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Abstract—For real-time computing systems, energy efficiency,
quality of service (QoS), and fault tolerance are among the major
design concerns. In this work, we study the problem of reliable
and energy-aware (m, k)-deadlines enforcement using standby
sparing under the fixed-priority assignment. The standby-sparing
systems adopt a primary processor and a spare processor to pro-
vide fault tolerance for both permanent and transient faults. In
order to reduce energy consumption for such kinds of systems, we
proposed two novel scheduling schemes under the QoS constraint
of (m, k)-deadlines: one for task sets partitioned with deeply red
pattern and one for task sets partitioned with evenly distributed
pattern. The evaluation results demonstrate that our proposed
approaches significantly outperformed the previous research in
energy conservation while assuring (m, k)-deadlines and fault
tolerance for real-time systems.

Index Terms—Energy conservation, fault tolerance, fixed-
priority (FP) scheduling, (m, k)-deadlines, standby sparing.

I. INTRODUCTION

W ITH the advance of CMOS technology, energy con-
servation has been a critical design issue for real-time

embedded systems. On the other hand, fault tolerance has also
been a major concern in the design of pervasive computing
systems as system fault(s) could occur anytime [1]. Generally,
computing system faults can be classified into permanent faults
and transient faults [2]. Permanent faults could be caused by
hardware failure or permanent damage in processing unit(s),
whereas transient faults are mainly due to temporary factors,
such as electromagnetic interference and cosmic ray radiations.

In recent years, extensive research studies (e.g., [1], [3]–[6])
have been reported in conserving energy for fault-tolerant
real-time systems. Many of them have focused on dealing
with transient faults. A widely adopted strategy is to use
software redundancy, i.e., to reserve recovery jobs, whenever
possible, for the jobs subject to transient faults. For mission-
critical applications, such as nuclear plant control systems
and heart pacemakers [7], permanent faults need to be dealt

Manuscript received September 5, 2020; revised December 5, 2020;
accepted January 16, 2021. Date of publication February 23, 2021; date of
current version February 21, 2022. This work was supported in part by NSF
under Project HRD-1800403. This article was recommended by Associate
Editor Z. Shao. (Corresponding author: Linwei Niu.)

Linwei Niu is with the Department of Electrical Engineering and
Computer Science, Howard University, Washington, DC 20059 USA (e-mail:
linwei.niu@howard.edu).

Dakai Zhu is with the Department of Computer Science, University of
Texas at San Antonio, San Antonio, TX 78249 USA.

Digital Object Identifier 10.1109/TCAD.2021.3061522

with by all means to avoid system failure. Otherwise, catas-
trophical consequences could occur. To address this issue,
solutions adopting hardware redundancy are required. Among
them, the standby-sparing technique has recently gained much
attention in the research community [8]–[12]. Generally, the
standby-sparing makes use of the redundancy of processing
units in multicore/multiprocessor systems. More specifically,
a standby-sparing system consists of two processors: 1) a
primary one and 2) a spare one, executing in parallel. For
each real-time job executed in the primary processor, there
is a corresponding backup job reserved for it in the spare
processor [10]. As such, whenever a permanent fault occurs
to the primary or the spare processor, the other one can still
continue without causing system failure. Moreover, it is not
hard to see that the backup tasks/jobs in the spare processor
can also help tolerate transient faults for their corresponding
main tasks/jobs in the primary processor.

In a standby-sparing system, the execution of the main
jobs in the primary processor and their corresponding backup
jobs in the spare processor might need to be overlapped with
each other. Thus, the total energy consumption could be quite
considerable. Regarding that, some recent works have been
reported to reduce energy (e.g., [8]–[10], [12]). The main
idea is to try to let the executions of the main jobs and
their corresponding backup jobs be shifted away as much as
possible such that once the main jobs are completed success-
fully, their corresponding backup jobs could be canceled early,
thereby saving energy in the spare processor. With that in
mind, in [10] and [11], approaches based on the dual-priority
scheme were proposed for standby-sparing fixed-priority (FP)
real-time systems. Their works are mainly focused on hard
real-time systems.

In some real-time applications, occasional deadline missings
are acceptable so long as the user perceived quality of service
(QoS) can be assured at certain levels. For example, some
remote monitoring applications that sense k times per minute
while missing (k − m) precisely distributed sensing samples
might be acceptable but with some degraded QoS levels [13].
For such kinds of systems, the existing techniques solely based
on hard real-time constraints are insufficient in dealing with
energy conservation under fault tolerance and more advanced
techniques incorporating the QoS model are desired.

A widely known deterministic QoS model is the (m, k)
model [14]. To ensure the (m, k)-deadlines, Ramanathan [15]
proposed to partition the jobs into mandatory ones and
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optional ones. The mandatory ones must be completed suc-
cessfully, whereas the other ones could be optionally executed
when necessary.

In this article, we study the problem of reliable and energy-
aware (m, k)-deadlines enforcement with standby-sparing
under FP assignment. To the best of our knowledge, this is the
first work to combine (m, k)-deadlines and standby sparing to
achieve better energy efficiency for real-time applications.

The remainder of the article is organized as follows. In
Section II we discuss the related work. Section III presents the
preliminaries. Section IV presents the motivations. Section V
presents our proposed approach based on deeply red patterns.
Section VII-B presents our approach based on evenly dis-
tributed patterns. In Section VII, we present our evaluation
results. In Section VIII, we offer our conclusion.

II. RELATED WORK

In the last few decades, a plenty of work has been done
in integrating QoS assurance into scheduling for real-time
systems. For systems with transient overloaded conditions,
Chetto [16] explored scheduling algorithms for firm real-time
systems. For mixed-criticality systems, Gettings et al. [17] and
Brüggen et al. [18] proposed new approaches that can provide
QoS-guarantee for low-criticality tasks. Moreover, for gen-
eral FP weakly hard real-time systems, schedulability analysis
based on the mixed integer linear programming (MILP) formu-
lation is provided in [19]. Considering the given energy budget
constraint, Alenawy and Aydin [20] proposed an approach
to reduce the number of (m, k)-violations for weakly hard
real-time systems. Also, to minimize the number of dynamic
failures, Kooti et al. [21] proposed a QoS-aware approach for
(m, k)-firm real-time systems with long-term variations of the
harvested energy.

Recently, with fault tolerance becoming an important con-
cern for ubiquitous computing systems, a lot of works have
been presented in combining fault-tolerant scheduling and
energy management for real-time embedded systems. Many
of them have focused on dealing with transient faults through
software redundancy, i.e., to reserve recovery jobs, whenever
possible, for the jobs subject to transient faults. Zhu et al. [1]
formulated the reliability as the probability of executing the
real-time tasks/jobs successfully. Li et al. [22] introduced an
adaptive scheme to minimize energy consumption under reli-
ability requirement. Their work targeted the “frame-based”
real-time systems only. For systems with more general real-
time constraints, Zhao et al. [5] proposed an approach to
reduce energy for periodical real-time tasks with reliability
requirement quantified for each task individually. When con-
sidering shared resource synchronization, Zhang et al. [6]
proposed a scheme to reduce energy consumption under relia-
bility requirement. Most of the above works targeted real-time
systems subject to transient faults only.

