
response signal.

3.2 Cepstrum Analysis

As discussed previously, cepstrum analysis extracts the periodicity of the frequency spectrum of a signal. In this
section, we provide a brief overview of how cepstrum analysis can be used to extract signal features, and discuss
how these cepstrum-based features enable our hand washing monitoring approach.

The concept of cepstrum analysis was first developed by Bogert as a way to study seismic signals. Cepstrum
coefficients were defined as the power spectrum of the log of the power spectrum of a signal [5,49, 62]. This was
later revised by Oppenheim and Burgess to be the inverse Fourier transform of the log of the Fourier Transform

C, = %{T‘l{log )T[X(t)]”}

where C, are the real-valued cepstral coefficients for the vibration respons
a Fourier transform operator, and R is an operator denoting the real valt

We combine the expressions from Equation 1 and Equation 2 b
integral and Fourier transform operations, similar to the appr
approximation of the full derivation by using the absol
vibration response. As a result, we observe that real-va]

2]. For our work, we make an
er transform of the measured

In this work, we leverage this insight t]
cepstral coefficients to train a model whi
washing activity for a given time domain

if they are adequately following the WHO and CDC recommendations. Our
odules: 1) a sink vibration sensing module (Section 4.1), 2) a hand washing event
.2), and 3) a cepstrum-based hand washing activity classification module (Section 4.3).
, odules are each part of our hierarchical classification approach which contains three
independent models for determining the presence of hand washing, and then which activity is occurring at any
given time. Figare 2 shows an overview of our approach including each module and the hierarchical classifier. In
this section, we explore each of these modules in more detail and describe our overall approach for monitoring
hand washing activities using structural vibration sensing.

4.1 Sink Vibration Sensing

The first module of our approach measures the structural vibration responses due to hand washing activities.
In this section, we provide an overview of the sensing modality and describe how we collect and process the
structural vibration signals.
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Fig. 2. Our cepstrum-based hierarchical hand washing monitoring approach. Th hand figure shows an approach overview

and the right hand figure shows the hierarchical classification framew

nesensors. Geophone sensors are low-cost
ationj These sensors are mechanical sensors which
e sensing element [29]. As such, they require
e adhere the geophone sensors to the structure (i.e., sink)

To measure these vibration responses, our system us
vibration sensors which measure the vertical velocity of
rely on the vertical displacement of a suspended
a coupling with the structure. To accomplish thi
using bees wax; this ensures that the sé wi ]
undergoes from each of the hand washin ities, The benefit of this system is that the geophone sensors can
with little effort.
nals, we amplify them using a variable gain operational amplifier.
The gain for the sensing syst n be manually calibrated when initially deployed based on observed magnitudes

of the vibration responses.it Ideally, the operational amplifier gain is maximized to provide the most

4.2 Hand Washing Event Detection

The first layef ‘of our hierarchical classifier determines if there is any type of hand washing activity in the region.
We describe this process as “hand washing event detection”. In this section, we describe the process by which we
distinguish hand washing activities from “idle” behavior (i.e., when no hand washing is occurring).

4.2.1  Vibration Signal Preprocessing. The signal-to-noise ratio (SNR) of hand washing activity-induced structural
vibration signals has a large variance depending on the characteristics of the sink and surrounding structure.
As such, it is often necessary to remove/reduce the ambient noise levels in the measured vibration signals. In
particular, the activities that take place away from the sink (i.e., footsteps) typically have a low SNR because the
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Fig. 4. Example of the way d filtering on hand washing-induced vibration signals. The top figure shows the raw

nser being used, and the bottom figure shows the same signal after being filtered. Note

J'to the sink). To increase the signal SNR, our approach uses a data preprocessing step where we
reduce signal noise using a continuous wavelet transform (CWT)-based filtering approach.

