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The p-tensor Ising model is a one-parameter discrete exponential family for modeling dependent binary
data, where the sufficient statistic is a multi-linear form of degree p > 2. This is a natural generalization
of the matrix Ising model that provides a convenient mathematical framework for capturing, not just
pairwise, but higher-order dependencies in complex relational data. In this paper, we consider the
problem of estimating the natural parameter of the p-tensor Ising model given a single sample from
the distribution on N nodes. Our estimate is based on the maximum pseudolikelihood (MPL) method,
which provides a computationally efficient algorithm for estimating the parameter that avoids computing
the intractable partition function. We derive general conditions under which the MPL estimate is
\/]V—consistent, that is, it converges to the true parameter at rate 1 /\/]Tf . Our conditions are robust
enough to handle a variety of commonly used tensor Ising models, including spin glass models with
random interactions and models where the rate of estimation undergoes a phase transition. In particular,
this includes results on ~/N-consistency of the MPL estimate in the well-known p-spin Sherrington—
Kirkpatrick model, spin systems on general p-uniform hypergraphs and Ising models on the hypergraph
stochastic block model (HSBM). In fact, for the HSBM we pin down the exact location of the phase
transition threshold, which is determined by the positivity of a certain mean-field variational problem,
such that above this threshold the MPL estimate is +/N-consistent, whereas below the threshold
no estimator is consistent. Finally, we derive the precise fluctuations of the MPL estimate in the
special case of the p-tensor Curie—Weiss model, which is the Ising model on the complete p-uniform
hypergraph. An interesting consequence of our results is that the MPL estimate in the Curie—Weiss
model saturates the Cramer—Rao lower bound at all points above the estimation threshold, that is, the
MPL estimate incurs no loss in asymptotic statistical efficiency in the estimability regime, even though
it is obtained by minimizing only an approximation of the true likelihood function for computational
tractability.
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1. Introduction

The Ising model is a discrete exponential family with binary outcomes, where the sufficient statistic
involves a quadratic term designed to capture correlations arising from pairwise interactions. This
was originally developed in statistical physics to model ferromagnetism [37] and has since then found
applications in various diverse fields, such as spatial statistics, social networks, computer vision, neural
networks and computational biology [4, 26, 28, 32, 36, 47]. The increasing popularity of the Ising
model as a foundational tool for understanding nearest-neighbor interactions in network data has made
it imperative to develop computationally tractable algorithms for learning the model parameters and
understanding their rates of convergence (statistically efficiencies). In particular, we are interested in
estimating the parameters of the model given a single sample of binary outcomes from an underlying
network. This problem was classically studied when the underlying network was a spatial lattice, where
consistency and optimality of the maximum likelihood (ML) estimates were derived [20, 30, 33, 54].
However, for general networks, parameter estimation using the ML method turns out to be notoriously
hard due to the appearance of an intractable normalizing constant in the likelihood. To circumvent this
issue, Chatterjee [18] proposed using the maximum pseudolikelihood (MPL) estimator [8, 9), which
is a computationally efficient algorithm for estimating the parameters of a Markov random field, that
maximizes an approximation to the likelihood function (a ‘pseudolikelihood’) based on conditional
distributions. This method and results in [18] were later generalized in [10] and [29] to obtain rates of
estimation for Ising models on general weighted graphs and joint estimation of parameters, respectively.
These techniques were recently used in Daskalakis et al. [24, 25] to obtain rates of convergence of the
MPL estimate in general logistic regression models with dependent observations. Very recently, Dagan
et al. [22] considered the problem of parameter estimation in a more general model where the binary
outcomes can be influenced by various underlying networks and, as a consequence, improved some of
the results in [10].

In many situations, both in modeling real-world network data and interacting spin systems,
dependencies arise not just from pairs, but from interactions between groups of particles or individuals.
This leads to the study of higher-order Ising models, specifically, the p-tensor Ising model, where the
sufficient statistic is a multilinear polynomial of degree p > 2, for capturing higher-order interactions
between the different particles. These models can be represented as a spin system on a p-uniform
hypergraph, where the individual entities represent the vertices of the hypergraph and the p-tuples
of interactions are indexed by the hyperedges. More formally, given a vector of binary outcomes
X = X,....Xy) € 6y = {-1, 1}V and a p-tensor Jy = ((Jil...ip))lgil...i,,ng the p-tensor Ising
model is a discrete exponential family with probability mass function:

1
P, (X) = —— PN, 1.1
NN, (b

where the sufficient statistic (Hamiltonian)

HyX) = D0 Jy XX, (1.2)
1<t ensip N

and B > 0 is the natural parameter (referred to as the inverse temperature in statistical physics) of the
model. The normalizing constant Zy (B, p) (also referred to as the partition function) is determined by
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the condition ZXECKN ]P’ﬁ’p (X) =1, that is,

1
Zy(B.p) = 75 Z exp 1B Z Ji iy Xiy - X,

X6y 1< ey KN

We will denote by F (8, p) := log Zy (8, p) the log-partition function of the model. Higher-order Ising
models arise naturally in the study of multi-atom interactions in lattice gas models, such as the square-
lattice eight-vertex model, the Ashkin—Teller model, and Suzuki’s pseudo-three-dimensional anisotropic
model (cf. [6, 35, 38, 40, 52, 58, 59, 64, 69] and the references therein). More recently, higher-order spin
systems have also been proposed for modeling peer-group effects in social networks [24].

Hereafter, unless mentioned otherwise, we will assume that the tensor J satisfies the following two
properties:

(1) The tensor Jy is symmerric, thatis, J; ; =J;  ; forevery I <ij <--- <i, <Nand
every permutation o of {1,...,p} and
(2) The tensor Jy has zeros on the ‘diagonals’, thatis, J; ; = 0,ifi; =i forsome 1 <s <7< p.

In this paper, we consider the problem of estimating the parameter 8 given a single sample X =
(X{,X,,...,X,) from the p-tensor Ising model (1.1). We establish general sufficient conditions under
which the MPL estimate of 8 is ~/N-consistent in the p-tensor Ising model, for any p > 2.

! The main bottleneck as one moves from the matrix (p = 2) to the tensor (p > 3) case is the lack
of a natural spectral condition that is strong enough to control the fluctuations of the MPL function,
but still verifiable in natural examples. To this end, we introduce the notion of a local interaction
matrix that, given a configuration x € {—1, 1}", measures the strength of the interaction between pairs
of vertices (Definition 2.2). Our result shows that the MPL estimate is ~/N-consistent, whenever we
have an appropriate moment bound on the local interaction matrix, and if the normalized log-partition
function stays bounded away from zero (Theorem 2.3). We illustrate the robustness and generality of our
result by verifying the conditions of the theorem in various commonly studied tensor Ising models. This
includes the ~/N-consistency of the MPL estimate in the well-known p-spin Sherrington—Kirkpatrick
(SK) model [11, 53] (Corollary 2.5), and in Ising models on p-uniform hypergraphs under appropriate
conditions on the adjacency tensors (Corollary 2.6). The latter is also related to the recent work of
Daskalakis et al. [24), where a general model for logistic regression with dependent observations using
higher-order Ising models was proposed, which includes as a special case the model in (1.1). However,
the conditions in [24] are based directly on the interaction tensor, hence, cannot handle models where
the rate of estimation undergoes a phase transition. This is understandable because [24] considered the
problem of jointly estimating multiple parameters in a more general model; hence, stronger assumptions
were necessary for ensuring consistency. Our goal, on the other hand, is to pin down the precise
conditions necessary for estimating the single parameter 8 and develop methods for verifying those
conditions in natural examples. To this end, our general theorem recovers as a corollary, the results in
[24] when specialized to the model (1.1). More importantly, our results can handle models where the

L'\ sequence of estimators {If}N}Nzl is said to be consistent at 8, if ﬁN i B under Pg, that is, for every M > 0, Pﬁ(|;§N(X) —
Bl < M) — 1 as N — oo. Moreover, a sequence of estimators {EN}Ngl is said to be ~/N-consistent at f8, if for every § > 0,
there exists M := M(8, 8) > 0 such that Pg(+v/N|By(X) — | < M) > 1 — &, forall N.
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rate of estimation has phase transitions, which happens whenever the underlying hypergraph becomes
dense. To illustrate this phenomenon we consider the Ising model on a hypergraph stochastic block
model (HSBM), a natural generalization of the widely studied (graph) stochastic block model, which
serves as a natural model for capturing higher-order relational data [1, 41, 62, 63]. In this case, we show
there is a critical value Bjjgg\;» such thatif 8 > Bi¢p\; then the MPL estimate is V/N-consistent, while
if B < Biggm there is no consistent estimator for g (Theorem 2.10). This phase transition stems from
the fact that below the threshold the pairwise correlations are weak and the model is asymptotically
indistinguishable from the uniform distribution on %),. While it is relatively straightforward to show
the ~/N-consistency of the MPL estimate above the threshold using our general theorem, proving that
estimation is impossible below the threshold is more challenging. This is one of the technical highlights
of the paper, which requires careful combinatorial estimates that go beyond the standard mean-field
approximation techniques.

Next, we consider the special case of the p-tensor Curie-Weiss model, which is the Ising model on
the complete p-uniform hypergraph. Here, using the special structure of the interaction tensor we are
able to obtain the exact limiting distribution of the MPL estimate for all points above the estimation
threshold (Theorem 2.15). In fact, in this regime the asymptotic variance of the MPL estimate saturates
the Cramer—Rao lower bound, that is, the MPL estimate attains the best asymptotic variance among
the class of consistent estimates. Finally, we derive the asymptotic distribution of the MPL estimate in
the p-tensor Curie—Weiss model at the estimation threshold (this is the point below which consistent
estimation is impossible and above which the MPL estimate is ~/N-consistent). Interestingly, at the
threshold the asymptotics of the MPL estimate depend on the value of p. In particular, the MPL estimate
is +/N-consistent (with a non-Gaussian limiting distribution) when p = 2, but inconsistent for p > 3.
The formal statements of the results and their various consequences are given below in Section 2.

1.1 Related work

The problem of structure learning in Markov random fields is another related area of active research,
where the goal is to estimate the underlying graph structure given access to multiple i.i.d. samples from
an Ising model, or a more general (undirected) graphical model. This begins with the seminal paper by
Chow and Liu [19), where the problem was resolved for the special case of tree-structured graphical
models using ML estimation, which in this special case is tractable. However, as discussed above, for
undirected graphical models on general graphs the partition function, and hence, the ML estimators are
intractable.

Over the years, various algorithms have been proposed for learning undirected graphical models
on general graphs, which circumvent the intractability of the partition function. Towards this, an initial
noteworthy result is due Ravikumar ef al. [55] where a regularized pseudolikelihood-based estimator,
with an additive L, penalty, was studied. This estimator offers guarantees for structure reconstruction
under certain conditions. However, the conditions required for the result to hold are often hard to
verify and the method performs poorly for graphs with long-range correlations [7]. Various other
papers [2, 68] give alternative algorithms for estimating sparse high-dimensional Ising models, all of
which require various restrictive assumptions to guarantee efficacy. Bresler et al. [13] was the first to
show that it is possible to reconstruct any discrete graphical model with bounded degree with samples
that is logarithmic in the number of variables and polynomial computational complexity (although the
degree of the polynomial equals to the maximum degree of the underlying graph). The computational
complexity was improved by Bresler [12] to quasi-quadratic for Ising models. However, the proposed
algorithm had double-exponential sample dependencies on the model parameters, such as the maximum
degree of the underlying graph and the largest coupling intensity, which is non-optimal with respect to
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the information theoretic lower bound [57]. The first computationally efficient reconstruction algorithm
for Ising models with a near-optimal sample complexity was the ‘interaction screening’ approach
designed and analyzed in [66]. This has the structure of a M-estimator and can be solved via convex
optimization combined with a thresholding procedure. Another related line of work has focused on
testing properties of the underlying graph. In this direction, Daskalakis ez al. [23] studied the problems
of identity and independence testing, and Neykov et al. [15, 51] considered problems in graph property
testing, given access to multiple samples from an Ising model.

