502 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fixed-Priority Scheduling for Reliable and
Energy-Aware (m, k)-Deadlines Enforcement
With Standby-Sparing

Linwei Niu

Abstract—For real-time computing systems, energy efficiency,
quality of service (QoS), and fault tolerance are among the major
design concerns. In this work, we study the problem of reliable
and energy-aware (m, k)-deadlines enforcement using standby
sparing under the fixed-priority assignment. The standby-sparing
systems adopt a primary processor and a spare processor to pro-
vide fault tolerance for both permanent and transient faults. In
order to reduce energy consumption for such kinds of systems, we
proposed two novel scheduling schemes under the QoS constraint
of (m, k)-deadlines: one for task sets partitioned with deeply red
pattern and one for task sets partitioned with evenly distributed
pattern. The evaluation results demonstrate that our proposed
approaches significantly outperformed the previous research in
energy conservation while assuring (m, k)-deadlines and fault
tolerance for real-time systems.

Index Terms—Energy conservation, fault tolerance, fixed-
priority (FP) scheduling, (m, k)-deadlines, standby sparing.

I. INTRODUCTION

ITH the advance of CMOS technology, energy con-
W servation has been a critical design issue for real-time
embedded systems. On the other hand, fault tolerance has also
been a major concern in the design of pervasive computing
systems as system fault(s) could occur anytime [1]. Generally,
computing system faults can be classified into permanent faults
and transient faults [2]. Permanent faults could be caused by
hardware failure or permanent damage in processing unit(s),
whereas transient faults are mainly due to temporary factors,
such as electromagnetic interference and cosmic ray radiations.

In recent years, extensive research studies (e.g., [1], [3]-[6])
have been reported in conserving energy for fault-tolerant
real-time systems. Many of them have focused on dealing
with transient faults. A widely adopted strategy is to use
software redundancy, i.e., to reserve recovery jobs, whenever
possible, for the jobs subject to transient faults. For mission-
critical applications, such as nuclear plant control systems
and heart pacemakers [7], permanent faults need to be dealt

Manuscript received September 5, 2020; revised December 5, 2020;
accepted January 16, 2021. Date of publication February 23, 2021; date of
current version February 21, 2022. This work was supported in part by NSF
under Project HRD-1800403. This article was recommended by Associate
Editor Z. Shao. (Corresponding author: Linwei Niu.)

Linwei Niu is with the Department of Electrical Engineering and
Computer Science, Howard University, Washington, DC 20059 USA (e-mail:
linwei.niu@howard.edu).

Dakai Zhu is with the Department of Computer Science, University of
Texas at San Antonio, San Antonio, TX 78249 USA.

Digital Object Identifier 10.1109/TCAD.2021.3061522

, Member, IEEE, and Dakai Zhu

, Senior Member, IEEE

with by all means to avoid system failure. Otherwise, catas-
trophical consequences could occur. To address this issue,
solutions adopting hardware redundancy are required. Among
them, the standby-sparing technique has recently gained much
attention in the research community [8]-[12]. Generally, the
standby-sparing makes use of the redundancy of processing
units in multicore/multiprocessor systems. More specifically,
a standby-sparing system consists of two processors: 1) a
primary one and 2) a spare one, executing in parallel. For
each real-time job executed in the primary processor, there
is a corresponding backup job reserved for it in the spare
processor [10]. As such, whenever a permanent fault occurs
to the primary or the spare processor, the other one can still
continue without causing system failure. Moreover, it is not
hard to see that the backup tasks/jobs in the spare processor
can also help tolerate transient faults for their corresponding
main tasks/jobs in the primary processor.

In a standby-sparing system, the execution of the main
jobs in the primary processor and their corresponding backup
jobs in the spare processor might need to be overlapped with
each other. Thus, the total energy consumption could be quite
considerable. Regarding that, some recent works have been
reported to reduce energy (e.g., [8]-[10], [12]). The main
idea is to try to let the executions of the main jobs and
their corresponding backup jobs be shifted away as much as
possible such that once the main jobs are completed success-
fully, their corresponding backup jobs could be canceled early,
thereby saving energy in the spare processor. With that in
mind, in [10] and [11], approaches based on the dual-priority
scheme were proposed for standby-sparing fixed-priority (FP)
real-time systems. Their works are mainly focused on hard
real-time systems.

In some real-time applications, occasional deadline missings
are acceptable so long as the user perceived quality of service
(QoS) can be assured at certain levels. For example, some
remote monitoring applications that sense k times per minute
while missing (k — m) precisely distributed sensing samples
might be acceptable but with some degraded QoS levels [13].
For such kinds of systems, the existing techniques solely based
on hard real-time constraints are insufficient in dealing with
energy conservation under fault tolerance and more advanced
techniques incorporating the QoS model are desired.

A widely known deterministic QoS model is the (m, k)
model [14]. To ensure the (m, k)-deadlines, Ramanathan [15]
proposed to partition the jobs into mandatory ones and

1937-4151 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6543-6660
https://orcid.org/0000-0002-1938-9947

NIU AND ZHU: FP SCHEDULING FOR RELIABLE AND ENERGY-AWARE (m, k)-DEADLINES ENFORCEMENT WITH STANDBY-SPARING 503

optional ones. The mandatory ones must be completed suc-
cessfully, whereas the other ones could be optionally executed
when necessary.

In this article, we study the problem of reliable and energy-
aware (m, k)-deadlines enforcement with standby-sparing
under FP assignment. To the best of our knowledge, this is the
first work to combine (m, k)-deadlines and standby sparing to
achieve better energy efficiency for real-time applications.

The remainder of the article is organized as follows. In
Section II we discuss the related work. Section III presents the
preliminaries. Section IV presents the motivations. Section V
presents our proposed approach based on deeply red patterns.
Section VII-B presents our approach based on evenly dis-
tributed patterns. In Section VII, we present our evaluation
results. In Section VIII, we offer our conclusion.

II. RELATED WORK

In the last few decades, a plenty of work has been done
in integrating QoS assurance into scheduling for real-time
systems. For systems with transient overloaded conditions,
Chetto [16] explored scheduling algorithms for firm real-time
systems. For mixed-criticality systems, Gettings et al. [17] and
Briiggen et al. [18] proposed new approaches that can provide
QoS-guarantee for low-criticality tasks. Moreover, for gen-
eral FP weakly hard real-time systems, schedulability analysis
based on the mixed integer linear programming (MILP) formu-
lation is provided in [19]. Considering the given energy budget
constraint, Alenawy and Aydin [20] proposed an approach
to reduce the number of (m, k)-violations for weakly hard
real-time systems. Also, to minimize the number of dynamic
failures, Kooti et al. [21] proposed a QoS-aware approach for
(m, k)-firm real-time systems with long-term variations of the
harvested energy.

Recently, with fault tolerance becoming an important con-
cern for ubiquitous computing systems, a lot of works have
been presented in combining fault-tolerant scheduling and
energy management for real-time embedded systems. Many
of them have focused on dealing with transient faults through
software redundancy, i.e., to reserve recovery jobs, whenever
possible, for the jobs subject to transient faults. Zhu et al. [1]
formulated the reliability as the probability of executing the
real-time tasks/jobs successfully. Li et al. [22] introduced an
adaptive scheme to minimize energy consumption under reli-
ability requirement. Their work targeted the “frame-based”
real-time systems only. For systems with more general real-
time constraints, Zhao et al. [5] proposed an approach to
reduce energy for periodical real-time tasks with reliability
requirement quantified for each task individually. When con-
sidering shared resource synchronization, Zhang et al. [6]
proposed a scheme to reduce energy consumption under relia-
bility requirement. Most of the above works targeted real-time
systems subject to transient faults only.

More recently, in order to provide better system depend-
ability, there has been increasing interest in adopting standby-
sparing technique to deal with both permanent and transient
faults simultaneously. With energy consumption in mind,
in [8], [9], and [23], online power management schemes

applying dynamic voltage/freqency scaling (DVFS) in the
primary processor and DPM in the spare processor were
proposed. Moreover, in order to reduce energy consump-
tion, Haque et al. [9] proposed to run the main tasks/jobs in
the primary processor as soon as possible, while the backup
tasks/jobs in the spare processor as late as possible such that
once the main tasks/jobs are completed successfully, their cor-
responding backup tasks/jobs could be (partially) canceled. To
enhance energy savings in both processors, in [24], a more
advanced technique, named the preference-oriented scheme,
was adopted which, in both the primary and backup proces-
sors, lets some tasks be scheduled as soon as possible, while
the other ones be scheduled as late as possible. Their approach
mainly implemented the preference-oriented scheduling from
the task level in which all jobs belong to the same task have the
same preference for execution. For standby-sparing systems
with mixed criticality, advanced energy management schemes
were proposed in [25]. Their approach tried to reduce energy
through convex optimization in combination with power man-
agement heuristics based on joint DVFS and DPM schemes in
both the primary and spare processors. When considering the
chip thermal effect, peak-power-aware standby-sparing tech-
niques utilizing energy management schemes were presented
in [26]. Their approaches targeted minimizing the peak-power
of the standby-sparing systems such that the total power con-
sumption generated by the chip would not exceed what the
cooling component was designed to dissipate under any work-
load. Most of the above works are for real-time systems based
on dynamic priority scheduling policies. For real-time systems
based on FP scheduling policies, standby-sparing schemes
based on the procrastination of the backup tasks were studied
in [10]. In [11], more advanced FP standby-sparing techniques
based on task-level preference-oriented scheduling schemes
were explored with the purpose of reducing the energy further.