The continuous wavelet transform is a time-frequency signal transformation that is well-suited to non-
stationary signals such as those induced by hand washing activities [1, 30, 31]. In our preprocessing step, we
first decompose the vibration signal window using a CWT with a Morse mother wavelet [37]. We choose a
Morse wavelet based on the insight that Morse wavlets provide a broad range of wavelet shapes and are well
suited to the varying excitation types encountered from hand washing activities (i.e., impulsive and continuous
excitations) [37]. In this work, we use a sliding window with a size of 0.5s to extract features. This window size is
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chosen empirically based on the observed duration of impulsive activities (e.g., footsteps and soap), and to ensure
adequate data resolution for the continuous activities (e.g., water and rinsing).

Once the signal window has been decomposed, we filter it by selecting a frequency band and performing
an inverse wavelet transform with only that frequency band. This frequency band can be chosen empirically
during initial calibration and setup based on the observed vibration responses. For our work, we have selected
a frequency band of 70 to 450Hz based on the observation that this band contains the most information about
the activities of interest (i.e., footsteps, soap, rinsing, water running), and also removes/reduces the amount of
ambient noise in the signal. An example of this CWT-based filtering is shown in Figure 4, where a raw vibration
signal generated from a soap excitation is shown both before and after filtering. After filtering, we observe a
much higher SNR and the soap activity is easily distinguishable from the ambient noise levels. Néte that, for some
structures, if the observed SNR is high, this filtering step may not be necessary and the raw si s,can be used
for the hierarchical learning approach below. The ensuing filtered signals are then used in th wo stages of
our hierarchical learning to determine the presence of any hand washing activity, and th
responses from other activities that occur on/around the sink structure. Figure 5 show
vibration signal for each of the hand washing activities. Note the similarity b
activity and the “Rinsing” and “Water” activity. In the following sections, we
hierarchical learning approach overcomes the challenges associated with

néry Support Vector Machine
VM classifiers are well-suited

4.2.2  Idle Classification. To classify “idle” and “activity” events, our syst
(SVM) classifier [13, 25]. We choose to use a SVM classifier based on ,
to small datasets and those without a well-defined feature distributi " our preliminary observations,
ifier, we extract features based on the
, d amount of data, and, therefore, use the

ation standard deviation) [35]. We then use
s the feature values from each signal window
If the label is “idle”, the system outputs this label as

4.3 Cepstrum-Based Hand Washing vity Classification

, our system uses the final two layers of the hierarchical classifier to determine
soap, water, or rinsing. In the following section, we describe this process in

In the third module of our ap
if detected activities are f
more detail.

rfaces/structures discussed above. By comparing footsteps (which occur on the ground)
to other hand hing activities (which occur at/around the sink), we can better characterize the differences in
their signals r¢sulting from the different mediums.

Detecting footstep events is an important component of monitoring hand washing activity so that the system
can tell if a person is walking to/from the sink/hand washing area. Additionally, in our prior work, we have used
footstep-induced structural vibration responses to uniquely identify and track individuals [42, 56]. Therefore,
we can combine this work and our prior work to track individuals and determine whether they have properly
adhered to hand washing protocol (e.g., in hospital settings).

In this layer of our hierarchical learning approach, we classify vibration signal windows as footsteps or “hand
washing activities” using a binary SVM model. For features, we extract cepstral coefficients from the filtered
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that there is not any hand washing activity.
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(c) Example of a “Soap” signal collected by

sensing system. nsing system.

Water Signal

@
E
°
$
]
o
£
<
K
g
5
(2]
.
S
g
s
s
0.1 02 03 04 05

Time (s)

(e) Example of a “Water” signal collected by our
sensing system.

