
AlphaCore: Data Depth based Core Decomposition
Friedhelm Victor

Technische Universität Berlin

Berlin, Germany

friedhelm.victor@tu-berlin.de

Cuneyt G. Akcora

University of Manitoba

Winnipeg, Canada

cuneyt.akcora@umanitoba.ca

Yulia R. Gel

UT Dallas

Richardson, USA

ygl@utdallas.edu

Murat Kantarcioglu

UT Dallas

Richardson, USA

muratk@utdallas.edu

ABSTRACT
Core decomposition in networks has proven useful for evaluating

the importance of nodes and communities in a variety of application

domains, ranging from biology to social networks and finance.

However, existing core decomposition algorithms have limitations

in simultaneously handling multiple node and edge attributes.

We propose a novel unsupervised core decomposition method

that can be easily applied to directed and weighted networks. Our

algorithm, AlphaCore, allows us to systematically and mathemat-

ically rigorously combine multiple node properties by using the

notion of data depth. In addition, it can be used as a mixture of

centrality measure and core decomposition. Compared to exist-

ing approaches, AlphaCore avoids the need to specify numerous

thresholds or coefficients and yields meaningful quantitative and

qualitative insights into the network structural organization.

We evaluate AlphaCore’s performance with a focus on financial,

blockchain-based token networks, the social network Reddit and a

transportation network of international flight routes. We compare

our results with existing core decomposition and centrality algo-

rithms. Using ground truth about node importance, we show that

AlphaCore yields the best precision and recall results among core de-

composition methods using the same input features. An implemen-

tation is available at https://github.com/friedhelmvictor/alphacore.

CCS CONCEPTS
• Mathematics of computing→ Graph theory; • Information
systems→Web searching and information discovery.

KEYWORDS
Core decomposition; networks; data depth

ACM Reference Format:
Friedhelm Victor, Cuneyt G. Akcora, Yulia R. Gel, and Murat Kantarcioglu.

2021. AlphaCore: Data Depth based Core Decomposition. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3447548.3467322

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8332-5/21/08.

https://doi.org/10.1145/3447548.3467322

1 INTRODUCTION
Core decomposition is the primary machinery in network sciences

to evaluate the importance of nodes and community (sub)structures

in a wide range of application domains such as biology [19], so-

cial networks [1] and visualization [46]. One of the best-known

representatives of core decomposition algorithms, 𝑘-core, finds

the maximal subgraph where each node has at least 𝑘 neighbors.

Although the 𝑘-core algorithm [33] demonstrates high utility for

analysis of graph structural properties, 𝑘-core does not account for

important graph information such as the direction of edges, edge

weights, and node features. To address these limitations, multiple

modifications of 𝑘-core have been proposed to tackle task-specific

graphs [21]. Among them, the weighted 𝑘-core [8] is one of the few

algorithms that combine two node properties (degree and incident

edge weights) into a single one: the weighted degree.

Depending on a specific task and application domain, however,

we may need to incorporate other types of graph properties and

allow for more than two node attributes to be combined. For exam-

ple, in a financial transaction network where each node represents

a different account, we may be interested to evaluate the total

transaction amount sent to and from an account. In addition, the

time-based activity may have significant implications with respect

to the account’s importance in the network. Such modern applica-

tions require the creation of new core decomposition algorithms

that can systematically and reliably evaluate arbitrary node and

edge features on weighted, directed graphs.

To address these challenges, we propose AlphaCore, a new core

decomposition algorithm that combines multiple node properties

using the statistical methodology of data depth [24]. The key idea of

data depth is to offer a center-outward ordering of all observations

by assigning a numeric score in [0, 1] range to each data point with

respect to its position within a cloud of a multivariate probability

distribution. Using such a data depth function designed for directed

and weighted graphs, we can easily map a node with different

features to a single numeric score, while preserving its relative

importance with respect to other nodes. Our AlphaCore algorithm

iteratively removes the less important nodes and re-computes the

depth of the remaining nodes. As a result, even if nodes have many

features, we only need to iterate over depth values during decompo-

sition steps. This new approach allows us to easily use AlphaCore

in practice in an unsupervised fashion, without the need to specify

numerous thresholds.

This work is licensed under a Creative Commons Attribution International 4.0 License.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8332-5/21/08.
https://doi.org/10.1145/3447548.3467322

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1625

https://github.com/friedhelmvictor/alphacore
https://doi.org/10.1145/3447548.3467322
https://doi.org/10.1145/3447548.3467322
https://creativecommons.org/licenses/by/4.0/

To illustrate the effectiveness of our AlphaCore algorithm in

identifying important nodes and communities in directed weighted

graphs, we evaluate its performance on three types of networks. Our

primary focus is on financial networks, as these have yet seen little

application of core decomposition methods, and at the same time

are usually directed and weighted. To study such networks, we have

collected asset transfers of 28 blockchain-based token networks. To

illustrate AlphaCore’s performance beyond financial networks, we

examine a Reddit social network consisting of cross-links between

subreddits, and lastly an international flight route network. For

each network, we have collected ground-truth labels of importance,

consisting of well-known cryptocurrency exchange accounts in

token networks, the most popular subreddits by subscriber count,

and the busiest airports by passenger count.

We compare the AlphaCore results with existing core decom-

position algorithms, the underlying data depth mechanism itself,

and centrality measures that use the same or similar input features.

We empirically show that AlphaCore can significantly improve the

identification of such central nodes compared to the state-of-art

core decomposition techniques, performs better than centrality

measures in our financial networks, and is on-par with them in

the Reddit social network. We can summarize the key novelties as

follows:

• AlphaCore Algorithm: We propose a new data depth-based

core decomposition that can handle multidimensional node

properties which can be obtained from a variety of node and

edge property functions.

• Mixture of Centrality and Core Decomposition: We provide

the option that AlphaCore can be used to perform core de-

composition only among low data depth nodes, offering a

mixture of centrality and core decomposition.

• Extensive Empirical Evaluation: By conducting node rank-

ing experiments in financial, social, and transportation net-

works, we show that AlphaCore outperforms existing core

decomposition algorithms that are based on the same input

features.

2 PRELIMINARIES AND RELATED WORK
In this section, we introduce preliminaries on Blockchain, token

networks, and recent Blockchain research, as these financial net-

works are the majority of networks studied in this paper. Afterward,

we introduce core decomposition on networks and briefly cover

network centrality measures.

2.1 Blockchain and Ethereum Token Networks
Ablockchain is an immutable public ledger that records transactions

in discrete data structures called blocks. The earliest blockchains are

cryptocurrencies such as Bitcoin and Litecoin where a transaction

is a transfer of coins.

Recently, other blockchains such as Ethereum have emerged. The

Ethereum project [44] was created in July 2015 to provide Smart

Contract functionality on a blockchain. Smart Contracts are Turing

complete software codes that are replicated across a blockchain

network. Smart Contracts ensure deterministic code execution that

can be verified publicly. Some Smart Contracts implement mecha-

nisms that allow trading digital assets, known as tokens [41], on the

blockchain. We refer to such a Smart Contract as a token contract,
and use the term token interchangeably. Similar to cryptocurren-

cies, a token is transferred publicly between accounts (addresses),

and may have an associated value in fiat currency which is ar-

bitrated by token demand and supply in the real world. A token

network is a directed, weighted multigraph where an edge denotes

the transferred token value. Each token network has its own edge

weight scale (in [1,∞)), typically ranging between 1 to 10
13
.

