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N E T W O R K  S C I E N C E

Parity and time reversal elucidate both decision-making 
in empirical models and attractor scaling in critical 
Boolean networks
Jordan C. Rozum1*, Jorge Gómez Tejeda Zañudo2,3, Xiao Gan4,5, Dávid Deritei6, Réka Albert1,7*

We present new applications of parity inversion and time reversal to the emergence of complex behavior from 
simple dynamical rules in stochastic discrete models. Our parity-based encoding of causal relationships and 
time-reversal construction efficiently reveal discrete analogs of stable and unstable manifolds. We demonstrate 
their predictive power by studying decision-making in systems biology and statistical physics models. These 
applications underpin a novel attractor identification algorithm implemented for Boolean networks under sto-
chastic dynamics. Its speed enables resolving a long-standing open question of how attractor count in critical 
random Boolean networks scales with network size and whether the scaling matches biological observations. Via 
80-fold improvement in probed network size (N = 16,384), we find the unexpectedly low scaling exponent of 
0.12 ± 0.05, approximately one-tenth the analytical upper bound. We demonstrate a general principle: A system’s 
relationship to its time reversal and state-space inversion constrains its repertoire of emergent behaviors.

INTRODUCTION
Many complex systems in the natural, social, or technological realm 
exhibit emergent behavior, i.e., collective dynamics arising from the 
interaction of entities governed by simple rules (1–4). Examples in-
clude phase transitions (5, 6), flocking (7), consensus formation (8), 
and spontaneous synchronization of oscillators (9). Modeling 
frameworks that are frequently used to study the collective behavior 
of individuals include nonlinear dynamics (10,  11), agent-based 
models (12), cellular automata (13), and network models (14, 15). 
Boolean models sit at the intersection of these approaches [e.g., 
(16–18)]. They assign a time-varying binary variable to each system 
entity, represented as a node in a network of interactions. They 
exhibit diverse long-term dynamics (attractors) that represent col-
lective behavior (for example, consensus of individuals), and they 
describe the evolution toward an attractor (for example, consensus 
formation from an initially disordered state).

Boolean modeling of electronic circuits is well known (19), but 
many other familiar models can also be viewed as Boolean models. 
The quenched (zero-temperature) Glauber model, a dynamic vari-
ant of the Ising model, considers the dynamics of each atom’s two 
possible spin orientations under the influence of its neighbors 
(20, 21). Another example category includes models of spreading 
binary opinions through social networks [reviewed in (8)]. The 
McCulloch and Pitts neural network model introduces a proposi-
tional logic of all-or-none neuronal activation (22); the Hopfield 
model also considers two activities for each neuron and assumes a 
complete network of interactions (23).

Boolean models are well suited to elucidate system-level decision-
making, i.e., robust commitment toward one of the dynamical 
attractors in a multistable system. This has made their use especial-
ly widespread in biology. They were introduced by Kauffman (24) 
and Thomas (25) as prototypical models for gene regulatory net-
works that underlie cell fate decisions (such as those that happen 
during cell differentiation). A large body of research has since 
shown that the attractors of Boolean models correspond to cell fates 
or stable patterns of cell activity (such as the cell cycle). Boolean 
models integrate and encode current knowledge of a biological pro-
cess, fill any gaps of knowledge with hypothesized interactions, and 
predict the behavior of the system under loss of function, constitu-
tive activation, or external control of system entities (25–27). They 
are frequently used to study cell differentiation processes such as 
T cell specialization (28, 29), developmental processes such as pat-
terning during embryogenesis in Drosophila melanogaster (30, 31), 
and cancer [e.g., metastatic reprogramming (32–34) and prediction 
of targeted therapies (35, 36)]. Model predictions in a variety of sys-
tems were verified experimentally (34, 37–40).

Alongside models of specific systems, analysis of the expected 
collective behaviors exhibited by generic Boolean models has also 
proven insightful. Ensembles of Boolean models [random Boolean 
networks (RBNs)] have been studied for decades [reviewed in 
(41–43)]. These ensembles exhibit an order-to-chaos transition as 
dynamical and topological parameters are tuned. In the intermedi-
ate (critical) regime, the ensembles exhibit features of biological 
cells, including stability against perturbations and plausible scaling 
laws for the number and size of attractors with the system size (see 
text S1 for details). Here, we answer a long-standing question about 
the scaling law in the presence of timing stochasticity (i.e., when the 
update order and timing of variables are stochastic).

Despite Boolean models’ discrete nature and apparent simplici-
ty, it is nontrivial to connect dynamical properties of decision-making 
to the underlying interaction network. Brute-force exploration 
of their state spaces is not generally feasible. A typical Boolean 
model of a biological process with a few dozen variables has tens of 
billions of states. Genome-scale models can have thousands of 
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variables, resulting in many more states (~10300 to ~109000) than 
Planck volumes in the observable universe (~10185). This challenge 
has motivated decades of research analyzing discrete dynamics 
without exhaustive state-space searches (44), for example, by 
analyzing how feedback loops in the interaction network constrain 
dynamics (45, 46). While the body of research regarding how net-
work structure constrains dynamics has proven invaluable, note 
that multiple Boolean systems are compatible with each interaction 
network. Ambiguity can be eliminated by defining a network whose 
graph structure unambiguously represents the update functions 
that govern the time evolution of each variable. One such network 
representation, the expanded network (also called the logical or 
prime-implicant hypergraph) (31, 47, 48), defines two virtual nodes 
for each entity, denoting the two possible values of its binary vari-
able. Connections among virtual nodes encode the update func-
tions. The structure of this auxiliary network tightly constrains the 
attractors of a system (33, 49, 50). The expanded network can be 
used to identify control strategies that drive the system to a desired 
attractor (51, 52). The most parsimonious of these control strategies 
involve determining the so-called driver node(s) of self-sustaining 
circuits (53, 54). In this way, fixing the state of a few driver nodes 
ensures the system’s convergence into a target space from any initial 
condition. This type of analysis has been used, for example, to pin-
point key proteins in pathological cell processes (51,  53,  55). Al-
though initially developed for Boolean models, the expanded network 
has been generalized to multilevel discrete and ordinary differential 
equation (ODE) analogs (55, 56).