Fig. 5. Example of vibration signals collected by our sensing system for each of the hand washing activities. Note the similarity
between the impulsive signals (e.g., “Footsteps” and “Soap”) and the continuous signals (e.g., “Rinsing” and “Water”). Our
cepstrum-based features highlight the differences between these similar signals to enable accurate and robust detection and
monitoring of hand washing activities.
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Fig. 6. Fourier transform- and Cepstrum-based features for rinsing and water run

excitation. This is especially important for situatio
activities are barely observable. We calculate the
and use a linear kernel when training th
the data is largely separable in this layer,
order kernels (which reduces the risk of
combine the cepstral coefficient features fo

epefficients using the process outlined in Section 3.2
hoose a linear kernel based on the observation that

[25]. Similar to the approach taken in the first layer, we

ch sensor in the sink/sensing area for our training and predictions.

rd and final layer of our approach to determine if the hand washing
", “water”, or “rinsing”.

4.3.2 Hand Wa
washin it
sink, water ru
discussed, there

these cases ouf primary interest is in detecting the usage of soap. As such, these activities are labeled as “soap’
for the purpose of model training and prediction.

We distinguish between each of the aforementioned hand washing activities using a multi-class SVM classifier.
Similar to the previous layer of our approach, we use cepstrum-based features in this layer by calculating the
cepstrum coefficients for the signal window using Equation 2. By using cepstrum-based features, our approach is
better able to distinguish between similar vibration responses (i.e., rinsing and water). Figure 6 shows an example
of the cepstrum-based feature extraction for several “rinsing” and “water” signals. In Figure 6a, we observe that
the Fourier transform fails to find unique signal components for each activity (there is a spike for “water” around

lassification. The final layer of our hierarchical learning approach classifies hand
r”, “rinsing”, and “soap”. These activities are defined by water running directly into the
ing'over a person’s hands to rinse them, and a person pumping a soap dispenser. As previously
s a possibility that individuals may leave the water running while using the soap dispenser - in

]

ACM Trans. Comput. Healthcare



1:12 « Fagert, etal.
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(a) Porter Bathroom experimental setup.

& Sensor |

(c) Porter Hall kitchen experimental setup.

epper Hall experimental setup.

Fig. 7. Experimental setup for each of the fog ions. In each location, vibration sensors were mounted on

the sink structure.

20 Hz for some signals, but4
In contrast, with cepstrum-b
¢ mple of these features, with the red circles highlighting instances where
activity.

aussian kernel based on the observation that our feature values are not linearly

drametric kernels, therefore reducmg the risk of overfitting [38]. With this model, our

, lwmdow label of “water”, “rinsing”, or “water”. Using the approach described above, our
system is able etect and differentiate hand washing activities using structural vibration sensing. Through a
sliding window, we can then monitor the duration of each activity (i.e., count the number of consecutive windows
with “rinsing” or “water”. This allows our system to record the presence of hand washing as well as its duration
to ensure that individuals follow the guidelines for proper hand hygiene set by the Centers for Disease Control
and the World Health Organization [24, 34, 57].

system outp

5 EXPERIMENTAL EVALUATION

To validate the performance of our hand washing monitoring approach, we conducted real-world hand washing
experiments with 4 total participants and across 4 different experimental locations. In this section, we discuss
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_and rinsing,

Fig. 8. Total performance of our approach compared to the baseline approaches.
reduction respectively over the FFT and logFFT approaches. The baselines effecti
detect classes that may overlap or have a wide range of vibration response, suc

erent structures (Section 5.3),
ed hand washing experiment involving

the overall performance of our approach (Section 5.2), the
different amounts of training data (Section 5.4), and thro
3 different individuals (Section 5.5).

