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Abstract—While energy consumption is the primary concern
for the design of real-time embedded systems, fault-tolerance and
quality of service (QoS) are becoming increasingly important in
the development of today’s pervasive computing systems. In this
work, we study the problem of energy-aware standby-sparing for
weakly hard real-time embedded systems. The standby-sparing
systems adopt a primary processor and a spare processor to
provide fault tolerance for both permanent and transient faults.
In order to reduce energy consumption for such kind of systems,
we proposed two novel scheduling schemes: one for (1,1)-hard
tasks and one for general (m,k)-hard tasks which require that
at least m out of any k consecutive jobs of a task meet their
deadlines. Through extensive evaluations, our results demonstrate
that the proposed techniques significantly outperform the previ-
ous research in reducing energy consumption for both (1,1)-hard
task sets and general (m,k)-hard task sets while assuring fault
tolerance through standby-sparing.

Index Terms—energy efficiency, fault tolerance, standby-
sparing, QoS, real-time systems

I. INTRODUCTION

With the advance of IC technology, energy efficiency has
been a critical factor in the design of real-time embedded
systems. On the other hand, fault tolerance has also been
a major concern for pervasive computing systems as system
fault(s) could occur anytime [1]. Generally, computing system
faults can be classified into permanent faults and transient
faults [2]. Permanent faults could be caused by hardware
failure or permanent damage in processing unit(s) whereas
transient faults are mainly due to transient factors such as
electromagnetic interference and/or cosmic ray radiations.

Recently a lot of researches (e.g. [3], [4]) have been
conducted on improving the energy efficiency for fault-tolerant
real-time systems. Many of them have focused on dealing with
transient faults. A widely adopted strategy is to use software
redundancy, i.e., to reserve recovery jobs, whenever possible,
for the jobs subject to transient faults. For mission critical
applications such as nuclear plant control systems, permanent
faults need to be dealt with by all means to avoid system fail-
ure. Otherwise catastrophic consequences could occur. More
recently, solutions adopting hardware redundancy are pro-
posed to address this issue. Among them the standby-sparing
technique has gained much attention [5]–[8]. Generally, the
standby-sparing makes use of the redundancy of processing
units in multicore/multiprocessor systems. More specifically,
a standby-sparing system consists of two processors, a primary

one and a spare one, executing in parallel. For each real-time
job executed in the primary processor, there is a corresponding
backup job reserved for it in the spare processor [7]. As such,
whenever a permanent fault occurs to the primary or the spare
processor, the other one can still continue without causing
system failure. Moreover, it is not hard to see that the backup
tasks/jobs in the spare processor can also help tolerate transient
faults for their corresponding main tasks/jobs in the primary
processor.

In a standby-sparing system, the execution of the main
jobs in the primary processor and their corresponding backup
jobs in the spare processor might need to be overlapped with
each other. Thus the total energy consumption could be quite
considerable. Regarding that, some recent works have been
reported to reduce energy (e.g. [5]–[8]). The main idea is to
try to let the executions of the main jobs and their corre-
sponding backup jobs be shifted away as much as possible
such that, once the main jobs are completed successfully, their
corresponding backup jobs could be canceled early, thereby
saving energy. With that in mind, in [6], [7], approaches based
on EDL (earliest deadline as late as possible) scheme [9]
were proposed for standby-sparing real-time systems. Their
works are mainly focused on hard real-time systems, i.e.,
the systems which require all real-time tasks/jobs meet their
deadlines. However, in practical time-sensitive applications,
such as multimedia or time-critical communication systems,
occasional deadline misses are acceptable so long as the user
perceived quality of service (QoS) can be ensured at certain
levels. For such kind of systems, the existing techniques
solely based on hard real-time constraints are insufficient in
dealing with energy reduction under standby-sparing and more
advanced techniques incorporating the QoS systematically are
desired. To achieve this goal, the QoS requirements need to be
quantified in certain ways. One popular existing approach is
to use some statistic information such as the average deadline
miss rate as the QoS metric. Although such kind of metric
can ensure the quality of service in a probabilistic manner,
it can still be problematic for some real-time applications.
For example, for certain real-time systems, when the deadline
misses happened to some tasks, the information carried by
those tasks can be estimated in a reasonable accuracy using
techniques such as interpolation. However, even a very low
overall miss rate tolerance cannot prevent a large number



of deadline misses from occurring consecutively in such a
short period of time that the data cannot be successfully
reconstructed [10].

The weakly hard QoS model is more appropriate to model
such kind of systems. Under the weakly hard QoS model, tasks
have both firm deadlines (i.e., task(s) with deadline(s) missed
generate(s) no useful values) and a throughput requirement
(i.e., sufficient task instances must finish before their deadlines
to provide acceptable QoS levels) [11]. Two well known
weakly hard QoS models are the (m,k)-model [12] and the
window-constrained model [13]. The (m,k)-model requires
that m jobs out of any sliding window of k consecutive
jobs of the task meet their deadlines, whereas the window-
constrained model requires that m jobs out of each fixed
and nonoverlapped window of k consecutive jobs meet their
deadlines. It is not hard to see that the window-constrained
model is weaker than the (m,k)-model as the latter one is
more restrictive.

To ensure the (m,k)-constraints, Ramanathan et al. [14]
adopted a partitioning strategy which divides the jobs into
mandatory and optional ones. The mandatory ones are the jobs
that must meet their deadlines in order to satisfy the (m,k)-
constraints. In other words, so long as all the mandatory jobs
can meet their deadlines, the (m,k)-constraints can be ensured.
In [13], West et al. tried to set up a correspondence relationship
between the window-constrained model and the (m,k) model.
They found that the window-constraints can be converted to
the (m,k)-constraints through certain automatic way.

