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Abstract

Implementations of artificial intelligence (Al) based on deep
learning (DL) which are proven to be highly successful in
many domains from biomedical imaging to natural language
processing, are still rarely applied in the space industry and,
particularly, for onboard learning of planetary surfaces. In
this project we discuss utility and limitations of DL, enhanced
with topological footprints of the sensed objects, for multi-
class classification of planetary surface patterns, in conjunc-
tion with tactile and embedded sensing in rover exploratory
missions. We consider a Topological Convolutional Networks
(TCN) model with persistence-based attention mechanism,
for supervised classification of various landforms in a novel
surface pressure dataset from a prototype tactile rover wheel,
named the Barefoot Rover tactile wheel. Multi-class pattern
recognition in the Barefoot data has neither been ever tackled
before with DL nor assessed with topological methods. We
provide insights into advantages and restrictions of topolog-
ical DL as the early-stage concept for onboard learning and
planetary exploration.

Introduction

From seeking signs of past life on Mars to collecting sam-
ples of lunar rock, robotic rovers such as NASA’s Mars Ex-
ploration Rovers (MER) which is one of the longest deploy-
ments of robotic intelligence on remote planetary surfaces
or the most recent rover Zhurong which is part of China’s
first Mars mission, are planetary exploration vehicles with a
high level of onboard intelligence, enabling to perform com-
plex tasks in science data gathering. In turn, an emerging in-
strumental concept of tactile wheels equipped with various
in-situ sensors such as measuring pressure directly on the
wheel can add a new dose of artificial intelligence (Al) to
to such planetary exploration rovers by providing them also
with a “sense of touch”. Sensing modality enabled by the
tactile wheel has a premise to become the primary planetary
mission driver, particularly in conjunction with mapping ef-
forts at cruising rather than crawling speeds for future Moon
and Mars rover missions. Moreover, the tactile wheel has the
potential to enhance mobility missions to Icy Moons due to
the even more uncertain terrain properties and the need for
increased autonomy. Learning such uncertain terrain prop-
erties requires development of novel machine learning (ML)
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techniques which cannot only capture sophisticated charac-
teristics of planetary surfaces but also demonstrate compu-
tational efficiency for onboard applications.

This paper is motivated by the challenging question of
whether we can potentially address such needs in rover ex-
ploration missions using deep learning (DL) models, en-
hanced with topological footprints of terrain. In particular,
we aim to explore utility and limitations of topological DL
as the primary tool for detecting various terrain classes in
rover missions. We provide experiments on a novel sur-
face pressure dataset from a prototype tactile rover wheel,
named the Barefoot Rover tactile wheel, making a case for
potential applications of topological DL in terrain explo-
ration and autonomous driving. The embedded sensors, like
the pressure sensor on a wheel, provide additional capabili-
ties for development of the autonomous systems and could
be an important component of future spacecraft exploring
Earth, space and unknown environments. These new, under-
explored applications for DL currently require higher lev-
els of computational efficiency and memory utilization due
to hardware and cost constraints. While DL, especially en-
hanced with topological information (Hofer, Kwitt, and Ni-
ethammer 2019), have proven to deliver superior accuracy,
their computational costs are one of the primary roadblocks
for their onboard applications. In particular, in our previous
project (Chen, Marchetti, and Gel 2021), we have shown
that adding a topological layer to graph convolutional net-
works (GCNs) can yield noticeable gains for binary classi-
fication of planetary rock patterns collected by the similar
tactile wheel. However, such topological GCNs are compu-
tationally prohibitive for exploratory missions.

Here we advance this analytic proof-of-concept for rover
exploration further into two direction. First, we consider a
more realistic scenario for rover missions and learn more
complex terrain types from pressure images of various land-
forms such as sharp and smooth dunes, bedrock, gullies
and pebbles. Second, we significantly reduce computational
costs. To achieve these goals, in contrast to the previous
study, we use an ensemble of topological summaries that
are obtained from rotation augmentation. Such fopological
meta-representation gathers a richer knowledge on the hid-
den shape properties of planetary terrains, making it pos-
sible to utilize a simpler model, e.g., compared to GCN,
and hence provide considerable computational gains and
less data used for training. In particular, to adaptively learn