We go beyond the previous use of the expanded network and 
characterize each virtual node with a binary activity and impose a 
parity structure that facilitates the proof of new theorems about the 
effects of perturbations on system trajectories. We call this extended 
version of the expanded network the parity-expanded network. 
With these additions, the parity-expanded network is a complete 
representation of the Boolean dynamical system and is a dynamical 
system in its own right. In addition, we describe the time reversal of 
stochastically asynchronous Boolean systems and use it to identify 
subsets of the state space that cannot be reached from states outside 
the subset. Using parity and time-reversal transformations in 
tandem, we developed a new algorithm to efficiently identify all 
attractors of large-scale Boolean systems. We apply the algorithm to 
answer the long-standing question of how quickly the number of 
attractors in asynchronous RBNs increases with network size.

MATERIALS AND METHODS
We begin by recalling relevant concepts from Boolean modeling 
and defining the notation we use throughout. Constructing a Boolean 
model usually starts with the synthesis of the modeled system’s 
interaction graph. An interaction graph is a signed directed graph 
whose nodes are the N entities of a system and whose edges repre-
sent positive (activating) or negative (inhibiting) influence. Each 
entity i is characterized by a variable Xi that can take one of two 
values: 1 (“active”) or 0 (“inactive”). Each Xi updates its value ac-
cording to the output of an update function fi : {0,1}N → {0,1} that 
maps each system state X = (Xi0, …, XiN−1) to either 1 or 0. Any 
Boolean function can be expressed algebraically using logical oper-
ators (e.g., “not,” “or,” and “and” with symbolic representations ¬, 
∨, and ∧, respectively). There are several schemes for determining 
the timing of variable updates. We use the stochastic asynchronous 

update scheme, in which at each step, a single variable is randomly 
chosen to update its value (each variable must have a nonzero up-
date probability; these are often chosen to be uniform). Compared 
with other updating schemes, this scheme removes spurious oscilla-
tions that arise from unrealistic perfect synchrony but otherwise 
preserves long-term behaviors (57–59). Once the update functions 
are determined and an update scheme is selected, the Boolean sys-
tem is fully specified. Throughout this work, we use the stochastic 
asynchronous update scheme, and hence, the term “system” is to 
mean a set of N update functions fi together with the implicit sto-
chastic asynchronous update scheme. Each Boolean system induces 
a state transition graph (STG) with 2N nodes that represent all pos-
sible system states and with directed edges from one node (system 
state) to another when the parent state can be updated in one time 
step to attain the child state. Under stochastic asynchronous up-
date, each node has between 0 and N outgoing edges. The attractors 
of a Boolean system are the terminal strongly connected compo-
nents of the STG (i.e., they have no edges that exit the component). 
They are divided into two types: point attractors (also called fixed 
points or steady states), which contain only one state, and complex 
attractors, which contain more than one state. The topology of the 
STG is not affected by biasing some nodes to update more frequent-
ly than others. Therefore, the attractor repertoire does not depend 
on the precise probabilities that individual nodes are selected for 
update in the stochastic asynchronous update, as long as the proba-
bilities remain nonzero.

A new framework: The expanded network through 
the lens of parity
The expanded network (also called the logical or prime-implicant 
hypergraph) (31,  47,  48) was introduced as an auxiliary network 
constructed from the Boolean update functions. The expanded net-
work nodes represent Boolean literals (e.g., Xi and ¬Xi), and its hy-
peredges (generalized edges that connect sets of nodes) represent 
prime implicants [irreducible sets of regulator states that result in 
fi(X) = 1] of the update functions. Here, we introduce a new defini-
tion of the expanded network that uses parity-related concepts and 
highlights its role as an invariant of the parity transformation.

The parity transformation acts on a Boolean system by the change 
of variables Xi ↦ ¬ Xi for all variables Xi, mapping the original sys-
tem with update functions fi to the system governed by update func-
tions ¬fi. This mapping induces further transformations on any 
structure derived from the update functions, and so, in a slight 
abuse of notation, we say that the parity transformation acts on all 
these structures. For example, the parity transformation relabels the 
nodes of the STG so that all 1s become 0s and vice versa (see Fig. 1). 
Viewing these node labels as spatial coordinates (so states lie on the 
vertices of a unit hypercube), the parity transformation is the spatial 
inversion of this hypercube through its center (see Fig. 1).

Parity allows for a succinct definition and extension of the ex-
panded network that builds upon the eponymous structure defined 
in (48). Here, we give an abbreviated discussion of this object and 
leave formal details to text S2. A parity-expanded network G is a 
dynamically endowed hypergraph. Each node I of the parity-expanded 
network, called a virtual node, is an ordered pair I = (n(I), s(I)) con-
sisting of a system entity, in this context denoted n(I), and a value 
s(I), which is either the constant 1 or the constant 0. There are two 
virtual nodes associated with each system entity i, namely, (i,1) and 
(i,0); we call this pair of virtual nodes contradictory. A set of virtual 
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nodes that does not contain any contradictory pair is called consist
ent. Each virtual node I is endowed with a Boolean variable I, 
whose time evolution is governed by an update function FI; this de-
fines a 2N-dimensional dynamics that can be restricted to an N-
dimensional subset such that F(i,0)(X) = F(i,0)((¬ X, X)) = ¬ fi(X) and 
F(i,1)(X) = F(i,1)(¬ X, X) = fi(X). In the context of this restriction, we 

may think of I as the indicator function for the subspace defined by 
I, i.e., we define (i,0)(X) = ¬ Xi and (i,1)(X) = Xi. We view the ex-
panded network as having two layers: an “original update” layer and 
a “parity update” layer. This can be seen in Fig. 1, where the parity-
expanded network nodes are partitioned into these two layers. In 
contrast with earlier versions of the expanded network and the 

