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ABSTRACT

Monitoring the compliance of social distancing is critical for schools
and offices to recover in-person operations in indoor spaces from
the COVID-19 pandemic. Existing systems focus on vision- and
wearable-based sensing approaches, which require direct line-of-
sight or device-carrying and may also raise privacy concerns. To
overcome these limitations, we introduce a new monitoring system
for social distancing compliance based on footstep-induced floor
vibration sensing. This system is device-free, non-intrusive, and
perceived as more privacy-friendly. Our system leverages the in-
sight that footsteps closer to the sensors generate vibration signals
with larger amplitudes. The system first estimates the location of
each person relative to the sensors based on signal energy and
then infers the distance between two people. We evaluated the
system through a real-world experiment with 8 people, and the
system achieves an average accuracy of 97.8% for walking scenario
classification and 80.4% in social distancing violation detection.
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1 INTRODUCTION

Social distancing compliance monitoring is important to advance
COVID-19 recovery in public indoor spaces such as schools and
offices [4]. To monitor the compliance of social distancing in indoor
spaces, existing studies focus on cameras and wearable devices to
localize people. However, vision requires direct line-of-sight, which
may not work well in indoor spaces with obstructions [1]; wearable
sensing requires device-carrying for every occupant, which may be
impractical in public settings [2]. They also raise privacy concerns
in personal image/location data sharing.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SenSys’21, November 15-17, 2021, Coimbra, Portugal

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9097-2/21/11.

https://doi.org/10.1145/3485730.3492893

Therefore, we introduce a new system for social distancing mon-
itoring based on footstep-induced floor vibration sensing. Our sys-
tem is device-free and perceived as more privacy-friendly. Also, it
doesn’t require direct line-of-sight. This study explores the walking
scenarios with two people in the hallway, which are common in
public indoor settings. Our prior work has successfully localized
multiple walkers using floor vibration sensing through multilat-
eration [5]. Yet it requires high sampling rates and computational
power, which may not be available in large scale public spaces.
In addition, there are many possible variations in walking scenar-
ios, including different walking directions, speeds, and the nearest
locations where people are closest to each other.
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Figure 1: Examples of social distancing monitoring in 2
walking direction scenarios: (a) opposite and (b) same direc-
tion. Black lines are vibration signals. Red dashed lines are
energy features. Green dotted lines are estimated walking
paths between Sensor 1 (S1) and Sensor 4 (S4) over time.

We overcome these challenges through energy-based localiza-
tion across multiple sensors (see Figure 1). The method is based
on the observation that footsteps closer to the sensors typically
generate vibration signals with larger amplitudes. Our system first
infers the pedestrian location relative to multiple sensors based
on the footstep signal energy and then check the social distancing
compliance at the nearest location.

We evaluate our system through a field experiment with 4 sen-
sors and 8 people and achieve an average of 80.4% accuracy in social
distancing violation detection.

2 FLOOR VIBRATION-BASED SOCIAL
DISTANCING COMPLIANCE MONITORING

Our system consists of three steps: 1) footstep detection, 2) walking
scenario characterization, and 3) social distancing checking.
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2.1 Footstep Detection: The first step is to detect footsteps
through energy peak picking over a series of consecutive impulses.
We first filter out the sensory and environmental noises and then
compute the moving average of signal energy in the dominant
frequency band [3]. In this work, 20-50 Hz band is chosen because
most signal energy is concentrated within this band. We then pick
the energy peaks to obtain the arrival time of the footsteps and the
changing trend of the distances between each person and sensor.

2.2 Walking Scenario Characterization: In this step, we char-
acterize walking scenarios by estimating people’s walking paths
based on the time sequence of their nearest footsteps to the sensors.
Before selecting the nearest footsteps for each sensor, we first clus-
ter the energy peaks for each sensor to group consecutive footsteps
occurring near each sensor. As Figure 1 shows, there can be either
one or two clusters of peaks depending on walking scenarios.

Next, we identify the nearest footsteps in each cluster. When
there is only one cluster, we pick the first and the second highest
peaks to represent the two nearest footsteps because the cluster
includes two people’s footsteps. On the other hand, if there are
two clusters, we compute the centroid of each cluster to represent
the nearest footstep for each person. In both cases, two nearest
footsteps are identified for each sensor signal, representing the
arrival time of the two people at the sensor location.

After that, we estimate the walking paths of each person based
on the sensor locations and the arrival time of the nearest footsteps.
Since one of the two outermost sensors (i.e., either S1 or S4) detect
a person’s presence first among all the sensors, we sort the near-
est footsteps from all the outermost sensors by their arrival time
and assign the first occurring footstep to person 1. Assuming both
pedestrians walk without changing directions, each of their next
nearest footstep occurs at the next sensor in their walking direction
at a later timing. Thus, the walking path of person 1 can be extended
by connecting the nearest footsteps between adjacent sensors. Each
time person 1 proceeds from one sensor to the next one, we check
if any of the outermost sensors has detected a nearest footstep
during the same time interval. If it does, that outermost sensor is
determined as the starting location of person 2. This means that at
least one more sensor (e.g., S2 or S3) is required between the outer-
most sensors in order to determine the starting location of person 2.
After both people are detected, we match the first nearest footstep
of each sensor to the person who arrives first. This results in two
complete paths connecting the two outermost sensor locations. In
scenarios when there is an intersection in the walking paths, the
nearest location is at the intersection (e.g., see the intersection of
the green lines in Figure 1a). If there is no intersection, the location
with the minimum time difference along the walking paths is deter-
mined as the nearest location. Furthermore, the walking speed of
the person between sensors can be estimated based on the slope of
the walking path, where a steeper slope indicates faster walking.

2.3 Social Distancing Checking: We check social distancing
compliance at the nearest locations determined in Section 2.2. When
people walk in the opposite directions, we use an energy threshold
to determine the compliance because people need to step closer to
the walls (i.e., closer to the sensors which leads to higher signal
energy) in order to keep social distancing. The energy threshold is
chosen based on the trade-offs between false positives and nega-
tives during training. The social distancing result is predicted as
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compliant if the signal energies from the nearest sensors for the
two persons are both greater than the threshold.

When people walk in the same direction, we first check the time
difference between person 1 and person 2 at the nearest location.
The larger the time difference, the farther away the two people
are. The time threshold is chosen based on the required distance
divided by the walking speed. If one person surpasses the other, we
then check the social distancing using the energy threshold at the
nearest location. A failure in any of these two cases means violation
of social distancing.

3 EVALUATION RESULTS

We evaluate the system through a real-world experiment with 8
people (i.e., 4 walking pairs) using 4 sensors along a 7.3-meter long
corridor. Our system achieved 97.8% accuracy for walking scenario
characterization and 80.4% overall accuracy for violation detection.
Experiments were conducted according to the approved IRB-54912.
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(a) Field Experiment (b) Evaluation Results

Figure 2: Evaluation for our system: (a) field experiment, (b)
evaluation results with 80.4% violation detection accuracy

4 CONCLUSIONS

In this paper, we introduce a social distancing monitoring system
based on footstep-induced floor vibration sensing. To address the
challenge of large uncertainties in walking scenarios and scalability,
we introduce a new energy-based method that estimates two peo-
ple’s walking paths through cross-sensor peak energy fusion. Our
system achieved 97.8% and 80.4% accuracy for walking scenario
characterization and compliance checking in field experiments. For
future work, we will explore scenarios with three or more people.
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