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ABSTRACT

Hardware implementations of cryptographic algorithms offer sig-
nificantly higher throughput on both encryption and decryption
than their software counterparts. Advanced Encryption Standard
(AES) is a widely used symmetric block cipher for data encryption.
The most commonly used architecture for AES hardware implemen-
tations is the multicycle design, where each round uses the same
hardware resource multiple times to increase area efficiency. In this
paper, we successfully decouple the interdependency of multiple
key bytes from the AES encryption. Thus, we solve each key byte
separately with an overall attack complexity in O(28). Moreover,
we uniquely determine each key byte through a chosen set of three
plaintext-ciphertext pairs. We propose two novel chosen-plaintext
attacks on multicycle AES implementations. Both attacks can elim-
inate the key diffusion from the MixColumns and Key Schedule
modules. The first attack takes advantage of vulnerable AES im-
plementations where an adversary can observe the output of each
round. The second attack is based on fault injection, where a single
fault on the completion-indicator register is sufficient to launch
the attack. Because no faults are injected in the internal computa-
tions of AES, the current fault detection mechanisms are bypassed
as no intermediate result has been altered. Lastly, we explore the
theoretical aspect for the inherent property of our attacks.
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1 INTRODUCTION

Advanced Encryption Standard (AES) [32] is one of the most com-
mon encryption algorithms used in various applications and pro-
tocols, e.g., disk encryption, Internet Protocol Security, Transport
Layer Security, etc.. With the objective to speed up the execution
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of algorithms, there is an increasing demand for creating dedicated
hardware [13, 15] other than optimizing software. This holds for
cryptographic algorithms as well [9, 14], and their hardware imple-
mentations offer better performance on both encryption and decryp-
tion. For example, these low-cost hardware implementations of AES
can be well suited for different Internet of Things (IoT) and Cyber-
Physical Systems (CPS) for enabling data security, which is practi-
cally non-existent for low-cost IoT devices [36]. The hardware im-
plementation of AES is generally multicycle, where each round uses
the same hardware resource to provide better area efficiency. Due to
the extensive use of AES across diverse sectors, hardware designers
can reference the open-source HDL designs which are available
in OpenCores [28]. These implementations offer designers greater
flexibility by choosing the one that matches their design criteria.
Over the years, different researchers have proposed various types
of attacks on AES, and successful countermeasures have also been
proposed. AES attacks can be divided into three categories — alge-
braic attacks [3, 7, 10, 11], differential fault analysis [1, 5, 12, 17, 21],
and side-channel attacks [19, 34]. Dunkelman et al. [11] have the-
oretically explored the effect of excluding the MixColumns trans-
formation. For a reduced-round AES-128 with a single round, they
can eliminate the majority of keys by sequentially guessing four
bytes in the round key and discard those that failed consistency
checks. It needs 21 trial encryptions, and the search complexity
is 0(2%2). Bouillaguet et al. [7] require O(2%°) simulations [6] with
one known-plaintext of a full round of encryption for key derivation.
They conjecture the time complexity under the same setup with one
more known-plaintext; however, the attack may not uniquely deter-
mine the AES key. Besides algebraic analysis, differential fault anal-
ysis becomes popular where errors or faults are introduced either in-
side the computation of a particular round or within the Key Sched-
ule algorithm. Blomer et al. [5] proposed an attack on AES by reset-
ting a bit after the XOR of input key and plaintext to zero. Observing
the difference in output ciphertext, it helps the attacker decipher
one key bit per fault. However, this attack needs to inject faults at
the metal wires with extreme timing precision [4]. Moradi et al. [21]
and Pogue et al. [29] perform differential fault analysis to extract the
secret key, where faults are assumed at the encryption rounds. Ali
etal. [1], Giraud et al. [12], and Kim [17] have successfully retrieved
the key with differential fault analysis when faults occur at the Key
Schedule. Multiple fault detection schemes [2, 16, 22] have been
proposed to identify faults through either error detection codes or
partial replication of the internal computation of AES. Several fault-
resilient AES implementations have also been proposed [18, 20, 33].
In this paper, we propose two attacks to break the multicycle
AES implementations. Both attacks take three plaintext-ciphertext
pairs to evaluate one key byte. The first attack is designed to break
a vulnerable AES implementation that leaks round operation to the
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output. An adversary can also access the internal scan chains and
observe the round register value. By varying one byte in plaintext,
we show that the effect of three other key bytes of the same Mix-
Columns operation, along with key addition, can be eliminated by
XORing the same output byte using only two plaintext-ciphertext
pairs. However, one more plaintext-ciphertext pair is necessary to
remove the redundant solution to uniquely determine the correct
key byte. The second attack focuses on breaking a multicycle AES
implementation where the content in ciphertext register is updated
once all the round computations are complete. The adversary can
launch the attack by injecting a fault in the flag register that sig-
nal the completion of all computations (e.g., done). Once a fault is
injected, the internal states of the round registers are dumped as
the ciphertext (see Figure 2). An adversary can perform the same
steps mentioned in the first attack to determine the key after ob-
serving the first round result from the ciphertext. This attack is
also applicable to the encryption round that skips MixColumns.
As no faults are injected in the internal computations of AES, the
traditional fault detection schemes can not identify this attack. We
show both attacks on different AES implementations with 128-bit
key size (AES-128) from the OpenCores benchmark site with the
key search space complexity of O(2%). The same attacks can be
applied to other AES implementations with 192/256-bit keys.
The contributions of this paper are summarized as follows:

Exhaustive key-byte search using three chosen plaintext-ciphertext

pairs: The exhaustive key search attack relies on the availability

of the internal round at the output of multicycle AES implemen-
tation. We show that an adversary only requires nine plaintext-
ciphertext pairs in total to decipher the entire 128-bit key.

o Fault injection attack: Fault injection is necessary when an adver-
sary cannot observe the internal state of the round register that
holds the output of each round. This fault injection attack focuses
on bypassing the entire computation of AES and dumps the inter-
nal state as ciphertext. We show that only one fault is necessary to
launch the attack. The fault is injected at the completion-indicator
register and does not affect the internal computations of AES,
which makes traditional error detection schemes ineffective.
The rest of the paper is organized as follows. We briefly introduce

the background for AES and describe the threat model in Section 2.

Our proposed attacks are presented in Section 3. A theoretical per-

spective for our proposed attacks is analyzed in Section 4. Finally,

we conclude the paper in Section 5.

2 BACKGROUND AND THREAT MODEL

2.1 AES Implementation

The hardware implementations of AES are often multicycle, where
area efficiency is assured since all the rounds use the same resources
at different clock cycles. Depending on the key size, the ciphertext
is produced after 10, 12, or 14 clock cycles. If each encryption takes
more than one clock cycle to finish, the ciphertext is generated after
an integer multiple of 10, 12, or 14 clock cycles for AES-128, AES-
192, and AES-256, respectively. Each encryption round contains
SubBytes (SB), ShiftRows (SR), MixColumns (MC), and AddRound-
Key (D) modules, while the last one skips MC, as shown inside
the dashed box of Figure 1.

Notations: We use the following notations to maintain uniformity
across the entire paper.
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e We adopt the following notations, where the superscript index
(i) in a variable indicates the current encryption round and the
subscript index (j) are for the byte index, from 0 to 15. For exam-
ple, the j*% byte in i*" round key is K ]’ and R! is the result for i”
encryption round. We use K, without any superscript, to refer to
the input key, which can be either 16, 24, or 32-byte for AES-128,
AES-192, or AES-256. To facilitate the derivation in the subse-
quent sections, we abbreviate the round one result R! to R. Aside
from the input key, the size for all other variables, e.g., plaintext
P, round register R!, round key K*, and ciphertext C, are 16 bytes.
Note that, in this paper, the ciphertext register C may not contain
the actual encrypted data. C, as explained in Section 3, can store
the internal round result, before the complete encryption finishes.
We use ciphertext and round one result R interchangeably.

e The S-box function is denoted as s(+). Round constant is RC.