For multicore/multiprocessor systems, some works have
also been done to reduce energy consumption. Zhou et al. [27]
proposed an approach to minimize energy consumption for
heterogeneous real-time multiprocessor systems under the
thermal constraint. Chen and Thiele [28] proposed energy
efficient task partitioning and platform synthesis methods
for both DVFS and non-DVES platforms. Neither of them
has taken fault tolerance into consideration. Han et al. [29]
explored fault-tolerant energy minimization for real-time
systems on multiprocessor platforms using the checkpointing
technique. Their approach can tolerate transient faults quite
well. However, if a permanent fault happened, the check-
pointing technique in [29] might not be able to deal with it
effectively because, due to the real-time constraints, the failed
part of the job might not be able to recovered successfully even
in a different processor. Consequently, critical information on
the failed job could be lost and the system might not be able to
be restored timely. Note that all of the aforementioned existing
works are mainly focused on hard real-time systems.

Different from the previous researches, the novelty of our
proposed work in this article lies in the fact that we tried to
combine the standby-sparing technique and (m, k)-deadlines
to achieve better energy efficiency for real-time systems that
can tolerate both transient and permanent faults.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

504 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

III. PRELIMINARIES
A. System Models

The real-time system considered in this article contains n
independent periodic tasks 7 = {t1, 12,..., Ty} scheduled
according to the FP scheme. Without loss of generality, we
assume that task t; has a lower priority than task t; if [> k.
Each task contains an infinite sequence of periodically arriving
instances called jobs. Task t; is characterized using five param-
eters, i.e., (P;, D;, Ci, m;, k;). P;, D; (< P;), and C; represent
the period, the deadline, and the worst case execution time
(WCET) for t;, respectively. A pair of integers, i.e., (m;, k;)
(0 < m;j < k;), are used to represent the (m, k)-constraint for
task t; that requires that among any k; consecutive jobs, at
least m; jobs are executed successfully. The jth job of task t;
is represented with J;; and we use r;, ¢;j(= C;), and d;; to rep-
resent its release time, execution time, and absolute deadline,
respectively. Note that when J;; is an optional job, we also use
Oj; to represent it when necessary.

The standby-sparing system consists of two identical pro-
cessors, which are denoted as primary processor and spare
processor, respectively. For the purpose of tolerating perma-
nent/transient faults, each mandatory job of a task 7; has two
duplicate copies running in the primary and the spare proces-
sors separately. Whenever a permanent fault is encountered in
either processor, the other one will take over the whole system
(to continue as normal). For convenience, we call each task
7; main task and its corresponding copy running in the other
processor backup task, denoted as t;. The jth job of task 7/
is denoted as Jlfj Moreover, we call each mandatory job Jj;
of task t; main job and its corresponding job running in the
other processor (to compensate its failure, if happened) backup
job, denoted as j,:,-. Note that in this article, J;’s backup job,
ie., j,-j might be different from J,fj, i.e., the job of 7/ in the
same time frame as J;; because, as will be shown in later
part of this article, J; and 7,-]- can be shifted away from each
other completely such that they might belong to different time
frames.

B. Energy Model

The processor can be in one of the three states: 1) busy;
2) idle; and 3) sleeping states. When the processor is busy
executing a job, it consumes the busy power (denoted as
Pypysy) which includes dynamic and static components during
its active operation. The dynamic power (Pgyn) consists of the
switching power for charging and discharging the load capac-
itance, and the short-circuit power due to the nonzero rising
and falling time of the input and output signals. The dynamic
power can be represented [30] as

Payn = CLV?f. (1)

Cp is the load capacitance, V is the supply voltage, and f
is the system clock frequency. The static power (Ps;) can be
expressed as

Pst = IstV (2)

where I; is mainly due to the leakage current, which consists
of both the subthreshold leakage current and the reverse bias

junction current in the CMOS circuit. The power consumption
when the processor is busy, i.e., Ppysy is thus

Pbusy = den + Py. 3)

When the processor is idle, it consumes the idle power
(denoted as Pjgle) whose major portion comes from the static
power. When the processor is in the sleeping state, it con-
sumes the sleeping power (denoted as Pgjeep) Which is assumed
to be negligible. Note that although dynamic power can be
reduced effectively by DVFS techniques, the efficiency of
DVEFS in reducing the overall energy is becoming seriously
degraded with the dramatic increase in static power (mainly
due to leakage) with the shrinking of IC technology size.
With that in mind, in this article, we assume that the pro-
cessors and the hardware platform used for standby sparing
do not apply DVFS. As such, when the processors is busy, it
always consumes Ppysy at the maximal supply voltage Viax.
Moreover, since dynamic power down (DPD), i.e., put the
processor into its sleeping state, can greatly reduce the leak-
age energy when the processor is not in use, we assume
that when no job is pending for execution, the processors
can be put into sleeping state with DPD. But, DPD needs
to consume energy/time overheads for implementing shutting-
down/waking-up the processor dynamically. If we assume the
energy overhead and time overhead of DPD to be E, and
t,, respectively, the processor can be shut down with positive
energy gains when the length of the idle interval is larger than
tsg = max([E,/(Pidle — Psleep)], 15). Correspondingly we call
tsqd the minimal shut-down interval.

C. Fault Model

Similar to the standby-sparing systems in [9] and [10], the
system we considered can tolerate both permanent and tran-
sient faults. With the redundancy of the processing units, our
system can tolerate at least one permanent fault in the primary
or the spare processor. For transient faults that can occur any-
time during the task execution, we assume they can be detected
at the end of a job’s execution using sanity (or consistency)
checks [31] and the overhead for detection can be integrated
into the job’s execution time. Whenever a main job encoun-
ters transient fault(s), its backup job needs to be executed to
completion.

IV. MOTIVATIONS

Our goal is to reduce the overall energy consumption for
standby-sparing systems under the (m, k) requirement. To
assure the (m, k)-deadlines, a widely adopted strategy is to
judiciously partition the jobs into mandatory jobs and optional
jobs [32]. Two well-known partitioning strategies proposed
are the the deeply red pattern (or R-pattern) [33] and the
evenly distributed pattern (or E-pattern) [15]. According to
the R-pattern, the pattern 7r;; for job Jj;, i.e., the jth job of a
task t;, is defined by (here, “1” represents the mandatory job
and “0” represents the optional job)

I R if 1 <jmod k; <m;
T { “0”, otherwise j=1,2,3,....)

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

NIU AND ZHU: FP SCHEDULING FOR RELIABLE AND ENERGY-AWARE (m, k)-DEADLINES ENFORCEMENT WITH STANDBY-SPARING 505

According to the E-pattern, the pattern m; for job Jj is
defined by

“17 i G- 1) = H G | ;_J)
“0”, otherwise j=1,2,3,.

Tjj =
The mandatory/optional job partitioning according to (5) has
the property that it helps to spread out the mandatory jobs
evenly in each task along the time.

The necessary and sufficient condition for checking the
schedulability of the fixed-priority task sets partitioned based
on the E-pattern has been provided in [15]. The same rationale
could also be applied for checking the schedulability of task
sets partitioned based on the R-pattern as well.

From the above system models, to provide fault tolerance,
all mandatory jobs based on the R-pattern or E-pattern need
to have two duplicate copies running in the primary and the
spare processors, respectively. It is not hard to see that due
to the overlapped executions between them, one way to save
energy is to let each mandatory job in the primary processor be
finished as soon as possible and its backup job in the spare pro-
cessor be executed as late as possible such that once the main
job is completed successfully, its backup job can be canceled
immediately. To achieve this goal, Haque et al. [10] proposed
to run the main tasks in the primary processor according to
the regular FP scheme and the backup tasks on the spare pro-
cessor according to the dual priority scheme. Their approach
is based on the concept of “promotion time” (denoted as Y;),
calculated as follows:

Y;=D; —R; (6)

where R; is the worst case response time of task T;.
By applying dual priority, each backup job from backup task
7/ in the spare processor could be procrastinated by Y; time
units such that the overlapped executions between the main job
and its backup job could be reduced, thereby saving energy.
The energy reduction could be further boosted by adopting
the preference-oriented scheduling scheme in [11]. Generally,
their approach is quite efficient in reducing energy consump-
tion for hard real-time systems. However, for soft real-time
applications with (m, k)-deadlines, there still exist opportuni-
ties to reduce the energy further by exploring the flexibility of
executing jobs under (m, k)-deadlines to avoid executing dupli-
cate copies of the mandatary jobs on two processors whenever
possible. This could be illustrated in the following example.
Given a task set of two tasks, ie., 71 = (5,4,3,2,4) and
= (10,10, 3,1,2), to be executed in a standby-sparing
system. From (6), the promotion times Y7 and Y, for tasks
71 and 1o are calculated as 1 and 1, respectively. By apply-
ing the preference-oriented approach in [11] to the mandatory
jobs under the R-pattern, the main task 7; and backup task 7}
will be scheduled in the primary processor (with 7, sched-
uled under dual priority) while main task 7o and backup
task 7; will be scheduled in the spare processor (with 7|
scheduled under dual priority). The schedules for them are
shown in Fig. 1(a) and (b), respectively. As a result, the total

T,
Primary 3 5 8 10 15 20
Processor:
gk mll |
0l 35 9 10 20
(a)
IS B Y
Spare 10 15 20
Processor: ‘ ‘
10 20
(b)

Fig. 1. (a) Schedule for the main task 7; and backup task ré in the primary
processor under the preference-oriented scheme [11]. (b) Schedule for the
backup task rl’ and main task t; in the spare processor under the preference-
oriented scheme [11].

active energy consumption within the hyper period [0, 20] is
15 units.!