the importance weights for the resulting embeddings in the
topological meta-representation, we propose a persistence-
based attention mechanism, thereby making the first step
toward the paradigm of attention-based topological repre-
sentation learning. We then employ a new topologically-
enhanced convolutional neural networks, called Topologi-
cal Convolutional Networks (TCN), which is able to effi-
ciently uncover yet unseen local shape signatures of land-
forms, improve classification performance, and substantially
reduce computational costs. Furthermore, some model train-
ing can be done offline prior to deployment of TCN, with
only incremental training to update the model, hence, al-
lowing us to better balance the accuracy and computational
costs. This new approach does not require a priori knowl-
edge of the topological signal and noise, i.e., maximum sig-
nal is extracted from all available topological information; in
a sense, we can say that we can quantify topological uncer-
tainty. These innovations can make DL tools more attractive
for the deployment onboard and for streaming applications
such in terrain exploration in space, as we show with the
Barefoot dataset experiments.

While the current computational costs of any DL tool, in-
cluding the proposed TCN, are still high for onboard de-
ployment, this project provides a suit of important mes-
sages toward eventually implementing DL within Al solu-
tions for rover systems. In particular, our findings suggest
that topological footprints and, especially, topological meta-
representation mechanisms may bring a highly valuable in-
formation about the hidden structural organization of mul-
tiple planetary landforms and, overall, assist in generaliza-
tion of DL results. As such, we believe that direction toward
topological transfer learning with extensive offline experi-
ments and only limited onboard updates and matching of
topological footprints, may be one of the most promising Al
solutions for planetary exploration missions.

Related Work

Research in DL methods for terrain classification is ongo-
ing not only with natural images, taken by orbiter cam-
eras (Wagstaff et al. 2018; Rothrock et al. 2016; Kerner
et al. 2019), but also in the context of autonomous vehi-
cles (Schmidt and Cheein 2019) that is an emerging path
for applications for these methods. Terrain classification is
studied in the context of robotic exploration and operational
safety, and even with newly found applicability to tactile
sensors (Ziirn, Burgard, and Valada 2020; Chen, Rastogi,
and Norris 2021). Recent efforts have been dedicated to ex-
tending both ML and DL methods for terrain image classi-
fication. Wagstaff et al. (2018) use a neural network archi-
tecture based on autoencoder to capture and explain novel
features in multispectral images. Additionally, Marchetti
et al. (2020) utilize tree-based Stochastic Gradient Boost-
ing (SGB) to extract information from in-situ sensor and
train model on terrain type classification and slip regres-
sion. Kerner et al. (2020) compare the performance of four
detection methods and detect novel geology on multispec-
tral images from planetary instrument datasets. To incor-
porate local and global information, Chen, Marchetti, and
Gel (2021) propose GCN-based model to capture geometric
and topological features via terrain image and its topolog-

ical summary. Unlike aforementioned DL, our approach is
based not on a single topological summary of a given image
but considers an ensemble of topological summaries, allow-
ing us to enhance topological knowledge representation and,
by virtue of it, improve pattern recognition performance and
associated computational efficiency.

Data Description

Barefoot surface pressure dataset is a collection of non-
traditional images of terrain collected from experiments with
a pressure sensor wrapped around a prototype tactile rover
wheel. These images show imprints of various terrain types,
e.g., rocks, dunes, gullies, as the wheel is rolling over the
ground. An example of such an imprint and the wheel ex-
periment are shown in Figures 1 (a) and (b). For instance,
Figure 1 (b) shows an example of experiment setup, i.e., the
Barefoot Rover mobility cart with the tactile wheel mounted
on it that sits in a metal trough over regolith with letters
Jet Propulsion Laboratory (JPL) spelled in small rocks on
the surface. Background and details for the Barefoot project,
the dataset and data processing can be obtained in Marchetti
et al. (2020) and Chen, Marchetti, and Gel (2021).
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Figure 1: A processed image of the pressure sensor (a) ob-
tained for an experiment with a rolling wheel that forms let-
ters in rocks (b). Calibrated pressure pad image, with the
wheel slipping (c) and resting on a rock (d). The striping
effect is produced by the grousers.
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Figures 1 (c) and (d) show an example of full calibrated
pressure sensor imprint for different pressure signatures,
with a wheel resting on top of a rock and with a wheel on
a sandy material, experiencing slippage. Most of the pres-
sure images have calibrated pressure at around 0, since at
any given time the wheel is only experiencing pressure over
a very small area, while the rest of its circumference is not
in contact with the ground. Marchetti et al. (2020) collected
over a thousand experiments across different materials, ter-
rain patterns and slippage values. We use a subset of the
experiments (Lightholder et al. 2021) for surface patterns,
including various rock types, to classify pressure sensor im-
ages into eight classes (including bedrock, flat, gullies, peb-
bles, rock-above, rock-below, sharpdunes, smoodunes). Fur-
ther pre-processing of the images for classification is cov-
ered in Experiments section.