A

B C

D

E

Fig. 1. The relationship between the parity-expanded network and parity transformation illustrated on a three-variable Boolean system. The STGs are shown in 
(A); each system state is represented as the triple XAXBXC. Each state with fewer than three outgoing edges (state transitions) also has a self-loop, which is omitted for vi-
sual clarity. The interaction network and update functions are indicated in (B), and the parity-expanded network is indicated in (C). The system has two attractors, shown 
in (D) and (E), with blue nodes active and gray nodes inactive. States in the STGs of (A) are arranged so that the individual variables define coordinate axes. In this arrange-
ment, the states form the corners of a cube. The parity transformation reflects each attractor through the center of this cube. The parity-expanded network in (C) has two 
parts or layers: regular virtual nodes (A,1), (B,1), and (C,1), whose activity updates according to the usual update functions, and negated virtual nodes (A,0), (B,0), and (C,0) 
that use the parity transformed update functions. The filled black circle represents the hyperedge from the set {(A,0), (B,0)} to (C,0) and indicates the AND operation in the 
update function of the virtual node (C,0). Positive regulation (black arrows) stays within a layer of the parity-expanded network, while negative regulation (red arrows) 
crosses between layers. Virtual nodes (A,1) and (B,0) form a stable motif (green outline), as do the virtual nodes (A,0) and (B,1) (purple outline). In any state of the system, 
half of the parity-expanded network is active. The stable motif (A,1), (B,0) describes the trap space containing attractor 1 and does not overlap with its parity transformed 
set (A,0), (B,1), which corresponds to the trap space containing attractor 2 (E).
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logic hypergraph, the parity-expanded network is a dynamical sys-
tem in its own right; its nodes are characterized with activity vari-
ables and a stochastic time evolution function F : {0,1}2N → {0,1}2N, 
restricted to the N degrees of freedom of the underlying Boolean 
system. See text S2 for an example of F written explicitly as a func-
tion of 2N variables for the network of Fig. 1. A main advantage of 
this notation is that it allows us to treat the negated and non-negated 
versions of variables and functions simultaneously. In addition, 
the explicit endowment of the parity-expanded network with dy-
namical properties avoids awkward constructions along the lines of 
“the Boolean network corresponding to the parity-expanded net-
work” in several places; rather, we can speak more simply of just 
“the parity-expanded network.”

The dynamics of these activity variables are encoded in the con-
nectivity of the parity-expanded network. A hyperedge connects a 
set of parent virtual nodes S = {I0, I1, …, Ik} to a target virtual node J 
if ∧I ∈ SI is a prime implicant of the update function for J, i.e., of 
FJ. Pictorially, we represent hyperedges with more than one parent 
using intermediary “composite nodes,” which correspond to AND 
gates. For an example of a Boolean system and its parity-expanded 
network, see Fig. 1 (B and C). Hyperedges between and within par-
ity layers encode important features of the dynamics. For example, 
negative influence manifests as interlayer hyperedges. Thus, it fol-
lows from theorem 19 of (46) that if a Boolean system’s interaction 
graph lacks negative feedback loops and has no paths of opposite 
sign between any two nodes, then there is a change of variables that 
disconnects the parity layers from one another.

Arguably the most dynamically important of the parity-expanded 
network’s topological structures are its stable motifs (48) and stable 
modules (56), which correspond to specific states of generalized 
positive feedback loops in the interaction graph (although we will 
define them on the parity-expanded network). These determine 
trap spaces in the dynamics, which are regions of the state-space 
characterized by a set of fixed variable values that, once attained by 
a trajectory, confine the trajectory to that region for all subsequent 
time steps. These generalize the notion of point attractors in that 
only a subset of the system’s variables is fixed in a trap space. Many 
of our formal results rely on recasting these structures in the parity 
view of the parity-expanded network as follows. A stable module M 
is a non-empty sourceless subhypergraph of the parity-expanded 
network such that M does not overlap (does not share virtual nodes) 
with its image under parity. A stable motif is a stable module that 
does not contain any smaller stable module; note that this implies 
that a stable motif is strongly connected. Because stable modules 
(and, thus, also stable motifs) are sourceless, every virtual node in a 
stable module M can be maintained in its active state by other virtual 
nodes in M, meaning that the activity of M is self-sustaining. Once 
M is activated, it cannot be inactivated except via direct override of 
its virtual node activities by direct external controls (as opposed to 
inactivation via the effects of upstream pathways). Thus, M de-
scribes a control-robust trap space in which the values of certain 
variables are stationary (47, 51). The trap spaces corresponding to 
the activity of stable modules are exactly those considered by (49), 
with larger trap spaces (more states) corresponding to smaller 
stable modules (fewer constrained variables) and vice versa. See 
Fig. 1 for an example of the parity-expanded network and stable  
motifs.

We leverage the parity properties of the parity-expanded net-
work to prove new results about driver node sets (54) and their 

relation to attractors. Formal statements and proofs are given in 
text S3. Recall that a set of virtual nodes is called consistent if it is 
disjoint from its image under parity [i.e., it contains no pair of 
nodes of the form (i,1) and (i,0)]. We say that a consistent set of 
virtual nodes S drives a virtual node I if I is consistent with S and if 
FI(X) = 1 for every attractor state X of the dynamics obtained by 
restriction to the states in which S is active. As a particular example, 
the vertex set of any stable motif drives itself (is self-sustaining). The 
set of all virtual nodes driven by S is called the domain of influence 
(DOI) of S, written as DOI(S). It follows from this definition that 
(with probability 1) trajectories with S initially active eventually ei-
ther inactivate S or activate all of DOI(S). It is often useful to study the 
subset DOI(S) − S of DOI(S), which consists of all virtual nodes (i, s) 
∉ S for which Xi = s is fixed in all attractors of the dynamics restricted 
to the subspace defined by S. Similarly, DOI(S) in its entirety is the 
union of DOI(S) − S and the members of S driven by DOI(S) − S. We 
say that S is self-negating if there exists a subset T of DOI(S) − S 
such that DOI(T) intersects the image of S under parity (i.e., T drives 
a node that contradicts S). In such cases, S cannot be active in every 
state of any attractor. This definition of the DOI is closely related to 
concepts presented in (54).

Calculating DOI(S) can be difficult in general, so we focus in-
stead on a commonly used and easily calculated subset of the driv-
ing relation: the logical domain of influence (LDOI). A set S of 
virtual nodes logically drives a virtual node I (which may or may not 
be in S) if there is a nontrivial multipath in the parity-expanded 
network from a subset of S to I with all virtual nodes in the path 
consistent with S (this requires that I is consistent with S). Here, a 
(nontrivial) multipath from a set S to a node I is a (non-empty) fi-
nite sequence of hyperedges {(hparents,i, hchildren,i) : i = 0,1, …. , n} 
such that (i) hparents,0 ⊆ S = S0, (ii) hparents,i ⊆ Si−1 ⊆ hchildren, i−1, and 
(iii) I ∈ hchildren,n. Note that for I ∈ S, a consistent nontrivial 
multipath exists from S to I [i.e., I ∈ LDOI(S)] if and only if upon 
restriction to the subspace defined by S and percolation of constant 
values, I becomes active. The set of all I logically driven by S is called 
the LDOI of S, written as LDOI(S) [or LDOI(i, s) when S = {(i, s)} is 
of size one]. Intuitively, LDOI(S) corresponds to the variable values 
that become fixed after percolating S through the update functions 
and simplifying algebraically. As demonstrated in (54), if S is a sub-
set of LDOI(S), then LDOI(S) contains the virtual nodes of a stable 
motif. If LDOI(S) contains a stable motif M, we say that S (logically) 
drives M.