Algorithms for learning discrete graphical models beyond pairwise and binary alphabets have been
studied recently [34, 39, 65, 67]. The method in [34] works for arbitrary models with bounded degrees,
however, as in [12), the sample complexity is double-exponential in the model parameters. On the
other hand, the method in [39), which resembles a stochastic first order method with multiplicative
updates, has a low computational complexity and is sample-efficient for structure recovery for multiwise
graphical models over binary variables and pairwise models with general alphabets. The sample
complexity in [39] was improved in subsequent work [67] in the case of pairwise models over non-
binary variables. Very recently [65] generalized the interaction screening framework to obtain the first
sample-efficient method based for learning general discrete factor models with node-specific alphabets
and multi-body interactions.

All the aforementioned results, however, are in contrast with the present work, where the underlying
graph structure is assumed to be known and the goal is to derive rates of estimation for the natural param-
eters given a single sample from the model. This is motivated by the applications mentioned above where
it is often difficult, if not impossible, to generate many independent samples from the model within a
reasonable amount of time. Although there are methodological similarities to some of the algorithms
discussed above, such as the use of the pseudolikelihood method, the results obtained in this paper
are fundamentally different. Here, unlike in the multiple samples case, one cannot treat the different
neighborhoods as independent, which renders classical techniques for proving consistency inapplicable.
Consequently, to handle the dependencies among the different neighborhoods in the pseudolikelihood
function we need to use a different (non-classical) set of tools, such as the method of exchangeable pairs
and non-linear large deviations. More closely related to the present work are the problems in hypothesis
testing given a single sample from an Ising model [14, 49, 50]. In particular, [14] studied the problem
of testing, based on a single sample, between the 2-spin Curie-Weiss model and an Ising model on a
regular graph, where it was shown that testability depends on the magnitude of the inverse temperature
B. In [49, 50] the authors considered the problem of global testing against sparse alternatives for the
means of binary outcomes following an Ising model (with node-specific magnetic-field parameters).

2. Statements of the main results

In this section, we state our main results. We begin with a section on notations (Section 2.1). The general
result about the /N-consistency of the MPL estimate in tensor Ising models is discussed in Section 2.2.
Applications of this result to the p-spin SK model and Ising models on various hypergraphs are discussed
in Section 2.3. Finally, in Section 2.4 we obtain the limiting distribution of the MPL estimate in the
p-spin Curie—Weiss model. Hereafter, we will often omit the dependence on p and abbreviate the
probability measure Py, the partition function Zy(B,p) and log-partition function Fy(8,p) by Pg,
Zy(B) and Fy(B), respectively, when there is no scope of confusion.

2.1 Notations

For a vector v € RY, |v| will denote the Euclidean norm of v. For a N x N matrix A, ||A|| :=
SUp =1 [lAx|| will denote the operator norm of A and A, (4) and A;,(A) the maximum and the

max min
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6 S. MUKHERJEE ET AL.

minimum eigenvalues of A, respectively. Finally, for the set [N] := {1,2,...,N}, [N]? will denote the
p-fold Cartesian product [N] x [N] x - - - X [N], and [N] " is the collection of p-tuples in [N]” with distinct
entries.

For positive sequences {a,},~; and {b,},>, a, = O(b,) means a, < C,b,, a, = §2(b,) means
a, =2 Cyb,, and a, = ©(b,) means C,b, < a, < C,b,, for all n large enough and positive constants
C,, C,. Similarly, for positive sequences {a,},>; and {b,},>a, < b, means a, < Cb,, and a, 2 b,
means a, > C,b,, for all n large enough and positive constants C;, C,. Moreover, subscripts in the
above notation, for example O, <, denote that the hidden constants may depend on the subscripted
parameters.

2.2 Rate of consistency of the MPL Estimator

The MPL method, introduced by Besag [8, 9), provides a way to conveniently approximate the joint
distribution of X ~ P4 , that avoids calculations with the normalizing constant.

DEFINITION 2.1. (8; 9] Given a discrete random vector X = (X, X,, ..., X)) whose joint distribution
is parameterized by a parameter B € R, the MPL estimate of § is defined as

N
Ay (X) i= argmax gﬁ(ﬂ,n

where f;(8, X) is the conditional probability mass function of X; given (X);.;.

To compute the MPL estimate in the p-tensor Ising model (1.1), fix 8 > 0 and consider X ~ Pg.
Then from (1.1), the conditional distribution of X; given (Xj) j-2; Can be easily computed as:

PBXimi(X)
Pp (Xi }(Xf)#i) = pPmiX) o pPmi(X)’ @.1)
where m;(X) = >, i< ity iy Xiy - Xi is the local effect at the node 1 < i < N (often

referred to as the local magnetization of the vertex i in the statistical physics literature). Then the
pseudolikelihood estimate of B (as defined in (1.1)) in the p-tensor Ising model (2.1) is obtained by
maximizing the function below, with respect to b,

N 1 N
Loix =[P, (Xl-|(Xj)j#i) = v oxp > {pbX;m;(X) — log cosh (pbm; (X))} | .

i=1 i=1

Now, since log L(b|X) is concave in b, the MPL estimator BN (X) can be obtained by solving the gradient

d log L(b|X)
ab

equation = 0, which simplifies to

N
Hy(X) — Z m;(X) tanh (pbm;(X)) = 0. (2.2)
i=1
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To ensure well-definedness, in case (2.2) does not have a solution or has more than one solution, the
MPL estimate By (X) is more formally defined as:

N
By (X) := inf [b >0: Hy(X) = Zm,.(X) tanh (pbm,.(X))] , (2.3)

i=1

where the infimum of an empty-set is defined to be 4-00. Note that the expression in the right hand side
(RHS) of the equality in (2.3) is an increasing function of b, hence B v (X) can be very easily computed
by the Newton—Raphson method or even a simple grid search.

Our first result is about the rate of consistency of the MPL estimate in general tensor Ising models.
In particular, we show in the proposition below that the MPL estimate ,3,\, (X), based on a single sample
X ~ Py converges to the true parameter § at rate 1/ /N, whenever the interaction tensor .J  satisfies
a certain spectral-type condition and the log-partition function is §2(N) at the true parameter value. To
state our result formally, we need the following definition:

DEFINITION 2.2. Given a p-tensor Jy = ((J; ;,_i, D1<iy ...y v @A X = (X1, %9, ..., xXy) € . define
the local interaction matrix of Jy at the point x as the N x N matrix Jy(x) = ((J;, CONi<iy in<he

where the entries are given by:
Jan®) = D0 Ty XX, (2.4)

(Note that in the case p = 2, J; ;,

interaction matrix J, for all x € €y.)

x) = J.

i1ip that is, the local interaction matrix J (x) is same as the

We are now ready to state our result on the convergence rate of the MPL estimate in a tensor Ising
model.

THEOREM 2.3. Fix p > 2, # > 0 and a sequence of p-tensors {J}y> such that the following two
conditions hold:

(1) SUPy>| Eﬁ[HJN(Z) ||4] < 00, where the expectation is taken with respect to Z ~ ]P’ﬂ,

(2) liminfy_, o ¥Fy(B) > 0.
Then given a single sample X from the model (1.1) with interaction tensor J,, the MPL estimate

ﬁN(X), as defined in (2.3), is ~/N-consistent for B, that is, for every § > 0, there exists M := M(§, B) >
0 such that

Py (VN|By(X) — Bl < M) > 13,

for all N large enough.

The proof of this theorem is given in Section 3. The proof has two main steps: in the first step we
use the method of exchangeable pairs to show that the derivative of the log-pseudolikelihood (the left
hand side (LHS) of (2.2)) is concentrated around zero at the true model parameter (see Lemma 3.1
for details). The proof adapts the method of exchangeable pairs introduced in [18] where a similar
result was proved for matrix (2-spin) Ising models. The main technical challenge as one goes from the
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matrix to the tensor case is the absence of a natural spectral condition in tensor models. To this end,
we introduce condition (1), which requires that the fourth-moment of the spectral norm of the local
interaction matrix is uniformly bounded. This condition allows us to prove the desired concentration of
the log-pseudolikelihood and, as we will see below, can be easily verified for a large class of natural
tensor models. The second step in the proof of Theorem 2.3 is to show that the log-pseudolikelihood is
strongly concave, that is, its second derivative is strictly negative with high probability. Here, we use
condition (2) to first show that the Hamiltonian is $2(N) with high probability, which then implies the
strong concavity of the log-pseudolikelihood by a truncated second-moment argument.

Remark 2.4 Regarding condition (1) in Theorem 2.3. The discussion in Definition 2.2 implies that
when p = 2 the condition (1) simplifies to the boundedness of the spectral norm: supy~ [|Jy|| < oo.

Hence, Theorem 2.3 recovers Chatterjee’s result on /N-consistency of MPL estimates in 2-spin Ising
models [(18), Theorem 1.1]. Note that, since [lJy|| < max; ¢;cy Z]N:l |Jl-j|, the boundedness of the
spectral norm is implied by the bounded row sum (‘degree’) condition:

N
sup max E |]ij| < 00,
N>11<1<Nj:1

which, informally, ensures that every node has O(1) contribution to the Hamiltonian. For tensor models
(p = 3), as mentioned above, it is a priori unclear what would be the ‘correct’ analogue of the spectral
condition. The L, moment condition (condition (1)) in Theorem 2.3 is one attempt at such a condition,
which is satisfied in natural examples and is also sufficient to establish the concentration of the MPL
function. Note that the L, moment condition on the local interaction matrix in Theorem 2.3 can be
replaced by the following stronger L -condition, which is often easier to verify in examples:

sup sup Iy ()|l < oo. 2.5)
N?Ue%[v

Moreover, similar to the 2-spin case, condition (2.5), hence condition (1) in Theorem 2.3, is weaker than
the ‘bounded-degree condition’:

sup D Viii.i = 0. (2.6)
ISUSN 1 i i iy SN

As in the 2-spin case, this has the interpretation that every node has O(1) contribution to the Hamiltonian.
However, we do need the weaker condition (2.5] to handle the p-spin SK model, where the bounded-
degree condition (2.6) fails to hold.

2.3 Applications

In this section we discuss the consequences of Theorem 2.3 to the p-spin SK model (Section 2.3.1), spin
systems on general hypergraphs (Section 2.3.2), and the HSBM (Section 2.3.3).
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2.3.1 The p-Spin SK Model In the p-spin SK model [11), the interaction tensor is of the form

1—p
2

o =NTg @.7)

i1...0p
where (g;, i )1<ij<..<iy<c0 15 @ fixed realization of a collection of independent standard Gaussian
random variables, and g;, ;= &,;)...(;,)> for any permutation o of {1,2,...,p}. This is a canonical
example of a spin glass model that has remarkable thermodynamic properties [45]. A whole new
discipline has emerged from the study of this object, with many beautiful theorems that have unearthed
deep connections between diverse areas in mathematics and statistical physics (cf. [11, 46, 53, 60] and
the references therein). The problem of parameter estimation in the SK model was initiated by Chatterjee
[18), where ~/N-consistent of the MPL estimate for all 8 > 0 was proved for the 2-spin SK model. The
following corollary extends this to all p > 3.