Blockchain technology has created a new class of online financial

institutions that are known as cryptocurrency exchanges. They can

employ regular accounts or Smart Contracts to facilitate asset trades

among blockchain addresses. Although blockchain users do not

have to disclose their addresses, most exchanges publish or confirm

their addresses to foster trust and security in their communities.

2.2 Blockchain Graph Analysis
Early efforts in Blockchain graph analysis de-anonymized and

linked Bitcoin addresses by using heuristics on transaction be-

havior [22]. As the number of e-crime transactions increased on

cryptocurrencies, algorithmic models have been developed to link

bitcoin addresses by using node features on the network [11].

Ethereum transaction networks have been studied for their empiri-

cal properties [2], and [37, 38] explored token networks in terms

of the degree distribution, power laws, and clustering. Recent mea-

surement works [17, 41] study all Ethereum ERC20 tokens.

2.3 Core Decomposition Algorithms
The 𝑘-core decomposition of an undirected, unweighted graph G
finds maximally connected subgraph(s) in which we connect every

node to at least 𝑘 ∈ Z+ nodes [33]. Sometimes, a connected graph

can decompose into multiple disconnected 𝑘-core subgraphs. The

k–shell of a graph G is the set of all nodes belonging to the 𝑘-core

of G but not to the (𝑘 + 1)-core [23].
A naïve implementation of𝑘-core iteratively deletes nodeswhose

degree falls below a 𝑘 , until it deletes all nodes from the graph.

The implementation has a computational complexity of O(𝑚 log𝑛),
where m and n are the number of edges and nodes in the network,

respectively. Batagelj and Zaversnik reduce the complexity toO(𝑚+
𝑛) “by keeping an in-memory array of all possible degree values

and keeping track of bin boundaries” [4].

The 𝑘-core decomposition is a fundamental operation in graph

similarity matching [28], graph clustering [9], network visualiza-

tion [10], anomaly detection [35], robustness analysis [5] and many

other applications [18, 21].

In many networks, we annotate nodes, or edges with weights

that represent property values. Extending core decomposition to

weighted graphs requires a robust method to combinemultiple prop-

erties, which is not straightforward. Solutions weight-average [10]

or take the geometric mean of node properties in an undirected

network. For example, the weighted degree of a node 𝑘 ′
𝑖
has been

defined as follows [8]:

𝑘 ′𝑖 =
[
𝑘𝑎𝑖 (

𝑘𝑖∑︁
𝑗

𝑤𝑖 𝑗)𝛽
] 1

𝛼+𝛽
(1)

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1626

Here, 𝑘𝑖 denotes a node’s degree, 𝑤𝑖 𝑗 its incident weights and 𝛼

and 𝛽 are weighting factors. However, existing approaches ignore

data skew and network sparsity and do not generalize well beyond

two features. In contrast, our method can be applied to networks
and features of any type without user supervision in feature scal-
ing/normalization.

One previously proposed generalization of core decomposition

relies on defining node property functions that are based on each

node’s edges and extended neighborhood [3]. According to this

generalization, a node property function 𝑝 should be monotone,
meaning for subgraphs 𝐶1,𝐶2 ⊆ 𝐺 (𝑉 , 𝐸) it should hold that:

𝐶1 ⊆ 𝐶2 ⇒ 𝑝 (𝑣,𝐶1) ≤ 𝑝 (𝑣,𝐶2),∀𝑣 ∈ 𝑉 (2)

An example of a node property function that is not monotonous

would be the number of shortest paths that lead through a node 𝑢.

The removal of other nodes in the network can lead to the increase

or decrease of this number for node 𝑢. Adhering to the restriction

however allows for a wide range of possible node properties, which

can be based on a node’s incident edges, its extended neighborhood,

and various edge properties. See Table 1 for a list of example node

property functions.

2.4 Network Centrality Measures
In contrast to k-core decomposition, where nodes with a high 𝑘

are typically within a community of highly connected nodes, some

centrality measures can assign high values to nodes that are not

within such a community. In- or Out-Degree centrality for instance

simply counts the number of incoming or outgoing edges of a

node. A node with a high degree centrality does not need to be

connected to other high degree centrality nodes. In the past, a

multitude of centrality measures has been proposed [6], such as

PageRank [31], betweenness centrality and closeness centrality,

which utilizes the number of shortest paths that lead through a node,

as well as variants that incorporate the weight of the edges [30].

3 DATA DEPTH
Depth functions have been initially introduced in the setting of

non-parametric multivariate analysis to define affine invariant ver-

sions of median, quantiles, and ranks in higher dimensional spaces

where there is no natural order (see historical overviews by Mosler

[24], Nieto-Reyes and Battey [27]). The key idea of the depth ap-

proach is to offer a center-outward ordering of all observations

by assigning a numeric score in [0, 1] range to each data point

with respect to its position within a cloud of multivariate or func-

tional observations or a probability distribution. Nowadays, data

depth is a rapidly developing field that gains increasing momen-

tum due to the wide applicability of depth concepts to classifica-

tion, visualization, high dimensional and functional data analy-

sis [13, 25, 26, 34, 45]. Most recently, depth approaches have found

novel applications in density-based clustering and space-time data

mining [12, 14, 42], shape recognition and uncertainty quantifica-

tion in computer graphics [36, 43], ordinal data analysis [15] and

computational geometry for privacy-preserving data analysis [20].

Nevertheless, data depth is yet a largely unexplored concept in

network sciences [7, 32, 39, 40].

Table 1: Example node property functions. Most functions
are adopted from the related work. Functions that encode the
community around a node, such as cycles, can help bringing
a higher ordered structure of the network into use.

Function Value / number of ...

𝑁 (𝑢) neighbors of 𝑢

𝑁𝑜𝑢𝑡 (𝑢) neighbors reachable with outgoing edges from 𝑢

𝑁𝑖𝑛 (𝑢) neighbors reachable with incoming edges to 𝑢

𝑑𝑒𝑔(𝑢) edges to/from 𝑢 (Degree)

𝑑𝑒𝑔𝑜𝑢𝑡 (𝑢) outgoing edges from 𝑢 (Out-Degree)

𝑑𝑒𝑔𝑖𝑛 (𝑢) incoming edges to 𝑢 (In-Degree)

⃝(𝑢, 𝑙) undirected cycles of length 𝑙 that 𝑢 is part of

⟳ (𝑢, 𝑙) directed cycles of length 𝑙 that 𝑢 is part of

𝑡 (𝑢, 𝑙) length 𝑙 timeframes that 𝑢 has edges in

𝑆 (𝑢) sum of edge weights incident to a node (Strength)

𝑆𝑜𝑢𝑡 (𝑢) sum of outgoing edge weights (Out-Strength)

𝑆𝑖𝑛 (𝑢) sum of incoming edge weights (In-Strength)

Definition 1 (Data Depth). Formally, let 𝐸 be a Banach space
(e.g., 𝐸 = R𝑑), B its Borel sets in 𝐸, and P be a set of probability
distributions on B. We view P as the class of empirical distributions
giving equal probabilities 1/𝑛 to 𝑛 data points in 𝐸. Then a data depth
function is a function D : 𝐸 × P −→ [0, 1], (𝑥, 𝑃) −→ D(𝑥 |𝑃), 𝑥 ∈
𝐸, 𝑃 ∈ P that shall satisfy the following desirable properties: affine
invariant, upper semi-continuous in 𝑥 , quasiconcave in 𝑥 (i.e., having
convex upper level sets) and vanishing as | |𝑥 | | → ∞. Specifically, a
data depth function D(𝑥) measures how closely an observed point
𝑥 ∈ R𝑑 , 𝑑 ≥ 1, is located to the center of a finite set X ∈ R𝑑 , or
relative to 𝐹 , which is a probability distribution in R𝑑 . In complex
network analysis, these points may correspond to the features of nodes
or edges.