5.1 Experimental Setup

experimental locations. For each location, vibration signals
were collected using two sink- or counter 24 geophone sensors [29]. In this work, geophone sensors
are chosen over other vibration-based se g modalities (such as acoustic sensors and accelerometers) due
to their low installation co based on observations that they are sensitive to the frequency bands that
are typically excited by huma ,t1V1ty [54]. The operational amplifier gain was separately calibrated for each
sensor and for each location to m e the 51gna1 resolution while also preventing clipping (typlcal range of

As described above, we evaluated our sys

bathroom in thie Doherty Hall bulldmg (Figure 7b), which consists of a counter- mounted stainless steel smk and
separate wall-mounted soap dispenser, 3) a department kitchen area in Porter Hall (Figure 7c), which consists of
a cabinet counter-mounted stainless steel sink and counter-mounted soap dispenser, and 4) a bathroom in the
Tepper Quad building (Figure 7d), which consists of a wall-mounted ceramic sink and separate wall-mounted
soap dispenser. At each location we collected an average of 12 repetitions of data for each hand washing activity
(with approximately 10 seconds of data in each repetition) for an average total of approximately 120s of data per
activity per location that we used for training and testing our approach performance. The following sections
provide a summary of the evaluation results with respect to varying performance factors.
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from the sensors and had the highest SNR. different data distribu

Fig. 9. Confusion Matrices showing the prediction accuracy for all locations, with sep trained independently for
each location in 9a (Scenario 1), and with a shared model trained on the comb ocatign data in 9b (Scenario 2).

5.2 Hand washing Monitoring Performance

We first consider the performance of our approa 5
1s when: 1) independent models are trained and
tested for each location; and 2) when all ¢ 4 from each location is combined to create one model
for testing. In each scenario, we are usi
participant. Additionally, we evaluate eac

the data is randomly partitioned i

o using a 5-fold cross validation of the available data, where
st splits, with each split using 80% of the data for training, and 20%
ilable data is both used for training, and for testing.

5.2.1 Independent Mod For Scenario 1, we independently train and test our approach for each
s and compute the per-class accuracy for each of the hand washing activities
1, rinsing) as well as how well our model distinguishes these activities from
pare our results to two different baseline approaches: “FFT” and “logFFT”. These
¢ ie same detection layer of our hierarchical learning (i.e., with data standard deviation
as a feature e “FFT” baseline, we compute the model feature values for the other two layers as the
Fourier Transform amplitudes at each discrete frequency (frequency resolution of approximately 2Hz for a
0.5s data window). Then, for the “logFFT” baseline, we instead compute the feature values as the log of the
Fourier Transform amplitudes at each discrete frequency. These two baseline approaches allow us to compare
the cepstrum features from our approach with similar features and show that the cepstrum-based features are
more suitable for differentiating hand washing activities.

When comparing to the baseline approaches (Figure 8), we observe a significant performance increase with
our approach over each of the two baseline approaches for each class, and on average across each class. In this
figure, we are showing the per-class F1 scores and an average F1 score. The F1 score is a common metric for
evaluating classification performance and is defined by the following expressions:
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Precision,, * Recall,
F1, =2x . (3
Precision,, + Recall,

. TruePositivey,
Precision, = — — (4)
TruePositive,, + FalsePositive,

TruePositive
Recall,, = — = - (5)
TruePositive, + FalseNegative,

where TruePositive, represents the number of correctly identified data windows for activity n, False Positive,
represents the number of data windows belonging to activity n, but classified as a different activity, and
FalseNegative, represents the number of data windows belonging to a different activit
activity n.

In this way, we compute F1 scores for each activity and observe that our approa
0.96 (Water), 0.95 (Rinsing), 0.90 (Footsteps), 0.98 (Soap), and 0.96 (Idle). Then, on
score of 0.95, which is a 8.8X error reduction over the “FFT” baseline (0.5
reduction over the “logFFT” baseline approach (0.49 avg. F1 score). These resu
to accurately monitor hand washing activities in a variety of settings, and

observe an F1
d a 10.2X error
r approach is able
strum-based features used

in our approach overcome the challenge of similar vibration response

Figure 9a shows a confusion matrix summarizing the total pe
each of the 5 classes. From this figure, we observe that our ap
class associated with hand washing (i.e., soap, water, rinsi
responses as well.