Our main result in this section (theorem 1 in text S3) states that 
if an attractor contains a state for which S is active, it must also con-
tain a state for which DOI(S) is active. This result illustrates how the 
DOI of a set of virtual nodes can constrain which states must coexist 
within an attractor. These considerations are important in con-
structing Boolean models in which certain system configurations 
should correspond to different long-term qualitative system behav-
iors (e.g., phenotypes). Two corollaries of this result allow one to 
study the conditions under which an attractor avoids activating a 
particular set of stable motifs. This problem is of interest, for exam-
ple, in biology, where one or more stable motifs may correspond to 
a diseased state of the system; the goal in this case is to identify drug 
targets that avoid stabilizing the diseased state. We will also make 
use of these results in later sections to enumerate a system’s attractors.

The first of the two corollaries (corollary 1 in text S3) can be 
viewed as a compatibility condition for a stable motif’s activity and 
the activity of a virtual node that drives it. In the context of system 
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control, it states that if fixing Xi is sufficient to eventually activate a 
stable motif M, then the oscillation of Xi is also sufficient to activate 
M. It can also be viewed as a consistency condition for attractors: If 
Xi = s leads to activation of M, then we cannot have Xi = s in an 
attractor (even transiently) in which M is inactive. This result pro-
vides a powerful way to identify circumstances in which no stable 
motif activates: In such cases, all stable motif drivers must be per-
manently inactive. Specifically, we collect all single-node drivers of 
all stable motifs into a set  and test whether or not ¬ = (i, ¬ s) : 
(i, s) ∈  is self-negating. If it is self-negating, then it follows that at 
least one element of ¬ is not permanently active in each attractor, 
and thus (by corollary 1), this element must eventually stabilize at 
least one stable motif. The formal statement of this result is given as 
corollary 2 in text S3.

Time reversal of Boolean systems and stable motifs 
of the time-reversed system as unstable “Gardens of Eden”
A second set of foundational results in this work is the construction 
of the time reversal of an asynchronous-update Boolean system, 
which exists despite the system’s inherent stochasticity. We use the 
time-reversal transformation to help identify discrete analogs of 
unstable manifolds in the state space. The time reversal (TR) of a 
Boolean system governed by update functions fi is called the time-
reversed system and is governed by the update functions fi

−, where 
fi

− = ¬ fi(Xi = ¬ Xi) (i.e., in a state X, the value of fi is obtained by 
negating the value of Xi, evaluating fi, and taking the negation of 
that output). Like the parity transformation, we formally define the 
time reversal as a transformation of the Boolean system given by its 

effect on the update functions. It similarly induces transformations 
of structures that are derived from these functions. For example, the 
time reversal of a parity-expanded network G for update functions 
fi can be obtained as the parity-expanded network for the update 
functions ​​f​i​ 

−​​ and is denoted TR(G). Similarly, the STG of a system is 
related to its time-reversed counterpart by reversing the direction of 
all edges (see Fig. 2A). Thus, one may follow the evolution of the 
time-reversed system on the STG by following edges in the reverse 
direction. Equivalently and in analogy to concepts in solid-state 
physics, one may imagine that all but one of the nodes in the STG 
are occupied by walkers who may not share an STG node. If the 
walkers randomly follow the edges of the STG, then the position of 
the unoccupied “hole” evolves according to the possible trajectories 
of the time-reversed system.

The concept of Garden of Eden states, which are source nodes of 
the STG (60, 61), can be generalized as subgraphs of the STG that do 
not have incoming edges; we call these subgraphs Garden of Eden 
spaces. They are analogous to unstable manifolds of ODE systems 
in the sense that no trajectory can enter these spaces from the out-
side. Any trap space of a system, and, in particular, any of its stable 
motifs, is a Garden of Eden space in the time-reversed system and 
vice versa. For example, the states marked in green in Fig. 1A form 
a trap space of the original system and a Garden of Eden space of its 
time-reversed counterpart, while the states marked in yellow form a 
trap space of the time-reversed system and a Garden of Eden space 
of the original system. An important consequence of this time 
reversal–based mapping between trap spaces and Garden of Eden 
spaces is that no attractor of a system can cross the boundary of any 

A

B C

Fig. 2. Illustration of the time-reversal transformation on the example from Fig. 1. (A) The original system’s STG alongside the STG of its time reversal. The time re-
versal has the effect of reversing the direction of each edge in the STG. The interaction network and update functions of the time-reversed system are depicted in 
(B) alongside its parity-expanded network in (C). Red interaction network edges indicate inhibition, while black edges indicate activation. The virtual nodes and hyper-
edges of the time-reversed system’s two stable motifs are highlighted in yellow and orange in the parity-expanded network, and the regions of state space in which they 
are active are highlighted in the system’s STG on the left in (A). Note that the system states highlighted in yellow (000 and 001) viewed in the original system’s STG form a 
subgraph that has no in-component and the state 001 is a Garden of Eden state. The same is true for the system states highlighted in orange. In this example, the sign of 
the regulation (inhibition versus activation) is reversed under the time reversal. This holds, in general, for all interactions except self-regulation, which does not change 
sign under time reversal.
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of the system’s trap spaces or Garden of Eden spaces. This observa-
tion is especially helpful in eliminating states from consider-
ation when searching for attractors via direct STG construction 
or in reducing the number of relevant initial conditions for study. 
We leverage these methods to construct an efficient attractor-
identification algorithm and explore their utility by way of example 
in the “Application to decision-making in empirical biological net-
work models” section.