In this paper, we study the problem of reducing the energy
consumption for fault-tolerant weakly hard real-time embed-
ded systems using standby-sparing.

The rest of the paper is organized as follows. Section II
presents the preliminaries. Section III presents our approach
for (1,1)-hard tasks. Section IV presents our approach for
general (m,k)-hard tasks. In Section V and Section VI, we
present our evaluation results and conclusions.

II. PRELIMINARIES

A. System models

The real-time system considered in this paper contains n
independent periodic tasks, T = {τ1,τ2, · · · ,τN}, scheduled
according to the earliest deadline first (EDF) scheduling
scheme. Each task contains an infinite sequence of periodically
arriving instances called jobs. Task τi is characterized using
five parameters, i.e., (Ci, Di, Pi, mi, ki). Ci, Di (≤ Pi), and
Pi represent the worst case execution time (WCET), deadline,
and period for τi, respectively. A pair of integers, i.e., (mi,ki)
(0 < mi ≤ ki), are used to represent the (m,k)-constraint for
task τi which requires that, among any ki consecutive jobs,
at least mi jobs are executed successfully. The jth job of
task τi is represented with Ji j and we use ri j, ci j(= Ci), and
di j to represent its release time, execution time, and absolute
deadline, respectively.

The system consists of two identical processors which are
denoted as primary processor and spare processor, respectively.
For the purpose of tolerating permanent/transient faults, each

mandatory job of a task τi has two duplicate copies running
in the primary and the spare processors separately. Whenever
a permanent fault is encountered in either processor, the other
one will take over the whole system (to continue as normal).
For convenience, we call each task τi (or mandatory job
Ji j) running in the primary processor main task/job and its
corresponding copy running in the spare processor backup
task/job, denoted as τ

′
i (or J

′
i j).

The processor power when running a job is denoted as Pact
which consists of both dynamic power and static power. Al-
though dynamic power can be reduced effectively by dynamic
voltage/frequency scaling (DVFS) techniques, the efficiency
of DVFS in reducing the overall energy is becoming seriously
degraded with the dramatic increase in static power (mainly
due to leakage) with the shrinking of IC technology size.
Dynamic power down (DPD), on the other hand, is more
effective in controlling the static power when the processor
is not in use. With that in mind, in this paper we assume that,
when the processor is busy, it always consumes Pact . Without
loss of generality, we normalize Pact to 1 and assume that one
unit of energy will be consumed for a processor to execute a
job for one time unit. When no job is pending for execution,
the processors can be put into low-power state with DPD if the
idle interval length is larger than the break even time Tbe [7].

B. Fault Model

Similar to the standby-sparing systems in [6], [7], the system
we considered can tolerate both permanent and transient faults.
With the redundancy of the processing units, our system can
tolerate at least one permanent fault in the primary or the spare
processor. For transient faults which can occur anytime during
the task execution, we assume they can be detected at the end
of a job’s execution using sanity (or consistency) checks [15]
and the overhead for detection can be integrated into the job’s
execution time. Whenever a main job encounters transient
fault(s), its backup job needs to be executed to completion.

With the above system and fault models, in the following
we first show how to reduce energy consumption for (1,1)-
hard, i.e. periodic hard real-time task sets. After that, we will
explore how to deal with energy reduction for general (m,k)-
hard task sets.

III. STANDBY-SPARING FOR (1,1)-HARD TASK SETS

For (1,1)-hard task sets (or task sets in which mi = ki
for all tasks), under standby sparing, all jobs need to have
two duplicate copies running in the primary and the spare
processors, respectively. It is not hard to see that, due to
the overlapped executions between them, one way to save
energy is to let each main job in the primary processor
be executed as soon as possible and its backup job in the
spare processor be executed as late as possible such that,
once the main job is completed successfully, its backup job
can be canceled immediately, therefore saving the energy for
executing the remaining part of the backup job. To achieve this
goal, in [6] Mohammad et. al proposed to run the main tasks
in the primary processor according to the earliest deadline as
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Fig. 1. (a) The schedule for the main tasks τ1, τ2, and τ3 in the primary
processor under the EDS scheme; (b) The schedule for the backup tasks τ

′
1,

τ
′
2, and τ

′
3 (which are canceled/partially-canceled based on [6]) in the spare

processor under the EDL scheme [9].

soon as possible (EDS) scheme and the backup tasks on the
spare processor according to the earliest deadline as as late as
possible (EDL) scheme [9] such that the overlapped executions
between the main jobs and their backup jobs could be reduced,
enabling energy savings. Their idea could be demonstrated
using the following example:

Given a task set of three tasks, i.e., τ1 =(4,16,20,1,1), τ2 =
(6,17,20,1,1), τ3 = (6,38,40,1,1), to be executed in a
standby-sparing system. Since the QoS constraints for the
tasks are all (1,1)-hard which equals to the periodic hard real-
time case in which all jobs are “mandatory”, we do not have
optional jobs for these tasks. For simplicity, in this section all
jobs refer to the mandatory jobs.

By applying the EDS-EDL scheme in [6], the main tasks
τ1 and τ2, and τ3 will be scheduled in the primary processor
while backup tasks τ

′
1 and τ

′
2, and τ

′
3 will be scheduled in the

spare processor. If we assume no fault occurred, the complete
schedules for them within the hyperperiod [0,40] is shown in
Figure 1(a) and (b), respectively. As a result, the total active
energy consumption within the hyperperiod is 32 units.