2.2 Threat Model

As the hardware implementations of different crypto primitives
become prevalent, an adversary can launch the attacks by physi-
cally accessing the device. This section describes the adversarial
capabilities that help to carry out the attacks. The threat model is
summarized as follows:

o The attacker possesses a fully functional chip where the secret
key has already been programmed. For example, an electronic
device that ensures secure communication can be obtained from
an IoT/CPS application. By having the device, an adversary can
apply a plaintext and observe its corresponding ciphertext.

e The adversary can obtain the gate-level netlist of the AES im-
plementation. It can be either acquired through IC reverse engi-
neering [30] or from the GDSII files [35]. As the majority of the
IC production is offshore, an untrusted foundry can also provide
the reverse-engineered netlist to the adversary.

o The adversary can have access to the design-for-testability (DFT)
or scan architecture to observe the internal state of the design
(e.g., round registers). He/she can launch our proposed first attack
to obtain the secret key. Note that the DFT architecture provides
the necessary support for manufacturing tests [8]. If not, the
attacker can use fault injection equipment to inject a fault in
the completion-indicator (CI) register to launch our proposed
second attack. Laser fault injection equipment can induce very
precise faults and target a single flip-flop [31]. As this equipment
is available at universities, we assume that an adversary also has
the means to acquire such equipment.

3 PROPOSED ATTACKS ON MULTICYCLE
AES IMPLEMENTATIONS

We present two attacks to efficiently break multicycle AES imple-
mentations. The first attack exploits the minor issues in the imple-
mentations [25-27], where the round registers and ciphertext are
updated simultaneously in every round. The second attack, however,
requires fault injection for breaking a correct multicycle AES imple-
mentation which assigns the round result to the ciphertext output
only when it is in the final round [24]. Both attacks work on all three
key sizes of AES. For simplicity of discussion, in this section, we will
first show all the attacks on AES-128. The same attack methodology
can be applied to AES-192 and AES-256 with constant overhead
in worst-case search complexity, which we briefly describe how to
extend both attacks to key sizes larger than 128-bit at the end.
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| Plaintext (P) | [ Key(®X) |
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Figure 1: Hardware implementation of multicycle AES-
128 [25-27].

3.1 Proposed Exhaustive Key-Byte Search Attack

Our first attack is specific to the multicycle AES implementations,
where the output for each encryption round can be observed as
ciphertext C. Figure 1 shows an abstract view of the multicycle AES
implementation when a designer incorrectly implements AES or an
adversary has access to the internal scan chains. For example, one
implementation from OpenCores [27] assigns the ith round result,
MC! @ K, straight to the ciphertext output, and other implemen-
tations [25, 26] connect the ciphertext to the round registers. Both
data-paths are highlighted in blue in Figure 1.

The traditional AES implementation mixes different key bytes in
such a way that an adversary cannot remove the interdependency
among the key bytes in the ciphertext. As a result, AES remains
secure no matter how many plaintext-ciphertext pairs one can ob-
serve. However, if an adversary can observe the round outputs
stored in the round registers of a multicycle AES implementation,
it is possible to remove the dependency across the key bytes. We
show that one key byte can be determined without knowing the
other key bytes in this attack. Thereby, we determine a key byte
through simulating all 28 key combinations and compare the result
with one byte round register value from the working chip under
attack to derive the correct key. In the following, we present the
detailed steps to obtain the first key byte, K. Similar analysis can
be performed to reveal the other key bytes.

e Step-1: The adversary chooses two plaintexts, P and P’, and ob-
serves the two corresponding round outputs R and R’ after the
first clock cycle from the chip.

o Step-2: The first byte (Rp) of round output R is computed using
the following equation:

Ro {MC(SR(SB(P ® K"))) ® K'}¢

{MC(SR(SB(P® K°)))}o ® K,

[02® s(Py @& Kp) ® 03 ® s(P5 ® Ks) & (P19 ® Kio) &

s(P15 ® Ki15)] @ [Ko @ s(K13) @ RC]. 1

From Equation 1, we can observe that the value of Ry depends on
Ko, Ks, Kj0, K13, and Kjs. Key bytes which can be derived from
the equation are highlighted as boldface letters. At this point, it
is sub-optimal to brute force all five key bytes as they cannot be
uniquely determined. Multiple collisions occur for the 240 key
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combinations that lead to the same 8-bit Ry value. Therefore, we
choose another plaintext P’ with the following properties:

Py # P}, and P; = P}, i =5,10,15

The R} can be computed using the following equation:
Ry = {MC(SR(SB(P’®K")) @K'}

= {MC(SR(SB(P' @ K")))}o ® K,

= [02®s(Pj® Ko) ®03®s(Ps @ Ks) & (P1o ® K1) &

s(P15 © K15)] @ [Ko @ s(K13) @ RC]. )

The computation details can be found in [32].
Step-3: Ry and R are XORed to remove the dependency for other
key bytes.