COROLLARY 2.5. In the p-spin SK model, the MPL estimate BN(X) is v/N-consistent for all 8 > 0.

The proof of this result is given in Section 4. In this case, condition (2) in Theorem 2.3 can be easily
verified using monotonicity and the well-known asymptotics of F(8) in the high-temperature (small
B) regime: in particular, we know from [(11), Theorem 1.1] that, almost surely, lim,,_, ILVF v(B) = %2,
for B > 0 small enough. Hence, by the monotonicity of Fy(8), we have limy_, ., }VF v(B) > 0 for all
B > 0, which establishes (2). However, unlike when p = 2, verifying condition (1) in Theorem 2.3
when p > 3 requires more work.Z To this end, note that for p = 3 and every fixed x € %), the local
interaction matrix J (x) is a Gaussian random matrix, but the elements are now dependent because
of the symmetry of the tensor J,. This dependence, however, is relatively weak and using standard
Gaussian process machinery we can show the validity of (2.5), and, hence, that of condition (1) in
Theorem 2.3.

2.3.2 Ising models on hypergraphs The p-tensor model (1.1) can be interpreted as a spin system
on a weighted p-uniform hypergraph, where the entries of the tensor correspond to the weights of
the hyperedges. More precisely, given a symmetric tensor Jy = ((Jy i, i, ) 1<iy i.....i, <N> CONStIUCE 2
weighted p-uniform hypergraph Hy with vertex set [N] := {1,2,... ,Nf and edge weights w(e) =
Jisiy...i,» for e = (i}, ip,...,i,) € [N],. The model (I.1) is then a spin system on Hy where the
Hamiltonian (1.2) can be rewritten as

HyX) = > w(eX,,

eclN],
where X = (X1, X,,....Xy) € Gy and X, = X; X;, ... X; . fore = (i}, i5,...,i,). For a tensor Jy =

(Jiyiy.in)> define the (weighted) degree of the vertex i; as

) 1
dJN(ll) = m Z |Ji]i2i3..4ip ’

’ 1<i2,13,..., l‘pgN

2 Note that when p = 2, J is a Wigner matrix, and hence, by ([5], Theorem 2.12] supy>1 NIl < oo, thus verifying
condition (1) of Theorem 2.3.
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10 S. MUKHERJEE ET AL.

which is the sum of the absolute values weights of the hyperedges passing through the vertex i;.
Similarly, define the weighted co-degree of the vertices iy, i, as

o 1
dJN(llalz) = (p — 2)' z |Ji1i2i3..‘ip ’ (28)

1<i3,..ip KN

which is the sum of the absolute values of weights of the hyperedges incident on both i; and i,. Denote
by Dy = ((dy, (i1,13))1<;, in<n> the co-degree matrix corresponding to the tensor Jy. The following

corollary provides useful sufficient conditions under which the MPL estimate is ~/N-consistent at all
temperatures. The proof is given in Section 5.

COROLLARY 2.6. Suppose {Jy}y>; is a sequence of p-tensors such that the following two conditions
hold:

(1) supy>y 1Dy, Il < o0,

. . 1
(2) liminfy_, o ¥ 21<i1<i2<‘..<ip<N ‘Ii2|i2.4.ip > 0.
Then the MPL estimate ,éN (X) is ~/N-consistent for all g > 0.

The proof of this corollary entails verifying the conditions in Theorem 2.3. Towards this, it is easy
to check that condition (1) in Corollary 2.6 implies the L -condition 2.6 and, hence condition (1) in
Theorem 2.3. To next step is to show that condition (2) in Corollary (2.6) implies Fy(B) = £2(N),
for B in a neighborhood of zero. (Note that this implies condition (2) in Theorem 2.3 by monotonicity
of the function Fy(-).) This follows by a Taylor expansion of F,(f8) about zero and the observation
F}(0) = (p!)? 2 1<y <iz<.o.<ip<N J? ir...i, The details are given in Section 5.

REMARK 2.7. Note that, since the L,-operator norm of a symmetric matrix is bounded by its L_-
operator norm,

D < max d; (iq,1 J..o
1Dy, < max Z (i) = o— 2),1<H<N > Mg

1<i2,8350.ip KN

,Sp 1Lnax dy, (i), 2.9

that is, if a tensor has bounded maximum degree, then condition (1) of Theorem 2.3 holds. This shows
that Corollary 2.6 recovers the general theorem of [24), where ~/N-consistency of the MPL was proved,
albeit for a more general model, under condition (2) and condition (1) replaced by the bounded degree
assumption max; ¢; <y d; = O(1).

As mentioned earlier, the conditions in Corollary 2.6, neither of which depend on the true parameter
B, cannot hold for hypergraphs where the rate of estimation undergoes a phase transition. In fact,
as explained in Remark 2.8, the scope of this corollary is really only restricted to Ising models on
hypergraphs that are sparse. The importance of the second condition in Theorem 2.3 becomes evident
when the hypergraph becomes dense, where Fy(8) ceases to be £2(N) for all B, and the rate of
estimation changes as f varies. This is illustrated in Section 2.3.3 below, where the exact location of
the phase transition is derived for Ising models on block hypergraphs.
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ESTIMATION IN TENSOR ISING MODELS 11

REMARK 2.8. Suppose Hy = (V(Hy), E(Hy)) is a sequence of unweighted p-uniform hypergraphs with
vertex set V(Hy) = [N] = {1,2,..., N} and edge set E(H)), with no isolated vertex. Denote by Ay, =
(@450, 1<iv ds....iy<n the adjacency tensor of Hy, thatis, a; ;, ; = 1if (iy,ip,...,i,) € E(Hy) and
zero otherwise. Then in order to ensure that a p-spin-system on Hy;, as in (1.1), has a non-trivial scaling
limit, one needs to consider the scaled tensor,

Ty = ——A
W EH)

In this case, the Frobenius norm condition in Corollary 2.6 simplifies to,

l”J ||2=L Z a .:@)( N ):.Q(l) (2.10)
NI EH ) 2 |E(Hy)| ' '

1<i1i20ip SN

This implies, |E(Hy)| = ©(N), since Hy has no isolated vertex. Moreover, condition (1) can be
written as,
|E(Hy)|
||DA,,N||—0(T . @11

Therefore, combining (2.10), (2.11), and Corollary 2.6, shows that for any sequence of (unweighted)
p-uniform hypergraphs Hy, = (V(Hy), E(Hy)), such that ||DAHN|| = O(1) and |E(Hy)| = O(N), the

MPL estimate BN(X) in the Ising model (1.1) with interaction tensor J Hy» is +/N-consistent for all
B > 0. In particular, by the bound in (2.9) applied to the adjacency tensor Ay , the MPL estimate

,3N(X) is v/N-consistent for all 8 > 0, whenever H v has bounded maximum degree and O(N) edges.

2.3.3 HSBMs The HSBM is a random hypergraph model where each hyperedge is present inde-
pendently with probability depending on the membership of the vertices to various blocks (see [3, 31,
43] and the references therein for more on the HSBM and its applications in higher-order community
detection).

DErINITION 2.9. (Hypergraph Stochastic Block Model) Fix p > 2, K > 1, a vector of community
proportions A := (Ay,...,Ag), such that ZJK=1 A; = 1, and a symmetric probability tensor @ :=
((le..jp))lgj!,...JpgK’ whe.re 0., € [0,1], for 1 < ij,...,i, < K. The HSBM with .propor.tion vector A
and probability tensor @ is a p-uniform hypergraph Hy on [N] = {1,2, ..., N} vertices with adjacency
tensorAHN = ((ailiz...i,,))lgil,iz,...,ipgN’ where

a;,..q, ~ Ber (Q/l---jp) fori; < ... <iand(iy,...,i)) € B; x--- x5,
ji—1 j .
where %; = (N2 4 N2 MININL for joe {1,....K}, and {a; ; }i<ii<.<i<pv) are

independent. We denote this model by 7, ¢ y(A, @) and a realization from this model as Hy ~
I, kN, O).

In this section, we consider the problem of parameter estimation given a sample from an Ising
model on a HSBM. The following theorem shows that for the p-tensor Ising models on a HSBM, there
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12 S. MUKHERJEE ET AL.

is a critical value of g8, below which estimation is impossible, and above which the MPL estimate is
V/N-consistent. The location of the phase transition is determined by the first time the maximum of a
certain variational problem, which arises from the mean-field approximation of the partition function,
becomes non-zero. More formally, this is defined as,

Biispm = Sup iﬂ >0: sup Bp(ty,. .. tg) = 0] , (2.12)
(11

where the function qﬁﬂ -1, 115 > Ris:

K
plintynt) =B D 6 H - 241, 2.13)
j=1

It Jp <K

and I() := 5 L{d+19 log(1 + 1) + (1 — £) log(1 — 1)} is the binary entropy function.

THEOREM 2.10. Fix p > 2 and let {Hy}y>, be a sequence of realizations of HSBMs, with Hy ~
%?,’ kN4, @), where A is a proportion vector and @ is a symmetric probability tensor as in Definition
2.9. Then for almost every (with probability 1) realization of the sequence {Hy}y> . given a sample

X ~ IP4 from the model (1.1), with adjacency tensor Jy = Z—Ap, , the following hold:

Np 1
(1) The MPL estimate 3N(X) is v/N-consistent for B > ,BHSBM.

(2) There does not exist any consistent sequence of estimators for any 8 < Bfigpm-

The proof of the above result is given in Section 6. To show the result in (1) we verify the conditions
of Theorem 2.3. Here, we invoke the standard mean-field lower bound to the Gibbs variational
representation of the partition function [16), from which it can be easily verified that Fy(8) = £2(N),
whenever 8 > Bisgy- Perhaps the more interesting consequence of Theorem 2.10 is the result in (2),
which shows that not only is the MPL estimate not +/N-consistent below the threshold, no estimator is
consistent in this regime, let alone ~/N-consistent. The main argument in this proof is to show that

Fy(B) = O0(1), forf < Blispm- (2.14)

Once this is proved, then it can be easily verified that the Kullback—Leibler (KL) divergence between the
measures ]P’ﬁ P and P Br.p> for any two 0 < B; < B, < Bjiggm Temains bounded, which in turn implies
that the measures }P’ﬂ p and IF’ 4, p are untestable, and hence inestimable. The main technical difficulty
in proving an estimate like (2. 14) in tensor models is the absence of ‘Gaussian’ techniques [10, 21),
which allows one to compare the partition function of Ising models with quadratic Hamiltonians with an
appropriately chosen Gaussian model. This method, unfortunately, does not apply when p > 3, hence,
to estimate the partition function we take the following more direct approach: we first consider the
averaged model where the interaction tensor is replaced by the expected interaction tensor J N = EJy.
Using the block structure of the tensor J, the Hamiltonian in the averaged model can be written in
terms of the average of the spins in the different blocks, and hence, the partition function in the averaged
model can be accurately estimated using bare-hands combinatorics (Lemma 6.2). We then move from
the averaged model to the actual model using standard concentration arguments (Lemma 6.4).
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ESTIMATION IN TENSOR ISING MODELS 13

REMARK 2.11. Using the machinery of non-linear large deviations developed in [16), we can in fact
show that for the HSBM,

1
lim —Fy(B)=  sup  u(ty.....t), (2.15)
N—oo N (t1,etx)€[0,11K P

with probability 1. Although the proof of this result has not been included in the paper, because for
proving Theorem 2.10 (1) we only need to establish a lower bound on ]%,F v (B), this is worth mentioning
as it motivates the definition of the threshold ﬁ:ISBM and corroborates the result in Theorem 2.10 (1). The
result in (2.15) is, however, not strong enough to show that estimation is impossible below the threshold
Biispm- Here, we need to understand the asymptotic behavior of Fy (B8) itself (without scaling by N),
which is a more delicate matter that require arguments beyond the purview of non-linear large deviations
and mean-field approximations, as discussed above. In this case, the proof of Theorem 2.10 (2) shows
that whenever the log-partition function is o(N), which happens when 8 < Bfgg\» it is actually O(1),

and hence, there is a sharp transition from inestimability to / N-consistency.