Among many depth functions formulated to date, the Maha-

lanobis depth is one of the most prominent in the current practice.

Definition 2 (Mahalanobis (MhD) depth). Let 𝑥 ∈ R𝑑 be an
observed data point, then Mahalanobis (MhD) depth of 𝑥 in respect to
a 𝑑-variate probability distribution 𝐹 with mean vector 𝜇𝐹 ∈ R𝑑 and
covariance matrix Σ𝐹 ∈ R𝑑×𝑑 is given by

𝑀ℎ𝐷𝜇𝐹 (𝑥) =
(
1 + (𝑥 − 𝜇𝐹)⊤Σ−1𝐹 (𝑥 − 𝜇𝐹)

)−1
. (3)

Here ⊤ denotes matrix transpose. The MhD depth measures the outly-
ingness of the point with respect to the deepest point of the distribution
(here 𝜇𝐹), and allows to easily handle the elliptical family of distribu-
tions, including a Gaussian case.

MhD offers flexibility in changing the reference point with re-

spect to which we compute data rankings. For instance, instead of

𝜇𝐹 we can select an arbitrary point 𝑥0 ∈ R𝑑 and compute MhD in

respect to this new reference point 𝑥0

𝑀ℎ𝐷𝑥0 (𝑥) =
(
1 + (𝑥 − 𝑥0)⊤Σ−1𝐹 (𝑥 − 𝑥0)

)−1
. (4)

Furthermore, Σ𝐹 can be substituted by any empirical estimator

of covariance matrix Σ̂ obtained from the observed data sample

𝑥1, 𝑥2, . . . , 𝑥𝑛 .

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1627

4 METHODOLOGY
AlphaCore relies on a single computed property, namely the data

depth of multiple node properties, to determine core membership.

During AlphaCore execution, these data depth values are iteratively

updated by computing node property functions and applying data

depth on the resulting values.

Let𝐺 (𝑉 , 𝐸,𝑤) be a directed, weighted multigraph where𝑉 is the

set of nodes and 𝐸 is a multiset of edges. Each edge has a weight

where𝑤 : 𝐸 → R+ denotes a weight function assigning weights to

each edge 𝑒 ∈ 𝐸. In analogy to the generalized cores definitions [3],

a node property function 𝑝 (𝑣,𝐶) with 𝑝 ∈ 𝑉 and 𝐶 ⊆ 𝐸 can assign

a real value to each 𝑣 ∈ 𝑉 , which can be based on edge properties

such as a weight. Instead of using the degree of a node as the core-

criterion, we compute the Mahalanobis data depth to the origin 0.
This collapses multiple node properties into one node property, the

node depth, which is in the range of [0, 1]:

Definition 3 (Mahalanobis depth to the origin (MhDO)).

𝑀ℎ𝐷𝑂𝐹 (𝑥) =
(
1 + 𝑥⊤Σ−1𝐹 𝑥

)−1
, (5)

where Σ𝐹 is the covariance matrix of 𝐹 . The MhDO depth measures
the outlyingness of the point 𝑥 (in our case the node property column
vector) with respect to the origin 0.

The rationale behind computing depth with respect to the origin

is the following: By construction, MhD is a symmetric function and

does not distinguish among outlying actors with, for example, too

high and too low trading volumes, relative to all other actors. Since

our primary focus is on the most active actors, we rank our data

with respect to the origin which allows us to focus on the right

tail of the distribution, while still accounting for the important

geometric structure of the whole data cloud.

We establish the core value 𝛼 of a node by using data depth

𝜖 of its properties. Nodes with high property values (e.g., large

edge weight) tend to have a low depth. Conversely, nodes with low

property values tend to have a high depth (e.g., most blockchain

nodes trade small token amounts). In both cases, node property

values are not the only depth determinant, the community structure

around the node plays a role as well. Nodes are in the same core if

their depth is at most 𝜖 . When we define 𝛼 = 1 − 𝜖 , then:

Definition 4 (AlphaCore). The 𝛼-core of a graph is a maximal
subgraph in which each node has at most a data depth of 1 − 𝛼 based
on a set of node properties.

To determine core membership, we iteratively remove nodes

by moving a threshold 𝜖 from higher depths to lower depths. The

idea is similar to iteratively removing the lowest degree nodes in

𝑘-core decomposition. However, compared to 𝑘 ∈ Z+ in 𝑘-core,

AlphaCore must iterate on depth values in [0, 1]. Depending on

the type of network and the expected distribution of node property

values, different step sizes and step size functions for 𝜖 can be used.

Naïvely, a linear step size such as 0.1 may be chosen, which may

result in up to 10 different cores. However, for heavily skewed

distributions of node property values, this will result in a few very

large shells, where a shell is the set of nodes that belong to a certain

core, but not the next higher core. In contrast, a step size function

that attempts to find similarly sized shells could pick the next 𝜖

based on a given number of nodes that should at least be contained.

In a ranking task where the goal is to find the most important nodes

in a graph, these shell sizes could follow an exponential decay, given

an appropriate step-size function. Multiple iterations may occur

at the same 𝜖 level until no further nodes can be removed at the

same 𝜖 . To capture these distinct iterations, we link a continuously

incremented batch id to the nodes removed in an iteration. That

way, even though some nodes have the same 𝛼 level, they can have

different batch ids that imply a ranking. In other words, batch ids

offer a more detailed look into the cores.

Finally, AlphaCore can be used with a custom 𝜖𝑠𝑡𝑎𝑟𝑡 value, which

assigns all nodes with depth > 𝜖 to the 0-core in the first iteration.

This delays the incorporation of community structure. If only one

node feature is used, e.g. the number of incoming edges, this is

equivalent to the initial execution of in-degree centrality, and core

decomposition is then only executed between the nodes with higher

centrality (low data depth). Using AlphaCore in this way can be

regarded as a mixture of core decomposition and centrality measure.

Algorithm 1: AlphaCore Decomposition

Input: Directed, weighted, multigraph 𝐺 (𝑉 , 𝐸,𝑤),
Set of node property functions 𝑝1, ..., 𝑝𝑛 ∈ 𝑃 ,
Starting epsilon 𝜖𝑠𝑡𝑎𝑟𝑡 ,

Step size function △𝑠 ,
Step size 𝑠

Output: core value and batchID for each 𝑣 ∈ 𝑉
// Compute feature matrix

1 𝐹 = [𝑓1, ..., 𝑓𝑛] = ∀𝑝𝑖 ∈ 𝑃 : 𝑓𝑖 = 𝑝𝑖 (𝑣,𝐺),∀𝑣 ∈ 𝑉 ;

2 Σ−1
𝐹

= cov(𝐹)−1; // compute only once

// Compute initial depth values

3 𝑧 = [𝑧1, ..., 𝑧𝑛] = ∀𝑣𝑖 ∈ 𝑉 : 𝑧𝑖 = [1 + (𝐹𝑖,∗)′Σ−1𝐹 (𝐹𝑖,∗)]
−1
;

4 𝜖 = 𝜖𝑠𝑡𝑎𝑟𝑡 ;

5 C∗ ← 0; // cores initialized to 0

6 B∗ ← 0; // batch ids initialized to 0

7 𝛼 ← 1 − 𝜖 ;
8 𝛼𝑝𝑟𝑒𝑣 ← 𝛼 ;

9 𝑏𝑎𝑡𝑐ℎ𝐼𝐷 ← 0;