1e independent models across
a very high accuracy for each
cy for distinguishing footstep

5.2.2 Combined Model Performance. For the sec
was combined to create one unified hand washing
event detection/classification model. Figuze:9b pro mary of the model performance. From this analysis,
we observe that our model achieves a hig ;
soap), but a lower accuracy for detecting ,
75.0%, respectively). In addition, there is more confusion between “soap” and “rinsing” compared to independently
trained models discussed ab t is likely these decreases in model performance are due to the differences in
data/feature distribution for location. When a different sink/structural material or configuration is present,

In this section, we take a detailed look at the performance of our approach in each of the four experimental
locations. Similar to the approach taken in Section 5.2.1, we independently trained and tested for each experimental
location. Also, for each model, we perform a 5-fold cross validation to iteratively train and test on all of the data.
Additionally, we compared our results with the same two baseline approaches, “FFT” and “logFFT”.

Figure 10 provides a confusion matrix for each structure summarizing the results of this evaluation. Of all
the locations, the Doherty Hall location had the best overall performance, with 100% accuracy for every activity
except “footsteps”. In this structure, footsteps were occasionally confused with “soap”, which is likely due to the
fact that each of these represents a more impulsive excitation, and, therefore, has a similar vibration response.
Despite these similar responses, we are still able to identify both “footsteps” and “soap” with high accuracy. In
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Porter Bathroom Doherty
Footsteps 14.3% Footsteps 6.2%
Idle Idle 100.0%
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(a) Our approach performance at the Porter Hall bath- (b) Our approach performance at the Do
room location. room location.

Porter Kitchen

Footsteps Footsteps

Idle Idle

Rinsing

True class

Soap 100.0%

Water 17.8% 100.0%

0\6\995 We ?;\oé\‘\g ® ¥ ?;\“g'\‘\g ®
O

Predicted class Predicted class

(c) Our approach performance at the Porte
location.

(d) Our approach performance at the Tepper Quad bath-
room location.

h likely resulted from the similar nature of their responses as well. In particular, the flow
nd the amount of hand motion while rinsing can cause each of these activities to exhibit a
wide range of vibration responses and confusion between the two activities. We discuss our plans to further
characterize characteristics such as water flow rate in Section 6.2.

Of all the four experimental locations, the Porter Hall Bathroom location displays the worst performance of
detecting and classifying footstep responses and soap activities. In this location, we note that the signal-to-noise
ratio (SNR) is very low, to the point where footstep and soap activities are not visible in the raw signals alone. As
such, it is difficult for the model to accurately model them and distinguish them from other activities. In particular,
due to the very low SNR, the footstep activities are effectively always classified as “idle”. To reduce/eliminate
these types of classification errors from our system, part of our future work will explore combining this work
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| [m-our Approach
0.1 || EEEFFT
[JLogFFT

Doherty Tepper Porter BR  Porter Kitchen

Fig. 11. Our approach compared to the two baseline approaches in each of the four experimental s
our approach significantly outperforms the baseline approaches for average classification per

we have focused on placing sensors only on the sink structure, but, if this aeployed throughout a
building, the sink-mounted sensors could be networked with floor-mo ors to improve the detection
and classification of footstep activities.

In addition, we compared the average per-class F1 score for each experimental location with
the average per-class F1 score obtained using each of the t

the Porter Hall Bathroom for footsteps,
ater, our approach significantly improves

and Porter Kitchen/Tepper Quad for distinguishi
over the two baseline approaches. We observe a
46X (Doherty), 10.6X (Tepper), 2.7X (Po

5.4 Sensitivity to Traini

In this section, we explore

f this training data at increasing ratios. We consider 20% (20s average/class), 40% (40s
erage/class), and 80% (80s average/class), and compare the 5-fold cross validation
h the performance when the entire set of training data is used. Additionally, we recognize
that the sensitivity to the amount of training data may vary in different structures/locations; as such, we perform
this analysis séparately for each of the four experimental locations.