More recently, in order to provide better system depend-
ability, there has been increasing interest in adopting standby-
sparing technique to deal with both permanent and transient
faults simultaneously. With energy consumption in mind,
in [8], [9], and [23], online power management schemes

applying dynamic voltage/freqency scaling (DVFS) in the
primary processor and DPM in the spare processor were
proposed. Moreover, in order to reduce energy consump-
tion, Haque et al. [9] proposed to run the main tasks/jobs in
the primary processor as soon as possible, while the backup
tasks/jobs in the spare processor as late as possible such that
once the main tasks/jobs are completed successfully, their cor-
responding backup tasks/jobs could be (partially) canceled. To
enhance energy savings in both processors, in [24], a more
advanced technique, named the preference-oriented scheme,
was adopted which, in both the primary and backup proces-
sors, lets some tasks be scheduled as soon as possible, while
the other ones be scheduled as late as possible. Their approach
mainly implemented the preference-oriented scheduling from
the task level in which all jobs belong to the same task have the
same preference for execution. For standby-sparing systems
with mixed criticality, advanced energy management schemes
were proposed in [25]. Their approach tried to reduce energy
through convex optimization in combination with power man-
agement heuristics based on joint DVFS and DPM schemes in
both the primary and spare processors. When considering the
chip thermal effect, peak-power-aware standby-sparing tech-
niques utilizing energy management schemes were presented
in [26]. Their approaches targeted minimizing the peak-power
of the standby-sparing systems such that the total power con-
sumption generated by the chip would not exceed what the
cooling component was designed to dissipate under any work-
load. Most of the above works are for real-time systems based
on dynamic priority scheduling policies. For real-time systems
based on FP scheduling policies, standby-sparing schemes
based on the procrastination of the backup tasks were studied
in [10]. In [11], more advanced FP standby-sparing techniques
based on task-level preference-oriented scheduling schemes
were explored with the purpose of reducing the energy further.

For multicore/multiprocessor systems, some works have
also been done to reduce energy consumption. Zhou et al. [27]
proposed an approach to minimize energy consumption for
heterogeneous real-time multiprocessor systems under the
thermal constraint. Chen and Thiele [28] proposed energy
efficient task partitioning and platform synthesis methods
for both DVFS and non-DVFS platforms. Neither of them
has taken fault tolerance into consideration. Han et al. [29]
explored fault-tolerant energy minimization for real-time
systems on multiprocessor platforms using the checkpointing
technique. Their approach can tolerate transient faults quite
well. However, if a permanent fault happened, the check-
pointing technique in [29] might not be able to deal with it
effectively because, due to the real-time constraints, the failed
part of the job might not be able to recovered successfully even
in a different processor. Consequently, critical information on
the failed job could be lost and the system might not be able to
be restored timely. Note that all of the aforementioned existing
works are mainly focused on hard real-time systems.

Different from the previous researches, the novelty of our
proposed work in this article lies in the fact that we tried to
combine the standby-sparing technique and (m, k)-deadlines
to achieve better energy efficiency for real-time systems that
can tolerate both transient and permanent faults.
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III. PRELIMINARIES

A. System Models

The real-time system considered in this article contains n
independent periodic tasks T = {τ1, τ2, . . . , τn} scheduled
according to the FP scheme. Without loss of generality, we
assume that task τl has a lower priority than task τk if l > k.
Each task contains an infinite sequence of periodically arriving
instances called jobs. Task τi is characterized using five param-
eters, i.e., (Pi, Di, Ci, mi, ki). Pi, Di (≤ Pi), and Ci represent
the period, the deadline, and the worst case execution time
(WCET) for τi, respectively. A pair of integers, i.e., (mi, ki)

(0 < mi ≤ ki), are used to represent the (m, k)-constraint for
task τi that requires that among any ki consecutive jobs, at
least mi jobs are executed successfully. The jth job of task τi

is represented with Jij and we use rij, cij(= Ci), and dij to rep-
resent its release time, execution time, and absolute deadline,
respectively. Note that when Jij is an optional job, we also use
Oij to represent it when necessary.

The standby-sparing system consists of two identical pro-
cessors, which are denoted as primary processor and spare
processor, respectively. For the purpose of tolerating perma-
nent/transient faults, each mandatory job of a task τi has two
duplicate copies running in the primary and the spare proces-
sors separately. Whenever a permanent fault is encountered in
either processor, the other one will take over the whole system
(to continue as normal). For convenience, we call each task
τi main task and its corresponding copy running in the other
processor backup task, denoted as τ ′

i . The jth job of task τ ′
i

is denoted as J′
ij Moreover, we call each mandatory job Jij

of task τi main job and its corresponding job running in the
other processor (to compensate its failure, if happened) backup
job, denoted as J̃ij. Note that in this article, Jij’s backup job,
i.e., J̃ij might be different from J′

ij, i.e., the job of τ ′
i in the

same time frame as Jij because, as will be shown in later
part of this article, Jij and J̃ij can be shifted away from each
other completely such that they might belong to different time
frames.

B. Energy Model

The processor can be in one of the three states: 1) busy;
2) idle; and 3) sleeping states. When the processor is busy
executing a job, it consumes the busy power (denoted as
Pbusy) which includes dynamic and static components during
its active operation. The dynamic power (Pdyn) consists of the
switching power for charging and discharging the load capac-
itance, and the short-circuit power due to the nonzero rising
and falling time of the input and output signals. The dynamic
power can be represented [30] as

Pdyn = CLV2f . (1)

CL is the load capacitance, V is the supply voltage, and f
is the system clock frequency. The static power (Pst) can be
expressed as

Pst = IstV (2)

where Ist is mainly due to the leakage current, which consists
of both the subthreshold leakage current and the reverse bias

junction current in the CMOS circuit. The power consumption
when the processor is busy, i.e., Pbusy is thus

Pbusy = Pdyn + Pst. (3)

When the processor is idle, it consumes the idle power
(denoted as Pidle) whose major portion comes from the static
power. When the processor is in the sleeping state, it con-
sumes the sleeping power (denoted as Psleep) which is assumed
to be negligible. Note that although dynamic power can be
reduced effectively by DVFS techniques, the efficiency of
DVFS in reducing the overall energy is becoming seriously
degraded with the dramatic increase in static power (mainly
due to leakage) with the shrinking of IC technology size.
With that in mind, in this article, we assume that the pro-
cessors and the hardware platform used for standby sparing
do not apply DVFS. As such, when the processors is busy, it
always consumes Pbusy at the maximal supply voltage Vmax.
Moreover, since dynamic power down (DPD), i.e., put the
processor into its sleeping state, can greatly reduce the leak-
age energy when the processor is not in use, we assume
that when no job is pending for execution, the processors
can be put into sleeping state with DPD. But, DPD needs
to consume energy/time overheads for implementing shutting-
down/waking-up the processor dynamically. If we assume the
energy overhead and time overhead of DPD to be Eo and
to, respectively, the processor can be shut down with positive
energy gains when the length of the idle interval is larger than
tsd = max([Eo/(Pidle − Psleep)], to). Correspondingly we call
tsd the minimal shut-down interval.

C. Fault Model

Similar to the standby-sparing systems in [9] and [10], the
system we considered can tolerate both permanent and tran-
sient faults. With the redundancy of the processing units, our
system can tolerate at least one permanent fault in the primary
or the spare processor. For transient faults that can occur any-
time during the task execution, we assume they can be detected
at the end of a job’s execution using sanity (or consistency)
checks [31] and the overhead for detection can be integrated
into the job’s execution time. Whenever a main job encoun-
ters transient fault(s), its backup job needs to be executed to
completion.