Note that in the above example, there are still extensive
overlapped execution times between the mandatory jobs and
their corresponding backup jobs, incurring significant energy
consumption. The main issue is that with the above approach,
only the mandatory jobs (and their backup jobs) under the
static R-patterns were executed. Note that the static patterns
such as the R-patterns defined in (4) only contain a “minimal
set” of mandatory jobs in them, no more no less, which just
meet the given (m, k)-constraint. Therefore, to ensure fault
tolerance, each mandatory job needs to have a backup job
reserved for it in the other processor, no exception. As a result,
each mandatory main job needs to be executed concurrently
with its backup job in the same time frame, which could result
in significant overlapped execution times between them due
to the time constraint. However, if we look into the optional
jobs and consider executing them adaptively, there could be
more chance to save energy. The reason is: since the optional
jobs are not required in meeting the given (m, k)-constraint,
they do not need backup jobs reserved for them. Moreover,
once any optional job was completed successfully, it would be
counted as a valid job that could contribute to satisfying the
given (m, k)-constraint as well, which means some mandatory
job (together with its backup job) in the near future might
not need to be executed anymore. In this way, by exploring
the possibility of executing the optional jobs and adjusting
the pattern dynamically, there could be more opportunities in
saving energy. This could be shown in Fig. 2. As seen in
Fig. 2(a) and (b), under dynamic patterns, the first job of task
7; is determined and scheduled as an optional job, denoted
as Oy, instead of mandatory because it can still tolerate one
more deadline missing.> Once O»; is executed and completed
successfully, its next mandatary job, i.e., Jo2, can be demoted

INote that for easy of presentation, in all examples in this article, we
normalize Ppygy (under the maximal processor speed smax) to 1 and assume
that one unit of energy will be consumed for a processor to execute a job for
one time unit.

2Although 01 is also determined as an optional job, we chose to execute
0y first because, starting from Oq1, task 71 can still tolerate two deadlines
missings; therefore, it is regarded as more flexible (less urgent) than Ojj.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

506 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

3 demited

T
Primary ' § 10 13 15 20
Processor: demoted J22 re-selected as optional job
T \
20 3 10 13 20
(a)
backup jobs dropped
N T A Nt
Spare ! 5 10 15 20
Processor:
T, | ™/
0 10 20
(b)
Fig. 2. (a) Schedule for the main tasks 7y and 7, in the primary processor

based on the greedy execution of the optional jobs. (b) Backup jobs [for the
original mandatory jobs in (a)] in the spare processor are dropped.

to optional and the backup job for it can simply be dropped to
save energy. After Oy was completed (at time ¢t = 3), since
011 did not have enough time space to be finished before its
deadline, to save energy, O11 will not be invoked at all. Instead,
its next optional job, i.e., O1 will be invoked at time ¢t = 35,
following the same rationale as O;1. Note that in the schedule
in Fig. 2(a), although some mandatory jobs, such as Ji3 and
J2, had been demoted to optional,? they were reselected (as
optional jobs) for execution again to help demote/drop more
mandatory/backup jobs in the future. As a result the total active
energy consumption within the hyper period [0, 20] is reduced
to 12 units, which is 20% lower than that in Fig. 1.

It is not hard to see that in Fig. 2 the fault tolerance capa-
bility of the standby-sparing system is preserved as whenever
some optional job(s) failed, the next mandatory job (and the
backup job for it) can still be invoked and executed timely.

From the above example, we can see that by executing
optional jobs and adjusting the job patterns dynamically, there
is great potential for saving energy because the optional jobs
do not need backup jobs. Moreover, the successful completion
of the optional jobs can help demote/drop some mandatory
jobs and their backup jobs in the future. Additionally, when
those mandatory jobs are demoted, their time budget could
be utilized to execute more optional jobs. However, although
seeming reasonable, there could still be problems with it. For
example, due to the “greedy” manner * in which the optional
jobs are executed, it might execute an excessive number of
optional jobs for some systems with modest workload, which
could affect the overall energy efficiency adversely. Even we
limit the execution of the optional jobs to be in one processor
(e.g., the primary processor) only, the same problem might
still exit. This could be illustrated with another example as
followed.

Consider another task set of two tasks, ie., 71 =
(5,2.5,2,2,4)and p = (4,4, 2,2,4). Fig. 3 shows the sched-
ule based on the greedy manner. As can be seen, for task 7y,
the execution of optional job O;; caused mandatory job Ji3

3To different such kinds of demoted mandatory jobs from those original
optional jobs, we still use their original job names in the figure when it does
not cause any confusion.

4Here “greedy manner” means the optional jobs are scheduled whenever
possible to do so.

- demoted mandatory Jjobs re-executed as
selected optional jobs

131

Primary
Processor:

canceled
S A T I T B
Spare 1 5 10 15 20 25
Processor:'
T, l | |
0 4 8 12 16 20 24
(b)

Fig. 3. (a) Schedule for the main tasks 71 = (5,2.5,2,2,4) and ©p =
(4,4,2,2,4) in the primary processor under the greedy execution of the
optional jobs. (b) Schedule for the backup jobs in the spare processor.

o. . 0, . Jy o, dem teg
i : — i i
T, i e 0 i e |
Primary 5 10 15 20 25
Processor: 0,, 022 Jy
T,
0 4 8 12 16 20 24
(a)
Jﬁ demited
bl Ly e P ||
spare T 5 10 15 20 25
Processor: Jy
T, l L |
"0 4 8 12 16 20 24
(b)
Fig. 4. (a) Schedule for the main tasks 71 = (5,2.5,2,2,4) and 1p =

(4,4,2,2,4) in the primary processor based on the selective execution of
the optional jobs. (b) Schedule for the backup tasks rl’ and ré in the spare
processor based on the selective execution of the optional jobs.

(and its backup job) to be demoted/dropped. But, later on, J13
was reselected for execution as an optional job. Following the
same rationale, four jobs in total were executed for task 7|
before time ¢ = 25. The situation for task 7, is similar. As a
result, the total active energy consumption under this schedule
is 20 units.

However, if we follow a different schedule as shown in
Fig. 4, the energy efficiency can be improved further. As can
be seen, in this case, for both tasks 71 and 12, we only sched-
uled those optional jobs that could tolerate just one more
deadline missing (such as Oj and O2;) while skipping the
other optional jobs (e.g., O11 and O31). Moreover, to make the
workload of the optional jobs distribute more evenly between
two processors, we let the selected optional jobs of each task
be executed in the primary processor and the spare processor
alternatively. For example, for O12 and O»; , we let them be
executed in the primary processor. Once O1, and O, were fin-
ished successfully, the flexibility degrees (FDs) of the future
jobs would be updated correspondingly, based on which the
jobs could be reselected for execution again (e.g., J|; and J5,
which would be executed in the spare processor). Following
the same principle, the total active energy consumption before

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

NIU AND ZHU: FP SCHEDULING FOR RELIABLE AND ENERGY-AWARE (m, k)-DEADLINES ENFORCEMENT WITH STANDBY-SPARING 507

time ¢t = 25 was reduced to 14 units, which is 30% lower than
that in Fig. 3.

As shown in the above example, it is not necessarily most
energy efficient to execute the optional jobs in a greedy manner
while executing them selectively might be more promising in
saving energy. Moreover, to better utilize the system comput-
ing power, in the latter case, we can let the selected optional
jobs of each task be executed in both the primary and the
spare processors alternatively, which could help distribute their
workloads more evenly in the two processors such that the
selected optional jobs could have better chance to be scheduled
successfully. Following these rationales, in the next section, we
will propose a new approach which, instead of executing all
optional jobs in one processor greedily, will execute them in
both the primary and spare processors in a selective manner.

V. APPROACH BASED ON R-PATTERN

In this section, we will present our new approach based
on selective execution of the optional jobs according to the
R-pattern. The following definition would be very useful in
presenting our algorithm.

Definition 1: The FD of a job J;, denoted as FD(J;), is
defined as the number of consecutive deadline missings that
task 7; (which J; belongs to) can still tolerate starting from J;.

Based on the concept of FD, our selective approach works
according to the following principles: 1) the optional jobs
could be executed in either the primary or the spare processor,
but only the optional jobs with FD of 1 will be selected for
execution and 2) the eligible optional jobs are to be executed
either under the main tasks in the primary processor or under
the backup tasks in the spare processor, but not both for the
same optional job (as an optional job does not have backup
job). Regarding that, to make the workload of the eligible
optional jobs distribute more evenly in two processors, we let
the selected optional jobs from the same task be executed in
the primary processor and in the spare processor alternatively,
just as shown in the schedule in Fig. 4.