10 while |𝑉 | > 0) do
11 do
12 foreach 𝑧𝑖 ≥ 𝜖 do

// Mark with 𝛼 and batch id

13 C𝑖 ← 𝛼𝑝𝑟𝑒𝑣 ; // set node core

14 𝐵𝑖 = 𝑏𝑎𝑡𝑐ℎ𝐼𝐷 ;

15 𝑉 = 𝑉 \ {𝑣𝑖 };
16 𝑏𝑎𝑡𝑐ℎ𝐼𝐷 = 𝑏𝑎𝑡𝑐ℎ𝐼𝐷 + 1; // iterate

// recompute node properties

17 𝐹 = ∀𝑝𝑖 ∈ 𝑃 : 𝑝𝑖 (𝑣,𝐺),∀𝑣 ∈ 𝑉 ;

// recompute depth

18 𝑧𝑖 = [1 + (𝐹𝑖,∗)′Σ−1𝐹 (𝐹𝑖,∗)]
−1,∀𝑣𝑖 ∈ 𝑉 ;

19 while ∃𝑧𝑖 : (𝑧𝑖 ≥ 𝜖) ∧ (𝑣𝑖 ∈ 𝑉);
20 𝛼𝑝𝑟𝑒𝑣 = 𝛼 ;

21 𝜖 = △𝑠 (𝑧, 𝑠); // decrease 𝜖

22 𝛼 = 1 − 𝜖 ;
23 return C, B

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1628

Alpha cores: 0 0.25 0.5 0.75

Figure 1: AlphaCore with a linear step size of 𝑠 = 0.25 applied
to the SoftChainCoin network. 𝜖𝑠𝑡𝑎𝑟𝑡 = 1 and node features
are 𝑁𝑖𝑛, 𝑆𝑖𝑛, 𝑆𝑜𝑢𝑡 . This ensures that there are at most 1/𝑠 dis-
tinct cores, in this case 4. Here, the exchange nodes (stars)
are found in the third highest core. The 0-core contains the
majority of nodes.

4.1 Algorithm Description
The AlphaCore decomposition is illustrated in Algorithm 1. In

line 1, a feature matrix is computed based on each node property

function that is to be used. For example, this could include a node’s

neighborhood size or the number of triangles it is part of. See

Table 1 for more examples. Based on the feature matrix 𝐹 , the

inverse covariance matrix Σ𝐹 is computed in line 2 and will be used

for future data depth calculations. In line 3, the initial depth of each

node is computed using the Mahalanobis depth with respect to

the origin. Lines 4— 9 are used to initialize 𝜖 , 𝛼 , 𝛼𝑝𝑟𝑒𝑣 , the starting

batch id and the core values and batch ids for each node that are to

be returned. The main algorithm starts in line 10, which iterates as

long as there are nodes left in the graph. Each node that has a depth

higher than or equal to the current 𝜖 , is assigned the previous 𝛼

value at which it was still contained in the core. A batch id is also

assigned and the nodes are then removed from the graph (lines 13—

15). As one batch of node removals has been completed, the batch

id is incremented in line 16, and the feature matrix and depth values

are recomputed in lines 17— 18. If any remaining nodes still have

a depth greater or equal to the current depth, the next batch is

started at the same 𝜖 level. Otherwise, 𝜖 and 𝛼 are updated based

on the depth level that has just been completed, in combination

with a step size function △𝑠 in lines 21— 22. If all nodes have been

removed from the graph, the algorithm is complete. Vectors C and

B are returned, which contain core values and batch ids for each

node.

Computational complexity. AlphaCore requires inverting the co-
variance matrix at line 2 once, which can be computed by Cholesky

decomposition in𝑂 (𝑛3) for𝑛 features. Node property recalculations

Alpha cores: 0 0.18885 0.18907 0.18914 0.18916

0.18918 0.19490 0.22284 0.49688 0.64014

Figure 2: AlphaCore with exponentially decaying step size
function (𝑠 = 0.25) applied to the SoftChainCoin network.
𝜖𝑠𝑡𝑎𝑟𝑡 = 1 and node features are 𝑁𝑖𝑛, 𝑆𝑖𝑛, 𝑆𝑜𝑢𝑡 . Each subsequent
target core size is at least 25% of the remaining nodes. This ap-
proach always guarantees small sized cores at high 𝛼 , suitable
for determining a node importance ranking. The exchange
nodes (stars) are found in the third highest core.

can have 𝑂 (𝑣2) complexity for properties based on the second-

degree neighborhood (e.g., cycles of length 4) of 𝑣 nodes. Each

iteration needs recomputing node features, occurring𝑚 (number of

edges) times at most. The worst-case complexity is 𝑂 (𝑛3) +𝑂 (𝑚 ×
𝑣2 × 𝑛). However, network sparsity reduces the 𝑣 in the neighbor-

hood, and 𝑛 is a small value. Furthermore, the number of iterations

is much smaller than 𝑚 because multiple nodes are removed in

batches.

4.2 Step Size Functions
Depending on the task for which core decomposition is used, we

recommend using one of two different step size functions. Their

application is also illustrated in Figure 1 and 2.

• Linear function: When one wants to ensure that nodes in

different cores are different with respect to their node prop-

erties and community embedding, a linear step size function

can be chosen. This function simply decrements the 𝜖 values

with a fixed step size 𝑠 such as 𝑠 = 0.1. As a result, at most

1/𝑠 cores will be identified.
• Depth-dependend exponential decay function: If the task is

to identify a node ranking, a step size function that ensures

that the highest cores contain few nodes is appropriate. To

achieve this, each subsequent core size should be smaller

than the previous one. An exponential decay can be imple-

mented by choosing the next 𝜖 based on the highest depth

observed at a certain quantile, for example, the median, cor-

responding to a step size of 0.5. This method is shown in

Algorithm 2, and requires the depth values of the remaining

nodes, and a step size 𝑠 as inputs to obtain the next 𝜖 .

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1629

Algorithm 2: Exponential decay step function △𝑠
Input: Depth values of remaining nodes 𝑧,

Step size 𝑠 , (𝑠 ∈ (0, 1])
Output: 𝜖

1 𝑐𝑜𝑢𝑛𝑡 = |𝑧 |; // Count remaining nodes

2 𝑧 = sort(𝑧, descending);

3 𝜖 = 𝑧 [⌈𝑐𝑜𝑢𝑛𝑡 · 𝑠⌉]; // Get highest depth

4 return 𝜖

Figures 1 and 2 illustrate these step size functions. Both figures are

based on a very small token network, the SoftChainCoin, consisting
of 278 edges and 197 nodes. Two nodes are exchange accounts

belonging to the HotBit exchange, marked with stars in both fig-

ures. We run AlphaCore on both networks, with the node property

functions 𝑁𝑖𝑛, 𝑆𝑖𝑛 and 𝑆𝑜𝑢𝑡 . Figure 1 shows a linear step size of

𝑠 = 0.25, Figure 2 an exponential decay with 𝑠 = 0.25. Whereas in

Figure 1, the core values are well separated, Figure 2 has multiple

cores around the value 0.19 (including the exchange nodes), indicat-

ing that these cores may be rather similar. Yet, due to the decaying

step size function in Figure 2, it is ensured that the highest cores

only contain very few nodes. While in this example, this is also

true for the linear step size function, it does not hold in general.

Particularly in large graphs, it can happen that the highest core still

contains a lot of nodes because they are quite similar. A solution

would be to pick a very small linear step size function, but this, in

turn, incurs much longer runtimes, as many more iterations need

to be performed. Therefore, for the remaining experiments, we use

our exponentially decaying step-size function.