IV. MOTIVATIONS

Our goal is to reduce the overall energy consumption for
standby-sparing systems under the (m, k) requirement. To
assure the (m, k)-deadlines, a widely adopted strategy is to
judiciously partition the jobs into mandatory jobs and optional
jobs [32]. Two well-known partitioning strategies proposed
are the the deeply red pattern (or R-pattern) [33] and the
evenly distributed pattern (or E-pattern) [15]. According to
the R-pattern, the pattern πij for job Jij, i.e., the jth job of a
task τi, is defined by (here, “1” represents the mandatory job
and “0” represents the optional job)

πij =
{

“1”, if 1 ≤ j mod ki ≤ mi

“0”, otherwise j = 1, 2, 3, . . . .
(4)
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According to the E-pattern, the pattern πij for job Jij is
defined by

πij =
{

“1”, if (j − 1) =
⌊⌈

(j−1)×mi
ki

⌉
× ki

mi

⌋
“0”, otherwise j = 1, 2, 3, . . .

(5)

The mandatory/optional job partitioning according to (5) has
the property that it helps to spread out the mandatory jobs
evenly in each task along the time.

The necessary and sufficient condition for checking the
schedulability of the fixed-priority task sets partitioned based
on the E-pattern has been provided in [15]. The same rationale
could also be applied for checking the schedulability of task
sets partitioned based on the R-pattern as well.

From the above system models, to provide fault tolerance,
all mandatory jobs based on the R-pattern or E-pattern need
to have two duplicate copies running in the primary and the
spare processors, respectively. It is not hard to see that due
to the overlapped executions between them, one way to save
energy is to let each mandatory job in the primary processor be
finished as soon as possible and its backup job in the spare pro-
cessor be executed as late as possible such that once the main
job is completed successfully, its backup job can be canceled
immediately. To achieve this goal, Haque et al. [10] proposed
to run the main tasks in the primary processor according to
the regular FP scheme and the backup tasks on the spare pro-
cessor according to the dual priority scheme. Their approach
is based on the concept of “promotion time” (denoted as Yi),
calculated as follows:

Yi = Di − Ri (6)

where Ri is the worst case response time of task τi.
By applying dual priority, each backup job from backup task

τ ′
i in the spare processor could be procrastinated by Yi time

units such that the overlapped executions between the main job
and its backup job could be reduced, thereby saving energy.
The energy reduction could be further boosted by adopting
the preference-oriented scheduling scheme in [11]. Generally,
their approach is quite efficient in reducing energy consump-
tion for hard real-time systems. However, for soft real-time
applications with (m, k)-deadlines, there still exist opportuni-
ties to reduce the energy further by exploring the flexibility of
executing jobs under (m, k)-deadlines to avoid executing dupli-
cate copies of the mandatary jobs on two processors whenever
possible. This could be illustrated in the following example.

Given a task set of two tasks, i.e., τ1 = (5, 4, 3, 2, 4) and
τ2 = (10, 10, 3, 1, 2), to be executed in a standby-sparing
system. From (6), the promotion times Y1 and Y2 for tasks
τ1 and τ2 are calculated as 1 and 1, respectively. By apply-
ing the preference-oriented approach in [11] to the mandatory
jobs under the R-pattern, the main task τ1 and backup task τ ′

2
will be scheduled in the primary processor (with τ ′

2 sched-
uled under dual priority) while main task τ2 and backup
task τ ′

1 will be scheduled in the spare processor (with τ ′
1

scheduled under dual priority). The schedules for them are
shown in Fig. 1(a) and (b), respectively. As a result, the total

(a)

(b)

Fig. 1. (a) Schedule for the main task τ1 and backup task τ ′
2 in the primary

processor under the preference-oriented scheme [11]. (b) Schedule for the
backup task τ ′

1 and main task τ2 in the spare processor under the preference-
oriented scheme [11].

active energy consumption within the hyper period [0, 20] is
15 units.1

Note that in the above example, there are still extensive
overlapped execution times between the mandatory jobs and
their corresponding backup jobs, incurring significant energy
consumption. The main issue is that with the above approach,
only the mandatory jobs (and their backup jobs) under the
static R-patterns were executed. Note that the static patterns
such as the R-patterns defined in (4) only contain a “minimal
set” of mandatory jobs in them, no more no less, which just
meet the given (m, k)-constraint. Therefore, to ensure fault
tolerance, each mandatory job needs to have a backup job
reserved for it in the other processor, no exception. As a result,
each mandatory main job needs to be executed concurrently
with its backup job in the same time frame, which could result
in significant overlapped execution times between them due
to the time constraint. However, if we look into the optional
jobs and consider executing them adaptively, there could be
more chance to save energy. The reason is: since the optional
jobs are not required in meeting the given (m, k)-constraint,
they do not need backup jobs reserved for them. Moreover,
once any optional job was completed successfully, it would be
counted as a valid job that could contribute to satisfying the
given (m, k)-constraint as well, which means some mandatory
job (together with its backup job) in the near future might
not need to be executed anymore. In this way, by exploring
the possibility of executing the optional jobs and adjusting
the pattern dynamically, there could be more opportunities in
saving energy. This could be shown in Fig. 2. As seen in
Fig. 2(a) and (b), under dynamic patterns, the first job of task
τ2 is determined and scheduled as an optional job, denoted
as O21, instead of mandatory because it can still tolerate one
more deadline missing.2 Once O21 is executed and completed
successfully, its next mandatary job, i.e., J22, can be demoted

1Note that for easy of presentation, in all examples in this article, we
normalize Pbusy (under the maximal processor speed smax) to 1 and assume
that one unit of energy will be consumed for a processor to execute a job for
one time unit.

2Although O11 is also determined as an optional job, we chose to execute
O21 first because, starting from O11, task τ1 can still tolerate two deadlines
missings; therefore, it is regarded as more flexible (less urgent) than O21.
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(a)

(b)

Fig. 2. (a) Schedule for the main tasks τ1 and τ2 in the primary processor
based on the greedy execution of the optional jobs. (b) Backup jobs [for the
original mandatory jobs in (a)] in the spare processor are dropped.

to optional and the backup job for it can simply be dropped to
save energy. After O21 was completed (at time t = 3), since
O11 did not have enough time space to be finished before its
deadline, to save energy, O11 will not be invoked at all. Instead,
its next optional job, i.e., O12 will be invoked at time t = 5,
following the same rationale as O21. Note that in the schedule
in Fig. 2(a), although some mandatory jobs, such as J13 and
J22 had been demoted to optional,3 they were reselected (as
optional jobs) for execution again to help demote/drop more
mandatory/backup jobs in the future. As a result the total active
energy consumption within the hyper period [0, 20] is reduced
to 12 units, which is 20% lower than that in Fig. 1.

It is not hard to see that in Fig. 2 the fault tolerance capa-
bility of the standby-sparing system is preserved as whenever
some optional job(s) failed, the next mandatory job (and the
backup job for it) can still be invoked and executed timely.

From the above example, we can see that by executing
optional jobs and adjusting the job patterns dynamically, there
is great potential for saving energy because the optional jobs
do not need backup jobs. Moreover, the successful completion
of the optional jobs can help demote/drop some mandatory
jobs and their backup jobs in the future. Additionally, when
those mandatory jobs are demoted, their time budget could
be utilized to execute more optional jobs. However, although
seeming reasonable, there could still be problems with it. For
example, due to the “greedy” manner 4 in which the optional
jobs are executed, it might execute an excessive number of
optional jobs for some systems with modest workload, which
could affect the overall energy efficiency adversely. Even we
limit the execution of the optional jobs to be in one processor
(e.g., the primary processor) only, the same problem might
still exit. This could be illustrated with another example as
followed.