The salient part of our selective approach is presented in
Algorithm 1.

As shown in Algorithm 1, for both the primary and the spare
processors, two job ready queues are maintained for each of
them: 1) a mandatory job queue (MJQ) and 2) an optional job
queue (0JQ). Upon arrival, the current job of task 7; (denoted
as J;) is determined as mandatory job or optional job based on
its FD. It is determined as mandatory only if its FD is 0 and
as optional otherwise. Note that since all mandatory jobs must
have backup jobs for them, we let the mandatory jobs of all
main tasks be put in the MJQ of the primary processor while
their corresponding backup jobs be put in the MJQ of the spare
processor. Unlike the mandatory jobs, the optional jobs do not
have backup jobs for them. So, only the optional jobs with
FD of 1 are selected as eligible jobs (other optional jobs are
skipped). Moreover, the selected optional jobs of each task are
put into the OJQ of the primary processor and the OJQ of the
spare processor alternatively. The jobs in MJQ always have
higher priorities than those in OJQ.

Algorithm 1 Selective Approach
1: For either the primary processor or the spare
processor:

2: if MJQ is not empty then
If in primary processor, run jobs in MJQ under FP
scheme; Whenever a main job is completed success-
fully, cancel its backup job in the other processor
immediately.

4: If in spare processor, run jobs in MJQ under FP scheme
with job arrival times revised according to Equation (7);

5: else if OJQ is not empty then

6: Select J; in OJQ and run it following the FP scheme;

7. if J; is executed successfully then

8: Updated the flexibility degree of the next job of the
same task;

9: end if

10: else

11: teyr = the current time;
12: t‘/l = the earliest release time of all jobs in MJQ;
13: if (¢}, — tcur) > The then

14: Shut down the processor and set the wake-up timer
to be (t,/l — feur);

15: end if

16: end if

Note that during runtime, once an optional job is completed
successfully, it will be counted as a valid job and the FD of the
next job should be updated correspondingly (lines 7 and 8).

In addition, to facilitate saving energy for running the
backup jobs in the spare processor when necessary, the execu-
tions of all backup jobs in the spare processor should be post-
poned as late as possible. To achieve this goal, some offline
analysis could be done based on the following definitions.

Definition 2: Time ¢ is called the postponed release time,
denoted as 7;, of a backup job J; in the spare processor and
is calculated as

ri =1+ 6; (N

where 6; is calculated with (9).

Definition 3: Time t is called a Jjj-inspecting point for job
Jij, denoted as ZP(J;j), if t =djjort € {fy | k <iand r; <
fi < djj}, where 7y is the postponed release time of job Jy
calculated in (7).

Definition 4: The job release postponement interval,
denoted as 0;;, for any backup job Jj; of task 7; is defined as

k<i

i+ Y. |-l

dkl>rija;kl<;

0 = maxq | 7 —
rezP(7;) @®)

where 7y is the postponed release time of job Ji; calculated
in (7).

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

508 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

S

710 1720 30

T, ; v

o 4 15 30
(b)

Fig. 5. (a) Original schedule of the backup jobs for the main tasks 7] =
(10, 10,3,2,3) and p = (15, 15,8, 1,2). (b) Schedule of the backup jobs
based on the postponed release times calculated according to (7).

Definition 5: The task release postponement interval,

denoted as 6;, for any ask ri’ is defined as

LCM, <; (k, P,
eizmax:minie,ﬂjg W} Y,»} 9)
i

where Y; is the promotion time of 7; calculated based on (6).

The calculation of 6; can be done offline based on the
static R-pattern. Note that since the postponed release times
of the higher priority jobs will be used as the inspecting
points for the lower priority jobs, the release postponement
intervals for the backup tasks should be calculated in descend-
ing order of the priority levels. Each time when min{6;; | j <
[(LCMy<i(k,P,))/P;i]} for level i is calculated, we can com-
pare it with ¥; and choose the maximum between them as 6;
for level i. In this way, we can guarantee that 6; is never less
than Y;. After that the release time of all backup jobs of task
Ti/ should be revised based on (7) before advancing to the next
priority level.

As an example of calculating the postponed release time
r; and the release postponement interval 6;, let us consider
a task set of two tasks, i.e., 7y = (10,10,3,2,3) and 1, =
(15, 15, 8, 1, 2), the original schedule of the backup jobs in the
spare processor with nonpostponed release time is shown in
Fig. 5(a). According to (6), Y1 = 7 and Y, = 1. To calculate
711, i.e., the postponed release time of the first backup job
in 7] (represented as J{,), there is only one inspecting point
for it, i.e., 7 = 10. Based on (8), ;1 = 10—-3 -0 = 7.
Similarly, 012 can be calculated as 7 as well. So, according
to (9), 01 = max{7, Y1} = 7. After that, the release time of
all backup jobs of task 7; should be revised according to (7),
as shown in Fig. 5(b). Next, to calculate 6, for the first job of
tﬁ (represented as Jél), according to Definition 3, there are two
inspecting points for it, i.e., 15 and 7, based on its deadline and
the postponed release times of the jobs in 7. Then, according
to (8), 61 = max{15 - @8 +3)—-0,7—8+0) -0} = 4.
Since for this particular example, there is only one backup
job in 7} within its hyper period (LCM,<2(ksP,) = 30), 6, =
max{4, Y>} = 4. After that the release times of all backup
jobs in 7) are postponed by 4 time units according to (7).
The schedule based on the postponed release times of all jobs
within the first hyperperiod is shown in Fig. 5(b). It is not
hard to see that under this postponed schedule all backup jobs
can meet their deadlines. Note that for this particular example,
the release postponement interval calculated for task 7,, i.e.,
62, is much larger than the promotion time of ; calculated
according to (6), i.e., Y» = 1.

The complexity of Algorithm 1 mainly comes from schedul-
ing the optional jobs in the primary and the spare processors.
Since at anytime there are at most n optional jobs in the
0JQ, its complexity is O(n). Moreover, to ensure that the
(m, k)-deadlines be satisfied, we have the following theorem.

Theorem 1: Let task set 7 be scheduled with Algorithm 1.
The (m, k)-deadlines for 7 can be ensured if 7 is schedulable
under the R-pattern.

Proof: The correctness of the release postponement interval
6; for each backup task 7/ (and its individual backup jobs) is
guaranteed by (8) and (9) because according to (8) and the
definition of Jj-inspecting point in Section V, the completion
time of any backup job will never go beyond its deadline.

The worst case scenario of Algorithm 1 happens when at
certain time point ¢, in both the primary and spare processors,
the optional jobs of each task are either not selected for exe-
cution or not completed successfully. Then, the next m; jobs
of each task t; should be designated as mandatory jobs con-
secutively in order to meet the (m, k)-constraint. Let r, be the
earliest arrival time of all upcoming mandatory jobs after time
t. If we shift left all other tasks such that the arrival time of
the next upcoming mandatory job of each task coincides with
Te, it is easy to see that after such kind of shifting the task
set will become harder to be schedulable than the original one
as the work demand that is required to be finished before any
job deadline after ¢ will not be decreased. On the other hand,
it is easy to see that the situation of the shifted task set after
t is the same as when all tasks are released synchronously at
time O under the R-pattern.

The situation for the backup jobs in the spare processor
is the same if we replace the release time(s) above with the
postponed release time(s) of the backup jobs. The conclusion
of Theorem 1 follows.]

VI. APPROACH BASED ON E-PATTERN

Although the approach in Section VII-A is quite efficient
in reducing the energy consumption for task sets partitioned
based on the R-pattern, the schedulability of the R-pattern is
not as good as the E-pattern [34]. On the other hand, it is
not possible to quantize a utilization threshold for task sets
partitioned under any (m, k)-pattern because the utilization of
the nonschedulable task set with (m, k)-constraint could be
arbitrarily low. In the following, we will formulate that into a
lemma.

Lemma I: The utilization of the nonschedulable task set
with a (m, k)-constraint could be arbitrarily low.

Proof: Without loss of generality, consider a task set con-
taining only one task (P;, D;, C;, m;, k;) in which C; > D;
and m; << k;. Then, obviously this task set is not schedu-
lable. Meanwhile, since m; << k;, its total utilization, i.e.,
> i [(m;iCy) /(kiP)], could be arbitrarily low.]