Uniqueness and stability. Given a graph and a step size, Alpha-

Core results are deterministic. Furthermore, the map D : 𝐹 −→
[0, 1], where 𝐹 ∈ R𝑑 is a set of node features is surjective. As dis-

cussed by Mosler [24], Mahalanobis depth is unique within any

affine family of nondegenerate 𝑑-variate distributions with finite

second moments, in the sense that a single contour set of the Ma-

halanobis depth is sufficient to identify the distribution from this

family of distributions.

Figures 1 and 2 illustrate that AlphaCore is stable in terms of

core membership at a certain 𝛼 . For example, both step size variants

identify the same nodes at an 𝛼 of 0.5 and 0.49688 respectively.

5 EXPERIMENTAL RESULTS
We evaluate the performance of AlphaCore on token networks of

the Ethereum blockchain, a network based on the Reddit social

network, and an international airport routes network. Our goal is

to evaluate the AlphaCore’s performance on different types of net-

works to gain insights into the AlphaCore’s applicability. Although

the structure of each network is different, all networks are weighted

and directed and have ground truth labels assigned to each node

based on node importance. These networks are thus suitable for an

evaluation across several node properties (see Table 1). We compare

our results to 𝑘-core and weighted 𝑘-core algorithms, the underly-

ing data depth method, and popular centrality measures, allowing

us to illustrate the utility of core decomposition algorithms.

5.1 Datasets
Token networks. Using the tool ethereum-etl,

1
we have extracted

token transfers between Oct-16-2018 and May-04-2020. As there

are thousands of token networks contained in these transfers, we

first consider the top 100 networks by the number of transfers,

excluding the token network USD Tether, as it is too large for effi-

cient algorithm comparison (> 4𝑀 nodes). We downloaded node

labels in May 2020 from Etherscan,
2
a prominent Ethereum block

explorer, that curates and maintains address labels. In total, 296 ad-

dresses from 149 centralized and decentralized exchange addresses

are listed publicly, which are likely used frequently. Not all the top

token networks have multiple exchange nodes taking part in them.

For the following evaluation, we only consider those token net-

works that contain at least 10 such labeled exchange nodes, which

reduces the number of networks considered to 28.

Reddit crosslinks. This network originates from a study on com-

munity interaction on the Reddit social network [16]. Each node

represents a subreddit, and edges are comments that contain a

(cross)link from one subreddit to another, making it a directed net-

work. We have transformed this network into a weighted network

by counting the number of the same source/destination crosslinks.

To be able to use labels, we have retrieved a list of the top 100

subreddits by subscriber count at the time of the original dataset.
3

Airport flight routes. This dataset has been curated from Open-

flights.org and consists of routes between international airports,

where the edge weight indicates the number of routes. It has been

used to study (weighted) centrality measures [29]. In addition, we

have obtained labels of the top 30 busiest airports by passenger

counts, at the time of the original dataset
4
.

For reproducibility, we are making the code
5
and data

6
alongside

this paper available. The data consists of the 28 token networks and

labels. The Reddit and airport routes dataset and matching labels

are already publicly available, and referenced via links.

5.2 Preprocessing
The token networks dataset needed further preprocessing. Most

token networks are financial in nature, and can have very large

differences in transferred amounts. This also holds true for trans-

ferred token amounts on the Ethereum platform, which can theo-

retically range between 0 and 2
256 − 1. In practice, amounts often

range between 1 and 10
13
. However, this is not guaranteed and im-

plies there can be orders of magnitudes differences in the amounts,

which in turn can lead to very long run times for algorithms such

as weighted 𝑘-core. To avoid such issues, we remove edges with

very small weights, where𝑤𝑒𝑖𝑔ℎ𝑡 <
𝑚𝑎𝑥 (𝑤𝑒𝑖𝑔ℎ𝑡)

10
10

.

Note that the weighted 𝑘-core algorithm applies its own weight

scaling: Normalization by the mean weight, and then division by

the minimum weight.

1
https://github.com/blockchain-etl/ethereum-etl

2
https://etherscan.io/labelcloud

3
https://web.archive.org/web/20170407193210/http://redditlist.com/

4
https://web.archive.org/web/20110430004800/http://www.aci.aero/cda/aci_

common/display/main/aci_content07_c.jsp?zn=aci&cp=1-5-212-1376-1379_666_2__

5
https://github.com/friedhelmvictor/alphacore

6
https://zenodo.org/record/4898412

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1630

https://github.com/blockchain-etl/ethereum-etl
https://etherscan.io/labelcloud
https://web.archive.org/web/20170407193210/http://redditlist.com/
https://web.archive.org/web/20110430004800/http://www.aci.aero/cda/aci_common/display/main/aci_content07_c.jsp?zn=aci&cp=1-5-212-1376-1379_666_2__
https://web.archive.org/web/20110430004800/http://www.aci.aero/cda/aci_common/display/main/aci_content07_c.jsp?zn=aci&cp=1-5-212-1376-1379_666_2__
https://github.com/friedhelmvictor/alphacore
https://zenodo.org/record/4898412

Table 2: Performance comparison with a ranking task using 28 token networks, the Reddit crosslinks network, and the flight
routes network. Performance is indicated using (average) precision and recall at 𝑘 . We compare core decomposition methods,
the Mahalanobis depth, and popular centrality measures with a variety of input features. Our work (alphaCore) is always used
with a starting epsilon of 0.1 and a step size of 0.1. It performs best in comparison with other core decomposition methods and
exceeds centrality measures at lower 𝑘 . The best results are highlighted with a yellow background.

28 Token Networks Reddit Crosslinks Network Flight Routes Network

Algorithm Input features

A
P
@
1
0

A
P
@
2
0

A
P
@
5
0

A
R
@
1
0

A
R
@
2
0

A
R
@
5
0

P
@
1
0

P
@
2
0

P
@
5
0

R
@
1
0

R
@
2
0

R
@
5
0

P
@
1
0

P
@
2
0

P
@
5
0

R
@
1
0

R
@
2
0

R
@
5
0

C
o
r
e
D
e
c
o
m
p
o
s
i
t
i
o
n

1 alphaCore 𝑁𝑖𝑛, 𝑁𝑜𝑢𝑡 0.54 0.45 0.30 0.10 0.16 0.25 0.30 0.35 0.36 0.03 0.07 0.18 0.70 0.75 0.38 0.23 0.50 0.63

2 alphaCore 𝑁𝑜𝑢𝑡 0.50 0.44 0.27 0.10 0.16 0.23 0.30 0.30 0.14 0.03 0.06 0.07 1.00 0.55 0.32 0.33 0.37 0.53

3 alphaCore 𝑁𝑜𝑢𝑡 , 𝑆𝑖𝑛, 𝑆𝑜𝑢𝑡 0.42 0.33 0.21 0.07 0.11 0.18 0.50 0.45 0.34 0.05 0.09 0.17 0.20 0.35 0.40 0.07 0.23 0.67

4 alphaCore 𝑁𝑖𝑛, 𝑁𝑜𝑢𝑡 , 𝑆𝑖𝑛, 𝑆𝑜𝑢𝑡 0.41 0.33 0.22 0.07 0.11 0.19 0.60 0.55 0.48 0.06 0.11 0.24 0.40 0.40 0.26 0.13 0.27 0.43

5 alphaCore 𝑁𝑖𝑛 0.50 0.41 0.24 0.10 0.15 0.21 1.00 0.95 0.58 0.10 0.19 0.29 0.90 0.50 0.30 0.30 0.33 0.50