Stable motif succession determines state-space  
decision-making and attractors
As a Boolean system’s STG has 2N nodes and up to 2NN edges (for 
stochastic asynchronous update), for systems with many entities 
(large N), it is impractical to use the STG to determine the system’s 
attractor repertoire. Stable motif–based, or trap space–based, at-
tractor identification methods are often more effective (47, 48). In 
the iterative approach of (48), a system’s stable motifs are identified, 
and one is selected to “lock in.” The system’s update functions are 
then reduced under the assumption that the system’s state is 
confined to the region described by the stable motif, resulting in a 
reduced network. Rephrased in our framework, each stable motif is 
selected, in turn, and the parity-expanded network is simplified 
under the assumption that the motif’s virtual nodes are active, re-
sulting in a reduced Boolean system. We use the notation Red(G, M) 
for the reduced parity-expanded network that results after re-
stricting the dynamics to the subspace defined by the activity of M 
and its LDOI. The process is repeated recursively for each reduced 
parity-expanded network until all possible permutations of stable 
motif activation are explored. The result is a succession diagram, Σ, 
which is a directed acyclic graph whose nodes are the unions of the 
vertex sets of stable motifs used to obtain each reduced system (see 
text S2 for a formal definition). For an example of this process and 
the resulting succession diagram, see Fig. 3.

The succession diagram serves as a summary of the decisions in 
the system dynamics that lead to successively more restrictive nest-
ed trap spaces. Each node of the succession diagram corresponds to 
a region of the state space in which the denoted stable motifs are 
active. Each branch point in the succession diagram represents po-
tential choices to be made; which choice is ultimately selected by the 
system depends on various factors including the stochastic update 
order. It follows from the nestedness of these trap spaces that the 
system cannot transition between regions that are not connected by 
a path in the succession diagram, i.e., the succession diagram en-
compasses the entire repertoire of decisions that the system is 
capable of making. The close relationship between the succession 
diagram and branch points in the dynamics is illustrated in fig. 
S1 by constructing the full STG of the example from Fig. 3. In the 
“Application to decision-making in empirical biological network 
models” section below, we illustrate how the succession diagram 
can be used to analyze the complex state-space decision-making in 
systems biology models.

One must take special care to consider the possibility of oscilla-
tions that avoid activation of stable motifs. For example, consider 
the system shown in Fig. 4

	​​ f​ A​​(X ) = ​f​ B​​(X ) = ¬ ​X​ A​​ ∧ ¬ ​X​ B​​ ∨ ​X​ C​​;  ​f​ C​​(X ) = ​X​ A​​ ∧ ​X​ B​​​	

This system’s parity-expanded network contains only one stable 
motif, the hypergraph induced by (A,1), (B,1), (C,1), which corresponds 

to the system’s sole point attractor XA = XB = XC = 1. Previous stable 
motif– or trap space–based methods (48, 49) would correctly iden-
tify this point attractor by finding the corresponding stable motif. 
This system, however, contains an additional attractor in stochastic 
asynchronous update. In the second attractor, XC remains in the 0 
state, while XA and XB oscillate; this second attractor is not identi-
fied by previous iterative stable motif reduction methods. Other 
existing methods can identify this attractor via simulation or can 
detect that at least one attractor lies outside the union of identified 
trap spaces. For a detailed discussion of the nature of these oscilla-
tions and their implications for the completeness of the attractor 
repertoire identified by iterative stable motif reduction, see (51). 
These oscillations motivate us to propose more robust automated 
methods that can identify oscillations that fail to activate stable 
motifs. These methods make practical what previously was impractical: 
the identification of the attractor repertoire of ensembles of large 
Boolean systems. Our method automatically identifies all complex 
attractors, including those that were overlooked by previous itera-
tive stable motif reduction methods.

Overview of the attractor identification algorithm
We follow an iterative stable motif approach to attractor identifica-
tion in which stable motifs are recursively used to produce reduced 
Boolean systems (and corresponding reduced parity-expanded net-
works) until no additional stable motifs remain (see Fig. 3). At each 
stage in the iteration for which a reduced parity-expanded network 
contains a stable motif, we identify complex attractors that do not 
activate any additional stable motifs. We call such attractors motif-
avoidant and call reduced systems with motif-avoidant attrac-
tors terminal. Although terminality requires analysis of the system’s 
STG in the general case, it is usually possible to substantially reduce 
the computational burden by application of a necessary condition 
for terminality that arises from corollary 2 (text S3) and properties 
of the parity-expanded network. We consider the set  of all virtual 
nodes that individually drive any stable motif to obtain theorem 3 
(text S3), which can be informally stated as follows: All motif-avoid-
ant attractor states satisfy R(X) = 1, where R(X) = ∧I ∈ ¬ (I(X) ∧ 
FI(X) ∧ (∧J ∈ LDOI(I)J(X))) [and R(X) ≡ 1 when  is empty]. This 
result is a necessary consistency condition for the inactivity of stable 
motif drivers. In the example in Fig. 4, there is only one single-node 
driver of the system’s sole stable motif, namely, (C,1). Thus, the en-
tire negated driver set is ¬ = (C,0). We calculate that LDOI(C,0) is 
empty and that the update function for (C,0) is F(C,0)(X) = ¬ XA ∨ ¬ 
XB. Therefore, we find R(X) = ¬ XC ∧ ( ¬ XA ∨ ¬ XB). In Fig. 4C, only 
the three yellow states have R(X) = 1, and so, any motif-avoidant 
attractor is confined to those three states.

We also leverage time reversal in determining terminality. If a 
stable motif M− of the time-reversal TR(G) of the parity-expanded 
network G is active in a state X, then X can only be in an attractor of 
G if M− (viewed as a set of virtual nodes in the forward-time system) 
is not self-negating in G. Thus, when considering states that may be 
in a motif-avoidant attractor of G, we can ignore states belonging to 
stable motifs of G and belonging to self-negating stable motifs of 
TR(G) and states for which R(X) is zero. We call the remaining 
states the terminal restriction space of G. For example, the terminal 
restriction space of the system in Fig. 4 is the yellow portion of its 
STG. In practice, focusing on the terminal restriction space can re-
duce the number of variables that must be simulated by a consider-
able amount. For example, we analyzed the 60-node T-LGL (T-cell 
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large granular lymphocyte)  network of (62), whose STG is too large 
(hundreds of petabytes or more) to practically construct. Previous 
stable motif–based algorithms can estimate the attractor repertoire in a 
matter of hours but cannot guarantee the absence of motif-avoidant 

attractors without building the STG (48). Exploring only the terminal 
restriction space, however, results in a reduction of the search space 
by a factor of over 2 billion and allows us to exactly identify all the 
attractors of the system in a matter of minutes [for the purposes of 