An important special case of the HSBM is the Erdods—Rényi random hypergraph model, where
every hyperedge is present independently with the same fixed probability. More precisely, the HSBM
reduces to the classical Erdods—Rényi random p-hypergraph model when the number of blocks K = 1.
In this case, each hyperedge is present independently with probability 6 € (0, 1], and the variational
problem (2.12) for the threshold simplifies to

Bir (0, 0) := sup I,B >0: sup {BOF — 1)} = o] ) (2.16)

te[0,1]

We will denote this hypergraph model by ¢, (N, 6). In this case, Theorem 2.10 implies the following:

Corollary 2.12Erdo6s-Rényi random hypergraphs. Fix p > 2,6 € (0,1], and let {Hy}y>;, with
Hy ~ gp(N ,0), be a sequence of realizations of Erdo6s—Rényi random p-hypergraphs. Then for almost
every realization of the sequence {Hy}y~ the following hold:

(1) The MPL estimate ,f?N(X) is +/N-consistent for all 8 > Bir (. 0).

(2) There does not exist any consistent sequence of estimators for any 8 < B, (p,0).
REMARK 2.13.  Note that by the change of variable x = 0, it follows that B5, (p,0) = Bir (P, 1)/0. A
simple analysis shows Bf (2, 1) = 0.5, and hence, By (2,0) = 0.5/6. For higher values of p, Bgp (p, 1)
can be easily computed numerically. In particular, we have Bf;(3,1) ~ 0.672 and B, (4,1) ~ 0.689.
In fact, B, (p, 1) is strictly increasing in p and lim,,_, Bir (P, 1) = log2 (see Appendix A for a proof).

Another example is that of random p-partite p-uniform hypergraphs, which are natural extensions of
random bipartite graphs.

Example 2.14 Random p-partite p-uniform hypergraphs. A p-uniform hypergraph is said to be p-partite
if the vertex set of the hypergraph can be partitioned into p-nonempty sets in such a way that every edge
intersects every set of the partition in exactly one vertex. A random p-partite p-uniform hypergraph, is
a p-partite p-uniform hypergraph where each edge is present independently with some fixed probability
6 € (0,1] [56]. More formally, given a vector N = (N|,N,, ... ,Np) of positive integers, such that
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14 S. MUKHERJEE ET AL.

Zﬁ.’: | N; =Nand 6 € (0,1], in the random p-partite p-uniform hypergraph ,%?,(N, 0), the vertex set
[N] = {1,2,...,N} is partitioned into p disjoint sets S,... ,Sp, such that |Sj| = Nj for1 <j < p,
and each edge e € V| x V, x --- x V, is present independently with probability 6. If N is such that
I%N — A= (A, .. ,Ap), as N — oo, then this is a special case of the HSBM and the threshold

(2.12) simplifies to,

P
Bpartite P X, 0) :=sup 1 > 0:  sup /39]_[ =D M) g =0t (2.17)

(t1,.-.tp)€[0,117

Theorem 2.10 then implies that the MPL estimate is +/N-consistent for all § > ﬂpdmte(p, A,0),

and consistent estimation is impossible for g < ﬁpmlte(p,lﬁ). In case the p partitioning sets have

asymptotically equal size, that is, A; = 117 for all 1 < j < p, the threshold in (2.17) simplifies further to:

P p

_ 1
Piauiprie P20 1= sup 1 p =02 sup gy [y = D ey =0p. @18)

(t1,-.--1p)€[0,1]P j=1

Now, a simple analysis shows that IB:quipartite(p’ 0) = p’ Bir (p,6). The upper bound ,B:quipmite(p, 0) <
PP Big (. 0) follows by substituting 1, =1, --- = 1, =1t € [0,1] in (2.18) and relating it to (2.16). For
the lower bound, note by the convexity of the function /(x) and the AM-GM inequality, that

P P

_ 1 -
pop" 11— 5 2 1t) < pop™"
= j=1

14

P
Z —1{=>1].
j=1

—

1
P

=

Then, by the change of variable x = Bp~?, it follows that ,B:quipmte (,0) = PP BEr (0, 0).

2.4 Precise fluctuations in the Curie—Weiss model

The p-tensor Curie—-Weiss model is the Ising model on the complete p-uniform hypergraph,® where all
the p-tuples of interactions are present [38]. In other words, this is the Ising model on the Erdo&s—
Rényi p-hypergraph with 6 = 1. Denoting B¢, (p) := Big (. 1), we know from Corollary 2.12 that for
B < Béw(p) consistent estimation is impossible, whereas for 8 > B¢y, (p) the MPL estimate BN(X)

N-consistent. Given that we know the rate of consistency, the next natural question is to wonder
whether anything can be said about the limiting distribution of the MPL estimate above the threshold.
While tackling this question appears to be extremely difficult, if not impossible, for general models,
the special structure of the Curie—Weiss model makes this tractable. This is formalized in the following
theorem for 8 > By (p).

THEOREM 2 15. (Asymptotlcs of the MPL estimate above the threshold) Fix p > 2 and consider the

1
..... Np—l ’ for

3 In the complete p-uniform hypergraph with vertex set [N] = {1,2,..., N} the set of hyperedges is the collection of all the
p-element subsets of [N].
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FiG. 1. The histogram +/N (/§N (X) — B) in the 4-tensor Curie—Weiss model at 8 = 0.75 > ﬂéw (4) ~ 0.689 (above the estimation
threshold).

all 1 <iy,...,0, < N.Then forevery > By (p), as N — oo,

1"

Ny - p) N(o, —%) 2.19)
p2m*P

where g(7) := g — I(t), for t € [-1,1], and m, = m_(B, p) is the unique positive global maximizer of

8.

The proof of this result is given in Section 7.1. This begins with the observation that in the Curie—
Weiss model the MPL estimate can be written as a function of the sample mean X = ]%, ziv:] X;
(see (7.3)). Then combining the recent results on the asymptotic distribution of )_(N [48] and the delta
theorem, we can get the precise fluctuations of the MPL estimate at all points above the estimation
threshold B¢y, (p). Figure 1 shows the histogram (over 106 replications) of VN (BN(X ) — B) withp =4,
B = 0.75, and N = 20000. As predicted by the result above, we see a limiting Gaussian distribution,
since B = 0.75 > By (4) &~ 0.689 is above the estimation threshold.

The result in Theorem 2.15 can be used to construct a confidence interval for the parameter B for

all points above the estimation threshold. Towards this, note, by [(48), Theorem 2.1], that |)_(N| —P> m,
under Py ,, when 8 > Béw (). The result in (2.19) then implies that

A Xyl' 7 [ —g"(1XyD A IXyl' 7 | —g"(XyD)
ﬂN(X) - p N Zl_%’ ﬁN(X) + P) N Zl_% >

is an interval that contains B with asymptotic coverage probability 1 — «, whenever 8 > By, (p). (For
a € (0,1), z,, is the a-th quantile of the standard normal distribution, that is, ]P’ﬂ (N@©,1) <z,) =)
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REMARK 2.16. (Efficiency of the MPL estimate) An interesting consequence of Theorem 2.15 is that
the limiting variance in (2.19) saturates the Cramer—Rao (information) lower bound of the model, when
B > Biw (). To see this, note that the (scaled) Fisher information in the model (1.1) (recall that the
Cramer—Rao lower bound is the inverse of the Fisher information) is given by,

1 d 2 |- pzmiIF2
Iy(B) = NE/S [(@ logPﬂ(X)) } = Varﬁ(Nzxj’;) — —g//(—m*),

as N — oo, where the last step follows from the asymptotics of X  derived in [48]. This implies,
for B > BEy(p), the MPL estimate ﬁN(X) is asymptotically efficient, which means that no other
consistent estimator can have lower asymptotic mean squared error than BN (X) above the estimation
threshold. While this has been shown for the ML estimate [21; 48), that the MPL estimate, which only
maximizes an approximation to the true likelihood, also has this property, is particularly encouraging, as
it showcases the effectiveness of the MPL method, both computationally as well as in terms of statistical
efficiency.

The results above show that the MPL estimate is +/N-consistent and asymptotic efficient whenever
B > Biw (). On the other hand, for B < By (p), we know from Theorem 2.10 that consistent
estimation is impossible. In particular, this means that the MPL estimate is inconsistent for 8 < B¢y, (p).
Therefore, the only case that remains is at the threshold 8 = B¢, (p). Here, the situation is much more
delicate. We address this case in the theorem below, which shows that the MPL is /N-consistent for
p = 2 (with a non-Gaussian limiting distribution), but inconsistent for p > 3.

THEOREM 2.17. (Asymptotics of the MPL estimate at the threshold) Fix p > 2 and consider the p-spin
’’’’’ o= #, for all
1 < il,...,ip < N. Suppose = ,Béw(p). Denote by m, = m,(B8,p) € (0,1) the unique positive

maximizer of the function g := g% — I(¢), for t € [—1, 1] and define

1

: if p is even,
2_ 1" -2
142[(m2 })g (m)]" 2 o (2.20)
T if p is odd.
1H[(m2—1)g" (m,)]~ 2

Then, the following hold as N — oo,
(1) If p =2 (recall By, (2) = 1), then for every 7 € R,

lim P, (N% (BN - %) < t) - {F(“/@) —F(=/6n ifi>0 2.21)

N—oo 0 ift <0

where F is a probability distribution function with density given by dF(f) o exp (—%) dr.

(2) Ifp > 3, then

2p—2
prm;;

VN@By(X) - B) 2 a —OI)N(O,—M)+&800, (2.22)
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where g(-) is as defined Theorem 2.15 and 8, denotes the point mass at co.

(3) Moreover, at a finer scaling, the following hold:

(a) Ifp > 4iseven, then

N 2 o () £ —ws (2.23)
N pZP,Z 0> :
where Z ~ N(0, 1).
(b) Ifp > 3is odd, then
YUY ML (R BLF S (2.24)
Yoo 2 \pizp2) 2 o ‘

The proof of this result is given in Section 7.1. As in the proof of Theorem 2.15, the main ingredient
in the proof of the above result is the asymptotic distribution of the sample mean at the threshold derived
in [21, 48]. The reason there is a change in the consistency rates of the MPL estimate as one moves from
the 2-spin model to the p-spin model, for p > 3, is because the rate of convergence of the sample mean
)_(N in the Curie—Weiss model depends on the value of p at the threshold. More precisely, for p = 2

and 8 = ,Béw 2) = %, N%)_(N 2) F, where F is as defined in Theorem 2.17 (1) (see [(21), Proposition

4.1] ). On the other hand, when p > 3 and B = Biy(P), N %)_(N converges to a mixture of point
masses with two or three components depending on whether p is odd or even, respectively (see [(48),
Theorem 1.1]).