6 alphaCore 𝑁𝑖𝑛, 𝑆𝑖𝑛 0.39 0.30 0.19 0.06 0.10 0.17 0.30 0.30 0.50 0.03 0.06 0.25 0.10 0.35 0.52 0.03 0.23 0.87

7 k-core 𝑁 0.36 0.26 0.14 0.06 0.08 0.11 0.10 0.05 0.08 0.01 0.01 0.04 0.40 0.50 0.36 0.13 0.33 0.60

8 k-core 𝑁𝑜𝑢𝑡 0.22 0.16 0.11 0.03 0.05 0.10 0.10 0.05 0.08 0.01 0.01 0.04 0.40 0.45 0.34 0.13 0.30 0.57

9 k-core 𝑁𝑖𝑛 0.13 0.09 0.06 0.03 0.04 0.06 0.10 0.05 0.14 0.01 0.01 0.07 0.40 0.45 0.34 0.13 0.30 0.57

10 w. k-core 𝑁,𝑆 0.37 0.30 0.19 0.06 0.10 0.16 0.30 0.45 0.48 0.03 0.09 0.24 0.40 0.40 0.46 0.13 0.27 0.77

11 w. k-core 𝑁𝑖𝑛, 𝑆𝑖𝑛 0.33 0.23 0.15 0.06 0.07 0.13 0.10 0.05 0.22 0.01 0.01 0.11 0.40 0.40 0.42 0.13 0.27 0.70

12 w. k-core 𝑁𝑜𝑢𝑡 , 𝑆𝑜𝑢𝑡 0.28 0.29 0.21 0.05 0.10 0.18 0.10 0.05 0.10 0.01 0.01 0.05 0.40 0.40 0.44 0.13 0.27 0.73

13 w. k-core 𝑁𝑖𝑛, 𝑁𝑜𝑢𝑡 0.04 0.03 0.02 0.01 0.01 0.02 0.10 0.05 0.10 0.01 0.01 0.05 0.20 0.20 0.36 0.07 0.13 0.60

D
a
t
a
D
e
p
t
h

14 Mahalanobis depth 𝑁𝑜𝑢𝑡 0.45 0.35 0.27 0.08 0.13 0.23 0.10 0.20 0.18 0.01 0.04 0.09 0.80 0.80 0.54 0.27 0.53 0.90

15 Mahalanobis depth 𝑁𝑖𝑛, 𝑁𝑜𝑢𝑡 0.44 0.35 0.25 0.08 0.13 0.23 0.60 0.50 0.42 0.06 0.10 0.21 0.70 0.75 0.46 0.23 0.50 0.77

16 Mahalanobis depth 𝑁𝑜𝑢𝑡 , 𝑆𝑖𝑛, 𝑆𝑜𝑢𝑡 0.41 0.34 0.23 0.07 0.12 0.20 0.50 0.50 0.36 0.05 0.10 0.18 0.50 0.60 0.46 0.17 0.40 0.77

17 Mahalanobis depth 𝑁𝑖𝑛, 𝑆𝑖𝑛 0.38 0.35 0.23 0.07 0.12 0.20 0.90 0.80 0.68 0.09 0.16 0.34 0.60 0.65 0.52 0.20 0.43 0.87

18 Mahalanobis depth 𝑁𝑖𝑛, 𝑁𝑜𝑢𝑡 , 𝑆𝑖𝑛, 𝑆𝑜𝑢𝑡 0.38 0.37 0.24 0.06 0.13 0.21 0.60 0.55 0.42 0.06 0.11 0.21 0.40 0.45 0.44 0.13 0.30 0.73

19 Mahalanobis depth 𝑁𝑖𝑛 0.36 0.30 0.22 0.07 0.12 0.21 0.90 0.90 0.76 0.09 0.18 0.38 0.80 0.80 0.54 0.27 0.53 0.90

C
e
n
t
r
a
l
i
t
y
M
e
a
s
u
r
e
s

20 InDeg. Centr. 𝑑𝑒𝑔𝑖𝑛 0.28 0.24 0.17 0.06 0.10 0.16 0.90 0.90 0.76 0.09 0.18 0.38 0.80 0.80 0.54 0.27 0.53 0.90

21 w. InDeg. Centr. 𝑑𝑒𝑔𝑖𝑛, 𝑆𝑖𝑛 0.42 0.38 0.26 0.08 0.14 0.23 1.00 0.90 0.76 0.10 0.18 0.38 0.90 0.85 0.56 0.30 0.57 0.93

22 OutDeg. Centr. 𝑑𝑒𝑔𝑜𝑢𝑡 0.34 0.30 0.20 0.06 0.11 0.18 0.10 0.20 0.18 0.01 0.04 0.09 0.80 0.80 0.54 0.27 0.53 0.90

23 w. OutDeg. Centr. 𝑑𝑒𝑔𝑜𝑢𝑡 , 𝑆𝑜𝑢𝑡 0.50 0.39 0.28 0.09 0.15 0.25 0.20 0.20 0.18 0.02 0.04 0.09 0.90 0.85 0.56 0.30 0.57 0.93

24 Pagerank 𝑑𝑒𝑔𝑖𝑛, 𝑆𝑖𝑛 (neighbors) 0.47 0.40 0.24 0.08 0.14 0.22 0.90 0.80 0.68 0.09 0.16 0.34 0.70 0.65 0.48 0.23 0.43 0.80

25 Betw. Centr. shortest paths 0.60 0.40 0.40 0.06 0.08 0.20 0.80 0.60 0.46 0.27 0.40 0.77

26 w. Betw. Centr. w. shortest paths Computationally too 0.60 0.60 0.48 0.06 0.12 0.24 0.80 0.70 0.44 0.27 0.47 0.73

27 Clo. Centr. shortest paths expensive for larger graphs 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.85 0.56 0.33 0.57 0.93

28 w. Clo. Centr. w. shortest paths 0.10 0.05 0.12 0.01 0.01 0.07 0.90 0.90 0.56 0.30 0.60 0.93

5.3 Evaluation
We evaluate the task of finding top 𝑛 labeled nodes in Table 2, using

precision and recall measures (shown as 𝑃@𝑛, 𝑅@𝑛 respectively),

where 𝐴𝑃@𝑛 and 𝐴𝑅@𝑛 denote the averages across multiple net-

works. Nodes are ranked by their core membership, depth value,

or centrality value in descending order. AlphaCore is used with a

starting epsilon and an exponential decay step size of 0.1. If there

are different batch ids at the same alpha level, we additionally rank

nodes by their batch id. Weighted k-core and weighted centralities

are used with default weighting parameters, which are all 0.5.

Both 𝑘-core and weighted 𝑘-core are defined for undirected

networks. As the token networks are directed multigraphs, we

use a node’s neighborhood size instead of their degree. For the

other networks, degree equals neighborhood size. Furthermore, we

compare against modified variations of 𝑘-core (rows 8 and 9) and

weighted 𝑘-core (rows 11 – 13), using different input features. The

first insight is that AlphaCore performs best in comparison to the

other two core decomposition algorithms. While overall, weighted

centralities seem to be a good choice, AlphaCore exceeds their

performance for token networks and is on-par with them in the

Reddit crosslinks network. The reason why AlphaCore performs

better than 𝑘-core and weighted 𝑘-core, is likely due to usage of

the starting epsilon of 0.1. As mentioned in Section 4, this is similar

to first running a centrality measure, and afterwards performing

core decomposition on high centrality nodes, yielding a mixture of

centrality and core decomposition. We can see further evidence of

this by looking at the data depth results. Using only theMahalanobis

depth on the input features leads to similar results like the centrality

measures. Row 19 and 20 yield the exact same results for the Reddit

and flight networks. This illustrates that the Mahalanobis depth

can act like a centrality measure. The results are not the same for

the token networks, because neighborhood size and degree are not

the same when multi edges are present.