Consider another task set of two tasks, i.e., τ1 =
(5, 2.5, 2, 2, 4) and τ2 = (4, 4, 2, 2, 4). Fig. 3 shows the sched-
ule based on the greedy manner. As can be seen, for task τ1,
the execution of optional job O11 caused mandatory job J13

3To different such kinds of demoted mandatory jobs from those original
optional jobs, we still use their original job names in the figure when it does
not cause any confusion.

4Here “greedy manner” means the optional jobs are scheduled whenever
possible to do so.

(a)

(b)

Fig. 3. (a) Schedule for the main tasks τ1 = (5, 2.5, 2, 2, 4) and τ2 =
(4, 4, 2, 2, 4) in the primary processor under the greedy execution of the
optional jobs. (b) Schedule for the backup jobs in the spare processor.

(a)

(b)

Fig. 4. (a) Schedule for the main tasks τ1 = (5, 2.5, 2, 2, 4) and τ2 =
(4, 4, 2, 2, 4) in the primary processor based on the selective execution of
the optional jobs. (b) Schedule for the backup tasks τ ′

1 and τ ′
2 in the spare

processor based on the selective execution of the optional jobs.

(and its backup job) to be demoted/dropped. But, later on, J13
was reselected for execution as an optional job. Following the
same rationale, four jobs in total were executed for task τ1
before time t = 25. The situation for task τ2 is similar. As a
result, the total active energy consumption under this schedule
is 20 units.

However, if we follow a different schedule as shown in
Fig. 4, the energy efficiency can be improved further. As can
be seen, in this case, for both tasks τ1 and τ2, we only sched-
uled those optional jobs that could tolerate just one more
deadline missing (such as O12 and O22) while skipping the
other optional jobs (e.g., O11 and O21). Moreover, to make the
workload of the optional jobs distribute more evenly between
two processors, we let the selected optional jobs of each task
be executed in the primary processor and the spare processor
alternatively. For example, for O12 and O22 , we let them be
executed in the primary processor. Once O12 and O22 were fin-
ished successfully, the flexibility degrees (FDs) of the future
jobs would be updated correspondingly, based on which the
jobs could be reselected for execution again (e.g., J′

13 and J′
23,

which would be executed in the spare processor). Following
the same principle, the total active energy consumption before

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore.  Restrictions apply. 



NIU AND ZHU: FP SCHEDULING FOR RELIABLE AND ENERGY-AWARE (m, k)-DEADLINES ENFORCEMENT WITH STANDBY-SPARING 507

time t = 25 was reduced to 14 units, which is 30% lower than
that in Fig. 3.

As shown in the above example, it is not necessarily most
energy efficient to execute the optional jobs in a greedy manner
while executing them selectively might be more promising in
saving energy. Moreover, to better utilize the system comput-
ing power, in the latter case, we can let the selected optional
jobs of each task be executed in both the primary and the
spare processors alternatively, which could help distribute their
workloads more evenly in the two processors such that the
selected optional jobs could have better chance to be scheduled
successfully. Following these rationales, in the next section, we
will propose a new approach which, instead of executing all
optional jobs in one processor greedily, will execute them in
both the primary and spare processors in a selective manner.

V. APPROACH BASED ON R-PATTERN

In this section, we will present our new approach based
on selective execution of the optional jobs according to the
R-pattern. The following definition would be very useful in
presenting our algorithm.

Definition 1: The FD of a job Ji, denoted as FD(Ji), is
defined as the number of consecutive deadline missings that
task τi (which Ji belongs to) can still tolerate starting from Ji.

Based on the concept of FD, our selective approach works
according to the following principles: 1) the optional jobs
could be executed in either the primary or the spare processor,
but only the optional jobs with FD of 1 will be selected for
execution and 2) the eligible optional jobs are to be executed
either under the main tasks in the primary processor or under
the backup tasks in the spare processor, but not both for the
same optional job (as an optional job does not have backup
job). Regarding that, to make the workload of the eligible
optional jobs distribute more evenly in two processors, we let
the selected optional jobs from the same task be executed in
the primary processor and in the spare processor alternatively,
just as shown in the schedule in Fig. 4.

The salient part of our selective approach is presented in
Algorithm 1.

As shown in Algorithm 1, for both the primary and the spare
processors, two job ready queues are maintained for each of
them: 1) a mandatory job queue (MJQ) and 2) an optional job
queue (OJQ). Upon arrival, the current job of task τi (denoted
as Ji) is determined as mandatory job or optional job based on
its FD. It is determined as mandatory only if its FD is 0 and
as optional otherwise. Note that since all mandatory jobs must
have backup jobs for them, we let the mandatory jobs of all
main tasks be put in the MJQ of the primary processor while
their corresponding backup jobs be put in the MJQ of the spare
processor. Unlike the mandatory jobs, the optional jobs do not
have backup jobs for them. So, only the optional jobs with
FD of 1 are selected as eligible jobs (other optional jobs are
skipped). Moreover, the selected optional jobs of each task are
put into the OJQ of the primary processor and the OJQ of the
spare processor alternatively. The jobs in MJQ always have
higher priorities than those in OJQ.

Algorithm 1 Selective Approach
1: For either the primary processor or the spare

processor:
2: if MJQ is not empty then
3: If in primary processor, run jobs in MJQ under FP

scheme; Whenever a main job is completed success-
fully, cancel its backup job in the other processor
immediately.

4: If in spare processor, run jobs in MJQ under FP scheme
with job arrival times revised according to Equation (7);

5: else if OJQ is not empty then
6: Select Ji in OJQ and run it following the FP scheme;
7: if Ji is executed successfully then
8: Updated the flexibility degree of the next job of the

same task;
9: end if

10: else
11: tcur = the current time;
12: t′a = the earliest release time of all jobs in MJQ;
13: if (t′a − tcur) > Tbe then
14: Shut down the processor and set the wake-up timer

to be (t′a − tcur);
15: end if
16: end if

Note that during runtime, once an optional job is completed
successfully, it will be counted as a valid job and the FD of the
next job should be updated correspondingly (lines 7 and 8).

In addition, to facilitate saving energy for running the
backup jobs in the spare processor when necessary, the execu-
tions of all backup jobs in the spare processor should be post-
poned as late as possible. To achieve this goal, some offline
analysis could be done based on the following definitions.

Definition 2: Time t is called the postponed release time,
denoted as r̃i, of a backup job J′

i in the spare processor and
is calculated as

r̃i = ri + θi (7)

where θi is calculated with (9).
Definition 3: Time t is called a Jij-inspecting point for job

Jij, denoted as IP(Jij), if t = dij or t ∈ {r̃kl | k < i and rij <

r̃kl < dij}, where r̃kl is the postponed release time of job Jkl

calculated in (7).
Definition 4: The job release postponement interval,

denoted as θij, for any backup job J′
ij of task τ ′

i is defined as

θij = max

⎧⎨
⎩

⎛
⎝t̄ −

⎛
⎝cij +

k<i∑
dkl>rij,r̃kl<t̄

ckl

⎞
⎠ − rij

⎞
⎠ |

t̄ ∈ IP
(

J′
ij

)⎫⎬
⎭ (8)

where r̃kl is the postponed release time of job Jkl calculated
in (7).
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(a) (b)

Fig. 5. (a) Original schedule of the backup jobs for the main tasks τ1 =
(10, 10, 3, 2, 3) and τ2 = (15, 15, 8, 1, 2). (b) Schedule of the backup jobs
based on the postponed release times calculated according to (7).