Taking derivatives in (2.21) shows that for p = 2 the MPL estimate has a limiting Gamma
distribution with density g(a) o \/Lae%“zda. Figure 2(a) shows the histogram of VN (ﬁN(X) =)
forp = 2 and B = B¢y (2) = 0.5, and the limiting density function (plotted in red). On the other
hand, for p > 3, Theorem 2.17 (3) shows that the MPL estimate is inconsistent at the threshold (in fact,

ﬁN X) 5 oo, for p > 3 and B = By (p)). However, even though for p > 3 the MPL estimate is
inconsistent when 8 = B¢, (p), Theorem 2.17 (2) shows VN (ﬁN(X) — B) has a Gaussian limit with
probability 1 —«, that is, MPL estimate is ~/N-consistent at this point with probability 1 — . In fact, the
proof of Theorem 2.17 (2) shows that ,éN (X) is not /N-consistent at the threshold for p = 3, only when

)_(N is close to zero. More precisely, the proof shows that «/ﬁ(,é,\, X)—p)| {)_(N € Aﬁ} 2) N(O, _;;;5;,*_)2 )
if A g = [—1, 11\B,, where By, is a small neighborhood of zero. This is illustrated in Figure 2(b) that
plots the histogram of this conditional distribution for p = 4 and B = 0.6888 ~ By, (4).

2.5 Organization

The rest of the paper is organized as follows. In Section 3 we prove Theorem 3. The proofs of
Corollary 2.5 and Corollary 2.6 are given in Section 4 and Section 5, respectively. The proof of
Theorem 2.10 is given in Section 6. The proofs of Theorem 2.15 and Theorem 2.17 are given in
Section 7. Additional properties of the Curie—Weiss threshold are given in Appendix A.
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FiG. 2. (a) The histogram of /N (ﬁN(X) — p) in the 2-tensor Curie—-Weiss model at the estimation threshold (8 = %) and the

limiting density function (in red) and (b) the histogram of the conditional distribution VN (;§N(X) — ﬂ)|{)_(N € Ag}, where Ag
is the interval [—1, 1] minus a small neighborhood around zero, in the 4-tensor Curie-Weiss model at the estimation threshold,
which has a limiting normal distribution.

3. Proof of Theorem 2.3

In this section, we prove Theorem 2.3. We first state the two main technical estimates required in the
proof and show how these results can be used to complete the proof of Theorem 2.3. As mentioned
before, the first step in the proof of Theorem 2.3 is to show that the (scaled) log-pseudolikelihood
concentrates around zero at the true parameter value 8 > 0 at the desired rate. This is achieved by
proving the following second-moment estimate on the scaled log-pseudolikelihood function. The proof
of this lemma is given in Section 3.1.

LemMA 3.1. Let 8 > 0 be such that assumption (1) of Theorem 2.3 holds. Then

By [38)] =04, (}v) ,

where sy (b) = ﬁvw = L HyX) — XN, m(X) tanh(pbm;(X))).

The next step of the proof is to show the strong concavity of the log-pseudolikelihood, that is,
- %sx(ﬁ) is strictly positive and bounded away from 0 with high probability. To this end, note that for
any M > 0,

d

N
—55x () = 5 > mi(X)sech? (ppm; (X))

i=1

N
> Lsech’ (o) gmxX)zlum,-(Xn < M), 3.1)
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Therefore, to show that —%SX (B) is strictly positive, it suffices to show that Zf’zl m; (X )21{|ml~(X)| <
M} is 2(N) with high probability. This is formalized in the following lemma, which is proved in
Section 3.2.

LemMmA 3.2. Fix 0 < § < 1. Then under the assumptions in Theorem 2.3, there exists ¢ = ¢(5,8) > 0
and M = M (8, B) < oo such that

N

Pg (Z m, (X1 |m;(X)| < M} > 8N) >1-3,
i=1

for all N large enough.

The proof of Theorem 2.3 can now be easily completed using the above lemmas. To this end, note
that for any M; > 0, by Chebyshev’s inequality and Lemma 3.1 we have,

P (|s (ﬁ)|>ﬂ)< L
B X «/ﬁ Nﬂ,pM%'

Now, fix § > 0. Therefore, it is possible to choose M; = M, (3, B) such that the RHS above is less than
8. Next, by Lemma 3.2 there exists ¢ = &(, ) > 0 and M, = M,(¢, 6, ) < oo such that

N
P, (Zmi(X)zlnmxxn <My} > ezv) >1-34,

i=1
for N large enough. Thus, defining

N
Ty = ix € Gy lsx(B)l < % Zmi(X)Zlum,-(Xn <My} > eN} :

gives Pg(Ty) = 1 — 28, for N large enough. For X' € Ty, recalling (3.1), gives

x(B) > —sech2<pﬁM2>Zm(X)21{|m<X>| M,} > pesech® (pBM,).
i=1

ﬂ
Therefore, for X € Ty,

BVBNX)

—=sx(B)dp

2 sy(B)| = Isy(B) — SX(ﬂN(X))I / .
Brbvx) OB

T

>~ tanh(pMy By (X)) — tanh(pM,B) .
2
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20 S. MUKHERJEE ET AL.

Then, defining M = M(8, B) := % shows that

Py («/M tanh(pM, By (X)) — tanh(pM,B)| < R) >1—2s.

The proof of Theorem 2.3 now follows by inverting the tanh function.

3.1  Proof of Lemma 3.1
For x,x’ € €, define
1 N
Flex') = 5 37 (i) + m@) (5 — 2,
i=1
where m; is as defined in (2.1). Note that F' is antisymmetric, that is, F' (x,x') = =F(x',x).
Now, choose a coordinate / € {1,2,..., N} uniformly at random and replace the /-th coordinate of
X ~ Pg by a sample drawn from the conditional distribution of X, given (X,),_;. Denote the resulting
vector by X’. Note that F(X,X") = m;(X)(X; — X}). Then
N
. 4 1
&) = By (FLX)IX) = . 3 my(0) {xi ~E, (Xi|(xj)j#,.)}

i=1

= zlv imi(X) (X; — tanh (pBm;(X)))
i=1
= sx(B). (3.2)
Now, since (X, X’) is an exchangeable pair,
E; (fOF(X.X)) = E; (fX)F(X',X)).
Again, because F is antisymmetric, we have Eg FXHFX', X)) = ~Eg (fX)F(X,X")) . Hence,

E, (f(X)Z) —E, (f(X)]Eﬁ [FX, X/)|X)] — B, (fX)F(X, X))

= 3B (FX) —fX))HFX, X)) . (3.3)

Now, forany 1 <t < Nandx € Gy, let

t
x® = Xy, %9, .., %,_q, 1 — Xps Xy s S XN,
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and

, e_pﬂxtml(x)
p;(x) = IPﬁ(X, =-—xX=x1=1=

e‘[’ﬂmr(x) + epﬂmt(x) ’

This implies
Eg((fX) = fX))FX,X)IX) = Z(f(X) FEDNFX,XD)p,X)

m,(X)X,p,X)(f(X) — fXD)). (3.4)

I
=zl
(= 1

N
I
_

For 1 < s5,¢ < N, let a,(x) := x, — tanh(pBm,(x)) and b, (x) := tanh(ppm,(x)) — tanh(pBm,(x")).
Then, noting that f(x) = % 2?;1 my(x)ay(x) gives

1Y 1Y
FOO —fXD) = = > m (X) = m X ))a,(X) + - D m (XD (a,X) = a, X))

s=1 s=1

=A,+B,+C, (3.5)

where A, 1= 222DX SN g (X)a (X), B, = 2K and ¢, i= —L SN m(XD)b,,(X). Then
using (3.3) and (3. 4) we have

N
1
Ej (f(X)z) == > Es (4, + B, + C) m(X)X,p,(X)].

=1

Now, define the following three quantities:
alX) := (al(X),...,aN(X)) , mX):= (ml(X),...,mN(X)) ,

and M(X) = (ml X)p(X),. mN(X)pN(X)) Note that m(X) = XJN(X)T Also, observe that each
entry of A(X) is bounded in absolute value by 2, hence, [|A(X)| < < 2+/N. Moreover, using p,(X) <

1

N 2
IMX)| = (Z ml-<X>2p,-(X)2) < mX)| = ITy@OX T < VNITy@)ll. (3.6)

i=1
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22 S. MUKHERJEE ET AL.

Hence, recalling the definition of A, from (3.5) gives

‘ ZA mt(X)til(X)’ 2022 eoos, om0

Sp mIIJN(X)IIIIa(X)IIIIM(X)II

Iy X1
<, NT (3.7)
Next, we consider the term corresponding to B,:
Iy X1
‘ ZB m,<X>ti,<X)‘ (X)pt(X)‘ Alm@IP < FEET (38

where the last step uses (3.6).
Finally, we consider the term corresponding to C,. Let us define the matrix Jy,(X) :=

((Jij(X)z))lgi J<N- Then, denoting by e; the vector in RY with the i-th entry 1 and O everywhere
else, we get

V2Ol < max ZJ,,(X) Jmax llel IyO1 < Iy (I

Let h(x) := tanh (ppBx). It is easy to check that |||, < B2. Hence, by a Taylor expansion, for 1 < s <
N,

[, (X0) = B (X)) = (g (X) = my XODR (X0 S5 (m, X0 ms<X“>>)2 LG9

Note that m (X) — m(X?) = 2(p — DJ,(X)X, and h(m (X)) — h(m (X)) = tanh(pBm (X)) —
tanh(pBm, (X(’))) = b,,(X), hence, (3.9) can be rewritten as:

by (X) = 2(p — DI, X)X H (m (X))| Sp, T (X2,

2202 8unp g uo Jasn Aseiqr elueajAsuuad Jo Ausiaaiun Aq 22066S59/.0008.l/1el_WI/SE0 L 0 | /I0P/8|91e-ao0ueApe/Ielewl/wod dno-olwspese//:sdny woJj papeojumoq



ESTIMATION IN TENSOR ISING MODELS 23

Using the above bounds, we have, for any x = (x;,x,...,xy),Y = V1, Y2,---,VN) € RN,

Z Xyiby (X)

1<s,t<N

<| DD 20— Dxy g OXH )|+ | D 5, (b (X) = 20 — DI XOX,H (my(X)))

1<s,t<N 1<s,t<N
1 1
N 2 N 2
Spp VX (Z(xsh%mS(X)))z) (Z(y,xaz) + D eyl (X)?
s=1 =1 1<5,t<N
Spp IWIN@IEIY] A+ 1y 2@ (using 1 (my(X)) S, 1)
Spo (IMN@OI+ 1y GO 12) Iyl (3.10)

Again, by a Taylor expansion and using the bound ||//||,, < gp 1, gives

by X g, IM(X) = mX )| S 11, (X0

Consequently,

> @by X)| Sp, D X7 < ITy@IP Iyl (3.11)
1<s,t<N 1<s,t<N

Now, recalling the definition of C, from (3.5) gives,

1Y 1
5 2 Cm@Xp M| = |55 D mE)b,Xm0X,p, 0
=1 1<5,t<N
1
= ]W Z (mS(X)—Z(p—l)Jst(X)Xt)bst(X)mt(X)tit(X)
1<s,t<N
3 4
<4 [y (XD ;IIJN(X)II ’ 3.12)

where the last step uses (3.10), (3.11), and [m(X)|| = [|Jy X)X " || < VN|JyX)||.
Combining (3.7), (3.8) and (3.12), it follows that Eﬁ(f(X)z) SJﬂ’p zlv’ since by condition of (1)

of Theorem 2.3, Eﬂ(HJ N(X)||4) is uniformly bounded. This completes the proof of the lemma, since
recalling (3.2), f(X) = sx(B).
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3.2 Proof of Lemma 3.2

We begin with the following simple observation, which says that if liminfy_, %F v(B) > 0, we can
find a y small enough such that liminfy,_, ILVF]’V(,B —y)>0.