Note that in the above example, there are still much over-
lapped time between the executions of all jobs of task τ2
and their corresponding backup jobs, which costs significant
energy consumption. On the other hand, as will be seen, if
we adopt a different scheme of scheduling the task set, we
can achieve better energy efficiency. Before presenting the
new scheduling scheme in more details, we firstly introduce
the following theorem for implementing the procrastinated
execution of any job(s) in the task set (the proof is provided
in the Appendix A part).

Theorem 1: Given a task set T = {τ1,τ2, ...,τN}, if the re-
lease time(s) of any job(s) under the EDS schedule is/are pro-
crastinated to its/their corresponding delayed starting time(s)1

under the EDL schedule, all task deadlines can be guaranteed.
To help understand Theorem 1, for the task set in Figure 1,

it is easy to verify that if the release time(s) of any job(s)
(for example, J21) in Figure 1 (a) is/are procrastinated to the
delayed release time(s) of the same job(s) in Figure 1 (b), (for

1Note that for the rest of the paper we use r̂i to represent the delayed
starting time of job Ji under the EDL schedule. Also when it does not cause
any confusion, the delayed starting time has the same meaning as the delayed
release time and they can be used exchangeably.
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Fig. 2. The schedule for the main/backup jobs of each task under adaptive
delay of individual job(s) in: (a) the primary processor; (b) the spare processor.

example, r̂21 = 7 for task J21), all deadlines in Figure 1 (a)
can be guaranteed.

With Theorem 1, our new approach for scheduling the
task set under standby-sparing can be implemented based on
the adaptive delay of individual jobs, which is shown in
Figure 2. As seen in Figure 2, unlike the EDS-EDL scheme in
Figure 1 which always (and only) delay all backup jobs in the
spare processor uniformly, our approach will adaptively delay
each individual job (either a main job or its corresponding
backup job, but not both) depending on the actual need, which
is summarized into the following adaptive delay policies:

• Policy I: at any time, if either a main job or its backup
job, whichever first, gets chance to be dispatched and
executed, it should be executed as soon as possible while
the other one should be delayed to the starting time of
the same job under EDL scheme and executed as late as
possible.

• Policy II: whenever slack time becomes available, the
undelayed job(s) should try to reclaim the slack time for
execution (to facilitate early completion) while the de-
layed job(s) should never reclaim the slack time. Instead,
it should try to utilize the slack time to be delayed further
(under dynamic procrastination).

Based on the above adaptive delay policies, as seen in
Figure 2(a), at time t = 0, both job J11 and its backup job
J
′
11 got a chance to be dispatched. However, since only one of

them can be executed as soon as possible and the other one
must be delayed, we just randomly picked out one of them, say
J11, to be executed as soon as possible in the primary processor
(Figure 2(a)) while delaying its backup job J

′
11 in the spare

processor to time r̂11 = 12 (Figure 2(b)). At the same time,
since J21 will be preempted by J11 (due to its lower priority)
and could not get chance to be dispatched/executed at time
t = 0 in the primary processor (Figure 2(a)) while its backup
job J

′
21 will get chance to be dispatched/executed at time t = 0

in the spare processor (Figure 2(b)), J
′
21 will be executed as

soon as possible in the spare processor while J21 should be
delayed to time r̂21 = 7 in the primary processor. Similarly,
at time t = 4, since J31 got chance to be dispatched/executed
first, it will be executed as soon as possible while its backup
job J

′
31 will be delayed to time r̂31 = 21 and executed as late as

possible. Following the same rationale, the complete schedules
within the hyperperiod [0,40] are shown in Figure 2(a) and (b).



Under the same fault free assumption as in Figure 1, the total
active energy consumption within the hyperperiod is reduced
to 26 units, which is 19% lower than that in Figure 1.

It is not hard to see that in Figure 2 the fault tolerance capa-
bility of the standby-sparing system is preserved as whenever
some job failed, its corresponding job in the other processor
can still be executed and completed timely.

From the above example we can see that, by executing the
tasks based on the adaptive delay policies above, there is great
potential for energy saving. Based on the above principles, our
standby-sparing scheduling algorithm for the (1,1)-hard tasks
is presented in Algorithm 1.

Algorithm 1 The scheduling algorithm for (1,1)-hard tasks
based on adaptive delay policies on individual job(s)

1: For either the primary processor or the spare processor:
2:
3: Upon the execution of a job Ji at current time tcur:
4: if its category is “E” then
5: Execute it following the EDF scheme as soon as possible;
6: if any slack time Si(t) with higher priority than Ji is available

then
7: Reclaim the slack time to execute Ji as soon as possible;
8: end if
9: else

10: // Ji’s category is “D” and should be executed as late as
possible;

11: Revise the arrival time of Ji to max{r̂i,(tcur +Si(tcur))};
12: Execute Ji following the EDF scheme;
13: end if
14:
15: Upon the completion of a job Ji at current time tcur:
16: if the execution of job Ji is successful then
17: Cancel its corresponding (backup) job in the other processor

and add the residue time budget to the slack queue S ;
18: if Ji was the only job in the job ready queue at time t−cur then
19: Let NTA be the earliest (revised) arrival time of the next

upcoming jobs(s) of all tasks;
20: if (NTA− tcur)> Tbe then
21: Shut down the processor and set wake-up timer as

(NTA− tcur);
22: end if
23: end if
24: end if

As shown in Algorithm 1, each job (either a main or backup
job) Ji has a category field associated to it whose value could
be “E” (representing as early as possible execution) or “D”
(representing as late as possible delay). Upon dispatching, if
Ji got chance to be executed earlier than its corresponding job
in the other processor, Ji’s category should be set as “E” which
means it should always be executed as early as possible (for
example, J31 in Figure 2(a)). Otherwise Ji’s category should
be set as “D” which means it should always be delayed as
late as possible (for example, J

′
31 in Figure 2(b)). Whenever

a job is completed successfully, its corresponding job in the
other processor should be canceled and the remaining part of
its time budget will become slack time (line 17).