Definition 5: The task release postponement interval,
denoted as θi, for any ask τ ′

i is defined as

θi = max

{
min

{
θij | j ≤ LCMq≤i

(
kqPq

)
Pi

}
, Yi

}
(9)

where Yi is the promotion time of τi calculated based on (6).
The calculation of θi can be done offline based on the

static R-pattern. Note that since the postponed release times
of the higher priority jobs will be used as the inspecting
points for the lower priority jobs, the release postponement
intervals for the backup tasks should be calculated in descend-
ing order of the priority levels. Each time when min{θij | j ≤
[(LCMq≤i(kqPq))/Pi]} for level i is calculated, we can com-
pare it with Yi and choose the maximum between them as θi

for level i. In this way, we can guarantee that θi is never less
than Yi. After that the release time of all backup jobs of task
τ ′

i should be revised based on (7) before advancing to the next
priority level.

As an example of calculating the postponed release time
r̃i and the release postponement interval θi, let us consider
a task set of two tasks, i.e., τ1 = (10, 10, 3, 2, 3) and τ2 =
(15, 15, 8, 1, 2), the original schedule of the backup jobs in the
spare processor with nonpostponed release time is shown in
Fig. 5(a). According to (6), Y1 = 7 and Y2 = 1. To calculate
r̃11, i.e., the postponed release time of the first backup job
in τ ′

1 (represented as J′
11), there is only one inspecting point

for it, i.e., t̄ = 10. Based on (8), θ11 = 10 − 3 − 0 = 7.
Similarly, θ12 can be calculated as 7 as well. So, according
to (9), θ1 = max{7, Y1} = 7. After that, the release time of
all backup jobs of task τ ′

1 should be revised according to (7),
as shown in Fig. 5(b). Next, to calculate θ21 for the first job of
τ ′

2 (represented as J′
21), according to Definition 3, there are two

inspecting points for it, i.e., 15 and 7, based on its deadline and
the postponed release times of the jobs in τ ′

1. Then, according
to (8), θ21 = max{15 − (8 + 3) − 0, 7 − (8 + 0) − 0} = 4.
Since for this particular example, there is only one backup
job in τ ′

2 within its hyper period (LCMq≤2(kqPq) = 30), θ2 =
max{4, Y2} = 4. After that the release times of all backup
jobs in τ ′

2 are postponed by 4 time units according to (7).
The schedule based on the postponed release times of all jobs
within the first hyperperiod is shown in Fig. 5(b). It is not
hard to see that under this postponed schedule all backup jobs
can meet their deadlines. Note that for this particular example,
the release postponement interval calculated for task τ ′

2, i.e.,
θ2, is much larger than the promotion time of τ ′

2 calculated
according to (6), i.e., Y2 = 1.

The complexity of Algorithm 1 mainly comes from schedul-
ing the optional jobs in the primary and the spare processors.
Since at anytime there are at most n optional jobs in the
OJQ, its complexity is O(n). Moreover, to ensure that the
(m, k)-deadlines be satisfied, we have the following theorem.

Theorem 1: Let task set T be scheduled with Algorithm 1.
The (m, k)-deadlines for T can be ensured if T is schedulable
under the R-pattern.

Proof: The correctness of the release postponement interval
θi for each backup task τ ′

i (and its individual backup jobs) is
guaranteed by (8) and (9) because according to (8) and the
definition of Jij-inspecting point in Section V, the completion
time of any backup job will never go beyond its deadline.

The worst case scenario of Algorithm 1 happens when at
certain time point t, in both the primary and spare processors,
the optional jobs of each task are either not selected for exe-
cution or not completed successfully. Then, the next mi jobs
of each task τi should be designated as mandatory jobs con-
secutively in order to meet the (m, k)-constraint. Let re be the
earliest arrival time of all upcoming mandatory jobs after time
t. If we shift left all other tasks such that the arrival time of
the next upcoming mandatory job of each task coincides with
re, it is easy to see that after such kind of shifting the task
set will become harder to be schedulable than the original one
as the work demand that is required to be finished before any
job deadline after t will not be decreased. On the other hand,
it is easy to see that the situation of the shifted task set after
t is the same as when all tasks are released synchronously at
time 0 under the R-pattern.

The situation for the backup jobs in the spare processor
is the same if we replace the release time(s) above with the
postponed release time(s) of the backup jobs. The conclusion
of Theorem 1 follows.

VI. APPROACH BASED ON E-PATTERN

Although the approach in Section VII-A is quite efficient
in reducing the energy consumption for task sets partitioned
based on the R-pattern, the schedulability of the R-pattern is
not as good as the E-pattern [34]. On the other hand, it is
not possible to quantize a utilization threshold for task sets
partitioned under any (m, k)-pattern because the utilization of
the nonschedulable task set with (m, k)-constraint could be
arbitrarily low. In the following, we will formulate that into a
lemma.

Lemma 1: The utilization of the nonschedulable task set
with a (m, k)-constraint could be arbitrarily low.

Proof: Without loss of generality, consider a task set con-
taining only one task (Pi, Di, Ci, mi, ki) in which Ci > Di

and mi << ki. Then, obviously this task set is not schedu-
lable. Meanwhile, since mi << ki, its total utilization, i.e.,∑

i [(miCi)/(kiPi)], could be arbitrarily low.
It is not hard to see that the approach in Section V for

the R-pattern can be applied to task sets partitioned based on
the E-pattern as well. However, when doing so, its energy
efficiency might not be as good as for task sets partitioned
based on the R-pattern. This could be illustrated in the
following example.
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Fig. 6. Schedule for task set {τ1 = (10, 8, 2, 4, 6), τ2 = (10, 8, 3, 4, 6), τ3 = (20, 16, 3, 2, 3), τ4 = (20, 19, 4, 2, 3)} based on the original E-pattern.

(a)

(b)

Fig. 7. (a) Schedule for the main tasks τ1 = (10, 8, 2, 4, 6), τ2 = (10, 8, 3, 4, 6), τ3 = (20, 16, 3, 2, 3), and τ4 = (20, 19, 4, 2, 3) in the primary processor
based on the selective approach in Algorithm 1 based on the E-pattern. (b) Schedule for the backup tasks τ ′

1, τ ′
2, τ ′

3, and τ ′
4 in the spare processor based on

the selective approach in Algorithm 1 based on the E-pattern.

Consider another task set of four tasks: i.e., τ1 =
(10, 8, 2, 4, 6), τ2 = (10, 8, 3, 4, 6), τ3 = (20, 16, 3, 2, 3)

and τ4 = (20, 19, 4, 2, 3). If we assume there is no fault occur-
ring during the first hyper period, the schedule based on the
original E-pattern (for either the main tasks in the primary pro-
cessor or the backup tasks in the spare processor) is shown in
Fig. 6, which will result in a total active energy consumption
of 68 units if no energy management is applied. It is not hard
to see that all optional jobs in it (such as J13, J23, J33, and J43)
have FD of 1. If we apply the selective approach in Section V
to it, as shown in Fig. 7, all optional jobs of each task will be
executed either in the primary processor or the spare proces-
sor alternatively and none of them got chance to be skipped.
As a result, the total active energy consumption for executing
the jobs in the primary processor [Fig. 7 (a)] and in the spare
processor [Fig. 7(b)] will be 51 units.