Methodology

Persistence Homology over Surface Pattern Image To



study the underlying shape of the data, we invoke the ma-
chinery of persistent homology (PH) which is a rapidly
emerging research subfield at the interface of data sci-
ences, machine learning and algebraic topology (Chazal and
Michel 2017; Otter et al. 2017; Wasserman 2018). In par-
ticular, let X be the observed data (in our application X is
a 2D image but in general X can be a graph, point cloud
lying in a Euclidean n-dimensional space E” or, more gen-
erally, in some functional metric space M ). The main goal
of PH is to retrieve these lost underlying structural proper-
ties. To extract topological and geometric information in a
systematic and efficient manner, we build abstract simplicial
complexes — mathematical objects that are both topological
and combinatorial — on top of the observed data X. As men-
tioned by Chen et al. (2019), since images are made of pix-
els, ideally persistent homology on images shall account for
this natural representation of images as a grid. As such, us-
ing cubical complexes over grid structures instead of simpli-
cial complexes over point clouds appears as a more feasible
choice to extract topological summaries of images.

Definition 1 Define elementary cube C as a finite product
of elementary intervals, i.e., Q =11 X I3 x --- X Iy C R,
where an elementary interval is a subset T € R such that
either T = [I,1 + 1] or T = [l,1], | € Zy. Then, cubical
complex IC in R™ is a collection of elementary cubes.

Armed with the notion of cubical complexes, we can now
track how topological properties of the image evolve as we
vary, for example, grayscale values of pixels. Such analysis
allows us to get a deeper understanding of hidden higher or-
der properties of the image (Edelsbrunner and Harer 2010)
which we cannot extract otherwise. Indeed, it is hard if not
impossible to distinguish images in the upper panel of Fig-
ure 2. However, we find the corresponding topological foot-
prints of these images (see the lower panel of Figure 2) to be
quite distinct. Formally, the idea is to consider a filtration of
cubical complexes induced by some user-selected function
on image pixels (i.e., vertices of K). In particular, let f be a
real-valued function which maps every simplex to the maxi-
mum function value of its vertices (e.g., the grayscale value
as in our case) and let K, = f~!(—o0,r], 7 € R. Then, we
can set an increasing sequence of (dis)similarity thresholds
r,i.e.,r; <rq < ...rm,,and construct a nested sequence of
cubical complexes K., C K,, C ...K,,  associated with
evolving thresholds r. Such nested sequence is called lower-
star filtered cubical complex (?).

As (dis)similarity threshold r changes, some topological
features are born, while others disappear. Topological fea-
tures which tend to span longer over r; < 79 < ...7Tp
are called persistent, while features with shorter lifespan are
referred to as fopological noise. The most popular topolog-
ical summary under the PH framework is a persistence di-
agram (PD). PD is a multi-set of points in a 2D plane that
records birth-time (b) and death-time (d) (as - and y coor-
dinates, respectively) of each topological feature such as a
number of independent components, loops etc, over filtra-
tion K, C K,, C ...K,,,. Figure 2 shows PDs for four
different surface pattern images.

Topological Convolutional Networks The architecture
of our proposed Topological Convolutional Networks (TCN)
is shown in Figure 3. The key idea is that TCN is able to

capture both local topological and image information via
learning two specific embeddings respectively. Furthermore,
in order to enhance the capability of learning the ring of
algebraic information from PDs, we conduct transforma-
tion/rotation on target PD and employ the generalized lo-
cally periodic (GLP) kernel to kernelize rotated PDs. Be-
sides, TCN utilizes an attention mechanism to adaptively
fuse the topological-based embeddings with the learned im-
portance weights. Lastly, we combine the learned embed-
dings from topological and image spaces for final classifica-
tion tasks.
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Figure 2: Examples of the image representation of each class
and its corresponding topological footprint (i.e., persistence
diagram) in the surface pattern dataset.