The Reddit dataset, at lower k, benefits from performing core

decomposition as shown in row 5. This does not hold true for the

flight routes network, which is likely due to the fact that the number

of passengers at an airport is unrelated to the presence of a core

community, as non-direct flight routes typically do not offer many

different connecting airports. The takeaway is that the flight routes

network may be unsuitable for core decomposition in general.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1631

●

●

●
●

●

●

●

●

●

● ● ●

●

●
● ● ● ●

●

● ●

● ●

● ● ● ●

28 token nets
airports

reddit

1e
−

04

0.
00

1

0.
01 0.

1

0.
3

0.
5

0.
7

0.
9 1

0.2

0.3

0.4

0.5

0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Start epsilon

A
P

@
10

Step size
● 0.1

0.2

0.3

0.4

0.5

A
P

@
10

P
@

10

Figure 3: AlphaCore (average) precision at 10 for a range of
starting epsilon and step sizes across all three network types.
The input features for each dataset are the best performing
taken fromTable 2 (rows 1, 5 and 2), and the step size function
is decaying exponentially. At a starting epsilon of 0.1, the best
average precision at 10 is achieved, regardless of network
type and step size.

Insights into parameter selection. To get a better understanding
of AlphaCore’s parameters, we explore different start epsilons and

step sizes in Figure 3, where we run AlphaCore with their best

performing input features for each dataset (rows 1, 5, and 2) on all

networks. Across all datasets, a starting epsilon of 0.1 yields the

best precision, which means it is optimal if a large number of high

depth nodes are removed first, before iterating on the 𝜖 values and

incorporating the community structure. An even smaller epsilon

already has a negative effect, because too many nodes have already

been removed. As the step size function follows an exponential

decay, the actual step size itself does not have a large impact. As a

rule of thumb, we recommend low starting epsilons, when wanting

to focus only on the community of low depth nodes.

Figure 4 shows the precision for all 28 networks by vertex count.

We see that AlphaCore reaches a precision of ≥ 0.8 for 9 token

networks. Overall, AlphaCore improves precision over competitors

when using a single feature as an input; also, it achieves the highest

precision and recall values when using multiple input features.

5.4 Discussion
Data challenges. Traditional core decomposition algorithms pro-

pose little in alleviating data challenges. For example, weighted

𝑘-core proposes using 𝛼 = 𝛽 = 0.5 for combining properties, but

improving over this arbitrary choice is left as future work. In most

networks, edge weights are skewed and long tails complicate scal-

ing and normalization issues. For example, in token networks, max

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0.0

0.2

0.4

0.6

0.8

1.0

3e+04 1e+05 3e+05 1e+06

Vertex count in graph

P
@

10

Figure 4: Graph order on the 28 token networks that have at
least 10 nodes of interest. Precision at 10 for each of the 28
token networks with at least 10 nodes of interest, illustrated
by the number of nodes in the network. The input features
are 𝑁𝑖𝑛 and 𝑁𝑜𝑢𝑡 , and start epsilon and step size are 0.1. The
precision does not appear to depend on the network size.

edge weights can reach 10
13
, whereas node degrees are typically

less than 3. With such a difference in scales, node property combi-

nation becomes a challenge in weighted 𝑘-core. AlphaCore is not

beset with such issues as it benefits from the robustness of data

depth in ordering data.

Limits on precision. We have seen that not all networks are suit-

able for core decomposition. This is true for the flight routes net-

work. In addition, the labels that we have acquired may not directly

correspond to high core nodes. In token networks for example, it

is possible that high core nodes contain automated traders per-

forming arbitrage and are thus by definition, influential/important

nodes in the network. Our external label set does not contain such

nodes because unlike exchanges, arbitrageurs do not disclose their

identities. As a result, precision in detecting only exchanges may

never reach 100%.

Applicability of AlphaCore. AlphaCore requires no coefficients

to combine node properties, nor multiple thresholds to iterate dur-

ing decomposition. As a result, it can be applied to any network

with no supervision. For example, Figure 4 shows that AlphaCore

precision for large networks is similar to that of small networks.

Furthermore, AlphaCore achieves better performance using just

one property. For example, Table 1 shows that AlphaCore precision

is better than that of 𝑘-core for degree-based properties. We believe

that this performance improvement is due to the usage of data

depth, which is robust against data skew due to its ordering of data

points in a center-outward fashion. Skewed node properties are

naturally ordered in AlphaCore which obviates combining node

properties.

Application domains of AlphaCore. AlphaCore allows unsuper-
vised core decomposition on an arbitrary number of node properties

defined on any network type. For example, in protein interaction

networks, a pathway node property can be defined in terms of

genes, which can encode certain post-translational modifications.

By using AlphaCore, multiple such properties can be utilized and

we can benefit from integrating domain expertise with network

analysis.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1632

6 CONCLUSION
In this work, we have provided a novel core decomposition al-

gorithm named AlphaCore that is developed to handle directed,

weighted graphs with multiple node features. We have evaluated

AlphaCore’s performance using blockchain-based token networks,

a Reddit social network, and a flight routes network using ground

truth labels that indicate the importance of different nodes in the

network. We have shown that AlphaCore can identify important

nodes more accurately compared to state of art core decomposi-

tion algorithms, and can, in some networks, outperform centrality

measures as well, as it can act as a mixture of centrality measure

and core decomposition. Unlike existing decomposition algorithms,

AlphaCore does not require multiple weighting parameters to be

specified in order to perform well on a given task. In the future,

we plan to explore the usage of AlphaCore algorithm to determine

network robustness.

7 ACKNOWLEDGEMENTS
This work is supported in part by National Science Foundation

under Grant No. ECCS 2039701, ECCS 1824716, DMS 1925346, CNS

1837627, OAC 1828467, IIS 1939728, CNS 2029661 and Canadian

NSERC Discovery Grant RGPIN-2020-05665.

REFERENCES
[1] Mohammed Ali Al-garadi, Kasturi Dewi Varathan, and Sri Devi Ravana. 2017.

Identification of influential spreaders in online social networks using interaction

weighted K-core decomposition method. Physica A: Statistical Mechanics and its
Applications 468 (2017), 278–288.

[2] A. Anoaica and H. Levard. 2018. Quantitative Description of Internal Activity on

the Ethereum Public Blockchain. In NTMS. IEEE, 1–5.
[3] Vladimir Batagelj and Matjaž Zaveršnik. 2002. Generalized cores. CoRR

cs.DS/0202039 (2002).

[4] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).
[5] Kate Burleson-Lesser, FlavianoMorone, Maria S Tomassone, andHernán AMakse.

2020. K-core robustness in ecological and financial networks. Scientific reports
10, 1 (2020), 1–14.

[6] Ernesto Estrada. 2012. The structure of complex networks: theory and applications.
Oxford University Press.

[7] D. Fraiman, F. Fraiman, and R. Fraiman. 2015. Statistics of dynamic random

networks: a depth function approach. arXiv:1408.3584v3 (2015).
[8] Antonios Garas, Frank Schweitzer, and Shlomo Havlin. 2012. A k-shell decom-

position method for weighted networks. New Journal of Physics 14, 8 (2012),

083030.

[9] C. Giatsidis, F. Malliaros, D. Thilikos, and M. Vazirgiannis. 2014. Corecluster:

A degeneracy based graph clustering framework. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 28.