Ro®R;, = [02®s(Pya® Kop) ®03®s(Ps® Ks) & (P1o & K1o)

@ s(P15 ® Ki5)] ® [Ko ® s(Ki3) ® RC] & [02
® s(Py @ Ko) ® 03 ® s(P5 ® K5) & (P19 & K19) @
s(P15 ® K15)] @ [Ko ® s(K13) ® RC]

= 02®s(Py @ Kp) ®02®s(P; &Ko) (3)

We can rewrite Equation 3 as:
s(Py ® Ko) ® S(Pé ® Kp) = My (4)
where, M is a constant.
Step-4: Brute-force attack is performed using Equation 4.

The only unknown in Equation 4 is Ko, allowing the attacker
to enumerate all 256 combinations of Kj to find the one that
satisfies it. However, there exists more than one solution due to
the nonlinearity introduced by the S-box.

Claim-1. There exist two solutions for Equation 5.

s(pok)ds(p’ ®k)=m (5)
where, p, p’, k, and m are of one byte, and p # p’.
Observation. There are 128 unique values for byte m for all 256
combinations of k under any fixed p, p’ and p # p’. One can
verify the above observation using code available in GitHub [23].
We denote the 128 unique values of m as m;, i € 0,1, ..., 127 and
m; # mj wheni # j.
Proor. For each valid m;, there is at least one unique key k{ ,
i€0,1,..., 127, that satisfies:
sip@k) @s(p’ @kj) =m; (6)
Due to m; # mj, when i # j, and the bijective property of the S-
box, k{ * k§, when i # j, with fixed p, p’, p # p’. We denote the
set of these 128 solutions as Group I The proof for the existence of

another solution for each m; is sufficient for validating the claim.
Let us consider another key byte klu with the form kl.H =

kf @ p @ p’. Clearly, le * k{ since p # p’.
Applying the value of kiH in Equation 6, we compute:
spokiNosp’ @klh
=s(poklopep)osip oklepap)
=s(klop) @skkl @ p) =m; 7)
Next, we show that all these 128 k!I’s are unique as well. Now
consider any two solutions le and k? ,Vi#j. As kl.I * kﬁ, then
I ’ I ’ ; 11 11 :
(k;@opop’) # (kj ®p ®p’). This results k;* # kj . This proves
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that no two le , k? ,i # j are the same, and we denote the set
these 128 solutions as Group I

Finally, the proof will be complete, if we show that there|i
no overlap between the solutions in Group I (kf ’s) and Group| I
(kl.H ’s), where each group contains 128 unique key within. Let
us assume that kl.H belongs to Group I and denote with index
where i # j, sz = k;. Substitute k§ in Equation 6, and we get

sip@ k) @s(p’ @ kf) = m;. 3)

Combining Equation 8 and Equation 7 for kl[ , we have m; = m;,
which contradict the uniqueness of 128 m;’s for i # j. Thus, there
are no common solutions between Group I and Group II and
the 256 solutions from the joint groups make up all the possible
key-byte combinations. Therefore, we proved that there exist
only two solutions for each m; that satisfies Equation 5. O

Step-5: The double-solution is removed by selecting another plajn-
text (P”’) with P’ differs from both Py and Pj (i.e., Py # Po # Fj),
and keeping P’ = Ps, P{( = P19, and P; = P15 unchanged. Using
Step-2 and Step-3, we obtain the following equation:

Key (K)

Plaintext (P)

128

128 K’

Load

pr_data_@ <= r_00 when round_cnt=11
else mixcol_0;

s
s

K Key

Expansion

elsif rising_edge(clk) then
if(start_d2 = '1' and start_dl = '@') then
done_d1 <= '@'; done_d2 <= '0';
elsif(round_cnt = 10) then
done_d1 <= '1';

ﬁ Round Registers (R) |

»
done_d2 Reg 7= 0|
if(done_dl = '1' and done_d2 = '@') then

~ data_out <= (next_round_data_0(0)
& next_round_data_0(1) ...

|d0ne7d1 Reg ?=1

| Ciphertext (C)

.