A B

C D

E

Fig. 3. Outline of the iterative stable motif reduction process on a simple example. (A) A Boolean system’s interaction network and update functions. The corre-
sponding parity-expanded network, G, is shown in (B); there are three stable motifs, highlighted in blue, green, or purple. In (C), the stable motif corresponding to XA = XB 
= 1 is selected and the effect of maintaining its activity is highlighted in blue; in particular, it leads to XC = XD = 1. The variables that are unfixed (XE and XF) then form the 
bistable system Red(G, {(A,1), (B,1)}) whose parity-expanded network is shown in (D). The reduced system has two stable motifs, highlighted in pink or purple; the latter 
was also a stable motif of the original system. All possible sequences of stable motif selection and reduction are summarized in a succession diagram (E). Each node of the 
succession diagram is a set of virtual nodes that contains the stable motifs that were selected for use in the reduction. The colors of the edges in the succession diagram 
indicate which stable motif is selected to get from one reduction to the next. The process terminates when no stable motifs remain, and the attractors of the maximally 
reduced systems are identified as attractors of the unreduced system (highlighted in yellow, orange, and brown).

D
ow

nloaded from
 https://w

w
w

.science.org at Pennsylvania State U
niversity on June 19, 2022



Rozum et al., Sci. Adv. 2021; 7 : eabf8124     16 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 14

making explicit comparisons to a fully constructed STG, we analyze 
a simplified model (63) of this same system, in text S6]. We have also 
found many examples of RBNs (K = 2, p = 0.5, N = 4096) in which the 
terminal restriction space of the initial network is of size zero, a 
state-space reduction of 24096. For a description of the algorithm 
that we used to efficiently search the reduced terminal restriction 
state space for motif-avoidant attractors, see text S5.

In some cases, even the terminal restriction space is too large to 
simulate. In these cases, we can obtain information about the num-
ber of motif-avoidant attractors via the network reduction method 
of (64, 65). Variables that do not self-regulate are iteratively “deleted” 
by substituting their update functions into their successors’ up-
date functions (see Fig. 5). This method, which we call deletion pro-
jection, provides a projection map, , that has been proved to 
preserve certain features of the attractor repertoire, regardless of the 
number of deletions performed to obtain the projection map. In 

particular, all point attractors are preserved, and complex attractors 
of the original system map to one or more complex attractors of the 
projected system. Although not necessary for any of our theoretical 
results, variables with constant update functions are always priori-
tized for deletion as a computational optimization. It was shown in 
(65) that the order in which variables are deleted does not affect . 
The inverse map preserves all point attractors but only a subset of 
complex attractors in general (in other words, the projected system 
can have more, but never fewer, complex attractors than are present 
in the unprojected system). We combine the concepts of stable mo-
tifs and driver nodes with the deletion projection method of (64, 65) 
to investigate the terminality of a motif-reduced Boolean system. 
We show that the DOI of a set of virtual nodes that specifies a state for 
every variable in the projected system has a DOI in the unprojected 
system that specifies exactly one state, called a “representative state” 
in (64) (lemma 1 in text S3). Combining this result with theorem 1 
(text S3) leads to one of our main results of this section: The activity 
of stable motifs in attractors is preserved by the deletion projection 
(theorem 2 in text S3). Theorem 2 allows us to test the terminality of 
a system by testing the terminality of its projection.

We give a visual overview of the algorithm in fig. S2. We also 
present a “by hand” example of the approach on a five-variable 
system in fig. S3. We implement the techniques described in this 
section in the StableMotifs Python Library (available at https://
github.com/jcrozum/StableMotifs/). Notably, our attractor-finding 
method outperforms the earlier stable motif–based method of (48) 
and the boolSim tool (66) integrated into GINsim (see text S8) (67). 
For example, our code was able to compute the succession diagram 
of the 69-node unstimulated epithelial-to-mesenchymal transition 
model of (33) in under 2 min on a consumer-grade desktop, while 
the software implementation of (48) was unable to do so within 
12 hours.

RESULTS
Application to decision-making in empirical biological 
network models
In this section, we illustrate how our methods can be applied to 
validated Boolean models of biological networks to analytically con-
nect regions of state space to decision-making (points of no return) 
in their dynamics and to subnetworks (stable motifs) in the under-
lying interaction network. The biological network models that we 
focus on are a model of the mammalian cell cycle phase switch (pre-
sented in the subsection below) (68) and a model (63) of a type of 
white blood cell cancer (T-LGL leukemia) (presented in text S6). In 
particular, we identify and characterize the Garden of Eden spaces, 
illustrate an informative partitioning of the state space, and fully 
describe the attractor basins. The phase switch is a tristable molec-
ular circuit that drives mitosis. Its three steady states mark three 
stages of the cell cycle: G1, G2, and the spindle assembly checkpoint 
(SAC). Under various biologically relevant conditions, such as cou-
pling to other molecular circuits, the phase switch oscillates be-
tween these stages in the order that they occur in the cell cycle (50); 
here, however, we study this switch in isolation. Further details of 
this model, including the update functions and stable motifs, are 
given in text S7.

Our focus is on how details of a system’s decision-making ca-
pacity can be explored by analyzing the system’s time reversal in 
conjunction with the succession diagram. We emphasize insights 