However, if we adopt a different way of scheduling the
task set, we can achieve still better energy efficiency. The
central idea is to execute the mandatory main/backup jobs
determined under the E-pattern according to the job-level
preference-oriented scheme, which could execute each indi-
vidual mandatory main/backup job either as soon as possible

or as late as possible based on the triple priority scheme.5

In order to do so, we need to enhance the calculation of the
promotion time of each mandatory job under the E-pattern
such that the mandatory jobs could be procrastinated as late
as possible, following the steps.

1) Step 1: For all tasks, shift their mandatory job patterns
using the approach in [32] such that the mandatory
workload from each individual task could be shifted
away from one another as far as possible.

2) Step 2: Based on the shifted mandatory job pattern gen-
erated in step 1, apply the approach in [36] to calculate
the optimal promotion time for each mandatory job in
each task τi.

Note that in the above step (step 2), in order to procrastinate
the mandatory jobs to the furthest time, instead of using the
promotion time calculated by (6), here we choose to use the
optimal promotion time for each mandatory job. As shown
in [36], for periodic task sets, the value calculated in (6) is
only a lower bound for the promotion time and, usually, the
optimal promotion time could be much larger, especially under

5The triple priority scheme is a variation of the dual priority scheme in [35].
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Fig. 8. Schedule for the task set τ1 = (10, 8, 2, 4, 6), τ2 = (10, 8, 3, 4, 6), τ3 = (20, 16, 3, 2, 3), and τ4 = (20, 19, 4, 2, 3) based on the shifted E-pattern
using the approach in [32].

Fig. 9. Schedule for the mandatory jobs in Fig. 8 after applying the optimal promotion times on them.

the (m, k)-constraint. Interested readers are referred to [36]
for more details on the calculation of the optimal promotion
time for each mandatory job. The above steps (steps 1 and 2)
could also be illustrated using the schedules in Figs. 8 and 9,
respectively. As shown in Fig. 8, for the same example task
set in Fig. 6, we first try to shift the E-pattern of each task
using the approach in [32] such that the mandatory workloads
from all tasks could be shifted away from one another to the
maximal extent and the interference from higher priority tasks
to lower priority tasks could be minimized. Next, based on
the shifted patterns in Fig. 8, we apply the approach in [36] to
calculate the optimal promotion times for the mandatory jobs,
which results in Y∗

11 = Y∗
12 = Y∗

14 = Y∗
15 = 6, Y∗

22 = Y∗
25 = 3,

Y∗
23 = Y∗

26 = 5, Y∗
32 = 13, Y∗

33 = 12, and Y∗
41 = Y∗

42 = 10,
respectively. The schedule for all mandatory jobs based on the
optimal promotion times is shown in Fig. 9.

With the shifted patterns and the optimal promotion times
calculated above, we can reduce the energy by applying the
job-level preference-oriented scheme in executing the manda-
tory main/backup jobs. The main idea is: for each mandatory
main/backup job Ji, it could be executed only when its cur-
rent preference mode (denoted as JP

i ) has been assigned a valid
execution mode, i.e., S (representing as soon as possible execu-
tion) or L (representing as late as possible execution). Based
on it the jobs will be scheduled according to the following
principles.

1) For each mandatory main job or its backup job, it will
be executed following the triple priority scheme, i.e.,
at anytime, it could reside in only one of the three
priority levels in its own processor: 1) lower; 2) mid-
dle; and 3) upper levels. Upon arrival, each mandatory
main/backup job will be released at the lower priority
level first, with its corresponding preference mode ini-
tialized as “NULL.” Whenever a mandatory main job
or its backup job, whichever first, gets chance to be
dispatched in its own processor, it will be switched to

the middle-priority level of its processor immediately
and its preference mode will be updated as S (as soon
as possible mode). At the same time, its correspond-
ing job in the other processor will be procrastinated to
its optimal promotion time and switched to the upper
priority level with its preference mode updated as L (as
late as possible mode). Moreover, whenever a mandatory
main/backup job reaches its optimal promotion time, it
must be switched to the upper priority level immediately.

2) The jobs in the upper priority level can always preempt
the jobs in the middle-priority level and the jobs in the
middle-priority level can always preempt the jobs in the
lower priority level. For all jobs in the same priority
level, they will be executed following their original fixed
priority assignment.

3) At any time, between the mandatory main job and its
corresponding backup job, at most one of them could
be switched to (and executed in) the middle-priority
level. Moreover, if one of them has been switched to the
middle-priority level, the other one must be switched to
the upper priority level immediately and procrastinated
to its optimal promotion time.

4) Whenever slack time becomes available, the jobs under
the as soon as possible preference mode (S) should try to
reclaim the slack time for execution (to facilitate its early
completion) while the jobs under the as late as possible
preference mode (L) should never reclaim the slack time
for execution. Instead, it should try to utilize the slack
time to implement dynamic procrastination such that it
could be delayed further.

To help explain the above rationale, we still use the same
example task set in Fig. 6 based on their output in Fig. 9. The
schedule is demonstrated in Fig. 10.

As shown in Fig. 10 (a) and (b), at time 0, when J11
and its backup job J′

11 are released, both of them are put in
the lower priority level first. Since there is no pending job
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(a)

(b)

Fig. 10. (a) Schedule for the main tasks τ1 = (10, 8, 2, 4, 6), τ2 = (10, 8, 3, 4, 6), τ3 = (20, 16, 3, 2, 3), and τ4 = (20, 19, 4, 2, 3) in the primary processor
using the job-level dynamic preference-oriented approach (Algorithm 2) based on the E-pattern. (b) Schedule for the backup tasks τ ′

1, τ ′
2, τ ′

3, and τ ′
4 in the

spare processor using the job-level preference-oriented approach (Algorithm 2) based on the E-pattern.

with higher priority than J11 in the primary processor, J11
got chance to be dispatched immediately and was switched to
the middle-priority level, while J′

11 was procrastinated to its
optimal promotion time (0 + Y∗

11) = 6 and switched to upper
priority level from there. Meanwhile, at time 0, both J41 and
its backup job J′

41 are released in the lower priority level first.
But since in the primary processor job J41 has lower prior-
ity than job J11, it could not be dispatched at time 0. On the
other hand, in the spare processor job J′

41 got chance to be
dispatched because job J′

11 has been procrastinated to time 6.
Therefore, J′

41 would be switched to the middle priority level
while J41 would be procrastinated to its optimal promotion
time (0 + Y∗

41) = 10 (and switched to upper priority level from
there). When J11 is completed successfully at time 2, J′

11 in the
spare processor could be canceled and became slack time from
there. Similarly, when J′

41 is completed successfully at time 4,
J41 in the primary processor could be canceled and became
slack time from there. Following the same rationale, the com-
plete schedule for the remaining mandatory main/backup jobs
in the primary and the spare processors are shown in Fig. 10
(a) and (b), respectively. It is not hard to see that under this
schedule, the total active energy consumption in both proces-
sors could be reduced to 34 units, which is 34% lower than
that in Fig. 7.

To formalize the above procedure, the main steps are shown
in Algorithm 2.