Figure 2: Structure of multicycle AES-128, where round
result R is sent to ciphertext C only after the last round of

s(Po ® Ko) @ s(Py’ @ Ko) = No, 9

where, Nj is a constant. Equation 9 is applied on the two pre-
viously obtained solutions (i.e., Ké and Kél ) to determine the
correct key byte.

Claim-2. Both solutions, Ké and Kél , cannot be valid under both
Equations 4 and 9.

Proor. Let us assume that both solutions, Ké and Kél , are
valid and satisfy Equation 9. As a result, we can write,

s(Po@ K @s(P) ®Kl) = Ny
and
sthro ki es(Pl @Kd) = Ny

Using Claim-1, we can write s(Py @ Ké) =s(P) ® Kél). Also,
with Claim-1 and Equation 4, we can write s(Py ® Ké) =s(Pj &
Kél). This results, s(P; Kél) =s(Py ® Kél). This can’t be true
as P’ #P". |

In the same manner, key bytes K5, K9, and Kjs5 are determined
through either of the first four-bytes from round output, Ry, R1, Rz, R3,
by varying the corresponding plaintext byte, Ps, P19, or P15 and con-
straining the other three plaintext bytes to remain unchanged.

To find the remaining key bytes, we need to consider three bytes
of the round register, one from Ry — R7, Rg — R11, and Ry — R;5 each.
These three bytes are sufficient to find the remaining key bytes as
their MixColumns transformation incorporate all 12 key bytes. For

example, we consider R4, Rg, and Rj2, as shown below:
Ry =[02®s(Py® Ky) ®03Qs(Py® Kg) & s(P14® Kyq) ®

s(P3® K3)] & [K4 ® Ky @ s(K13) @ RC] (10)

Ry =[02®s(Ps® Kg) ® 03 ® s(P13® Ky3) ®s(Py ® Ky) &
s(P7® K7)] @ [Kg & K4 & Ko & s(K13) ® RC] (11)
Riz =[02®s(P12® Kq2) ®03Q s(P; ® Ky) @ s(Ps ® Kg) ®

s(P11 ® K11)] @ [K12 @ Kg ® K4 & Ko @ s(K13) @ RC] (12)
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encryption [24], code segment from Lines 319-326, 399-428.

The remaining key bytes can be determined iteratively using
Equations 10-12 and Steps 1-5. Note that an adversary can also
choose Ry, R5, Ry and Ry3 or a few other combinations to determine
all 16 key bytes as well.

3.2 Proposed Fault-Injection Attack

The first attack is efficient in determining the key when an adversary
can access the round registers that hold the output of each round.
An adversary can use the scan architecture or exploit a faulty imple-
mentation for such a purpose. However, one cannot always assume
access to registers. This motivates us to propose a fault injection at-
tack that allows us to observe the internal state and utilize the previ-
ously presented brute-force attack. Note that the fault injection has
become an effective means to launch an attack. It has been demon-
strated that laser fault injection can successfully target a single regis-
ter [31]. The same methodology and procedure in [31] is applicable
to launching our proposed fault injection attack on AES. This attack
leads to two possible scenarios, and both are elaborated below.
First, let us examine an example in OpenCores [24], which does
not have the weakness of other implementations described in Sec-
tion 3.1. Figure 2 shows this multicycle AES implementation where
the ciphertext register receives the round register value at the last
encryption round (e.g., when done_d1 == 1 and done_d2 == 0). We
also assume that an adversary does not have access to the internal
scan chains and only observes the ciphertexts. The round operations
are the same with Figure 1. We include the HDL code excerpt in Fig-
ure 2 which describes how the completion-indicator (CI) registers
(e.g., done_d1and done_d2), and the ciphertext (i.e., data_out) are up-
dated. As the done_d2 register holds a logic 0 value during the round
operations, the round registers values (e.g., next_round_data_0), are
propagated to the ciphertext output (e.g., data_out) when done_d1=1.
It is thus sufficient to inject only one logic 1 fault to done_d1 register
to extract round register value. Once the internal value is observed,
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an adversary can perform Steps 1-5 presented in Section 3.1 to
retrieve the secret key completely.