A B

C

Fig. 4. An illustration of methods to refine the portion of the STG that may contain 
motif-avoidant attractors using the system fA(X) = fB(X) = ¬XA∧¬XB∨XC; fC(X) = XA∧XB 
as an example. (A) The system’s parity-expanded network and its sole stable motif 
(in green). This stable motif has one driver set, {(C,1)} (bold outline). By corollaries 1 
and 2 (text S3), any motif-avoidant attractor must have XC = 0 and F(C,0) = ¬ XA ∨ ¬ 
XB = 1 fixed, i.e., such an attractor can only contain states that satisfy R(X) = ¬ XC ∧ 
(¬XA ∨ ¬XB) = 1. (B) The parity-expanded network of the time-reversed system, with 
its three stable motifs highlighted in purple, blue, and orange. (C) The STG of the 
system. The states corresponding to each of the stable motifs in (A) and (B) are 
highlighted in matching colors. States with (C,1) active are highlighted with a bold 
outline; none of these states can be part of a stable motif–avoidant attractor. The 
three stable motifs of the time reversal partition the STG into five subgraphs based 
on which time-reversal stable motifs are active: none, purple, blue only, orange 
only, or both orange and blue. These subgraphs, highlighted by color, are Garden 
of Eden spaces of the forward-time system. No attractor of the forward-time 
system can cross between these regions. Any motif-avoidant attractor of the 
system must reside in the terminal restriction space of the STG (yellow). The states 
100, 000, and 010 form a motif-avoidant attractor in which XC = 0 is fixed while XA 
and XB oscillate.
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gained from the stable motifs of the time-reversed system. In prin-
ciple, more granular initial condition tracing is possible via the full 
succession diagram of the time-reversed system. Figure 6 shows 
how the succession diagram and Garden of Eden spaces provide a 
concise summary of the irreversible commitments in state space; 
this is especially useful when the STG is too large or too dense to 
analyze directly (compare Fig. 6B and Fig. 6E). The compressed 
state space illustration of Fig. 6E unites information from the origi-
nal and time-reversed system. It is equally or more informative than 
the full STG (Fig. 6B). The green oval stands for Garden of Eden 
spaces, with the internal diamonds representing generic states in 
several categories of these spaces: The darkest green diamond rep-
resents Garden of Eden states (fixed points of the time-reversed sys-
tem); the green diamond represents states in the overlap of multiple 
stable motifs in the time-reversed system; the light green diamond 
represents states in a single stable motif of the time-reversed system; 
and last, the gray diamond represents states that do not lie in any 
stable motif of either the forward or backward time system. That 
states of this last type belong in a Garden of Eden space follows from 
the definition of stable motifs and the lack of motif-avoidant attrac-
tors in this system. Progression from darker to lighter green rep-
resents the commitment to exiting Garden of Eden spaces. Gray 

ovals represent overlapping spaces determined by the stable motif 
written inside each oval. The diamond symbols in these overlaps 
mark relevant trap spaces, e.g., the yellow diamond marks the trap 
space in which motifs P1, P5, and P6 are all active. Each edge corre-
sponds to an irreversible commitment to a smaller trap space. For 
example, the yellow-blue diamond marking the intersection of the 
P1 and P5 spaces has two edges: The edge to the yellow diamond 
indicates a transition to the intersection of the P1, P5, and P6 motif 
regions, which determines an irreversible commitment to G2 (entry 
into the exclusive basin of attraction to G2), and the edge to the blue 
diamond indicates a transition to the intersection of the P0, P1, and 
P5 motif regions, which determines an irreversible commitment to 
G1 (entry into the exclusive basin of attraction to G1). Circular sym-
bols indicate the attractors and highlight their position in the nar-
rowest trap space. The graph structure in Fig. 6E is isomorphic to 
the graph structure in Fig. 6C, demonstrating that the stable motif 
succession diagram encapsulates the trajectory of the system in state 
space. The compressed succession diagram representation has the 
benefit that it can be constructed for very large networks whose 
STG cannot be built. As we will demonstrate in the next section, we 
can build succession diagrams for networks whose STGs have more 
nodes (≈24000) than can physically exist in the observable universe 

Fig. 5. Deletion projection example. Each panel shows the interaction network, parity-expanded network, and STG of a system before projection (top), after projecting 
out one variable (middle), and after projecting out two variables (bottom). The attractors of each system and the stable motifs that are active therein are highlighted in 
green and purple. Attractors and stable motifs project onto attractors of the same color. The projection procedure preserves point attractors exactly. In general, the num-
ber of complex attractors (in this case, zero) serves as an upper bound on the number of complex attractors in the unprojected system [see, e.g., (64)]. One may view the 
action of the projection on the STG as contracting the top four nodes (100, 101, 110, and 111) to a single node (1--), with representative state 101 (transitions among these 
four nodes ultimately lead to 101); a similar view can be taken of the bottom four nodes. We note that the projection procedure respects the parity layer partitioning of 
virtual nodes. In accordance with theorem 2, the stable motifs [{(A,1),(B,0)} and {(A,0),(B,1)}, which project to the self-activating virtual nodes (A,1) and (A,0), respectively] 
are preserved in the sense that, for example, the attractor with (A,1) active in the bottom panel corresponds to an attractor in which the stable motif {(A,1),(B,0)} [which 
projects onto (A,1)] is active. This implies that the value of XA is sufficient to determine which attractor the system attains.
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(≈2600, assuming one state per Planck volume and disregarding 
graph edges).

An important feature of this analysis is that decisions can be as-
cribed to specific strongly connected subgraphs of the interaction 
network. These subgraphs and their stable states correspond exactly 
to stable motifs, i.e., their representations in the parity-expanded 
network do not have any parity-invariant subgraphs. These can 
provide important biological insights. For example, because there 
are no paths in the succession diagram from P1 to SAC (Fig. 6C), we 
see that the P1 stable motif cannot be active during the SAC phase. 
Driver node analysis of the cyclin-dependent kinase 1 (Cdk1)–Wee1 
feedback associated to the P1 stable motif (Fig. 6D) indicates that 
knockout of Cdk1 alone blocks the SAC. Following P1 commitment, 
the choice between G1 and G2 is decided by the activity of the Cdc25A-
CyclinA feedback loop (P0) in competition with the Cdh1 (cadherin 1)- 
CyclinA feedback loop (P6) when pAPC (phosphorylated adenomatous 
polyposis coli complex) is inactive (P5).