As shown in Algorithm 2, our online scheduling algorithm is
based on the triple priority scheme. During runtime, in both the
primary and the spare processors, three mandatory job ready
queues, i.e., MJQu, MJQm, and MJQl are maintained, which
correspond to the three priority levels under the triple priority
scheme, i.e., lower, middle, and upper priority levels. Upon

Algorithm 2 Job-Level Preference-Oriented Scheme
1: For either the primary processor or the spare

processor:
2: if MJQu is not empty then
3: Scheduling the jobs in MJQu based on Algorithm 3;
4: else if MJQm is not empty then
5: Scheduling the jobs in MJQm based on Algorithm 4;
6: else if MJQl is not empty then
7: Scheduling the jobs in MJQl based on Algorithm 5;
8: else
9: Repeat lines 11-15 of Algorithm 1;

10: end if

arrival, a mandatory main job (and its backup job in the other
processor) is first put in the lower mandatory queue MJQl of
its processor. Note that both of the mandatory main/backup
jobs have their preference modes initialized as “NULL” upon
arrival. Thereafter, when either of them, whichever first, gets
chance to be dispatched, it will be switched to the middle
priority queue MJQm with its preference mode reset to be S
[representing as soon as possible execution, for example, job
J11 in Fig. 10(a)] and its corresponding job in the other pro-
cessor will be switched to the upper priority queue MJQu with
its preference mode reset to be L [representing as late as pos-
sible execution, for example, job J′

11 in Fig. 10(b)]. For all
jobs in MJQl and MJQm, whenever their optimal promotion
times are reached, they will be switched to the upper manda-
tory queue MJQu while their current preference mode will be
preserved.
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Algorithm 3 Scheduling the Jobs in the Upper Priority Level
1: For either the primary processor or the spare

processor:
2: Pick Ji ∈ MJQu with the smallest index;
3: if JP

i == “S” then
4: // Ji’s is in as soon as possible preference mode;
5: Execute Ji following the FP scheme as early as possible;
6: if any slack time STi(t) with higher priority than Ji is

available then
7: Reclaim the slack time to execute Ji as early as

possible;
8: end if
9: else

10: // Ji’s is under as late as possible preference mode “L”;
11: Delay the starting time of Ji’s execution to (tcur +

STi(t));
12: Execute Ji following the FP scheme;
13: end if
14: if the execution of job Ji is successful then
15: Cancel its corresponding job in the other processor and

add the residue time budget to the slack queue ST ;
16: end if

Algorithm 4 Scheduling the Jobs in the Middle-Priority Level
1: For either the primary processor or the spare

processor:
2: Pick Ji ∈ MJQm with the smallest index;
3: Execute Ji following the FP scheme as early as possible;
4: if any slack time STi(t) with higher priority than Ji is

available then
5: Reclaim the slack time to execute Ji as early as possible;
6: end if
7: if the execution of job Ji is successful then
8: Cancel its corresponding job in the other processor and

add the residue time budget to the slack queue ST ;
9: end if

During runtime, in both the primary and the spare proces-
sors, a slack queue ST needs to be maintained to keep track
of the slack time(s) from (partially) canceled job(s).

Whenever a mandatory main/backup job is completed
successfully, its corresponding job in the other processor
should be canceled whose residue time budget will become
slack time (line 15 in Algorithm 3 and line 8 in Algorithm 4).
The slack time(s) will be inserted into ST based on their
priorities. Upon the starting execution of a job Ji at time
t, the slack time from ST with priorities higher than or
equal to Ji will be stored in a variable STi(t). If Ji’s
category is S, STi(t) should be reclaimed to execute Ji

as soon as possible (lines 6–8 in Algorithm 3). Otherwise,
if Ji’s category is L, STi(t) should be used to imple-
ment dynamic procrastination on Ji, which can delay Ji to
(tcur + STi(t)) (line 11 in Algorithm 3). When no job is
pending for execution, the system should be put into sleep
mode if the idle time is larger than the break even time
(line 9 in Algorithm 2). Note that even when the system

Algorithm 5 Scheduling the Jobs in the Lower Priority Level
1: For either the primary processor or the spare

processor:
2: Pick Ji ∈ MJQl with the smallest index;
3: Let J̃i be Ji’s corresponding job in the other processor;
4: if J̃i is also in MJQl of its own processor then
5: if the MJQu and MJQm in both processors are empty

then
6: Randomly pick out a job between Ji and J̃i to be

promoted to MJQm;
7: Reset the preference mode of the picked job to be

“S” while procrastinating its corresponding job in the
other processor to its optimal promotion time and
resetting its preference mode to be “L”;

8: else
9: Pick out the job in the processor with empty MJQu

or MJQm to be promoted to MJQm;
10: Repeat line 7;
11: end if
12: end if

is in sleep (or idle) mode, the slack times stored in ST
should still be consumed based on their sorted sequence
in ST .

The complexity of Algorithm 2 mainly comes from schedul-
ing the jobs in the three different MJQs and switching
preference mode for each of them. Since at anytime, there are
at most n mandatory jobs in each MJQ and for each mandatory
job there are at most two preference modes (plus an initialized
“NULL” mode), its complexity is O(n).

VII. PERFORMANCE EVALUATION

In this section, we compared our approach with other
previous related approaches with simulations. Note that due
to the difference in the schedulability of the R-pattern and
E-pattern, we conducted two groups of simulations separately:
one for R-pattern-based schemes and one for E-pattern-based
schemes.

A. Evaluation of R-Pattern-Based Schemes

In this part, we evaluated the energy performance of
R-pattern-based schemes. Three different approaches were
studied. In the first approach, the task sets were statically
partitioned with R-patterns, and the mandatory jobs in the
primary and the spare processors were executed concurrently
without procrastination. We refer to this approach as MKSSST

and used its results as the reference. The second approach
(MKSSDP) also determined the mandatory jobs based on
the static R-patterns and the mandatory jobs were scheduled
with the task-level preference-oriented scheme based on dual
priority, similar to that used in [11] (but without applying
DVFS). The third approach (MKSSR

selective) is our selective
approach proposed in Section V based on the selective exe-
cution of the optional jobs in both the primary and the spare
processors.
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(a) (b) (c)

Fig. 11. Energy comparisons for R-pattern-based schemes subject to: (a) no fault, (b) permanent fault, and (c) permanent and transient faults.

The processor model used in our simulations is based on
the Free-scale PowerQUICC III integrated Communications
Processor MPC8536E [37], similar to the one used in [38].
According to the data sheet in [37], the typical power con-
sumption of MPC8536E running under the maximal frequency
is 4.7 W (with a core frequency of 1500 MHz and core volt-
age of 1.1 V). The idle power Pidle is about 0.6 W. Since
the transition overheads are not mentioned in the data sheet,
we assumed the shut-down/wake-up time overhead to = 1 ms
and energy overhead Eo = 0.6 mJ. Therefore, the minimal
shut-down interval tsd will be calculated as 1 ms.

The periodic task sets in our experiments consisted of five
to ten tasks with the periods randomly chosen in the range
of [5, 50] ms. mi and ki for the (m, k)-deadlines were also
randomly generated such that ki was uniformly distributed
between 2 and 20, and 0 < mi < ki. The WCET of a task
was assumed to be uniformly distributed and the total (m, k)-
utilization, i.e.,

∑
i [(miCi)/(kiPi)], was divided into intervals

of length 0.1 each of which contains at least 20 task sets
schedulable or at least 5000 task sets generated. We conducted
three sets of tests.