Figure 12a, Figure 13a, Figure 14a, and Figure 15a summarize the results of this analysis for each of the four
experimental locations by showing the per-class average F1 scores for each level of training data, as well as the
average F1 score across all classes. As expected, the model performance generally increases with each additional
amount of training data. However, for the Porter Hall bathroom location, we note that the overall (average)
performance is slighly lower for the total data (100s) than for the lower amounts of data. In particular, the
model performance for “footsteps” decreases from 80% of the data to 100% of the data. Additionally, the “soap”
performance with 60% of the data is higher than with 100%. This indicates that some of the training data is
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Varying Training Data: Porter Bathroom Porter Bathroom: Other Struct. Data
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Fig. 12. Performance in the Porter Hall bathroom location with respect to the a ning data used to train the hand

washing monitoring model.
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ing data from other locations.

Fig. 13. Performance in the Doherty Hall bathroom location with respect to the amount of training data used to train the
hand washing monitoring model.

decreasing the model performance. This is likely a result of the comparatively low SNR for footstep responses in
this location. If a footstep response has a particularly low SNR, it may contain much of the same information
as the “idle” data (i.e., the ambient vibrations), which causes the model to have a different decision boundary
between the two classes, resulting in increasing prediction error. There are a number of potential solutions for
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Varying Training Data: Porter Kitchen Porter Kitchen: Other Struct. Data
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Fig. 14. Performance in the Porter Hall kitchen location with respect to the a
washing monitoring model.

mounted sensors (as described previously), and also t € active learning approaches, such as ones
described in our prior work [65, 66], which invo 1 choosing training data that best describes
the class distribution and improves model performance. ur future work, we plan to explore these types of
training data requirements.

the models in each structure achieve similar agéurac¢yas the models trained with the full set of training data. This
observation suggests that as little as 60s/1 of training data could be collected for each hand washing activity
during initial calibration/de ent, and theé system can achieve high accuracy for detecting and monitoring
hand washing activities wit limited amount of training data. This observation suggests that our system can

be easily deployed and s 1d structures with little cost associated with initial calibration/training.
We discuss the scalabili ur system further in Section 6.1.

We additionally model performance if training data from other structures was added to the training
data fro ire. With this analysis, we explore if the amount of training data can be reduced if

as well as the average across all activities for each model. In this analysis, we considered the 60% model from the
previous analysis (given that this achieved nearly the same accuracy as the 100% model), and added training data
from each of the other three structures; we then compared the 60% model, and the 60% plus other structures
model. From these results, we observe that, in each structure with the exception of the Porter Hall bathroom, the
introduction of training data from other structures decreases model performance. This result is consistent with
the observations in Section 5.2.2, where the combined model had decreased performance over the independent
models. This indicates that the feature data from different structures has a different distribution, and, therefore,
does not help with defining the model decision boundaries for the test structure. However, in some instances (e.g.,
water and rinsing for Tepper and Porter Kitchen), the addition of training data from other locations increases
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Varying Training Data: Tepper Tepper: Other Struct. Data
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Fig. 15. Performance in the Tepper Quad bathroom location with respect to t
hand washing monitoring model.

f training data used to train the

Person 1 Person 2 Person 3

—Time Series Data | Soap
—— Ground Truth Labels|
lodel Prediction

Soap
Footsteps Footsteps
< Rinsing -- - L E e B Tt bbbttt Rinsing

- Water Water
“idie t - S T B e R ettt Idle

< Soap Soap
1 Footsteps Footsteps
< Rinsing Rinsing
1 Water Water

1 ldle Idle

cond person’s predictions. (c) Third person’s predictions.

ictions of our hand washing monitoring approach for each of the three experimental
le'to detect and monitor the duration of hand washing activities from each person.

icates that there may be some benefit of additional data from other structures if their data
ed into one unified feature space that is transferable across structures/locations (similar to the
approach takeft in [43]). As discussed above, part of our future work will be to explore approaches to transfer
models across structures.