Topological Meta-Representation Given the input PD
D, we consider multiple transformed variants of D for
topological signature learning instead of only using the
original D, which enables the representation to be invari-
ant of position and orientation of signatures in PD. As
a result, we no longer a-priori need to subjectively de-
fine which topological features contain signal and which
ones are topological noise. The persistence diagram trans-
formation (PDT) function is designed to extract the hidden
prominent topological information from all features via the
PD rotation. The PDT can be formulated as Rg(x;,y;) =
{(cos (0)x; + sin (0)y;, cos (0)y; —sin (#)x;)}, where x;
and y; denote the birth time and death time of the ¢-th
persistence point in D = (p1,...,pi,...,pn) € RM*2
(where n is the total number of persistence points), i.e.,
pi = (z5,y;) € R? € D, 0 € (0,7) represents the ro-
tation angle, and the PRy (-, -) is the PDT function. We use
Do = (p4,...,p%,...,p%) € R"™2 to denote the rotated
PD, where p! = (2¢,y?) is the i-th rotated persistence point.
Such rotation augmentation also allows us to learn the ring
of algebraic functions on PDs and to quantify uncertainty in
the topological knowledge representation. To further model
the long-range spatial relationships of topological features
in the rotated PD, we apply the generalized locally periodic
(GLP) kernel §(-,-) on the rotated PD Dy. Specifically, for
i-th rotated persistence point p?

m(xf—aq)? ¢ —pp)?
Sl ) = o2 ()~
1791

1
X€{72Sin2 ( W(’yfp;az)z )7 (’yf;g2)2 }

where p;,l;, pi, o € R, ¢ = 1,2 are hyperparameters of
GLP kernel and the output of GLP kernel for Dy is §(Dy) €
R™» x1 .



Suppose we consider m different rotation angles Oy =
(61,...,0m), then we can obtain m kernelized topological
signature representations {§ (D, ), - . ., §(Dp,, ) }. To extract
the topological information encoded in topology space, we
utilize m multilayer perceptrons (MLPs) to extract topolog-
ical signature embedding from a series of kernelized topo-
logical signature representations with m different rotation
angles as Zy, = fy, (§(Dy, )), where §(Dy, ) is the k-th ker-
nelized topological signature representation (k € [1,m]),
fu, 1s a neural network with parameter set 1)y, and the out-
put embedding representation is Z;, € R™*% (where d, is
the dimension of kernelized topological signatures.)

Persistence-based Attention Mechanism Now we
have m kernelized topological signature embeddings
{Z1,..., 2%, ..., Zm}. Considering the correlation be-
tween topological signature representations with dif-
ferent rotation angles, we use the attention mecha-
nism to automatically learn the importance of weights
(e, {a1,...,ak,...,apy}) for different kernelized topo-
logical signature embeddings. Inspired by the weight-
ing function for PD (Kusano, Hiraoka, and Fukumizu
2016), we first calculate the persistence-weighted mea-
sures for persistence points in PD Dy, as follows

w(pf’“) = arctan (C(y7* — 2%%)7), where arctan is a
bounded and continuous function, weight w(p’*) repre-
sents the importance weight for rotated persistence point

pfk, and C' and ¢ are the hyperparameters. Hence, we
can get the persistence-weighted measure W(Dy,) =
(@@, .., w@),. .., w(@l)) € R™! for Dy,. For
sake of notations, we denote W} as the persistence-
weighted measure of Dy, . Next, we apply a linear trans-
formation to Wy to get the corresponding attention vec-
tor S, = W - O, where ©;, € R!X! is trainable
weights. By performing a dot-product, we can obtain the
attention vector Sy = (s1,...,8,) € R"™ 1 where s;
is the attention value. Similarly, we can get the atten-
tion vectors {S1,...,Sk—-1,Sk+1,- .-, Sm} for rotated PDs
{De,,...,Do,_,,Do,_,---,Dy,,} respectively. Then we
normalize these attention vectors with SoftMax function
to get the final attention vectors «y, = SoftMax(Sy) =
ek /> €S € R™ 1. Finally, we combine m embed-
dings with attention vectors to obtain the final embedding
Zae,Z=o01-Zi+ A m Ly = gy L.