In the first set, we checked the energy performance when no
fault occurred within the hyperperiod. The results are shown
in Fig. 11(a).

From Fig. 11(a), one can immediately see that by adopt-
ing dynamic patterns, MKSSR

selective can achieve much better
energy efficiency than the others adopting static patterns, i.e.,
MKSSST and MKSSDP, in all utilization intervals. The maxi-
mal energy reduction by MKSSR

selective over MKSSDP can be
around 26%. The main reason is that in this scenario, by exe-
cuting the optional jobs, MKSSR

selective can help drop duplicate
executions of the mandatory/backup jobs in two processors
significantly. Moreover, with the adaptive optional job selec-
tion strategy, i.e., by only choosing optional jobs with FD
of 1 for execution, MKSSR

selective can avoid executing exces-
sive number of the optional jobs. Additionally, by letting the
selected optional jobs be executed in two different processors
alternatively, MKSSR

selective can help distribute the workloads
of the optional jobs in two processor evenly. Finally, by let-
ting the backup jobs be delayed with the postponed release
times, MKSSR

selective can accommodate larger pools of eligible
optional jobs for selection, which also gives more chance for
the optional jobs to be selected and scheduled successfully,

therefore minimizing the necessity of running mandatory jobs
effectively.

In the second set, we assumed the system is subject to per-
manent fault only which could occur at most once. The results
are shown in Fig. 11(b).

As seen in Fig. 11(b), the energy reduction by our new
approaches, i.e., MKSSR

selective subject to permanent fault is
similar to the case when no fault ever occurred. Compared
to MKSSDP, the energy saving by MKSSR

selective can be up to
20% for the same reasons as above.

In the third set, we assumed the system could be subject to
both permanent fault and transient faults. The transient fault
model is similar to that used in [1] by assuming the Poisson
distribution with an average fault rate of 10−6. The results
were shown in Fig. 11(c).

As seen, the energy saving by our new approach, i.e.,
MKSSR

selective in this scenario is similar to that in the previous
cases. The maximal energy reduction by MKSSR

selective over
MKSSDP can be up to 15%, thanks to the adaptive executions
of the optional jobs under the dynamic pattern adjustment.

B. Evaluation of E-Pattern-Based Schemes

In this part, we evaluated the energy performance of
the E-pattern-based schemes. We studied four different
approaches. In the first approach, the task sets were stati-
cally partitioned with E-patterns, and the mandatory jobs in
the primary and the spare processors were executed concur-
rently without procrastination. We still refer to this approach
as MKSSST and used its results as the reference. The sec-
ond approach (MKSSDP) also determined the mandatory
jobs based on the static E-patterns and the mandatory jobs
were scheduled with the task-level preference-oriented scheme
based on dual priority, similar to that used in [11] (but
without applying DVFS). In the third approach, for com-
parison purpose, we tried to apply our selective approach
proposed in Section V to the task sets partitioned based
on the E-pattern as well. We refer to it as MKSSE

selective.
The fourth approach MKSSE

JDPO is our job-level preference-
oriented approach proposed in Section VI.

The periodic task sets are generated in the same way as
in Section VII-A but we allow mi = ki. We also assume the
processor shut-down break even time Tbe = 1 ms.

Authorized licensed use limited to: Howard University. Downloaded on June 19,2022 at 17:40:47 UTC from IEEE Xplore.  Restrictions apply. 



514 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

(a) (b) (c)

Fig. 12. Energy comparisons for E-pattern-based schemes subject to: (a) no fault, (b) permanent fault, and (c) permanent and transient faults.

In the first set, we checked the energy performance when no
fault occurred within the hyper period. The results are shown
in Fig. 12(a).

From Fig. 12(a), one can see that when the mandatory
workload of the task set is relatively low (e.g., when the
(m, k)-utilization is less than 0.3), our approach adopting
dynamic patterns, i.e., MKSSE

selective can still achieve obviously
better energy efficiency than the previous approaches, i.e.,
MKSSST and MKSSDP. This is mainly due to the fact that
when the (m, k)-utilization is low, even under the E-pattern,
quite a lot optional jobs could still have FD larger than 1 and
MKSSE

selective might not execute excessive number of optional
jobs. Therefore, it is still quite efficient in saving energy dur-
ing these utilization intervals. On the other hand, it is also easy
to see that the energy reduction achievable by MKSSE

selective
over the previous approaches is not the same as the case
for task sets partitioned based on the R-pattern as shown in
Section VII-A. This is mainly because, under the E-pattern,
due to the even distribution of the mandatory/optional job
patterns, MKSSE

selective might not be able to skip as many
optional jobs as it did under the R-pattern. As a result, the
energy efficiency of the selective approach for task sets par-
titioned with E-pattern might not be as aggressive as that for
task sets partitioned with R-pattern. Meanwhile, it is easy
to see that under this scenario the energy consumption of
MKSSE

JDPO could be quite close to or slightly higher than that
of MKSSE

selective. However, when (m, k)-utilization is greater
than or equal to 0.3, the energy consumption of MKSSE

selective
was increasing very fast and became much higher than that of
MKSSE

JDPO. This is mainly because, under this scenario, due
to the even distribution of the job patterns under the E-pattern,
most optional jobs in it had FD of 1 and nearly all of them
could be selected for execution by MKSSE

selective, incurring
much higher energy consumption due to the excessive number
of optional jobs executed. Different from that, MKSSE

JDPO can
save energy more efficiently in this case. The maximal energy
reduction by MKSSE

JDPO over MKSSDP and MKSSE
selective can

be around 14% and 12%, respectively. The main reason is
that under this scenario, by executing the mandatory jobs only,
MKSSE

JDPO can avoid executing too many jobs. Moreover, by
adopting the job-level preference-oriented approach under the
triple priority scheme, the workloads of the mandatory/backup
jobs in the primary and the spare processors could be shifted

away in a more adaptive manner, resulting in more aggressive
energy savings.

In the second set, we assumed the system is subject to per-
manent fault only which could occur at most once. The results
are shown in Fig. 12(b).

As seen in Fig. 12(b), the energy savings by our new
approach, i.e., MKSSE

JDPO subject to permanent fault is similar
to the case when no fault ever occurred. When the (m, k)-
utilization is not extremely low, compared with MKSSDP and
MKSSE

selective, the energy reduction by MKSSE
JDPO can be up

to 12% and 10%, respectively, for the same reasons as stated
above.

In the third set, we assumed the system could be subject to
both permanent fault and transient faults. The transient fault
model is the same as used in Section VII-A. The results were
shown in Fig. 12(c).

As seen, the energy saving by our new approach, i.e.,
MKSSE

JDPO in this scenario is similar to that in the previous
cases. The maximal energy reduction by MKSSE

JDPO over
MKSSDP and MKSSE

selective can be up to 10% and 9%,
respectively, for the same reasons as stated above.

VIII. CONCLUSION

Energy consumption, QoS, and fault tolerance are among
the most critical factors in the real-time systems design. In
this article, we presented two novel FP scheduling schemes for
reducing energy consumption in standby-spare systems while
assuring (m, k)-deadlines and fault tolerance: one for task sets
partitioned with deeply red pattern and one for task sets parti-
tioned with evenly distributed pattern. As shown, the proposed
approaches outperformed the previous research significantly in
energy conservation while assuring the (m, k)-deadlines and
fault tolerance for real time applications under FP assignment.
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