Observation 3.3. Suppose 8 > 0 1is such that liminfy_, o I%F v(B) > 0. Then
lim li 'le(ﬂ 8 >0
im liminf — —68) > 0.
8—>0 N—>oo N N

Proof. Denote K := supy, E5(||JN(X)||) < 00 Then,

d
= F(B) = Eg(Hy(X) = EgX'Ty(X)X) < NE4(IyX)])) <

Fy(B) == B

Therefore, by a Taylor expansion
§—0 N

1
lim hmmf FN(/B -8 > hm lim inf (—FN(,B) — (SK) > 0,
—0 N>oo \ N

as required. d

Now, note that for any ¢,y > 0,
P[}(HN(X) <¢eN) = pﬂ(e—VHN(X) - e—VSN) < eV ENTEN(B=y)—FNn(B),

which, on taking logarithms, implies that
B
log P4 (Hy(X) < eN) < eyN _/ﬁ Fy(ndt < eyN — Fy(B — y)y,
-y

by the monotonicity of F},(-). Dividing both sides by N and taking limits as N — oo followed by ¢ — 0
we have

o 1 1, . Fn(B—vy)
lim lim sup — log Pﬂ(HN(X) <eN) < — hmmf FN(ﬂ y) < —liminf ,
e>0 Nooo N N—oo N(B—1y)

by choosing y small enough (by Observation 3.3). This shows that, for every 0 < § < 1 there exists
& = €(8) > O such that, for N large enough,

Py (Hy(X) < 2eN) < 6. (3.13)

Next, by Lemma 3.1 and Chebyshev’s inequality, there exists M; = M;(8) < oo such that

pp (1o > 2L) < (3.14)
UN
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Moreover, note that for any M, > 0,

< NIIJN(X)IIZ‘

N N
L 2 L T2
> I @O0 | = M) < 3 Zmim = 3 vaOX| i

i=1

Therefore, using Markov’s inequality and condition (1) of Theorem 2.3, we can choose M, = M,(8) <
oo such that for all N large enough,

§ Eq(|lUyX)112)
Py (; |y X 1{Im;(X)| > My} > sN) < BSNT <. (3.15)

Then, defining
N
M,
Ty = [X € G+ Hy(X) > 26N, Isy(B)] < L0 3 ImCOI{Im (X0 = M) < szv] :
i=1

and combining (3.13), (3.14), and (3.15), gives ]P’ﬁ (Ty) = 138, for N large enough. Now, for X € Ty,

Z m.(X)?1{|m,(X)| < M,} + &N
i=1

N N
z — Y Im;(X)| tanh(ppB |m;(X) DX{|m;(X)| < M,} + Z Im;(X) | 1{|m;(X)| > M,}
i=1 i=1
(using tanhx < x)
N

Zpp Z Im;(X)| tanh(pB |m; (X)) 1{|m;(X)| < M,} + Z [m;(X)| tanh(pB |m; (X)) 1{|m;(X)| > M,}
i=1 i=1
(using tanhx < 1)

N
> Z m;(X) tanh(pBm; (X))

i=1

= Hy(X) — Nsy(B) > 2eN — M, +/N.

Thus, on the set T},

Zm(X)21{|m(X)| M} 2, 5 26N — MV/N > &N,
i=1

for all N large enough. This completes the proof of Lemma 3.2.
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4. Proof of Corollary 2.5

To prove Corollary 2.5 we will verify that the conditions in Theorem 2.3 hold with probability 1. As
mentioned before, in this case condition (2) is easy to verify. To this end, note that by [(11), Theorem
L1], limy,_, I%FN(,B) = p?/2 almost surely, for B > 0 small enough. This implies, since Fy on
increasing on the positive half-line, limy,_, . %F w(B) > 0 almost surely, for all 8 > 0. This establishes
condition (2) in Theorem 2.3.

We now proceed to verify condition (1). To begin with, fix x € €y and consider the Gaussian process

G, (x) :=u'"Jy(x)u “.1)

indexedbyu € SV~! := {t e RN : ||t| = 1}. Here,J  (x) is the local interaction matrix corresponding to
the tensor (2.7) of the p-tensor SK model. Note that the maximum eigenvalue of J, (x) can be expressed
as Ay (Jy (X)) = sup,cv-1 G, (x).

LemMma 4.1. Fix x € %y and consider the Gaussian process {G, (x) : u € S¥~!} as defined above in
(4.1). Then, the following hold:

(1) For every vectoru € S¥~!, E[G,(x)*] <, &
(2) For vectorsu,v € SN"LE[G,(x) — Gv(x)]2 . S — v,

Proof of (1): Fixx € €y andu € S¥~!. Then

Gu(x) == E Jilmipuiluizxis .o .xl'p
1<i1 0y <N
==t > | 2 wew [
1<i) <.o<ip <N 1<sA1<p ac{1.2,...p0\{s.1)

Hence,

&=
Q
&

=
e
[E
%A
S| =
L

E u; u;, I I Xia

I<ip<...<ip <N \I<s#1<p ae{l,2,....p}\{s.t}

1
Sp N Z I “4.2)
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. . . 2
where in (4.2) we used the inequality (Z:‘lzl ai) <nyl, al.z, for any sequence of real numbers
al ey an.

Proof of (2): Fixx € €y andu,v € S¥~!. Then,

E[G,&) — G,®)]’

=@-2E| > Sl X e -vvy ]

1<) <...<ip <N 1<s£t<p ae{12,...p0\(s.1)
2
1
5,3 N1 Z (uj i, — v v) H T,
1<) <. <ip KN \I<s#1<p ae{l,2,....p}\{s,t}

1
2
Sp Np=T > D G, —vivy)

I<ip<...<ip KN I<s#<p

1
< — 2 u—vv)?
S, (uu; — v;vy)
1<ij<N

) N 2 ) N 1 N
2
== 1—(2%%) <N|:2—22uivi:|§]v2(ui_vi)'
i= 1= =

This completes the proof of Lemma 4.1 (2).
Using the lemma above we first show that E[sup, -1 G, (%)] 51, 1. We do this comparing the

supremum of the Gaussian process {G,(x) : u € SV ~1} with the supremum of the Gaussian process

{H, :u e SN}, where H, = vazl giu; and g, ..., gy are independent standard Gaussians. Now, by
Lemma 4.1 (2), there exists a constant C := C(p) > 0, such that for u,v € SV,

N
2 C C 2
E[G,0) - G,w] < > —v)? = ~E[H, — 1]
i=1
Hence, by the Sudakov—Fernique inequality [(17), Theorem 1.1],

1
C\? C
E| sup G,(x)| < (—) E| sup H, | = (—
uesN-1 N uesN-1 N

<C?:=D. 4.3)

2202 8unp g uo Jasn Aseiqr elueajAsuuad Jo Ausiaaiun Aq 22066S59/.0008.l/1el_WI/SE0 L 0 | /I0P/8|91e-ao0ueApe/Ielewl/wod dno-olwspese//:sdny woJj papeojumoq



28 S. MUKHERJEE ET AL.

Now, since by Lemma 4.1 (1) there exists a constant K := K(p) > 0 such that sup,cv—1 E [Gu (x)2]
< %, by the Borell-Tsirelson inequality [(27), Theorem 2.1.1], for any # > 0,

2
P( swp G0 —E| sup G, |>r)<e .
ueSN-1 uesSN-1

This implies, by (4.3),

2
IP( sup G,(x) > D+t) < e_%(.

ueSN-1

Then, taking t = +/2K in the inequality above gives,

P (Wyl = D+~2K) <2e7,

since we have A (Jy(x)) 2 —Amin (Jy (%)), because J  (x) 2 —J y(x). Therefore, by an union bound,

IP( sup |[Jy@)| > D+ «/2K) <2V e™N = 2(e/2)7N.

€ CKN

Hence, by the Borel-Cantelli lemma, lim supy_, ., sup,. %y IJy@) | < D+ +/2K with probability 1,
which establishes (2.5) and hence, condition (1) of Theorem 2.3.

5. Proof of Corollary 2.6

We begin by showing that condition (1) of Corollary 2.6 implies supy sup, ¢, I N@)|| < oo and,

hence, condition (1) of Theorem 2.3. To this end, fix x € ¢y and take u SN=1.={te RN : |t = 1}.
Then,

-
lu’ Jy@)ul = ‘ Z Jiliz...ip”il UjpXiy - - - Xi, < Z |Ji1i2.4.ip||”i1 ||”i2|
1<y, i, 0ip KN 1<it, 2,0 0ip KN
T
= (- "Dy lul S, 1Dy I ()
since [u| := (luy],...,|uy|) € S¥~!. Taking supremum over all u € S¥~! followed by the supremum

over all x € %), and further followed by the supremum over all N > 1 throughout (5.1), we have:

sup sup [|Jy@)|l S, sup 1Dy, Il < oo.
N>1xeEy N1

Next, we verify condition (2) in Theorem 2.3. To this end, we need the following lemma:
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Lemma 5.1, For every p > 2, under the assumptions of Corollary 2.6, |Fy; ® 0)] = O(N), where F 3)(0)
denotes the third derivative of F(8) at 8 = 0.

The proof of the lemma is given below. First we show how it can be used to prove condition (2) in
Theorem 2.3. To begin with, note that condition (2) of Corollary 2.6 implies that

Fy(0) = Varg(Hy (X)) = EHyX) = (p1)* > T}, i, =2M). (5.2)
1<iy <...<ip <N

Hence, liminfy_, NF” (0) > 0. Now, since by Lemma 5.1, limsupy_, , 1%]|F1($) (0)] < oo, we can
choose ¢ > 0 small enough, such that for all N large enough,

// (0)

FO
I Of < =5~

Therefore, because the fourth derivative FI(:,‘) b) = IEbH;\‘,(X) > 0 for all b > 0, a Taylor expansion
gives the following for all B € (0, ¢):

132
4N

:33

p x&—@ﬂﬂW>

7(0) + aF‘”(O)

FxB) _ B B

N 2N

NO0) = (1),

where the last step uses (5.2). This verifies condition (2) of Theorem 2.3 for all 8 > 0, by the
monotonicity of Fy.