It is not hard to see that the approach in Section V for
the R-pattern can be applied to task sets partitioned based on
the E-pattern as well. However, when doing so, its energy
efficiency might not be as good as for task sets partitioned
based on the R-pattern. This could be illustrated in the
following example.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

NIU AND ZHU: FP SCHEDULING FOR RELIABLE AND ENERGY-AWARE (m, k)-DEADLINES ENFORCEMENT WITH STANDBY-SPARING 509

- ; S + m i Vo
1 2 1012 20 30 32 40 42 50 60
c mm ¢ | eem | w4 | t] e v | v
2 2 5 1012 15 20 30 32 35 40 42 45 50 60
T] ' v I v
3 5 8 16 20 23 40 60
- - mm] e '] T]
0 8 10 15 17 20 23 27 40 60

Fig. 6. Schedule for task set {r] = (10,8, 2,4,6), p = (10,8,3,4,6), 73 = (20, 16,3, 2,3), 74 = (20, 19,4, 2,3)} based on the original E-pattern.

| = v v v e v | |
PPrlmary 1 2 10 20 22 30 4042 50 60
rocessor: ' ' | 3 3
| e v | v | oem | ' | o v ¢
2 5 10 20 22 25 30 40 42 45 50 60
1, — v v — |
5 8 16 20 40 45 43 60
T, —] il —— v
0 8 12 20 40 48 52 60
(@)
Spare 10 12 20 30 32 40 50 52 60
Processor: : : :
T, v | v | ' v | eem |
10 12 15 20 30 32 35 40 50 52 55 60
- i P I
3 16 20 23 40 60
T, v '] i
0 20 23 27 40 60
(b)

Fig. 7.

(a) Schedule for the main tasks 71 = (10, 8,2,4,6), ©n = (10, 8,3,4,6), 73 = (20, 16, 3,2, 3), and 74 = (20, 19,4, 2, 3) in the primary processor

based on the selective approach in Algorithm 1 based on the E-pattern. (b) Schedule for the backup tasks r]/ s ré, ré, and 14 in the spare processor based on

the selective approach in Algorithm 1 based on the E-pattern.

Consider another task set of four tasks: ie., 71 =
(10, 8,2,4,6), » = (10,8,3,4,6), 3 = (20,16,3,2,3)
and 4 = (20, 19, 4, 2, 3). If we assume there is no fault occur-
ring during the first hyper period, the schedule based on the
original E-pattern (for either the main tasks in the primary pro-
cessor or the backup tasks in the spare processor) is shown in
Fig. 6, which will result in a total active energy consumption
of 68 units if no energy management is applied. It is not hard
to see that all optional jobs in it (such as J13, J23, J33, and J43)
have FD of 1. If we apply the selective approach in Section V
to it, as shown in Fig. 7, all optional jobs of each task will be
executed either in the primary processor or the spare proces-
sor alternatively and none of them got chance to be skipped.
As a result, the total active energy consumption for executing
the jobs in the primary processor [Fig. 7 (a)] and in the spare
processor [Fig. 7(b)] will be 51 units.

However, if we adopt a different way of scheduling the
task set, we can achieve still better energy efficiency. The
central idea is to execute the mandatory main/backup jobs
determined under the E-pattern according to the job-level
preference-oriented scheme, which could execute each indi-
vidual mandatory main/backup job either as soon as possible

or as late as possible based on the triple priority scheme.

In order to do so, we need to enhance the calculation of the
promotion time of each mandatory job under the E-pattern
such that the mandatory jobs could be procrastinated as late
as possible, following the steps.

1) Step I: For all tasks, shift their mandatory job patterns
using the approach in [32] such that the mandatory
workload from each individual task could be shifted
away from one another as far as possible.

2) Step 2: Based on the shifted mandatory job pattern gen-
erated in step 1, apply the approach in [36] to calculate
the optimal promotion time for each mandatory job in
each task 7;.

Note that in the above step (step 2), in order to procrastinate
the mandatory jobs to the furthest time, instead of using the
promotion time calculated by (6), here we choose to use the
optimal promotion time for each mandatory job. As shown
in [36], for periodic task sets, the value calculated in (6) is
only a lower bound for the promotion time and, usually, the
optimal promotion time could be much larger, especially under

5The triple priority scheme is a variation of the dual priority scheme in [35].

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

510

| '

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,

VOL. 41, NO. 3, MARCH 2022

'

v |

* 2 8 10 12 1820 30 32 4042 50 60
T, ' v v | v | mm v
8 10 12 15 1820 23 30 40 45 48 50 53 60
T, v e P | — .
16 20 23 26 40 45 48 60
T, | o vl — o ‘|
0 2 6 1920 26 30 3940 60
Fig. 8. Schedule for the task set r; = (10, 8, 2,4,6), 7 = (10, 8,3,4,6), 13 = (20, 16, 3,2, 3), and 4 = (20, 19,4, 2, 3) based on the shifted E-pattern
using the approach in [32].
T - | - | i - | - | il
1 6 8 10 16 1820 30 36 38 40 46 48 50 60
T, v | - | v | | \
8 10 13 16 1820 25 28 30 40 43 46 50 55 58 g0
. v - |
3 16 20 33 36 40 52 55 60
. - » | - » | ¢
40 10 13 18 20 30 33 3940 60

Fig. 9. Schedule for the mandatory jobs in Fig. 8 after applying the optimal promotion times on them.

the (m, k)-constraint. Interested readers are referred to [36]
for more details on the calculation of the optimal promotion
time for each mandatory job. The above steps (steps 1 and 2)
could also be illustrated using the schedules in Figs. 8 and 9,
respectively. As shown in Fig. 8, for the same example task
set in Fig. 6, we first try to shift the E-pattern of each task
using the approach in [32] such that the mandatory workloads
from all tasks could be shifted away from one another to the
maximal extent and the interference from higher priority tasks
to lower priority tasks could be minimized. Next, based on
the shifted patterns in Fig. 8, we apply the approach in [36] to
calculate the optimal promotion times for the mandatory jobs,
which results in Y}, =Y}, =Y}, =Y{5 =6, Y3, =Yi5 =3,
Y3y =Yy =5, Y5 =13, Y3 =12, and Yj, = Y}, = 10,
respectively. The schedule for all mandatory jobs based on the
optimal promotion times is shown in Fig. 9.

With the shifted patterns and the optimal promotion times
calculated above, we can reduce the energy by applying the
job-level preference-oriented scheme in executing the manda-
tory main/backup jobs. The main idea is: for each mandatory
main/backup job J;, it could be executed only when its cur-
rent preference mode (denoted as J,P) has been assigned a valid
execution mode, i.e., S (representing as soon as possible execu-
tion) or L (representing as late as possible execution). Based
on it the jobs will be scheduled according to the following
principles.

1) For each mandatory main job or its backup job, it will
be executed following the triple priority scheme, i.e.,
at anytime, it could reside in only one of the three
priority levels in its own processor: 1) lower; 2) mid-
dle; and 3) upper levels. Upon arrival, each mandatory
main/backup job will be released at the lower priority
level first, with its corresponding preference mode ini-
tialized as “NULL.” Whenever a mandatory main job
or its backup job, whichever first, gets chance to be
dispatched in its own processor, it will be switched to

the middle-priority level of its processor immediately
and its preference mode will be updated as S (as soon
as possible mode). At the same time, its correspond-
ing job in the other processor will be procrastinated to
its optimal promotion time and switched to the upper
priority level with its preference mode updated as L (as
late as possible mode). Moreover, whenever a mandatory
main/backup job reaches its optimal promotion time, it
must be switched to the upper priority level immediately.
The jobs in the upper priority level can always preempt
the jobs in the middle-priority level and the jobs in the
middle-priority level can always preempt the jobs in the
lower priority level. For all jobs in the same priority
level, they will be executed following their original fixed
priority assignment.

At any time, between the mandatory main job and its
corresponding backup job, at most one of them could
be switched to (and executed in) the middle-priority
level. Moreover, if one of them has been switched to the
middle-priority level, the other one must be switched to
the upper priority level immediately and procrastinated
to its optimal promotion time.

Whenever slack time becomes available, the jobs under
the as soon as possible preference mode (S) should try to
reclaim the slack time for execution (to facilitate its early
completion) while the jobs under the as late as possible
preference mode (L) should never reclaim the slack time
for execution. Instead, it should try to utilize the slack
time to implement dynamic procrastination such that it
could be delayed further.

To help explain the above rationale, we still use the same
example task set in Fig. 6 based on their output in Fig. 9. The
schedule is demonstrated in Fig. 10.

As shown in Fig. 10 (a) and (b), at time 0, when Jp;
and its backup job Jj, are released, both of them are put in
the lower priority level first. Since there is no pending job

2)

3)

4)

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

NIU AND ZHU: FP SCHEDULING FOR RELIABLE AND ENERGY-AWARE (m, k)-DEADLINES ENFORCEMENT WITH STANDBY-SPARING

= = i

v | v |

v v -

v
Primary o1 2 8 1012 1820 30 32 40 50 60
Processor:
T v o v N e i
2 8§ 10 13 1820 23 30 40 43 46 48 50 53 60
. v | 1| s
3 16 20 32 3536 40 52 55 60
Jay | | |
T v‘ v v
4 0 10 14 1920 23 27 40 60
(a)
I § | | s
. = — | ‘| —_| i |
Spare 1 6 8 10 16 1820 30 36 38 40 46 48 50 60
Processor: i !
T v AJ ‘ v ‘ A h v ‘ Y ‘
z g 10 13 1820 25 28 30 40 43 50 55 58 60
. ' . '
3 16 20 23 40 43 46 60
I ! i i
v - ol — ‘] '
4 0 4 1920 30 34 40 60
(b)

Fig. 10.