can be transfo

5.5 Robustness to Different People

Our final experimental evaluation involves uncontrolled hand washing experiments with three individuals in our
Porter Hall kitchen experimental location. These experiments were conducted in accordance with our approved
Internal Review Board (IRB) study (STUDY2018_00000515). Each person was instructed to walk across the floor
for several steps to the sink area, wash their hands, and then walk away. This process was completed 10 times by
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(c) Overall performance: Person 3.
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Footsteps

Idle

Rinsing
Predicted Class

Soap

Fig. 17. Overall model performance for the time series predictions of the three experimental partici
these instances, there is some overfitting of the model for rinsing or soap (depending on the perss
limited training data for each individual.

each person. We then applied our approach to the ensuing time series d
accuracy in detecting and monitoring the hand washing activities. Each pe

or both training and testing for
in 0.5s increments (to match the

used for testing. This was repeated 10 times so that every repeti
each person. Ground truth information was collected using a ca
window size used in our approach).

We compared our results with the time series predict
overall prediction accuracy using a confusion mat

those corresponding to the water itself. In this work, we address that challenge
y of soap in these overlapping/concurrent activity windows. This approach
the soap is still visible i.e., with high SNR), but has reduced performance in scenarios
1 the water response dominates the signal. In our future work, we plan to address these

from the 1ndep, dent ones and improve overall classification performance.

The best pe, formance was observed with Person 3, where our model had high accuracy for “idle”, “footsteps”
and “rinsing”. However, in each person’s results, there appears to be overfitting in the last layer of the hierarchical
classifier. As a result, the models tend to predict either “rinsing” or “water” for the majority of the cases of
“rinsing”, “soap”, and “water”. We expect that this deviation from the performance of our approach in different
structures and with combining all structures is due to these experiments having less training and test data. For
example, each individual used the soap dispenser just one time during each repetition (total of 10 data points per
person). As a result, it is more difficult for the algorithm to determine an accurate decision boundary, and it tends
to overfit to the classes with more training data (i.e., rinsing and/or water). These results also appear to conflict
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with the time series predictions shown in Figure 16. This is likely due, in part, to the fact that we are predicting
on small windows (0.5s), while the duration of some activities like rinsing and water last for several seconds. As
a result, while our approach may generally detect both “rinsing” and “water”, it may also alternate predictions for
consecutive windows, resulting in a “lower performance”. To address this, we plan to incorporate a time series
smoothing/updating step to our approach that incorporates the likelihood of different activities at different times.
This is discussed in more detail in Section 6.2.

6 DISCUSSION AND FUTURE WORK

In this paper, we presented a novel approach for monitoring hand washing activities using structural vibration

classify, and monitor hand washing activities in a variety of settings, and with multiple d:
this section, we discuss some of the assumptions and limitations of our approach, and how t
of future work. These areas of future work can be categorized into two main secti
deployment, and 2) indoor occupant activity monitoring.

6.1 Large-scale System Deployment

One of the primary considerations for a hand washing monitoring syst
scale in a variety of settings. In this section, we explore some of t
with regard to the system scalability, and how our future work

As discussed in the experimental evaluation, our approag

at each new location when it is installed. At the
requirement may be time-consuming a
data (as low as 60s per activity) can be us
deployments, this approach can be used to

In addition, our future work aims to im
ways: 1) floor-mounted sensors; agidiscusse
floor-mounted vibration sens

e office building or hospital, this calibration
s this, we showed that reduced amounts of training
del and achieve similar performance. For large-scale
> training cost.