Proof. Proof of Lemma 5.1: To begin with observe that FI(\?) 0 = IEOH]%,(X). Now, the proof of the

lemma for odd p is trivial. This is because, under Py, X 2 —X, and for odd p, Hy(—X) = —Hy(X),
which implies IEOH]%, (X). Hence, we will assume that p = 2g, for g > 1, throughout the rest of the proof.
Now, note that

P
B Hy(X) = > > > Jy oo i kaO(Hxxxk) (5.3)

1<i1eslp SN 1150 fp SN 1<k, kp KN s=1
distinct distinct distinct

Observe for each term in the sum above, the expectation is non-zero, if only if the multiplicity of
each element in the multi-set {il,...,ip} U{jl,...,jp} U{kl,...,kp} is exactly 2. This implies, the
number of distinct elements in {i}, ..., i} U, - - - sJp}h Uik, .- ,k,} 18 3¢ and every pair of sets among
{i,...., 1, Up»--- ,jp}, (ks e, kp} must have exactly g elements in common. Therefore, from (5.3) and
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recalling the definition of the matrix D, from (2.8) we get,

VO[S 2.
[EgHy (X)| <, it g tomisgigstrsisgings 1ingPingi it iy
1<iy,eens iqaiq+1 77777 i2qsi2q+lw~7i311 <N
distinct
SJP E d.,N(ll’lq+1)dJN(lq+1’l2q+1)dJN(ll’12q+l)
1<it igy1.i2g+1 <N
distinct

= Trace(Dj,) < N|Dy, || = OWN),

where the last step uses the assumption that supy~ |D;, || < oo. O

6. Proof of Theorem 2.10

We start by proving Theorem 2.10 (1). To this end, it suffices to verify Theorem 2.3. Note that condition
(1) is easily satisfied because the bounded maximum degree condition (2.9) holds almost surely:

1
lggvd,,v(l) N lrgnigNdAHN @ =0Q),

since dAHN (1) < NP~ forall 1 < i < N, in any p-uniform hypergraph Hy,. Next, we verify condition
(2) of Theorem 2.3. To this end, by the lower bound in [(16), Theorem 1.6] (which is the mean-field
lower bound to the Gibbs variational representation of the log-partition function), we have

N
EFyB)ZE| sup 18 D EU )%, x5, — > 1)
i=1

xel=LIV | 1<y Lip <N

N
> sup p > By ) x, — D 00 (6.1)
j i=1

-1
xel-1apy | NPT

Now, take any ¢ := (¢,...,tg) € [—1, 11X, and define x € [—1, 11V by taking x; := 4, ifi e .%j, where
B\, B, ..., By are as in Definition 2.9. Then, the term inside the supremum in the RHS of (6.1) equals
N¢ﬂ (t1,...,tg) + O(1) (recall the definition of the function Pp(ty, ... 1g) from (2.13)). Hence, (6.1)
gives us,

EFy(B)
+ > sup Pty .o 1x) + o). (6.2)
(11,12,..:1% ) €[0,1]K

The bound in (6.2) above combined with the definition of the threshold Bfiggy in (2.12) and now
implies that for all 8 > Bfigpy liminfy_, I%EF w(B) > 0. Then by Lemma 6.1 below, it follows
that liminfy_, I%F v(B) > 0 with probability 1. This verifies condition (2) of Theorem 2.3 and shows
that the MPL estimate BN(X) is v/N-consistent for g > Biisem-
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LEmMA 6.1. Let Fy(B) denote the log-partition function of the p-tensor stochastic block model as in
Theorem 2.10. Then, for every 8 > 0, the sequence Fy(8) — EFy(8) is bounded in probability.

Proof. To start with, note that Fy(8) is a function of the collection of ii.d. random variables
o = {Ai i} 1<ii<...<iy<n»> and s0, it is convenient to denote Fy(B) by Fy (). Let us take

A=A} g <o<ipene Where Ay =1 — Ay and Ay = A, forall (iy,....0,) #
(1,2,3,...,p). Note that

Z Aj i Xy Xy, — Z A;L..i,,xil X | =1 Xy X =1
i <-<ip i <-<ip

Hence,

Bp! Bp! Bp! /
N Z Aiy i Xiy - X, 1 S exp N | P ) Z Aiy Xy X,

i <--<ip i1<--<ip

The above inequality implies that Fy 4 () < Fy 4(<7)+Bp! N' 7. Similarly, we also have Fy 4 (/) <
Fy () + Bp! N'~7, and hence,

Fyg(e) — Fy ()| < Bp!N' 7.

Of course, the above arguments hold if </ is obtained by flipping any arbitrary entry of .2 (not
necessarily the (1,2,...,p)-th entry) and keeping all other entries unchanged. Hence, the assumption
of McDiarmid’s inequality [44] holds with bounding constants ¢; ; = Bp!N =P, Therefore, for every
t>0:

22 22NP*2
P (|[Fy(B) —EFy(B)| > 1) < 2exp{—;z} < 26"1’[_;2@')2 ]

it <...<ip Ciy ..y

which completes the proof of the lemma. (I

We will now use Lemma 6.1 to prove Theorem 2.10 (2). To this end, we will show that

EFy(B) = O(1), forB < Biispus (6.3)

the expectation in (6.3) being taken with respect to the randomness of the HSBM. To see why this implies
Theorem 2.10 (2), assume, on the contrary, that there is a sequence of estimates that is consistent for
B < Bfisgm- Using this sequence of estimates, we can then construct a consistent sequence of tests
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{¢n}n>1 for the following hypothesis testing problem:*
Hy:B=p8 Versus H,:B =58, (6.4)

if B; < B, < Bfisgm- To this end, denote by Qﬂ’p the joint distribution of the HSBM and the p-tensor
Ising model with parameter 8. Then a simple calculation shows that for any two positive real numbers
By < By, the KL divergence between the joint measures Qg , and Qg , is given by:

Dy(Qg, ,1Qp,,) = EDy(By [Py, ) = EFy(By) — EFy(B) — (B — BDEFN(B). (6.5

where, as before, the expectation in (6.5) is taken with respect to the randomness of the HSBM. Now,
by the monotonicity of Fj,(-),

B2
0= (B, — BDFy0) < (B, — BDFy(B)) < / Fy(ndr = Fy(By) — Fy(B)).

Bi

Hence, by (6.3) and (6.5), DN(Qﬂ] ,p||Q,32,p) = O(1). Then, by [(10), Proposition 6.1], there cannot exist
any sequence of consistent tests for the hypothesis (6.4), which leads to a contradiction. This completes
the proof of Theorem 2.10 (2).

6.1 Proof of (6.3)

The proof of (6.3) has the following two steps:

(I) Define a new p-tensor Ising model on N nodes, with interaction tensor J := EJ. We will
call this model .#,. The first step in the proof of (6.3) is to show that the log-partition function
Fy of the model .# is bounded, for every B < Bjispm-

(II) The second step is to show that the expected log-partition function EF(B) of the original
model is bounded, for B < Bfggp» by comparing it with the log-partition function F y of the
model .#. The result in (6.3) then follows by an application of Lemma 6.1.

6.1.1  Proof of Step (I) Throughout this section we fix 8 < Bfiggy and denote by Pﬁ W, the

a1 . > 0 .
probability measure corresponding to the model .#, at the parameter § and E 8., the expectation
with respect to the probability measure P 8. My

LEMMA 6.2. Denote by F n(B) the log-partition function of the model .#,. Then for B < Bisgm>

lim supy_, I3N(/3) < 0.

Proof.  Proof of Lemma 6.2: Denote the Hamiltonian of the model .#, by Hy (X), that is,

s 1
Hy(X) := T Z By )X, Xiy -+ X -
1<i1,i250esip KN

‘A sequence of tests {¢y}y>1 is said to be consistent if both its Type I and Type II errors converge to zero as N — oo, that is,
limy—, 00 Eggy ¢y = 0, and the power limy_, oo Efy ¢y = 1.
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For each X € 6y and 1 < j < K, define Sj(X) = Zi&@j X;. With these notations, we have I:IN(X) =
Hy(X) + O(1), where

Np—L
lg}lv--JpgK

_ 1 P
HX=—: > 0\ ), [1s,®. (6.6)
=1

Let us define ZN(,B) = 2LN ZXG%N PN Since FN(/3) = log ZN(ﬁ) + O(1), it suffices to show that
ZN(ﬁ) = O(1). Towards this, for each 1 < j < K, define the sets:

I 1, -1+ 2 1+ 4 1 2 1 d A()={XeC:SX) =s)
=11, — _—, = _— e, = —, an = 1 = 5y.
/ X X X s N

Recall, Z; = (N Y/_} 4, N XI_, 4] ([N, hence ||%;| — Ni;| < 2. Now, note that

K
ZN(/g) _ L Z el\”’ﬂi“ 2 ndp <K Ot i [0 €| B mAl B I(j)
N NRB.
2 [(ST Cx)el x---xIk j:l ! !
g — Z e 1<) seedp <K i1 dp Lm=1 #imtjm mAZ'I%"IU) 6.7)
2 1,...lg)el x---xIg j=1 o
= Tl + T2, (68)

where the term 7 is obtained by restricting the sum in the RHS of (6.7) to the set (I; x --- x
I) N[—21, 31X and the term T, is the sum restricted to the set (; x - - x I) (([— 4, $15)°. O

Let us bound T first. Note that

. ||
A1 D] = (L%-(Hej))'
2

Then by the Stirling’s approximation of the binomial coefficient (see, for example, [(48), Lemma B.5]
) and using the fact that the sets %, %,, . .., By are disjoint, we have for all ({,...,lg) € [—%, %]K,

K
ﬂAzjl%‘(j) =2V exp

K
1
~ DB { O ——=
j=1 j=1 VI 12
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Hence, denoting £ := (¢4,...,¢g) and & := (I} x --- x I) gives,

T, = Z eNﬁ 20 <K O 1= Y Cim ZK NG )0 Kl
eeﬂﬂ[—%,%r Hj:] |%;
< S Mgt Tz b bin =N 201 251 ) 1
~ K
tesn[-14] V=1 1]
1

Now, since B < Bjjggy We can choose ¢ € (0,1), such that 8/(1 — &) < Bjjggy- Hence, recalling
(2.12),

. € 2
Bp/1—ey Ly lg) <O, thatis, ¢ﬁ(zl,...,zK)<—sZAj1(zj)<—§Z)\jz/,

where the last step uses /(x) > x?/2. Then by a Riemann sum approximation (see [(48), Lemma B.2] ),

1
s> PP ST Y P — (6.9)
K
eern[-44]" V=171
1 K Ne &
<xo| |IT1# /exp —= DA dry e+ 0(D)
\j=1 RK j=1
1 K 1% S |
= 0 HT exp 2ZAyJ dy; ...dyg + O(1)
\ /=1 RK j=1
e K
< /exp —3 )Ljy]2 dy;...dyg +O(1) = O(1). (6.10)
RK J=1

Now, we bound 7,. For this we need the following combinatorial estimate:
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Observation 6.3(61), Equation (5.4). For every integer s and positive integer m,

< 2me () 6.11)

[xe (-1, 1" le-zs]
i=1

Using the bound in (6.11) and recalling that the sets ,, %,, . .., B are disjoint, we have for every
U1y, .. lg) € L1, ... Iy),

K K
. N
(VA2 0)| < 2Vexp 1 = 21211
ji=1

j=1

Hence, by following the arguments used to obtain (6.9) we get,

K
ns > STER (TuBi+ max T e
. KL
(o) A en(Ean
Nex;

[T, +1 12a<xKe—T’ = o(1). (6.12)
=1 -

This shows, combining (6.8), (6.10) and (6.12), that ZN(ﬂ) = 0(1) forall B < ,BESBM, completing the
proof of Lemma 6.2.

6.1.2  Proof of Step (II) 'We now show that EFy () is bounded, for 8 < Bjiggy> Which will allow us
to conclude, using Lemma 6.1, that Fj(8) = O(1) with probability 1, for all 8 < ,B;‘ISBM, that is, (6.3)
holds.

LEMMA 6.4. Forevery B < Bliggm- limsupy_, . EFy(B) < oo.