Second, a hardware implementation can have the same logical
condition applied to both skipping the MixColumns transformation
and assigning the round register result to the ciphertext C, since
both should happen at the last encryption round. In this way, if
the attacker injects all the necessary fault to force the round result
observable, the MixColumns step is also affected and bypassed.
Alternatively, it may be possible for an adversary to inject faults on
both CI register and round counter (e.g., round_cnt) so that he/she
obtains the result from the first encryption round, but skips the
MixColumns module. We briefly describe how an attack can be
launched when bypassing the MixColumns operation.

o Brute-force attack without MixColumns Operation. Let us
consider the first byte of round register R (i.e., Ry) after applying
the first plaintext P, which can be computed as:

Ry =s(Py @ Ko) & [Ko @ s(K13) @ RC].

After applying the second plaintext P” with Py # P, we can
write:
R6 = S(Pé ® Ko) @ [Ko & s(K13) @ RC].

Finally, we obtain
s(Py ® Ko) ® S(P(,) ® Ko) = My
where, M is a constant.
Then, we can follow the same procedure described in Steps 4-5
in Section 3.1 to recover key byte Kj.

3.3 Extending the Proposed Attacks to AES-192
and AES-256

The attacks presented in Sections 3.1-3.2 can retrieve the entire 16
bytes of the secret key for AES-128. It can also recover the first 16
bytes from AES-192 and AES-256, although the exact expression
for round key in Key Expansion is different. However, it is neces-
sary to extract the remaining 8 and 16 bytes for 192- and 256-bit
keys, respectively. These key bytes belong to the second round key
K1, where they influence the result of the first encryption round
through AddRoundKey (€P). As a result, the adversary can deci-
pher these key bytes from any one of the plaintext-ciphertext pairs
obtained in Section 3.1 or 3.2, without the need to give additional
plaintexts to the oracle or perform extra fault injections. For AES-
192, the first eight bytes of the round key K1, K(}, K71, are the last
8 bytes of the input key K, Kjg, ..., K23, respectively [32]. Likewise,
the entire round key K! is nothing but the last 16 bytes of input key
K for AES-256, K! = {Kis, ..., K31} [32]. We show how to determine
key byte Ki¢ of AES-192 from the observed R in the following:

Ry = {MC(SR(SB(P®K")))®K'}o
= {MC(SR(SB(P ®K")))}o ® K}
= [02®s(Py® Kp) ®03Qs(P5 & Ks) ® (P1g & Kip) ®
(P15 ® Ki5)] @ [Kie]
= Kis®0Q1, (13)
where Q1 = 02 ® s(Pp @ Ky) @ 03 ® s(P5 & K5) & (P10 & Ki9) &
s(P15 @ Ki5) is a constant as Ko — Kj5 are known. One can directly
compute Kj¢ by XORing Ry and Q.
It is also possible to determine Kj¢ directly, if adversary chooses

to bypass the MixColumns operation. We can also write:

Ry = s(Py ® Ko) & [Kis], (14)

447

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

where s(Py ® Kp) is a constant as Ky — Ki5 are known. The key byte
Ki6 can be computed by XORing Ry and s(Py @ Kp) like before.

The other key bytes (i.e., K17 — K23) can be obtained similarly
from R; — R7. One can perform similar analysis to obtain the re-
maining K16 — K31 key bytes from Ry — Ry5 for AES-256.