(a) Schedule for the main tasks 71 = (10, 8, 2,4, 6), 0 = (10, 8,3,4,6), 13 = (20, 16, 3,2, 3), and 74 = (20, 19, 4, 2, 3) in the primary processor

using the job-level dynamic preference-oriented approach (Algorithm 2) based on the E-pattern. (b) Schedule for the backup tasks r{, ré, ‘L'é, and ri in the
spare processor using the job-level preference-oriented approach (Algorithm 2) based on the E-pattern. i

with higher priority than Ji; in the primary processor, Jij
got chance to be dispatched immediately and was switched to
the middle-priority level, while Jj, was procrastinated to its
optimal promotion time (0 + Y},) = 6 and switched to upper
priority level from there. Meanwhile, at time 0, both J4; and
its backup job J}, are released in the lower priority level first.
But since in the primary processor job J4; has lower prior-
ity than job Jip, it could not be dispatched at time 0. On the
other hand, in the spare processor job Jj, got chance to be
dispatched because job Ji, has been procrastinated to time 6.
Therefore, J;; would be switched to the middle priority level
while J4;1 would be procrastinated to its optimal promotion
time (0 + Y},) = 10 (and switched to upper priority level from
there). When J1; is completed successfully at time 2, J{l in the
spare processor could be canceled and became slack time from
there. Similarly, when J}, is completed successfully at time 4,
J41 in the primary processor could be canceled and became
slack time from there. Following the same rationale, the com-
plete schedule for the remaining mandatory main/backup jobs
in the primary and the spare processors are shown in Fig. 10
(a) and (b), respectively. It is not hard to see that under this
schedule, the total active energy consumption in both proces-
sors could be reduced to 34 units, which is 34% lower than
that in Fig. 7.

To formalize the above procedure, the main steps are shown
in Algorithm 2.

As shown in Algorithm 2, our online scheduling algorithm is
based on the triple priority scheme. During runtime, in both the
primary and the spare processors, three mandatory job ready
queues, i.e., MIQ¥, MJQ™, and MJQ’ are maintained, which
correspond to the three priority levels under the triple priority
scheme, i.e., lower, middle, and upper priority levels. Upon

Algorithm 2 Job-Level Preference-Oriented Scheme

1: For either the primary processor or the spare
processor:
if MJQ" is not empty then

Scheduling the jobs in MJQ" based on Algorithm 3;
else if MJQ™ is not empty then

Scheduling the jobs in MJQ™ based on Algorithm 4;
else if MJQ' is not empty then

Scheduling the jobs in MJQ' based on Algorithm 5;
else

Repeat lines 11-15 of Algorithm 1;
end if

R IR ol

-
4

arrival, a mandatory main job (and its backup job in the other
processor) is first put in the lower mandatory queue MJQ' of
its processor. Note that both of the mandatory main/backup
jobs have their preference modes initialized as “NULL” upon
arrival. Thereafter, when either of them, whichever first, gets
chance to be dispatched, it will be switched to the middle
priority queue MJQ™ with its preference mode reset to be S
[representing as soon as possible execution, for example, job
J11 in Fig. 10(a)] and its corresponding job in the other pro-
cessor will be switched to the upper priority queue MJQ" with
its preference mode reset to be L [representing as late as pos-
sible execution, for example, job Jj, in Fig. 10(b)]. For all
jobs in MJQ! and MJQ™, whenever their optimal promotion
times are reached, they will be switched to the upper manda-
tory queue MJQ" while their current preference mode will be
preserved.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

512 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Algorithm 3 Scheduling the Jobs in the Upper Priority Level

Algorithm 5 Scheduling the Jobs in the Lower Priority Level

1: For either the primary processor or the spare
processor:

2: Pick J; € MJQ" with the smallest index;

3: if Jf == “S” then

4: // J’s is in as soon as possible preference mode;

5: Execute J; following the FP scheme as early as possible;

6: if any slack time S7;(f) with higher priority than J; is
available then

7: Reclaim the slack time to execute J; as early as

possible;
8: end if
9: else

10: // J;i’s is under as late as possible preference mode “L”;
11: Delay the starting time of J;’s execution to (fcur +

STi(1);
12: Execute J; following the FP scheme;
13: end if

14: if the execution of job J; is successful then

15: Cancel its corresponding job in the other processor and
add the residue time budget to the slack queue ST;

16: end if

Algorithm 4 Scheduling the Jobs in the Middle-Priority Level

1: For either the primary processor or the spare

processor:

2: Pick J; € MJQ™ with the smallest index;

3: Execute J; following the FP scheme as early as possible;
if any slack time ST7;(¢) with higher priority than J; is
available then

Reclaim the slack time to execute J; as early as possible;
end if
if the execution of job J; is successful then
Cancel its corresponding job in the other processor and
add the residue time budget to the slack queue ST;
9: end if

&

® W

During runtime, in both the primary and the spare proces-
sors, a slack queue 87 needs to be maintained to keep track
of the slack time(s) from (partially) canceled job(s).

Whenever a mandatory main/backup job is completed
successfully, its corresponding job in the other processor
should be canceled whose residue time budget will become
slack time (line 15 in Algorithm 3 and line 8 in Algorithm 4).
The slack time(s) will be inserted into S7 based on their
priorities. Upon the starting execution of a job J; at time
t, the slack time from S7 with priorities higher than or
equal to J; will be stored in a variable ST;(). If J;’s
category is S, STj(r) should be reclaimed to execute J;
as soon as possible (lines 6-8 in Algorithm 3). Otherwise,
if Ji’s category is L, ST;(f) should be used to imple-
ment dynamic procrastination on J;, which can delay J; to
(tcur + STi(?)) (line 11 in Algorithm 3). When no job is
pending for execution, the system should be put into sleep
mode if the idle time is larger than the break even time
(line 9 in Algorithm 2). Note that even when the system

1: For either the primary processor or the spare
processor:

2: Pick J; € MJQI with the smallest index;

3. Let J; be J;’s corresponding job in the other processor;

4: if J; is also in MJQ' of its own processor then

5: if the MJQ" and MJQ™ in both processors are empty

then
6: Randomly pick out a job between J; and J; to be
promoted to MJQ™;
7: Reset the preference mode of the picked job to be

“S” while procrastinating its corresponding job in the
other processor to its optimal promotion time and
resetting its preference mode to be “L”;

8: else

9: Pick out the job in the processor with empty MJQ¥
or MJQ™ to be promoted to MJQ™;

10: Repeat line 7;

11: end if

12: end if

is in sleep (or idle) mode, the slack times stored in ST
should still be consumed based on their sorted sequence
in ST.

The complexity of Algorithm 2 mainly comes from schedul-
ing the jobs in the three different MJQs and switching
preference mode for each of them. Since at anytime, there are
at most n mandatory jobs in each MJQ and for each mandatory
job there are at most two preference modes (plus an initialized
“NULL” mode), its complexity is O(n).

VII. PERFORMANCE EVALUATION

In this section, we compared our approach with other
previous related approaches with simulations. Note that due
to the difference in the schedulability of the R-pattern and
E-pattern, we conducted two groups of simulations separately:
one for R-pattern-based schemes and one for E-pattern-based
schemes.

A. Evaluation of R-Pattern-Based Schemes

In this part, we evaluated the energy performance of
R-pattern-based schemes. Three different approaches were
studied. In the first approach, the task sets were statically
partitioned with R-patterns, and the mandatory jobs in the
primary and the spare processors were executed concurrently
without procrastination. We refer to this approach as MKSSsr
and used its results as the reference. The second approach
(MKSSpp) also determined the mandatory jobs based on
the static R-patterns and the mandatory jobs were scheduled
with the task-level preference-oriented scheme based on dual
priority, similar to that used in [11] (but without applying
DVEFS). The third approach (MKSSfelective) is our selective
approach proposed in Section V based on the selective exe-
cution of the optional jobs in both the primary and the spare
Pprocessors.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

NIU AND ZHU: FP SCHEDULING FOR RELIABLE AND ENERGY-AWARE (m, k)-DEADLINES ENFORCEMENT WITH STANDBY-SPARING 513

OMKSS_ST

_ B MKSS_DP
B MKSS”R_selective

3 100

03- 04- 05- 06- z 0.0- 0.1- 0.2- 03- 04- 05- 06-
0.4 05 06 07 0.1 0.2 03 04 05 06 07

o 40

(m,k)-Utilization

(©

O MKSS_ST B MKSS DP OMKSS_ST H MKSS_DP
] MKggXE,selec!ive S8 BMKSS"R_selective
100 100
O 80 O 80
> >
o o
] 1]
c c
w w
60 60
5 40 5 40
J 00- 01- 02- 03- 04- 05- 06- 2 00- 01- 02-
0.1 0.2 03 04 05 06 0.7 0.1 0.2 0.3
(m,k)-Utilization (m,k)-Utilization
(a) (b)
Fig. 11. Energy comparisons for R-pattern-based schemes subject to: (a) no fault, (b) permanent fault, and (c) permanent and transient faults.