Proof. Fix B < Bjiggm- Then the partition function Zy (8) becomes:

1 2Bs A X X
ZN(ﬂ) = 2_N Z e NP1 i <--<ip i --ip 2y ip
XE%N

p'B - . . e .
— L eNp_] Zil<"'<il7 (Azl...zprAtl,..tp)xtl : Ip Nl’ 1 z,]< -<ip tl .t,;le"'ti
2N z

XE%N
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By Hoeftding’s inequality, foreach X € €y andi; < ... < i

p'B B (p1)?
Eexp N1 z (Ail...ip_EAil.‘.i,,)Xil"’Xi,, < H eXP[‘gsz—z

i]<-<ip i <-<ip

This shows that

2p! 1 PP mA o xox
EZy(B) éexp[gfvf_ ] W Z oNpT iy <oeip By ipXiy X =exp[
Xecg]v

where ZN is the partition function of the model .#,. Now, taking logarithms and using Lemma 6.2
shows, limsupy_, ., log EZy(8) < oo, for B < Bjjspp- Then, by Jensen’s inequality, we conclude that
limsupy _, o, EFy(B) < 00, for B < Biggm»> completing the proof of the lemma. 0

7. Proofs from Section 2.4
7.1  Proof of Theorem 2.15

Define the function qbp :[—1,1] — (—o00, 0] as:

p~ 1P tanh ™! (1) if pisevenand ¢ #£ 0,
—1.—p -1 ; ;
p~ 't Ptanh™ (¢) if pisodd and t > 0.
o) =0, 00 if pis odd and t < 0. .1

0 ift=0.

Note that for every + # 0 when p is even, and every t > 0 when p is odd, the function ¢ is twice
differentiable on some compact set containing ¢ in its interior, and

') =~

1 I(p—l)tanhl(t)_ 1 ]

ptr—1 t 1 -1
Hence, recalling the definition of the function g from the statement of the theorem we have,

g’ (m,)
!

¢'(m,) = — (7.2)
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Moreover, from the definition of the MPL estimate in (2.3) it is easy to see that in the Curie-Weiss
model By (X) = ¢(Xy). Note that ¢ (m,) = B, since g’(m,) = 0. This implies,

VN@ByX) — B) = VN (9 (Xy) — o (m,)) . (7.3)

We now consider the case p is even and p is odd separately. Throughout, we assume 8 > B¢

p = 3 is odd: In this case, m, is the unique global maximizer of the function g on [—1, 1]. This
implies, by [(48), Theorem 2.1 (1)],

_ D 1

Hence, by (7.3) and the delta method [(42), Theorem 1.8.12],

! 2 "
VNBy(X) - B) 2> N(o,_M) QN(O,_ g’ (m,) )

¢ (m,) pzmip—Z
where the last step uses (7.2). This completes the proof when p is odd.

p = 2 is even: In this case, the function g has two (non-zero) global maximizers on [—1, 1], which
are given by m, and —m,, (as shown in [(48), Section C] ). This implies, by [(48), Theorem 2.1 (2)]
and the delta method,

NGy X) - By € 0.1 2 N(O, _1%) (7.4)

Similarly, observing that ¢ (m,) = —¢ (—m,) and g"(m,) = g"(—m,),

VNBy(X) — B)|1Xy e [-1,00} 2 N(O, —pini’;*)z). (1.5)

Combining (7.4) and (7.5), gives the desired result when p is even.

7.2 Proof of Theorem 2.17

Fix B = B&w(p). We now consider the three cases in Theorem 2.17 separately.
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Proof of (1): In this case, p = 2 and, hence, by (7.1), BN = m}g}ﬂl{}-{]\/ # 0}. Therefore, on the
N
event &y 1= {Xy # 0, |Xy| < %},

—1 /v
v (5 2) m(M_g)
2X),

i XY Lars 52 SO
=§N2;23+] = IN2Xy + N20(Xp). (7.6)

From [(21), Proposition 4.1] we know that N %}_(N L F, where F is as defined in the statement of
Theorem 2.17. The result in (2.21) now follows from (7.6), and the observation that ]Pﬂ (éf\,) = o(1),

since Xy £ 0and Py (Xy = 0) = o(1) (from the proof of [(48), Lemma C.6] ).

Proof of (2): Assume p > 3. To begin with, define the three intervals A; := [—1, —%] and A, =
(=%, %) and Ay = [%*, 1] (recall that m, = m,(p,pB) is the unique positive maximizer of the
function g(r) := B’ — I(t). We now consider the following two cases depending on whether p > 3 is
odd or even:

e p > 4 is even: In this case, the function g has three global maximizers on [—1, 1], which are
given by m, > 0 and —m,, and 0. Then, by [(48), Theorem 2.1 (2)] and arguments as in (7.4),
we have

NGy X) = B)|(Xy € 4} 2 N(O, —M), (1.7)

2p—2
prmy’
for i € {1, 3}. Next, recalling By (X) = qb()_(N), where ¢ (-) as in (7.1), note that

By(X)|(Xy € A\ (0 > oo, 7.8)

since ta”:;# — 00, as |{] — 0. Now, since IP’()_(N = 0) = o(1) and Pﬂ()_(N €A)) — a(by

[(48), Theorem 2.1 (2)] ), combining (7.7) and (7.8) the result in (2.22) follows, if p > 4 is
even.

e p > 3is odd: In this case, the function g has two global maximizers on [—1, 1] one of which is
non-positive and the other is m, > 0. Then, by similar arguments as above,

VNByX) = B)|{Xy € A3} S N(Q—%). (7.9)

Py

Moreover, recalling (7.1),

Ay[(Xy < (41 J4) Vo) 2 oo. (7.10)
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The result in (2.22) now follows from (7.9), (7.10), and the fact that Pﬂ ()_(N €A, U4A,) — «,
if p is odd (by [(48), Theorem 2.1 (2)] ).

Proof of (3): Here, we prove the finer asymptotics of ,éN(X). For this, note by [(48), Theorem 2.1

(2)] that v/NX N | {)_(N € B} Y N(0, 1) for any interval £ containing 0, but no other maximizer of g. We
now consider the following two cases:

e p > 4iseven: In this case, \/N)_(N|{)_(N € A,} 2) N(0, 1). Then, (7.1) gives,

—1 /v
1 tanh_ Xy) 1{)_(N £0).

N'=58.(X) = - )
O = R T %

Now, since %1{5@ £ 0}|{Xy € A,\{0}} = 1, we have,

1

NEBY D[Ry € A\(0) 5 — .

(7.11)
p

where Z ~ N(0, 1). The result in now (2.23) follows from (7.11), by noting ]P’()_(N = 0) = o(1), that
Py(Xy € Ay) — aand N'~5 By (0| (Xy € A; UAz) > 0 (by (7.7)).

e p > 3isodd: In this case, since the function g has two global maximizers on [—1, 1] one of which
is non-positive and the other is m, > 0, vNXy|{Xy € A; JA,} = N(0, 1). Then, (7.1) gives,

1 tanh~ ' (Xy) . - _
anh™ ( N)l{XN > 0} + col{Xy < 0}, (7.12)

N-58.(x) = - )
By X) PINE g2 X,

where we adopt the convention infinity times zero is zero. It follows from (7.12) that N 1=p/2 ,é v (X)
is a non-negative random variable. Hence, denoting .27}, := {Xy, € A, |JA,} and taking € [0, c0)
gives

P (Nl—’%,éN(X) < t|m2) =P (N1—§BN(X) <t Xy > o|,ef12) +o(D),
since ]P’ﬂ ()_(N = 0|.2%},) = o(1). Now, note that

P (Nl_g,éN(X) <t Xy > oy%)

_p 1 _ tanh ! (Xy)
B p(\/ﬁ)_(]v)p_2 XN

<t Xy # 0|42712) —Py(Xy < 0|y),
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: % 1 tanh—! (Xy) ¥ 1
since on the event {X, < 0}, TN )_(N ¥ < 0 < t. Note that IP’B(XN < O|;zf/12) - 3,
since v/NXy |}, 2 N(0, 1). Then, by arguments as in (7.11), it follows that

N 1 1 1 1
IP’(NI_% thﬁf) P Lt)--==P|— <1).
ﬂN( ) | 12) =~ pr_2 2 2 P|Z|p_2
Therefore, by (7.12),
-t (1,1
N2 (X)) | ), — 5 (p|Z|p2) + 2500. (7.13)

The result in (2.24) follows now from (7.13), by noting that IP’ﬂ()_(N e A{UJA,) — o and
_r 5 S P
N5 By (X)|{Xy € A3} 5 0 (by (7.9)).
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A. Properties of the Curie—Weiss threshold

Here, we will prove various properties of the Curie—Weiss threshold ﬂéw » = ,BER(p, 1) (recall (2.16)).
LEmMMA A.1. The Curie-Weiss threshold B¢y, (p) has the following properties:

(1) limp_)oo Béw(p) = log?2.
(2) The sequence {By, (P)},>, is strictly increasing.

3) Biw(2 =0.5.

Proof. Define the function 8p (t) = B# — I(r). Since gﬂ,p(l): B — log?2, recalling (2.16), it
immediately follows that ,BCW(p) < log 2. Now, take any B < log2. Note that g4 ,(1)< 0 and the
function ¢ — gﬁ’z(t) is continuous at 1. Therefore, there exists » € (0, 1), such that 8pa () < 0 for all
t € [r, 1]. Clearly, gﬂ’p(t) < gﬂ’z(t) < Oforallp > 2andt € [r, 1]. Now, note that for all ¢ € [0, 1),

ghp,() = Bplp— D> — —— < Pp(p— D> — 1. (A1)

1—
Since limp_)oop(p — 1)r?~2 = 0, there exists p(8) > 2, such that g” (r) < Ofor all p > p(B). Hence,
g/3 p(t) < Oforall r € [0,7] and p > p(B). This, together with the fact that g (0) = 0, implies that
8pp is strictly decreasing on [0, r] for all p > p(B8). Moreover, because 8p p(O) = 0, it follows that

8sp (t) < Oforallt € [0,r] and p > p(B). Hence, gﬂ’p(t) < Oforallr € [0,1] and p > p(B), i.e.
Béw(p) = B for all p > p(B). This shows that By, (p) — log2, as p — oo.

Next, we show that the sequence {8y, (P)}p>» is strictly increasing. Towards this, take any p >
3. It follows from [(48), Lemma F.1] that there exists a € (0, 1), such that 0 and a are both global
maximizers of 8t D) In particular, gﬂéw(p)’p(a) = 0, and hence, 8By () p— 1(a@) > 0. The function
B — gg ,—1(a) being continuous, there exists B < By (p), such that g5, (a) > 0. Hence, By (p —
1) < B, establishing that Biy, (p — 1) < BEyw (D).

Finally, we show that ﬂéw(2) = 0.5. By (A.]), SUP,c(o.1] gg’p(t) < O forall 8 < 0.5. This, coupled
with the facts that g;s » and gz, vanish at 0, implies that sup,c(o 1 & pp® =0 for all B < 0.5. Hence,
BEw(2) = 0.5. On the other hand, for any g > 0.5, g (0) =28 — 1 > 0 and hence, by continuity of
the function g’ gpat 0, there exists & > 0, such that 1nft€[0 ] F4A B (t) > 0. Once again, since g/ 8 and gg »
vanish at 0, we have g gp0 > 0 for all ¢ € (0, ]. This shows that Béw(2) < 0.5. (|
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