3.4 Number of Plaintext Requirement

In Section 3.1, three plaintexts are sufficient to derive one key byte.
Note, in these three plaintexts, we only vary one byte of the same
index and constrain the bytes at the three other indices to remain
unchanged. Because we do not have constraints on all 15 remaining
plaintext bytes, we are allowed with more flexibility on other plain-
text bytes that do not belong to the same MixColumns computation
as the key byte of interest. Instead of the apparent 3 = 16 = 48
plaintexts to recover all 16-byte key, we can reduce this number by
having four plaintext bytes, where no two bytes resides in the same
MixColumns operation, vary concurrently in one plaintext, e.g.,
Po, P4, Pg, P12. Hence, the minimum number of plaintexts needed
for this attack is 1+2X4 = 9, where the minimal three plaintexts are
satisfied by having one reference plaintext and its corresponding
two variants. Once all nine ciphertexts are obtained, all sixteen
key bytes can be determined in parallel, making the worst-case
complexity of O(2%). Suppose the round result skips MixColumns
transformation, as of the second possible scenario in Section 3.2,
each key byte is still recovered with three plaintext-ciphertext pairs.
However, since we do not have the restriction on the other three
plaintext bytes as for Section 3.1, it does not matter if other bytes
stay the same or not. Hence, we can reduce the required number of
plaintexts to break the entire key from 9, as for the attack in Section
3.1, down to 3, as long as the byte at the same index (e.g., index j)
is different in all three plaintexts, Pj # P]f # PJ’/ . The worst-case

complexity of this attack is still 28 = 0(2%), since all sixteen key
bytes, K;’s, can be recovered concurrently, without the need to wait
for any other bytes to be resolved first.

4 THEORETICAL JUSTIFICATION
OF DOUBLE-SOLUTION FOR EQUATION 5

Aside from the exhaustive simulation we performed in Section 3.1,
we present another perspective on the dual solutions, k! and k!, for
Equation 5. Instead of the common approach [10] to expand the S-
box to a system of equations in a bit-by-bit manner, we consider the
polynomial in GF(28) as the fundamental unit. To differentiate ma-
trix multiplication from polynomial multiplication under GF(2%)
with irreducible polynomial IP = [1000 110 1 1], we use - for
matrix multiplication. S-box s(x) = y contains two operations [32].
It first find the inverse polynomial, x~! of its input byte x under
GF(2%) and IP. Then, it applies the affine transformation on x~!
with a reversible matrix H of size 8 X 8 bits and an 8-bit column
vectorc = [11000110]7 to get output byte y = H - x ! @ ¢ [32].
For our analysis, we can expand Equation 5 with the details of
the internal construction of S-box as:
H-pek)lec)eH-p ok @c)=m.

Note that (p ® k)~ and (p’ @ k)~! are the inverse of (p ® k) and
(p’ ® k), respectively. After rearranging terms, we get
H-(pek) e (@ k) !)=m.

Since 8-by-8 bit matrix H has inverse, denoted as H ~1 we obtain
pok) e ok l=H"' m
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Now, both sides of the equation are polynomials in GF(28). We use
constant d to represent H=' - m, d = H™! - m, for clarity.

If we multiply both side with polynomial (p @ k) and (p’ @ k),
weeel ek e(pek) =de(pek) ®(p ok).
We can further simplify it as

pop =de|(kek)e(pop)eke (pop)].

Since d is a polynomial under GF(2%) and it is not the zero polyno-
mial, the inverse of d exists and we denote it as d~1. Multiply both
side with d~! and abbreviate k ® k as k? under GF(2%), we have

Kopep)oke(pop)ed e (pap)=0.

Thus, we complete the derivation and it is clear that Equation 5 is
a quadratic equation with respect to the unknown variable k.

Under any quadratic equation x? + ax + b = 0 in R, the two roots
x1,x2 satisfy x1 + x2 = —b,x1 X x2 = ¢. We made an interesting
observation that these properties also hold true for Equation 4. The
two solution for Equation 5, KL R K uphold both

Kk =
K e k!

p@®p’, and

Ko pep) okl

= K)?e(pep) ek

= (pep)ed'e(per)
5 CONCLUSION

In this paper, we presented two novel attacks targeting the hard-
ware implementations of multicycle AES. In both attacks, each key
byte requires only three plaintext-ciphertext pairs to retrieve its
value. The entire secret key is recovered by solving all key bytes in
parallel, resulting in a O(2%) worst-case complexity. If the internal
round result is not observable in the output, we propose to in-
ject fault on the completion-indicator register to reveal the internal
state. Any traditional method can be applied to inject faults, and the
protection against the fault injection attacks can be bypassed since
no intermediate result is affected. We also showed the algebraic
perspective on the dual solutions of Equation 5. Finally, we provide
the theoretical extension of the properties of a regular quadratic
equation to the finite field GF(2%), which support Claim-1.
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