The processor model used in our simulations is based on
the Free-scale PowerQUICC III integrated Communications
Processor MPC8536E [37], similar to the one used in [38].
According to the data sheet in [37], the typical power con-
sumption of MPC8536E running under the maximal frequency
is 4.7 W (with a core frequency of 1500 MHz and core volt-
age of 1.1 V). The idle power Pjg is about 0.6 W. Since
the transition overheads are not mentioned in the data sheet,
we assumed the shut-down/wake-up time overhead t, = 1 ms
and energy overhead E, = 0.6 mlJ. Therefore, the minimal
shut-down interval t,; will be calculated as 1 ms.

The periodic task sets in our experiments consisted of five
to ten tasks with the periods randomly chosen in the range
of [5, 50] ms. m; and k; for the (m, k)-deadlines were also
randomly generated such that k; was uniformly distributed
between 2 and 20, and 0 < m; < k;. The WCET of a task
was assumed to be uniformly distributed and the total (m, k)-
utilization, i.e., Y ; [(m;C;)/(kiP;)], was divided into intervals
of length 0.1 each of which contains at least 20 task sets
schedulable or at least 5000 task sets generated. We conducted
three sets of tests.

In the first set, we checked the energy performance when no
fault occurred within the hyperperiod. The results are shown
in Fig. 11(a).

From Fig. 11(a), one can immediately see that by adopt-
ing dynamic patterns, MKSSfelective can achieve much better
energy efficiency than the others adopting static patterns, i.e.,
MKSSgs7r and MKSSpp, in all utilization intervals. The maxi-
mal energy reduction by MKSSfelcctiVe over MKSSpp can be
around 26%. The main reason is that in this scenario, by exe-
cuting the optional jobs, MKSSfelective can help drop duplicate
executions of the mandatory/backup jobs in two processors
significantly. Moreover, with the adaptive optional job selec-
tion strategy, i.e., by only choosing optional jobs with FD
of 1 for execution, MKSSfelective can avoid executing exces-
sive number of the optional jobs. Additionally, by letting the
selected optional jobs be executed in two different processors
alternatively, MKSSK . can help distribute the workloads
of the optional jobs in two processor evenly. Finally, by let-
ting the backup jobs be delayed with the postponed release
times, MKSS?electiVe can accommodate larger pools of eligible
optional jobs for selection, which also gives more chance for

the optional jobs to be selected and scheduled successfully,

therefore minimizing the necessity of running mandatory jobs
effectively.

In the second set, we assumed the system is subject to per-
manent fault only which could occur at most once. The results
are shown in Fig. 11(b).

As seen in Fig. 11(b), the energy reduction by our new
approaches, i.e., MKSSfelective subject to permanent fault is
similar to the case when no fault ever occurred. Compared
to MKSSpp, the energy saving by MKSSfelective can be up to
20% for the same reasons as above.

In the third set, we assumed the system could be subject to
both permanent fault and transient faults. The transient fault
model is similar to that used in [1] by assuming the Poisson
distribution with an average fault rate of 107°. The results
were shown in Fig. 11(c).

As seen, the energy saving by our new approach, i.e.,
MKSSfelective in this scenario is similar to that in the previous
cases. The maximal energy reduction by MKSSfelective over
MKSSpp can be up to 15%, thanks to the adaptive executions
of the optional jobs under the dynamic pattern adjustment.

B. Evaluation of E-Pattern-Based Schemes

In this part, we evaluated the energy performance of
the E-pattern-based schemes. We studied four different
approaches. In the first approach, the task sets were stati-
cally partitioned with E-patterns, and the mandatory jobs in
the primary and the spare processors were executed concur-
rently without procrastination. We still refer to this approach
as MKSSg7 and used its results as the reference. The sec-
ond approach (MKSSpp) also determined the mandatory
jobs based on the static E-patterns and the mandatory jobs
were scheduled with the task-level preference-oriented scheme
based on dual priority, similar to that used in [11] (but
without applying DVEFS). In the third approach, for com-
parison purpose, we tried to apply our selective approach
proposed in Section V to the task sets partitioned based
on the E-pattern as well. We refer to it as MKSSECICC&VC.
The fourth approach MKSS‘JEDPO is our job-level preference-
oriented approach proposed in Section VI.

The periodic task sets are generated in the same way as
in Section VII-A but we allow m; = k;. We also assume the
processor shut-down break even time 7p, = 1 ms.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

514 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

O MKSS-ST
B MKSS”E_selective O MKSS*E_JDBO

B MKSS-DP

03- 04- 05- 06- z 00- 0.1- 0.2- 03- 04- 05- 06-
0.4 05 06 0.7 0.1 0.2 03 04 05 0.6 0.7

o 4

(m,k)-Utilization

(©

O MKSS-ST ¥ MKSS-DP OMKSS-ST W VIKSS-DP
8 MKSS"E_selective O MKSS"E_JDBO BMKSS*E_selective 0 MKSS"E_JDBO
100 100
O 80 O 80
> >
o o
]]
c c
w w
60 60
5 40 5 40
z 00- 01- 02- 03- 04- 05- 06- z 00- 01- o02-
0.1 0.2 0.3 04 0.5 0.6 0.7 0.1 0.2 0.3
(m,k)-Utilization (m,k)-Utilization
(a) (b)
Fig. 12. Energy comparisons for E-pattern-based schemes subject to: (a) no fault, (b) permanent fault, and (c) permanent and transient faults.

In the first set, we checked the energy performance when no
fault occurred within the hyper period. The results are shown
in Fig. 12(a).

From Fig. 12(a), one can see that when the mandatory
workload of the task set is relatively low (e.g., when the
(m, k)-utilization is less than 0.3), our approach adopting
dynamic patterns, i.e., MKSSE, . = can still achieve obviously
better energy efficiency than the previous approaches, i.e.,
MKSSgs7r and MKSSpp. This is mainly due to the fact that
when the (m, k)-utilization is low, even under the E-pattern,
quite a lot optional jobs could still have FD larger than 1 and
MKSSE,. ;v might not execute excessive number of optional
jobs. Therefore, it is still quite efficient in saving energy dur-
ing these utilization intervals. On the other hand, it is also easy
to see that the energy reduction achievable by MKSSfelective
over the previous approaches is not the same as the case
for task sets partitioned based on the R-pattern as shown in
Section VII-A. This is mainly because, under the E-pattern,
due to the even distribution of the mandatory/optional job
patterns, MKSSfelective might not be able to skip as many
optional jobs as it did under the R-pattern. As a result, the
energy efficiency of the selective approach for task sets par-
titioned with E-pattern might not be as aggressive as that for
task sets partitioned with R-pattern. Meanwhile, it is easy
to see that under this scenario the energy consumption of
MKSSfDP could be quite close to or slightly higher than that
of MKSSg . ive- However, when (m, k)-utilization is greater
than or equal to 0.3, the energy consumption of MKSSfelective
was increasing very fast and became much higher than that of
MKSSJEDPO. This is mainly because, under this scenario, due
to the even distribution of the job patterns under the E-pattern,
most optional jobs in it had FD of 1 and nearly all of them
could be selected for execution by MKSSE,_ . ., incurring
much higher energy consumption due to the excessive number
of optional jobs executed. Different from that, MKSSJEDPO can
save energy more efficiently in this case. The maximal energy
reduction by MKSSfDPO over MKSSpp and MKSS‘Eelective can
be around 14% and 12%, respectively. The main reason is
that under this scenario, by executing the mandatory jobs only,
MKSSJEDPO can avoid executing too many jobs. Moreover, by
adopting the job-level preference-oriented approach under the
triple priority scheme, the workloads of the mandatory/backup

jobs in the primary and the spare processors could be shifted

away in a more adaptive manner, resulting in more aggressive
energy savings.

In the second set, we assumed the system is subject to per-
manent fault only which could occur at most once. The results
are shown in Fig. 12(b).

As seen in Fig. 12(b), the energy savings by our new
approach, i.e., MKSS‘JEDPO subject to permanent fault is similar
to the case when no fault ever occurred. When the (m, k)-
utilization is not extremely low, compared with MKSSpp and
MKSSfelective, the energy reduction by MKSS}EDPO can be up
to 12% and 10%, respectively, for the same reasons as stated
above.

In the third set, we assumed the system could be subject to
both permanent fault and transient faults. The transient fault
model is the same as used in Section VII-A. The results were
shown in Fig. 12(c).

As seen, the energy saving by our new approach, i.e.,
MKSSfDPo in this scenario is similar to that in the previous
cases. The maximal energy reduction by MKSS‘JEDPO over
MKSSpp and MKSSE can be up to 10% and 9%,

- selective
respectively, for the same reasons as stated above.

VIII. CONCLUSION

Energy consumption, QoS, and fault tolerance are among
the most critical factors in the real-time systems design. In
this article, we presented two novel FP scheduling schemes for
reducing energy consumption in standby-spare systems while
assuring (m, k)-deadlines and fault tolerance: one for task sets
partitioned with deeply red pattern and one for task sets parti-
tioned with evenly distributed pattern. As shown, the proposed
approaches outperformed the previous research significantly in
energy conservation while assuring the (m, k)-deadlines and
fault tolerance for real time applications under FP assignment.

REFERENCES

[1] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy management
on reliability in real-time embedded systems,” in Proc. ICCAD, 2004,
pp. 35-40.