e the model performance for large-scale deployments in several
the evaluation sectlon we plan to leverage our prlor work using

tep responses for tracking/localizing and identifying the individuals. This
settings for monitoring each employee’s adherence to proper hand hygiene
“another approach for improving large-scale performance and reducing training
p an approach for transferring models across structures/locations. This will enable a
location and then used for each new location without requiring extensive re-training.
k, we have shown that this can be useful for detecting footstep-induced vibration signals and
em from other impulsive signals (e.g., objects falling, doors closing, etc.) [43]. In our future work,
we plan to adapt this or other, similar approaches to transfer hand washing activity monitoring models across
structures/locations. 3) active/online learning: in this work, we assume that the amount of training/calibration
data and the ensuing hand washing activity model is fixed at the time of initial deployment/calibration. In our
future work, we plan to explore methods for active and/or online learning to update the hand washing activity
models over time as more instances of hand washing occur at each location. This can be done by choosing new
training data in an unsupervised manner based on highest prediction confidence, or in a semi-supervised manner
(e.g., with active learning) by manually selecting the training data that improves overall model performance.

model to be t
In our prior
differentiatin
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6.2 Indoor Occupant Activity Monitoring

In this work, we assume that the only types of human activities to be detected are those associated with hand
washing. As such, any other activity that is recorded by the vibration sensors in the area will be classified either
as “idle” or one of the hand washing activities. At large scale and in real-world scenarios, this assumption will
likely result in false-positives of hand washing activities and decrease the overall performance of our hand
washing monitoring system. Additionally, to address the challenge of overlapping/concurrent activities, we
define “primary” and “secondary” activities in this work. As we observed in the evaluation with different persons,
this treatment can successfully overcome the challenge of overlapping activities in some instances, but does
not perform well when one activity dominates the other (i.e., if the “soap” signal is 51gn1ﬁcantly lower than
the “water” signal). Lastly, in real-world scenarios, there may be instances where multiple s
side, and hand washing may occur concurrently at each sink. These situations represent an

overlapping/concurrent activities (i.e., multiple concurrent users), and make it difficult to se
each individual activity.

In our future work, we plan to address these system limitations and assumptions
which use structural vibration sensing to monitor indoor occupant activity an i
concurrent occupants [6, 7, 23, 64]. In these works, we characterize the differe
in indoor environments, and explore the effect of overlapping/concurrent ae

occurring in the sensing area, and to help with characterizing overl 1rrent hand washing activities.
lihood of different activities in

different settings, we can eliminate the assumption of only , ' ities without overwhelming our
classifiers with all possible indoor activities, many of whic ilar vibration responses. By expanding
our hierarchical classification framework to include paral we can detect multiple activities happening
concurrently without having to train for every activity com n doing this, we will improve the real-world
performance of our system and enable it to be app| ed in agvariety of indoor environments.

Lastly, in our future work we plan to techn “for giving feedback to individuals who are washing
their hands to educate them on proper p inform them when they are not adhering to the CDC and

The challenge with these f
washing practices, and i
feedback systems in rea

ck systems‘is how to implement them in a way that encourages good hand
nuisance or detractor. This may involve pilot studies using different
rs to evaluate how effective each system is. In our future work, we plan to
e our collaborations with nearby healthcare facilities to evaluate each.

In this paper, resent a novel approach for monitoring hand washing activities using structural vibration
sensing. We overcome system challenges of similar and overlapping hand washing activities which occur on
multiple different surfaces/structures through a cepstrum-based hierarchical learning approach. This approach
extracts the differences in the signal periodicity from different hand washing activities to enable accurate detection
and classification of a person walking to the hand washing station (footsteps), turning on the water, using a
soap dispenser, and rinsing their hands. This approach enables non-intrusive and accurate monitoring of hand
washing activities in a variety of settings. We evaluate our approach with real-world hand washing experiments
across 4 structures, and with uncontrolled experiments involving 3 different experimental participants. Through
these evaluations, we show that our approach achieves an average F1 score of 0.95 across all four structures,
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which represents an error reduction of 8.8X and 10.2X from baseline approaches which use FFT and logFFT-based
features.
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