Image representation learning To learn the features of
input surface pattern image, we can use any CNN-based
model. In our experiments, we use CNN-based model f.,, in
experiments. Given the input surface pattern image X with
the r X r resolution, we can obtain the corresponding feature
maps. After that, we employ the MLP f, to obtain image-
level feature representation @ = fg( fonn (X)).

Topological-based Convolutional Neural Networks
With the above topological-based embedding representa-
tion Z and image-level feature representation (), to cap-
ture the topological and image-level information from data,
we thus combine two learned representations to obtain the
H = m X Z 4+ 7 x Q, where 71, w9 are hyperparameters
of important factors.

Experiments

We now evaluate performance of our TCN model
on real-world dataset, i.e., Barefoot surface pattern
dataset (Lightholder et al. 2021). We first introduce baselines
and parameter settings for experiments, then we present the
classification results on surface pattern images.

The surface pattern image dataset consists of 328 ob-
jects Xpe = {Xpg,,---s Xpg, s+ +» Xpg,s,q ) and each ob-

ject Xpe = (xS xi) ,Xég{“)} contains N,
timestamps, where u € [1,328], 7 € [1,N,], and N, €
[199, 860]. For the object X, , each timestamp Xlgg? con-
sists of 1,920 pixel values. Figure 4 (a) shows one object
in the surface pattern image dataset and we can observe
that the shapes of the object v and each timestamp ob-
servation Xé; ) are (MV,,1920) and (1,1920) respectively.
Since each object (e.g., ngu) has its own class ¢y, each

observation Xé;u) in object at timestamp 7 has the same
class cy. To incorporate more inputs into model, each ob-
ject is aggregated into 30-unit windows and then we can ob-
tain |V, /30| observations per object with class ¢,. Hence,

we generate overall 222:81 |V../30] observations from the
original 328 objects and the shape of each observation X
is (240, 240) (i.e., reshaped from (30, 1920) to (240, 240);
see Figure 4 (b)). To reduce the computational complex-
ity and memory cost, we convert the higher resolution im-

age to lower resolution of (60,60) and, hence, the shape

of final image fed into the model is X; € R60%60 (see the
bounding box in the green rectangle in Figure 4 (c)). More-
over, here we consider two multi-label classification tasks
(i) rock-flat classification (i.e., covering three classes {0 :
“flat”; 1 : “rock-above”; 2 : “rock-below”}) and (ii) pattern
classification (i.e., covering eight classes {0 : “bedrock™; 1 :
“flat”;2 : “gullies”; 3 : “pebbles”;4 : “rock-above”;5 :
“rock-below”; 6 : “sharpdunes”; 7 : “smoodunes”}). Thus,
rock-flat and pattern datasets contain 3,297 and 5,754 obser-
vations, respectively.

Baselines and Implementation Details We use the fol-
lowing four methods as baselines (i) MLP; (ii) LeNet; (iii)
AlexNet (Krizhevsky, Sutskever, and Hinton 2012); and
(iv) TOPO-GCN (Chen, Marchetti, and Gel 2021). We im-
plement our TCN with Pytorch framework on NVIDIA
GeForce RTX 3090 GPU. Further, for the dataset, TCN is
trained by the Adadelta optimizer with a L1 loss function.
For our model, TCN consists of 3 layers whose hidden di-
mensions are 1, 32, 64 respectively. The learning rate is 0.95
and the batch size is set as 32. In addition, the dropout rate
is 0.1. We split the surface pattern image dataset into train-
ing and testing sets and the split ratio is 8:2. We use accu-
racy to evaluate performances of models. We run 5 times
with the same partition and report the average results with
standard deviations. The data and codes are available at
https://github.com/TopoCN/TCN.git.

Surface Pattern Classification Table 1 compares TCN
against four baselines on surface pattern image datasets
with different number of classes (i.e., rock-flat detection
and pattern recognition). TCN achieves the best perfor-
mances on both rock-flat detection and pattern recognition,
and outperforms the runner-ups (i.e., LeNet and TOPO-
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Figure 3: Overview of our TCN framework. The upper part is the diagram of image representation learning. The lower part is

the diagram of topological representation learning.
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Figure 4: Examples of (a) one pattern object in surface pat-
tern image dataset, (b) the observation X; € IR240%240
in above pattern object, and (c) its corresponding low-