[2] P. Bose, J. Rivers, C.-K. Hu, J. Srinivasan, and S. V. Adve, “RAMP: A
model for reliability aware microprocessor design,” Dept. Comput. Sci.,
IBM Res., Armonk, NY, USA, Rep. RC23048(W0312-122), 2003.

[3] D. Zhu, “Reliability-aware dynamic energy management in dependable
embedded real-time systems,” ACM Trans. Embedded Comput. Syst.,
vol. 10, no. 2, p. 26, Jan. 2011.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

NIU AND ZHU: FP SCHEDULING FOR RELIABLE AND ENERGY-AWARE (m, k)-DEADLINES ENFORCEMENT WITH STANDBY-SPARING

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Z. Li, L. Wang, S. Li, S. Ren, and G. Quan, “Reliability guaranteed
energy-aware frame-based task set execution strategy for hard real-time
systems,” J. Syst. Softw., vol. 86, no. 12, pp. 3060-3070, Dec. 2013.
B. Zhao, H. Aydin, and D. Zhu, “Energy management under gen-
eral task-level reliability constraints,” in Proc. IEEE 18th Real
Time Embedded Technol. Appl. Symp., Washington, DC, USA, 2012,
pp. 285-294.

Y.-W. Zhang, H.-Z. Zhang, and C. Wang, “Reliability-aware low energy
scheduling in real time systems with shared resources,” Microprocess.
Microsyst., vol. 52, pp. 312-324, Jul. 2017.

A. Taherin, M. Salehi, and A. Ejlali, “Reliability-aware energy man-
agement in mixed-criticality systems,” IEEE Trans. Sustain. Comput.,
vol. 3, no. 3, pp. 195-208, Jul.-Sep. 2018.

A. Ejlali, B. M. Al-Hashimi, and P. Eles, “Low-energy standby-sparing
for hard real-time systems,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 31, no. 3, pp. 329-342, Mar. 2012.

M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-sparing
technique for periodic real-time applications,” in Proc. ICCD, 2011,
pp. 190-197.

M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-sparing
for fixed-priority real-time task sets,” Sustain. Comput. Inf. Syst., vol. 6,
pp. 81-93, Jun. 2015.

R. Begam, Q. Xia, D. Zhu, and H. Aydin, “Preference-oriented fixed-
priority scheduling for periodic real-time tasks,” J. Syst. Archit., vol. 69,
pp. 1-14, Sep. 2016.

Y.-W. Zhang, “Energy-aware mixed partitioning scheduling in standby-
sparing systems,” Comput. Stand. Interfaces, vol. 61, pp. 129-136,
Jan. 2019.

M. Shirazi, M. Kargahi, and L. Thiele, “Performance maximization of
energy-variable self-powered (m, k)-firm real-time systems,” Real-Time
Syst., vol. 56, pp. 64-111, Feb. 2020.

M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment tech-
nique for streams with (m,k)-firm deadlines,” IEEE Trans. Comput.,
vol. 44, no. 12, pp. 1443-1451, Dec. 1995.

P. Ramanathan, “Overload management in real-time control applications
using (m,k)-firm guarantee,” IEEE Trans. Parallel Distrib. Syst., vol. 10,
no. 6, pp. 549-559, Jun. 1999.

M. Chetto, “Graceful overload management in firm real-time systems,”
J. Inf. Technol. Softw. Eng., vol. 5, no. 3, pp. 1-3, 2015.

O. Gettings, S. Quinton, and R. I. Davis, “Mixed criticality systems with
weakly-hard constraints,” in Proc. 23rd Int. Conf. Real Time Netw. Syst.,
2015, pp. 237-246.

G. V. D. Briiggen, K.-H. Chen, W.-H. Huang, and J.-J. Chen, “Systems
with dynamic real-time guarantees in uncertain and faulty execution
environments,” in Proc. IEEE Real-Time Syst. Symp. (RTSS), Nov. 2016,
pp. 303-314.

Y. Sun and M. D. Natale, “Weakly hard schedulability analysis for fixed
priority scheduling of periodic real-time tasks,” ACM Trans. Embedded
Comput. Syst., vol. 16, no. 5s, p. 171, Sep. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3126497

T. A. AlEnawy and H. Aydin, “Energy-constrained scheduling for
weakly-hard real-time systems,” in Proc. RTSS, 2005, pp. 376-385.

H. Kooti, N. Dang, D. Mishra, and E. Bozorgzadeh, “Energy bud-
get management for energy harvesting embedded systems,” in Proc.
IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2012,
pp. 320-329.

Z. Li, S. Ren, and G. Quan, “Energy minimization for reliability-
guaranteed real-time applications using DVFS and checkpointing tech-
niques,” J. Syst. Archit., vol. 61, no. 2, pp. 71-81, Feb. 2015.

A. Ejlali, B. M. Al-Hashimi, and P. Eles, “A standby-sparing technique
with low energy-overhead for fault-tolerant hard real-time systems,” in
Proc. CODES+ISSS, Oct. 2009, pp. 193-202.

Y. Guo, H. Su, D. Zhu, and H. Aydin, “Preference-oriented real-time
scheduling and its application in fault-tolerant systems,” J. Syst. Archit.,
vol. 61, no. 2, pp. 127-139, Feb. 2015.

S. Safari, S. Hessabi, and G. Ershadi, “LESS-MICS: A low
energy standby-sparing scheme for mixed-criticality systems,” [EEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 12,
pp. 4601-4610, Dec. 2020.

M. Ansari, A. Yeganeh-Khaksar, S. Safari, and A. Ejlali, “Peak-power-
aware energy management for periodic real-time applications,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 4,
pp. 779-788, Apr. 2020.

J. Zhou, T. Wei, M. Chen, J. Yan, S. Hu, and Y. Ma, “Thermal-aware
task scheduling for energy minimization in heterogeneous real-time
MPSOC systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 35, no. 8, pp. 1269-1282, Aug. 2016.

515

[28] J.-J. Chen and L. Thiele, “Task partitioning and platform synthesis for
energy efficiency,” in Proc. 15th IEEE Int. Conf. Embedded Real-Time
Comput. Syst. Appl. Aug. 2009, pp. 393-402.

Q. Han, M. Fan, and G. Quan, “Energy minimization for fault tolerant
real-time applications on multiprocessor platforms using checkpointing,”
in Proc. ISLPED, 2013, pp. 76-81.

L. Niu and G. Quan, “Reducing both dynamic and leakage energy
consumption for hard real-time systems,” in Proc. CASES, Sep. 2004,
pp. 140-148.

D. K. Pradhan, Ed., Fault-tolerant Computing: Theory and Techniques,
vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.

G. Quan and X. Hu, “Enhanced fixed-priority scheduling with (m,k)-firm
guarantee,” in Proc. RTSS, 2000, pp. 79-88.

G. Koren and D. Shasha, “Skip-Over: Algorithms and complexity for
overloaded systems that allow skips,” in Proc. RTSS, 1995, p. 110.

L. Niu and G. Quan, “Energy minimization for real-time systems with
(m,k)-guarantee,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.
14, no. 7, pp. 717-729, Jul. 2006.

R. I. Davis and A. J. Wellings, “Dual priority scheduling,” in Proc.
RTSS, 1995, pp. 100-109.

G. Bernat and A. Burns, “Combining (n,m)-hard deadlines and dual
priority scheduling,” in Proc. RTSS, Dec. 1997, pp. 46-57.
MPCS8536E PowerQUICC IIl Integrated Processor Hardware
Specifications, Revision 7, document MPC8536EEC, Freescale
Semicond., Austin, TX, USA, Jul. 2015. [Online]. Available:
https://www.nxp.com/docs/en/data-sheet/ MPC8536EEC.pdf

M. A. Awan and S. M. Petters, “Race-to-halt energy saving strategies,”
J. Syst. Archit., vol. 60, no. 10, pp. 796-815, 2014.

[29]

[30]

[31]

[35]
[36]

(371

[38]

Linwei Niu (Member, IEEE) received the B.S. degree in computer science
and technology from Peking University, Beijing, China, in 1998, the M.S.
degree in computer science from the State University of New York at Stony
Brook, Stony Brook, NY, USA, in 2001, and the Ph.D. degree in computer
science and engineering from the University of South Carolina, Columbia,
SC, USA, in 2006.

He is currently an Assistant Professor with the Department of Electrical
Engineering and Computer Science, Howard University, Washington, DC,
USA. His research interests include power-aware design for embedded
systems, design automation, real-time scheduling, and software/hardware
co-design.

Dr. Niu is a member of the IEEE Computer Society.

Dakai Zhu (Senior Member, IEEE) received the B.E. degree in computer
science and engineering from Xi’an Jiaotong University, Xi’an, China, in
1996, the M.E. degree in computer science and technology from Tsinghua
University, Beijing, China, in 1999, and the Ph.D. degree in computer science
from the University of Pittsburgh, Pittsburgh, PA, USA, in 2004.

He is currently a Professor with the Department of Computer Science,
University of Texas at San Antonio, San Antonio, TX, USA. His
research interests include real-time systems, fault tolerance, and power-aware
computing.

Prof. Zhu was a recipient of the U.S. National Science Foundation Faculty
Early Career Development (CAREER) Award in 2010. He is a senior member
of the IEEE Computer Society.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