[10] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. 2011. Evalu-

ating cooperation in communities with the k-core structure. In 2011 International
conference on advances in social networks analysis and mining. IEEE, 87–93.

[11] D. Y. Huang and D. McCoy. 2018. Tracking Ransomware End-to-end. In Tracking
Ransomware End-to-end. IEEE, 1–12.

[12] X. Huang and Y.R. Gel. 2017. CRAD: Clustering with Robust Autocuts and Depth.

In ICDM.

[13] R. J. Hyndman and H. L. Shang. 2010. Rainbow plots, bagplots, and boxplots

for functional data. Journal of Computational and Graphical Statistics 19 (2010),
29–45.

[14] Myeong-Hun Jeong, Yaping Cai, Clair J Sullivan, and Shaowen Wang. 2016. Data

depth based clustering analysis. In SIGSPATIAL.
[15] M. Kleindessner and U. von Luxburg. 2017. Lens Depth Function and 𝑘-Relative

Neighborhood Graph: Versatile Tools for Ordinal Data Analysis. Journal of
Machine Learning Research 18, 18 (2017), 1–52.

[16] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-

munity interaction and conflict on the web. In Proceedings of the 2018 world wide
web conference. 933–943.

[17] Xi Tong Lee, Arijit Khan, Sourav Sen Gupta, Yu Hann Ong, and Xuan Liu. 2020.

Measurements, analyses, and insights on the entire ethereum blockchain network.

In Proceedings of The Web Conference 2020. 155–166.

[18] R.-H. Li, G. Wang, W. Yang, and J. X. Yu. 2020. Ordering Heuristics for k-clique

Listing. In Proceedings of the VLDB Endowment.
[19] Feng Luo, Bo Li, Xiu-Feng Wan, and Richard H Scheuermann. 2009. Core and

periphery structures in protein interaction networks. In BMC bioinformatics,
Vol. 10. Springer, S8.

[20] Hassan Mahdikhani, Rasoul Shahsavarifar, Rongxing Lu, and David Bremner.

2020. Achieve privacy-preserving simplicial depth query over collaborative cloud

servers. Peer-to-Peer Networking and Applications 13, 1 (2020), 412–423.
[21] Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and

Michalis Vazirgiannis. 2020. The core decomposition of networks: Theory, algo-

rithms and applications. The VLDB Journal 29, 1 (2020), 61–92.
[22] S. Meiklejohn, M. Pomarole, G. Jordan, D. Levchenko, K.and McCoy, G. M Voelker,

and S. Savage. 2013. A fistful of bitcoins: characterizing payments among men

with no names. In IMC. ACM, 127–140.

[23] Daniele Miorandi and Francesco De Pellegrini. 2010. K-shell decomposition for

dynamic complex networks. In 8th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks. IEEE, 488–496.

[24] Karl Mosler. 2012. Multivariate Dispersion, Central Regions, and Depth: The Lift
Zonoid Approach. Vol. 165. Springer Science & Business Media.

[25] Pavlo Mozharovskyi, Julie Josse, and François Husson. 2020. Nonparametric

imputation by data depth. J. Amer. Statist. Assoc. 115, 529 (2020), 241–253.
[26] N.N. Narisetty and V. Nair. 2016. Extremal Depth for Functional Data and Appli-

cations. J. Amer. Statist. Assoc. 111 (2016), 1505–1714.
[27] A. Nieto-Reyes and H. Battey. 2016. A topologically valid definition of depth for

functional data. Statist. Sci. 31, 1 (2016), 61–79.
[28] Giannis Nikolentzos, Polykarpos Meladianos, Stratis Limnios, and Michalis Vazir-

giannis. 2018. A Degeneracy Framework for Graph Similarity.. In IJCAI. 2595–
2601.

[29] Tore Opsahl. 2011. Why anchorage is not (that) important: Binary ties and sample

selection. online] https://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-
important-binary-ties-and-sample-selection/ (2011).

[30] Tore Opsahl, Filip Agneessens, and John Skvoretz. 2010. Node centrality in

weighted networks: Generalizing degree and shortest paths. Social networks 32,
3 (2010), 245–251.

[31] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[32] Mukund Raj, MahsaMirzargar, Robert Ricci, Robert MKirby, and Ross TWhitaker.

2017. Path boxplots: A method for characterizing uncertainty in path ensembles

on a graph. Journal of Computational and Graphical Statistics 26, 2 (2017), 243–
252.

[33] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks 5, 3 (1983), 269–287.

[34] Carlo Sguera and Sara López-Pintado. 2020. A notion of depth for sparse func-

tional data. arXiv:2007.15413 (2020).
[35] M. Shanahan, V. P. Bingman, T. Shimizu, M. Wild, and O. Güntürkün. 2013. Large-

scale network organization in the avian forebrain: a connectivity matrix and

theoretical analysis. Frontiers in computational neuroscience 7 (2013), 89.
[36] Ali Sheharyar, Alexander Ruh, Maria Aristova, Michael Scott, Kelly Jarvis, Mo-

hammed Elbaz, Ryan Dolan, Susanne Schnell, Kai Lin, James Carr, et al. 2019.

Visual analysis of regional myocardial motion anomalies in longitudinal studies.

Computers & Graphics 83 (2019), 62–76.
[37] S. Somin, G. Gordon, and Y. Altshuler. 2018. Network Analysis of ERC20 Tokens

Trading on Ethereum Blockchain. In ICCS. 439–450.
[38] S. Somin, G. Gordon, and Y. Altshuler. 2018. Social Signals in the Ethereum

Trading Network. arXiv:1805.12097 (2018).

[39] Yahui Tian and Yulia R Gel. 2017. Fast Community Detection in Complex Net-

works with a K-Depths Classifier. In Big and Complex Data Analysis. Springer,
139–157.

[40] Y. Tian and Y. R. Gel. 2019. Fusing data depth with complex networks: Community

detection with prior information. Computational Statistics & Data Analysis 139
(2019), 99–116.

[41] Friedhelm Victor and Bianca Katharina Lüders. 2019. Measuring ethereum-based

erc20 token networks. In International Conference on Financial Cryptography and
Data Security. Springer, 113–129.

[42] G. Vinue and I. Epifanio. 2020. Robust archetypoids for anomaly detection in big

functional data. Advances in Data Analysis and Classification (2020), 1–26.

[43] R.T. Whitaker, M. Mirzargar, and R.M. Kirby. 2013. Contour Boxplots: A Method

for Characterizing Uncertainty in Feature Sets from Simulation Ensembles. IEEE
Transactions on Visualization and Computer Graphics 19, 12 (2013), 2713–2722.

[44] G. Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper 151 (2014), 1–32.
[45] X. Zhang, Y. Tian, G. Guan, and Y. R. Gel. 2021. Depth-based classification for

relational data with multiple attributes. Journal of Multivariate Analysis 184
(2021), 104732.

[46] Yang Zhang and Srinivasan Parthasarathy. 2012. Extracting analyzing and visu-

alizing triangle k-core motifs within networks. In 2012 IEEE 28th International
Conference on Data Engineering. IEEE, 1049–1060.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1633

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Blockchain and Ethereum Token Networks
	2.2 Blockchain Graph Analysis
	2.3 Core Decomposition Algorithms
	2.4 Network Centrality Measures

	3 Data Depth
	4 Methodology
	4.1 Algorithm Description
	4.2 Step Size Functions

	5 Experimental Results
	5.1 Datasets
	5.2 Preprocessing
	5.3 Evaluation
	5.4 Discussion

	6 Conclusion
	7 Acknowledgements
	References