Note that, during run-time, in both the primary and the spare
processors, a slack queue S needs to be maintained to keep
track of the slack time(s) from (partially) canceled job(s). The

slack time(s) in S will be sorted according to their deadline(s).
Upon job completion, new slack time from canceled job, if
any, will be inserted into the slack queue S based on its
deadline. Upon the dispatching of a job Ji at time t, the slack
time from S with priorities higher than or equal to Ji will
be stored in a variable Si(t). If Ji’s category is “E”, Si(t)
should be reclaimed to execute Ji as soon as possible (line
6-8). Otherwise if Ji’s category is “D”, Si(t) should be used
to implement dynamic procrastination of Ji, which can delay
Ji to max{r̂i,(tcur +Si(t))} (line 11). But when the system is
idle (or shut down), slack times in S should also be consumed
based on their sorted sequence in S .

The complexity of Algorithm 1 mainly comes from com-
puting the delayed release time for the jobs based on EDL and
the reclaimable slack time Si(t) for job Ji. Since the former
can be computed offline and at anytime there are at most n
jobs in the slack queue S of the primary processor or the spare
processor, its online complexity is O(n).

IV. STANDBY-SPARING FOR GENERAL (m,k)-HARD TASK
SETS

For tasks with general (m,k)-hard deadlines, to ensure the
(m,k)-constraint, a widely adopted strategy is to judiciously
partition the jobs into mandatory jobs and optional jobs [16].
Two well-known partitioning strategies are the evenly dis-
tributed pattern (or E-pattern) [14] and the deeply-red pattern
(or R-pattern) [17]. According to E-pattern, the pattern πi j for
job Ji j, i.e., the jth job of a task τi, is defined by (here“1”
represents the mandatory job and “0” represents the optional
job):

πi j =

{
“1” if j = bd ( j−1)×mi

ki
e× ki

mi
c

“0” otherwise j = 1,2,3, · · ·
(1)

And according to R-pattern, the pattern πi j for job Ji j is
defined by:

πi j =

{
“1” if 1≤ j mod ki ≤ mi
“0” otherwise j = 1,2,3, · · · (2)

The mandatory/optional job partitioning according to equa-
tion (1) has the property that it helps to spread out the
mandatory jobs evenly in each task along the time. Moreover,
it is shown in [10] that E-pattern has better schedulability that
R-pattern in general and is the optimal pattern when all task
periods are co-prime in particular. In [10], a variation of E-
pattern called ER-pattern was achieved by reversing the pattern
horizontally to let the optional jobs happen first, which can
preserve the schedulability of E-pattern [10].

For task sets based on R-pattern, Niu et al. [18] proposed
an approach by exploring the flexibility of executing jobs
under (m,k)-deadlines to avoid executing duplicate copies
of the mandatary jobs on two processors whenever possible.
Their approach is based on selectively executing some optional
jobs with flexibility degree of 1 (i.e., the optional jobs right
before the mandatory jobs) and, once they are completed
successfully, their next mandatory job(s) will become optional
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Fig. 3. (a) The schedule for the optional jobs (and canceled backup jobs) for
task set τ1 = (4,6,6,4,8), τ2 = (4,8,8,2,4) in the primary processor under
the selective scheme in [18] based on E-pattern; (b) The schedule for the
optional jobs (and canceled backup jobs) for the same task set in the spare
processor under the selective scheme in [18] based on E-pattern.

(their backup jobs can be simply dropped to save energy)
and this procedure can be progressed further. Their approach
are generally efficient in saving energy for task sets already
schedulable with R-pattern. However, as we mentioned, since
the schedulability of R-pattern is worse than E(or ER)-pattern,
there still exist a number of task sets schedulable with E(or
ER)-pattern but not schedulable with R-pattern. If we apply the
approach in [18] to the task sets partitioned based on E(or ER)-
pattern, it could execute excessive number of optional jobs,
which could adversely affect the overall energy efficiency. This
could be demonstrated with the following example.

Consider another task set of two tasks, i.e., τ1 =
(4,6,6,4,8), τ2 =(4,8,8,2,4). It is easy to verify that this task
set is schedulable under E(or ER)-pattern but not schedulable
under R-pattern. The job patterns based on ER-pattern for them
are “01010101”, and “0101”, respectively. As can be seen,
due to their even distribution property, all optional jobs in
them have a flexibility degree of 1. If we apply the approach
in [18] to the task set, the schedules in the primary and the
spare processors are shown in Figure 3(a) and (b), respectively.
As shown in Figure 3(a), since all optional jobs (including
those jobs demoted from mandatory to optional) in it have
a flexibility degree of 1, all of them will be selected for
execution in the primary or the spare processor alternatively.
If we assume no fault occurred within the first hyperperiod
[0,48], all mandatory main/backup jobs in either the primary
or the spare processor could be demoted/dropped. As a result
the total active energy consumption within the hyperperiod is
56 units.

However, if we follow a different way of scheduling the
task set, we can achieve even better energy efficiency. Our new
approach will be based on the following lemma to convert a
given window-constraint into (m,k)-constraint automatically.