resolution representation X; € R60%60,

GCN) by 1.25% for rock-flat detection and 4.87% for pat-
tern recognition. Moreover, Figures 5 and 6 present confu-
sion matrices of our TCN and top three competitors sepa-
rately for each landform class. As Figure 5 shows, results
of TCN are consistently better than the runner-up across
all three classes (i.e., flat, rock-above, and rock-below), in-
dicating utility of topological information on rock types
of landforms. Figure 6 suggests that TCN outperforms the
runner-up over bedrock, flat, gullies, pebbles, rock-above,
and smoodunes; specifically, TCN yields relative gains of
31.23%, 13.87%, and 7.28% compared to the runner-up
across pebbles, rock-above, and smoodunes respectively.
On sharpdunes and rock-below, the runner-up outperforms
TCN. This phenomenon for rock-below might be due lim-
ited ability of CNN to capture below surface information.
However, we currently cannot find interpretation for results
on sharpdunes. Overall, the results of our TCN model across

different tasks consistently demonstrate that combination of
information from image and topological spaces exhibit bet-
ter performance than image-based neural networks.

Method Rock-Flat Detection | Pattern Recognition
MLP 62.50 £ 1.75 4405+ 1.13
LeNet 72.10 £ 1.59 46.67 £ 1.96
AlexNet 71.62 +£2.63 56.25 £1.78
TOPO-GCN 71.17 £ 1.89 56.68 + 2.00
TCN (ours) 73.01 £ 1.35 59.58 + 1.15

Table 1: Classification accuracy (%) with standard devia-
tions. Best results are in bold.

TCN (ours) Runner-up (LeNet)

k2 80.84% 9.42% 9.74% 2 79.17% 10.90% 9.94%

12.50% 64.47% 23.03% 15.97% 63.19% 20.83%
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H
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Accuracy=74.49% Accuracy=72.50%
a

AlexNet TOPO-GCN

76.70% 9.39% 13.92% k2 80.14% 6.97% 12.89%

15.89% 62.91% 21.19%

flat

15.51% 58.29% 26.20%

True label
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8.89% 21.67% 10.99% 18.68%

flat rock-above rock-below flat rock-above rock-below
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Accuracy=71.41% Accuracy=71.19%
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Figure 5: Confusion matrices of (a) TCN, (b) runner-up
(LeNet), (c) AlexNet, and (d) TOPO-GCN for rock-flat de-
tection task.

Computational Costs Table 2 shows the running times,
i.e., per-epoch training times of our TCN model and base-
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Figure 6: Confusion matrices of (a) TCN, (b) runner-up
(TOPO-GCN), (c) AlexNet, and (d) LeNet for pattern recog-
nition task.

lines across both rock-flat detection and pattern recognition
datasets. Note that in the topological representation learn-
ing of our TCN model, we directly use PD to learn the local
topological information; as an alternative, although TOPO-
GCN attains comparable results, it utilizes persistence im-
age (PI) via vectorizing PD, which suffers high computa-
tional time and memory cost. Similarly, compared with the
AlexNet (the CNN architecture with many parameters), our
TCN is more efficient and faster. Besides, although LeNet
has a faster training, it performs significant worse on pat-
tern recognition task. Note that the input image of our TCN
model only involves 6.25% information, TCN can still ex-
hibits the superior accuracy on rock-flat detection and pat-
tern recognition, and this means that TCN still has much
room for the improvement of multi-label classification accu-
racy. Finally, we can conclude that TCN is simple to imple-
ment and provides significant gains in run-time and memory
efficiency.

Method Rock-Flat Detection|Pattern Recognition
MLP 0.49s 0.76 s
LeNet 1.80 s 2.65s
AlexNet 8.19s 14.01s
TOPO-GCN 9.15s 15.99 s
TCN (ours) 439 s 8.29s

Table 2: Running time (training time per epoch).

Lessons Learned

The current findings on surface pattern classification with
DL provide a variety of lessons for further integration of Al
to onboard learning and exploratory missions:

e DL tools, both more traditional CNNs and state-of-the-
art GCNs, show promising results for learning complex
planetary terrain classes. However, further enhancement
of such DL models with topological footprints can boost
not only model accuracy but also reduce variability and
computational costs.