Lemma 1: [13] For any task τi with (m,k)-constraint of
(mi,ki), if it can satisfy the window-constraint of mi/

(mi+ki)
2 ,

its original (m,k)-constraint will be satisfied automatically.
The above lemma provides us more opportunities to reduce

the energy consumption under standby-sparing. Specifically,
we can determine the mandatory jobs of each main task τi
and their backup jobs based on the window constraint of
mi/

(mi+ki)
2 first (then according to Lemma 1, its original (m,k)-

constraint will be satisfied automatically). For the tasks in
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Fig. 4. The schedule for the mandatory main jobs based on E-pattern and
(canceled) backup jobs based on ER-pattern for same task set as in Figure 3
using our approach (a) in the primary processor; (b) in the spare processor.

the same task set as in Figure 3, their corresponding window
constraints will be 4/6 and 2/3, respectively. Then under E-
pattern, the mandatory jobs of task τ1 will be scheduled in the
primary processor, as shown in Figure 4(a) and the backup
jobs of τ1 will be determined based on ER-pattern within each
separate window of length (mi+ki)

2 and scheduled in the spare
processor, as shown in Figure 4(b). Meanwhile, to balance the
mandatory workload of two processors, we let the mandatory
main jobs for task τ2 based on E-pattern be scheduled in the
spare processor and the backup jobs for them based on ER-
pattern be scheduled in the primary processor, as shown in
Figure 4. As such, each mandatory main job and its backup job
will be shifted away completely such that once a mandatory
main job is completed successfully, its backup job in the other
processor could be canceled completely. If any mandatory
main job of task τi failed, its corresponding backup job in
the other processor could still be invoked timely. In this way,
the window-constraint of task τi could be guaranteed. Then
according to Lemma 1, its original (m,k)-constraint can also
be ensured. Following the same rationale, if we assume no
fault occurred, the complete schedule within the hyperperiod
is shown in Figure 4. The total active energy consumption for
it is reduced to 40 units, which is 28.6% lower than that in
Figure 3.

From the above example we can see that there is great
potential for energy savings by determining the mandatory
main/backup jobs based on window constraint first (and then
convert to the original (m,k)-constraint). The main issues are:
(i) when (mi+ki)

2 is not an integer, it is not a valid window
length and thus cannot be used to implement window-(m,k)-
constraint transferring in this way; (ii) since (mi+ki)

2 ≤ ki,
after the mandatory jobs are determined under window con-
straint based on Lemma 1, some task(s) might become non-
schedulable. Therefore, it is possible that only part of the
tasks, not all of them, could adopt the above method to save
energy. Then the problem becomes how to determine the
subsets of tasks to be partitioned with window-constraint and
original (m,k)-constraint in a hybrid way to maximize the
energy reduction. In this section, we first adopt a “branch-
and-bound” method, similar to that in [19], to divide the task
set T into two parts, i.e., the subset A in which the tasks
will be partitioned based on window-constraint and the subset
B in which the tasks will be partitioned with original (m,k)-
constraint. Before introducing our approach in detail, we first
introduce the following theorem for checking the feasibility of



such kind of hybrid task sets consisting of subsets A and B .
Theorem 2: Given system T = {τ1,τ2, ...,τN}. Let B con-

tains the subset of tasks with mandatory jobs determined with
the original (m,k)-constraints and A be the subsets of tasks
with mandatory jobs determined through the corresponding
window constraint mi/

(mi+ki)
2 . Let L be the ending point of the

first busy period for executing the mandatory jobs only and
LCM(Ti) be the least common multiple of Ti, i = 1,2, ...,N.
Then T is schedulable if for any mandatory job absolute
deadline d ≤min{L,LCM(Ti)}.

d ≥ ∑
τa∈A
d ma
(ma+ka)

2

dd−Da

Ta
e+eCa + ∑

τb∈B
dmb

kb
dd−Db

Tb
e+eCb (3)

The right side of equation (3) represents the total work
demand from the mandatory jobs in A and in B with absolute
deadlines less than or equal to d. The proof for this theorem
could be done in a similar way to that for Theorem 1 in [10]
and is thus omitted.

Based on Theorem 2, our branch-and-bound approach is
presented in Algorithm 2.

From Algorithm 2, our approach determines task by task
if the mandatory main/backup jobs of each task should be
determined based on the original (m,k)-constraint or based
on the window-constraint first. When Algorithm 2 is finished,
it is possible to reach certain hybrid configuration in which
the tasks in A are partitioned based on window-constraints,
while the tasks in B are still partitioned based on their original
(m,k)-constraints. And the resulting configuration should be
the one that could maximize the expected fault free energy
reduction for the tasks in A .

A. Execution of optional jobs

So far, we only considered energy saving for the tasks in A .
For the tasks in B , we cannot adopt the same approach on them
because if we use E-pattern to determine mandatory main jobs
in the primary processor while using ER-pattern to determine
the backup jobs in the spare processor, it is possible that the
(m,k)-constraint in some sliding window will be violated if
some mandatory main job failed because E(or ER)-pattern only
contains the minimal number of mandatory jobs that “just”
satisfy the (m,k)-constraint. In this case the failed mandatory
main job could not be compensated by its backup job timely
due to the strictness of the original (m,k) requirement. To save
energy for the tasks in B , a more promising way is to execute
some optional job(s) when possible and vary the patterns of
the future jobs correspondingly. This could be demonstrated
using the following example.

Consider another task set of three tasks, i.e., τ1 =
(2,2,5,2,3), τ2 = (1,3,10,2,4), τ3 = (3,6,15,1,3). After
we applied the branch-and-bound method in Algorithm 2,
only τ2 and τ3 can have their mandatory main/backup jobs
determined based on the window-constraints of 2/3 and 1/2,
respectively while τ1 still needs to determine its mandatory
main/backup jobs based on its original (m,k)-constraint due
to schedulability. If we assume no fault occurred, the schedule
within the first hyperperiod [0,30] is shown in Figure 5 and

Algorithm 2 Determining the tasks adopting window-
constraints.

1: Input: task set T with original (m,k)-constraint;
2: Output: task set Z =A∪B , where A is the subset of tasks

in T adopting window-constraints and B is the subset of
adopting original (m,k)-constraints;

3: A = /0; B = T ; Z = A∪B; Ebd = 0
4: Try-Window-Constraint (A , B , Z, Ebd);
5: Output (Z);
6:
7: FUNCTION Try-Window-Constraint (A , B , Z, Ebd)
8: for each task τi ∈ B do
9: Re-determine the mandatory jobs of τi based on the

window-constraint that can be converted to its original
(m,k)-constraint;

10: Remove τi from B and put it into A ;
11: if A∪B is schedulable then
12: Esave = ∑τi∈A{2mi× LCM(kiTi)

ki
−mi×

LCM(
(mi+ki)

2 Ti)
(mi+ki)

2

};
13: //The expected fault free energy saving;
14: if Esave > Ebd then
15: Ebd = Esave; Z = A∪B;
16: end if
17: Try-Window-Constraint (A , B , Z, Ebd);
18: else
19: Restore the job patterns of τi to be based on its

original (m,k)-constraint and put it back to B;
20: end if
21: end for

the total active energy consumption for it is 21 units. Note
that in this schedule no optional job was executed.

However, if we follow a different schedule which executes
some optional job for τ1, the energy efficiency could be
improved further. As shown in 6(a), at time t = 15, the
optional job J14 could be executed and completed timely. If
the execution of J14 was successful, the next mandatory job
J15 could be demoted to optional (its backup job in the spare
processor could be dropped to save energy). Note that in order
to ensure the original (m,k)-constraints, all future job patterns
of task τ1 could be varied by restarting the ER-pattern from the
next job position. Since the optional jobs do not need backup
jobs for them, the execution of J14 should be quite helpful in
reducing the energy for executing the mandatory main job J15
together with its backup job under the old patterns. Then at
time t = 20, the demoted job J15 could be re-executed as an
optional job and further demoted J16 to optional. Similarly,
J16 could also be re-executed as an optional job at time
t = 25. This procedure could be repeated dynamically and
the complete schedule within the first hyperperiod is shown in
Figure 6. The total active energy consumption for it is reduced
to 19 units, which is 9.5% lower than that in Figure 5.

One critical issue in the above approach of executing the
optional job(s) and vary the patterns dynamically is to ensure
the original (m,k)-constraint be satisfied after pattern variation.
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Fig. 5. (a) The schedule for the mandatory main jobs under static pattern;
(b) The schedule for the backup jobs under static pattern.

Algorithm 3 The online algorithm for (m,k)-hard tasks
1: For the primary processor:
2: if MJQ is not empty then
3: Let Ji be the job with highest priority in MJQ.
4: if τi ∈ A then
5: Execute Ji based on regular EDF scheme;
6: else
7: Execute Ji following the rationale in Algorithm 1;
8: end if
9: if Ji is completed successfully then

10: Let J
′
i be the job of task τ

′
i in the other processor within

the same time frame as Ji;
11: if J

′
i is not the backup job of some other failed mandatory

main job then
12: Cancel its corresponding job in the other processor and

add the residue time budget to the slack queue S ;
13: end if
14: end if
15: else if OJQ is empty then
16: tcur = the current time;
17: NT M = the earliest arrival of upcoming mandatory job(s);
18: if (NT M− tcur)> Tbe then
19: Shut down the processor and set up its wake-up timer to

be (NT M− tcur);
20: end if
21: else
22: Select Jo in OJQ with the earliest deadline among jobs in OJQ

with execution times no larger than (min{NT M,do}− tcur);
23: if Jo 6= /0 then
24: Run Jo non-preemptively;
25: if Jo is completed successfully then
26: Restart the ER-pattern of task τo from the next job

position following Jo;
27: end if
28: else
29: Repeat lines 18-20;
30: end if
31: end if
32:
33: For the spare processor:
34: if MJQ

′
is not empty then

35: Run the jobs in MJQ
′

following the rationale in Algorithm 1;
36: else
37: Repeat lines 18-20;
38: end if

Fortunately, this could be guaranteed by Lemma 3 in [10].

B. The overall online algorithm

With the above information, our overall online algorithm for
general (m,k)-hard tasks can be implemented in Algorithm 3.