* Local topological information of the surface patterns is
an important signal for terrain classification and could be
useful in not only fetching rich information about image’s
topology but also in discovering higher-order connectivity
patterns in the collected heterogeneous data and matching
them to previous records. As such, comparative analysis of
these topological footprints can help to better understand
geologic history of the planet, including higher order in-
teractions among its geophysical properties and potential
for life. In turn, the proposed topological attention mech-
anism might be particularly valuable for accurate classifi-
cation of objects, collected in heterogeneous sensing sce-
narios, including nonrigid shapes. (We have also explored
utility the topological attention mechanism for 3D shapes
and texture images beyond the Barefoot data.)

* Although TCN yields promising multi-label classification
accuracy (especially in rock depth detection), it shows
limited ability to detect gullies. The reason may be due in-
correct estimation of topological properties of gully (i.e.,
V-shape with sloping heads and sides). As such, we may
need to consider not one filtered cubical complex but fil-
trations along multiple geometric dimensions.

* Compared to rock-flat detection, we observe a a decline
in performance for pattern recognition, which may be due
to insufficient representation of certain types of patterns,
e.g., bedrock and gullies. This issue can be tackled, e.g.,
by further topological data augmentation and topological
subsampling within the meta-representation mechanism.

Path to Deployment

Development of DL tools for onboard applications in Earth
and spaces sciences is one of the primary interests for NASA
(see, for example, the most recent August 2021 call for
early-stage concepts from NASA’s Advanced Information
Systems Technology Program (NASA 2021)). Indeed, the
DL methodology enables for more accurate modeling of so-
phisticated nonlinear spatial and spatio-temporal patterns,
including but not limited to terrain classification and explo-
ration, than more conventional tools. As a result, DL has
a higher potential for feature detection and tracking in the
data gathered from heterogeneous sensing. In turn, topolog-
ical descriptors of planetary surfaces can bring an invalu-
able insight on local terrain characteristics which are other-
wise inaccessible with standard Euclidean-based approaches
and, moreover, shed light on similarity of such local patterns
at various resolution levels. As such, equipping DL models
with topological footprints of terrain has a potential to im-
prove model generalizability and transferrability, which is of
particular importance in onboard applications. However, the
application of DL and topological methods in onboard ex-
ploration tasks is in-existent and largely obstructed by pro-
hibitive computational costs.

Our project presents a early-concept approach which aims
to make the step in bridging the power of DL with on-
board exploration of planetary terrain, by substantially re-
ducing computational and storage costs, while maintaining
the high classification accuracy. In particular, compared with
Marchetti et al. (2020), in our model, we use the low resolu-
tion surface pattern image for image representation learning
and representation learning based on local topological infor-



mation, i.e., using only 6.25% image information for multi-
label classification tasks. Besides, another exhilarating ben-
efit of implementing our TCN is that the topological signa-
tures can be computed offline from images which substan-
tially reduces computation time further. It is worth mention-
ing that TCN requires a much lower number of parameters
compared to GCNs (i.e., TOPO-GCN) (Chen, Marchetti,
and Gel 2021), e.g., TOPO-GCN (with #4,293,959) has 40
times more than TCN (with #104,468 parameters). More-
over, computational complexity of graph convolution is a
major limiting factor, with complexity of O(N?), where N/
denotes number of nodes in the graph.

The application of TCN does not have to be limited to an-
alyzing terrain characteristic online, but can readily be im-
plemented to images of terrain from orbit. Images from cur-
rent and future missions, e.g., Mars Reconnaissance Orbiter
or Europa Clipper, would be an on application of TCN for
better accuracy of identification of topological features on
surfaces from remote sensing, thus deployment can also be
extended to analysis of terrain images on the ground.

Conclusions

Multi-class classification of surface patterns is a very chal-
lenging problem, compared, e.g., to a simpler task of bi-
nary classification of rock. Good classification performance
would be hard to achieve with conventional ML, due to
the sophisticated structure of landforms, so advanced DL
tools such as TCN would be needed to handle more com-
plex terrain patterns exhibited in planetary exploration mis-
sions. This underscores the importance of DL with topologi-
cal footprints such as TCN for terrain recognition, especially
given that the diversity and complexity of the terrain pat-
terns is much more present in real life situations. The ability
to adaptively re-train onboard classifiers given new informa-
tion from a sensor would also be critical since new classes
need to be discovered and existing classes need to be up-
dated. In the future, we extend TCN with capabilities to re-
train on demand, hence, making its integration with onboard
and embedded systems more competitive. We will also ex-
plore applicability of TCN to other types of data, such as 3D
modeling or video analysis, which also have prohibitively
high computational costs.
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