As shown in Algorithm 3, in the primary processor, two
job ready queues are maintained: the mandatory job queue
(MJQ) and the optional job queue (OJQ). The jobs in MJQ
always have higher priorities than those in OJQ. Upon arrival,
a job of task τi is inserted into the MJQ if it is mandatory,
regardless whether τi belongs to A or B . On the other hand,
an optional job of task τi is inserted into the OJQ only when
τi belongs to B because only the tasks in B needs to run
their optional jobs and vary their patterns when necessary.
Moreover, to avoid executing excessive number of optional
jobs, only the optional jobs right before the mandatory jobs
should be inserted into the OJQ while all the other optional
jobs should be skipped. In the spare processor, things will be
different as, to avoid executing too many optional jobs (which
could consume more energy than necessary), the optional jobs
should not be executed there. As such, in the spare processor,
only a mandatory backup job queue (represented as MJQ

′
)

will be maintained.
During runtime, for tasks in A , only mandatory jobs will

be executed based on regular EDF scheme. For tasks in B ,
some optional jobs will be executed in the primary processor
with dynamic pattern variation (lines 24-26). Note that if an
optional job cannot be completed timely, it is not energy
beneficial and therefore should not be invoked at all. As such,
an optional job is regarded as eligible only if it could surely
be finished before the earliest arrival time of the upcoming
mandatory jobs (line 22). Moreover, once a selected optional
job is invoked, it should be executed non-preemptively to
ensure that it could be finished timely. Once an optional jobs
is completed successfully, it will be counted as an effective
job and the patterns of the future jobs should be varied by
restarting the ER-pattern of the same task in both the primary
and the spare processors from the next job position. Note that
if no optional jobs are available, the mandatory jobs in B can
still be executed following the rationale in Algorithm 1 based
on the adaptive delay policies in Section V-A (lines 7 and
35). The only issue is, in this case, since EDL scheme is not
applicable for task sets with dynamic pattern variation, the
delayed release time of any mandatory job Ji of task τi should
be reset as r̂i = ri +Yi, where Yi is defined as [20]

Yi = Di−Ri (4)

where Ri be the worst case response time of task τi and can
be computed off-line using the approach in [21].

Note that, for tasks in A , when the current mandatory main
job is completed successfully, whether its backup job in the
other processor should be canceled or not needs to be handled
carefully. Specifically, if it is within the same time frame of
the backup job of some other failed mandatory job, its backup
job cannot be canceled (line 11).
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Fig. 6. (a) The schedule for the mandatory/optinal jobs after dynamic pattern
shifting for task τ1; (b) The schedule for the backup jobs after dynamic pattern
variation for task τ1.

The online complexity of Algorithm 3 mainly comes from
scheduling the mandatory and optional jobs in the primary
processor. Since at anytime there are at most n jobs in the MJQ
or in the OJQ, its complexity is O(n). Moreover, to ensure
that the (m,k)-constraint of the tasks be satisfied, we have the
following theorem (proof omitted due to page limit):

Theorem 3: Let task set T be scheduled with Algorithm 3.
The (m,k)-deadlines for T can be ensured if T is schedulable
under E-pattern.

V. EVALUATION
In this section, we compare the energy performance of our

approach with other previous approaches using simulations.
We conducted two groups of simulations, one for (1,1)-hard
task sets and one for general (m,k)-hard task sets.

A. Simulation results for (1,1)-hard task sets

Three different approaches are studied. The first approach
(NEMSS) executes the jobs in the primary and the spare pro-
cessors concurrently without energy management. We use its
results as the reference. The second approach (EMSS) schedule
the tasks with the EDS-EDL scheme from [6] without applying
DVFS. The third approach (ADIJSS) is our approach proposed
in Section III based on adaptive delay policies on individual
jobs in both the primary and the spare processors. We assume
the processor shut-down break even time Tbe = 1ms.

The periodic task set in our experiments consists of five to
ten tasks with the periods randomly chosen in the range of
[5, 50]ms and the deadlines were assumed to be less than or
equal to their periods. The worst case execution time (WCET)
of a task was assumed to be uniformly distributed and the total
utilization, i.e., ∑i

Ci
Pi

was divided into intervals of length 0.1
each of which contains at least 20 task sets schedulable or at
least 5000 task sets generated. We conducted two sets of tests.

In the first set, we check the energy performance when no
fault occurred within the hyperperiod. The result is shown in
Figure 7(a).

From Figure 7(a), one can immediately see that, by adopting
the adaptive delay policies on each main/backup job indi-
vidually, ADIJSS can achieve much better energy efficiency
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Fig. 7. The results subject to (a) No faults; (b) System faults.

than the previous approaches, i.e., NEMSS and EMSS, in
most utilization intervals. The energy reduction by ADIJSS
over EMSS can be up to 14%. The main reason is that, in
this scenario, by executing the main/backup jobs in a more
flexible way, ADIJSS can help reduce the overlapped execution
between the main jobs and their backup jobs more efficiently,
therefore saving more energy.

In the second set, we assumed the system could be subject to
permanent and/or transient faults. The transient fault model is
similar to that in [1] by assuming Poisson distribution with an
average fault rate of 10−5. The result is shown in Figure 7(b).

As seen, in this scenario, the energy saving by our new
approaches, i.e., ADIJSS is similar to that under the fault-free
assumption. The energy reduction by ADIJSS over EMSS can
be up to 12%, thanks to the adaptive executions of the jobs
under individual/flexible delay.

B. Simulation results for general (m,k)-hard task sets
In this part, we also studied three approaches. The first

approach (NEMMKE ) statically determine the job patterns
based on E-pattern. And the mandatory jobs in the primary and
the spare processors are executed concurrently without delay.
We used its results as the reference. The second approach
(MKSSSelective) also determines the job patters based on E-
pattern first but selectively executes the optional jobs using
the approach in [18]. The third approach (WCMKSS) is our
new approach proposed in Section IV.

The periodic task sets are generated in the same way as in
Section V-A but with mi and ki values for the (m,k)-constraint
randomly generated between 2 and 10 (ki > mi). Since when
the total (m,k)-utilization, i.e., ∑i

miCi
kiPi

is larger than 0.8, it is
hard for the task sets to be schedulable, we mainly checked
the task sets with (m,k)-utilization between 0.0 to 0.8. We
also conducted two sets of tests.

In the first set, we checked the energy performance when
no fault occurred within the hyperperiod. The result is shown
in Figure 8(a).

From Figure 8(a), it is easy to see that WCMKSS can achieve
much better energy performance than the previous approaches,
i.e., NEMMKE and MKSSSelective. The energy reduction by
WCMKSS over MKSSSelective can be up to 20%. The main
reason is that, in this scenario, by partitioning the jobs
based on window-constraints (that could be converted to the
original (m,k)-constraints) first, WCMKSS can help minimize
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Fig. 8. The results subject to (a) No faults; (b) System faults.

the overlapped execution between the mandatory and backup
jobs in two processors more efficiently. Moreover, for those
tasks that cannot be applied window-constraint, WCMKSS,
with more adaptive optional job execution strategy, can avoid
executing excessive number of optional jobs. In addition,
when no optional jobs are available, by letting the mandatory
main/backup jobs be delayed following the adaptive delay
policies on individual job(s) in Section V-A, WCMKSS can also
help save more energy for running the mandatory main/backup
jobs when necessary.

In the second set, we assumed the system could be subject
to permanent and/or transient faults with same fault rate as in
Section V-A. The result is shown in Figure 8(b).

As seen, under this scenario, the energy saving achievable
by our new approach, i.e., WCMKSS over the previous ap-
proach is even better. The energy reduction by WCMKSS over
MKSSSelective can be up to 22%. This is mainly due to the fact
that the energy efficiency of MKSSSelective is highly dependant
on the successfully execution of optional jobs and the dynamic
pattern variation based on it. As such, when the system
fault(s) occurred, the dynamic pattern variation procedure in
MKSSSelective could be affected significantly. Different from
that, in our new approach , i.e., WCMKSS the execution of
the optional jobs under dynamic pattern shifting only partially
contributed to the overall energy reduction. A more important
part of the energy saving in WCMKSS comes from our more
flexible job partitioning strategy based on window-constraint
(that could be transferred to the original (m,k)-constraint) as
well as the adaptive executions of the mandatory main/backup
jobs based on flexible delay when necessary.

VI. CONCLUSION

Energy consumption, fault-tolerance, and quality of service
are becoming increasingly critical factors in the design of
pervasive computing systems. In this paper, we presented two
novel approaches to reduce the energy consumption for weakly
hard real-time embedded systems under standby-sparing: one
for (1,1)-hard tasks and one for general (m,k)-hard tasks.
Through extensive evaluations, our results demonstrate that
the proposed techniques significantly outperform the previous
research in reducing energy consumption for both (1,1)-hard
task sets and general (m,k)-hard task sets while assuring fault
tolerance through standby-sparing.
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APPENDIX A
PROOF OF THEOREM 1

Proof: We use contradiction. Assuming under the EDS schedule,
after the release time(s) of some job(s) are delayed to their starting
times (i.e., the delayed release times) under the EDL scheule, at
certain time point t ′, some task missed its deadline. Then we can
always find another time point t0 < t ′ such that during the time
interval [t0, t ′] the processor is kept busy executing only jobs with
release times or delayed release times no earlier than t0 and with
deadlines less than or equal to (t ′− t0). Since no job has release time
earlier than time 0, t0 is well defined. Then the total work demand
within the interval [t0, t ′] is bounded by ∑Dq≤(t ′−t0)d

t ′−t0−Dq
Tq

e+Cq.
Since some job missed the deadline at t ′, we have

∑
Dq≤(t ′−t0)

d
t ′− t0−Dq

Tq
e+Cq > (t ′− t0) (5)

On the other hand, consider the scenario when we delay the release
times of all jobs within the interval [t0, t ′] to their starting times under
the EDL schedule. Then in this case there must be a time point t1
(t0 ≤ t1 < t ′) such that during the interval [t0, t1] the processor is either
idle or executing jobs with deadlines larger than (t ′−t0) while during
the interval [t1, t ′] the processor is busy executing only the jobs with
deadlines less than or equal to (t ′ − t0). Moreover, the total work
demand within [t1, t ′] will be no larger than the total work demand
within the interval [t1, t ′] under the EDL schedule, i.e.,

∑
Dq≤(t ′−t1)

d
t ′− t1−Dq

Tq
e+Cq ≤

EDL

∑
Dq≤(t ′−t1)

d
t ′− t1−Dq

Tq
e+Cq (6)

Since there is no deadline missing under the EDL schedule, we
have

EDL

∑
Dq≤(t ′−t1)

d
t ′− t1−Dq

Tq
e+Cq ≤ (t ′− t1) (7)

Therefore, we have

∑
Dq≤(t ′−t1)

d
t ′− t1−Dq

Tq
e+Cq ≤ (t ′− t1) (8)

Meanwhile, since after delay the processor is idle or executing jobs
with deadlines larger than (t ′− t0) between [t0, t1], the work demand
within [t1, t ′] is the same as the work demand within [t0, t ′]. Thus we
have

∑
Dq≤(t ′−t1)

d
t ′− t1−Dq

Tq
e+Cq = ∑

Dq≤(t ′−t0)
d

t ′− t0−Dq

Tq
e+Cq (9)

Also since t0 ≤ t1 < t ′, we have (t ′− t0)≥ (t ′− t1). Therefore we
have

∑
Dq≤(t ′−t0)

d
t ′− t1−Dq

Tq
e+Cq ≤ (t ′− t1)≤ (t ′− t0) (10)

Which Contradicts to (5)! 2
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