RBN results
As an additional application, we study the scaling of the average 
number of attractors of ensembles of RBNs generated by the Kauffman 
N − K model (24). In this model, each of N nodes receives K edges 
from randomly selected “regulator” nodes. Each node’s (quenched) 
update function randomly maps each of the 2K possible combined 
regulator states to 1 with probability p or to 0 with probability 1 − p. 
Tuning the indegree K or the activation bias p yields an order-
to-chaos transition at 2Kp(1 − p) = 1 (in the thermodynamic limit, 
when N → ∞) (41, 69–71). For additional details about previous 
studies of this model, see text S1. We address and resolve the open 
problem of the attractor number scaling in the critical K = 2, p = 0.5 
regime under stochastic asynchronous update. The number of at-
tractors provably scales as a power law asymptotically bounded 
above by Nln4 (72). In this section, we obtain the current best nu-
merical estimate of the scaling exponent value (see Supplementary 
Code and the Random Boolean Network Application folder at 

A

C

D

B

E

Fig. 6. Parity and time-reversal analysis elucidates state-space decision-making in the phase switch model of (68). Text S7 provides further details about the mod-
el, including its update functions. The interaction network is presented in (A). The full STG is indicated in (B). The three point attractors of this model are the three large 
nodes highlighted in blue, yellow, and red and correspond to the G1, G2, and SAC phases of the cell cycle. The basins of attraction exclusive to each attractor are highlight-
ed in the matching color. Gray nodes have paths to multiple attractors; the path taken depends on the stochastic update order. The stable motifs of the time-reversed 
system identify unstable Garden of Eden regions of the state space (highlighted in green) that cannot be (re)entered from the outside. A darker shade of green indicates 
the overlap of multiple Garden of Eden spaces. The three large green nodes are the Garden of Eden states of the system and are obtained analytically as the fixed points 
of the time-reversed system. (C) The stable motif succession diagram of the system, with stable motifs of the network and reduced network denoted by labels P0 to P6. 
The colors indicate, by the same scheme as in (B), which attractors are possible after commitment to each stable motif. (D) The subnetworks and node states associated 
with these stable motifs (blue, active/on; gray, inactive/off). These subnetworks and their states are obtained as strongly connected components of the parity-expanded 
network that do not contain parity-invariant subgraphs. In (E), we illustrate how the succession diagram and garden spaces together describe (analytically) the possible 
decisions that the system can make during its dynamics. Ovals represent specific subsets of the state space.
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https://github.com/jcrozum/StableMotifs/ for details on ensemble 
generation and analysis).

We generate ensembles for increasing network size N (from size 
N = 2 to size N = 4096) and apply our attractor identification algo-
rithm to construct the succession diagram for each network and to 
determine or bound (in networks that are unusually computation-
ally difficult) its number of attractors. For greater than 96% of the 
more than 10,000 unique networks generated, we are able to exactly 
enumerate the attractors, and this fraction never falls below 86% 
(260/300 for N = 2048) for any value of N considered here. For all 
but 13 (0.1% of the total) of the networks without an exact attractor 
count, we can constrain the number of attractors by using the dele-
tion projection and/or counting the number of maximal stable 
modules (see Supplementary Code for details and implementation). 
Of these 13 networks, the plurality (5) is of size 4096, corresponding 
to 1.67%of the 300 networks generated for this size. For each of 
these remaining 13, we use the trivial lower bound of 1 for the num-
ber of attractors and choose an upper bound 10% larger than that of 
the most attractor-rich networks of the same size (see Supplemen-
tary Code for details). This makes these networks outliers without 
introducing undue sensitivity.

The scaling of the average number of attractors 〈A〉 as a function 
of network size N is shown in Fig. 7. By fitting power law 〈A〉 = a + 
bNc, we find that the exponent is c = 0.12 ± 0.05 [1 SD; 95% confi-
dence interval (CI) [0.04,0.22]] when fitting only the networks for 
which we are able to exactly enumerate the attractors (blue circles and 
curve on Fig. 7). The attractor upper bounds (orange symbols and 
curve) yield an upper bound on the scaling exponent of c = 0.20 ± 
0.05 (95% CI [0.11,0.30]). To ensure that the considered networks 
are sufficiently large, we analyze the scaling of the number of maxi-
mal stable modules in networks as large as N = 16,384 (recall that 
stable modules are source-free subgraphs of the parity-expanded 
network that have no parity-invariant subgraphs). Because maximal 
stable modules correspond to disjoint trap spaces in the state space, 

their number serves as a lower bound on the number of attractors. 
We include these lower bounds in our analysis of the lower bound 
scaling. In practice, the lower bounds are very often in 1-1 corre-
spondence with the number of attractors, as is supported by the 
good agreement between the exact count of attractors and the lower 
bounds on the attractor counts. In particular, the scaling of the 
lower bounds (c = 0.13 ± 0.04, 95% CI [0.06,0.21]) is consistent with 
the attractor scaling for N ≤ 4096 and continues at least until N = 
16,384, providing strong support that we have probed sufficiently 
large networks. These networks are of comparable size to many fre-
quently studied genomes (e.g., N ≈ 4000 for the Escherichia coli ge-
nome, while for the human genome, N ≈ 20,000). Furthermore, 
our analysis of these lower bounds increases our confidence that 
we have considered sufficiently large N for the exact count scaling. 
This is because the mean estimates obtained by fitting up to N = 
4096, N = 8192, and N = 16,834 are all in agreement with one anoth-
er (c = 0.13 ± 0.04 for each of them) and within less than 10% of the 
mean estimate obtained for the N = 4096 exact counts (c = 0.12 ± 
0.05). All the scaling exponents are well below the initially conjec-
tured square root scaling (c = 0.5) and the theoretical maximum 
of c = ln 4(≈1.39). For additional details regarding the fitting pro-
cedure and error estimation, see Supplementary Code.

Overall, we obtain the best current estimate of the exponent of 
K = 2, p = 0.5 Kauffman networks under stochastic update. Our 
analysis represents an 80-fold increase in network size over previ-
ous exact or near-exact enumeration analysis of asynchronous 
N − K RBNs (73, 74). We find a significantly lower exponent than the 
original exponent found by Kauffman and those identified in other 
stochastic updating schemes (72–74).

DISCUSSION
Two central questions in complexity science are “what emergent 
behaviors could a complex system exhibit?” and “what controls a 
complex system’s selection of one emergent behavior or another?”. 
While interesting questions from a purely theoretical perspective, 
they also have important applications in engineering, social science, 
and medicine. The past several decades have seen a growing 
number of collaborations between biologists, computer scientists, 
mathematicians, and physicists that approach these questions us-
ing Boolean networks. This work continues that interdisciplinary 
tradition using geometric intuitions from physics to prove new 
results in the mathematics of Boolean dynamics, which we have 
applied to develop improved computational methods for analyzing 
complex systems common in biology and other sciences. Coming 
full circle, these methods have yielded new results in the statistical 
mechanics of RBNs. Our methods allow efficient identification of 
the subspaces of the state space where robust commitments happen 
and connect these decision-making spaces to subnetworks in the 
underlying interaction network. Time reversal identifies a previously 
unexplored type of decision-making: the commitment to exit a 
Garden of Eden space, eliminating the option to ever return to that 
space. We associate each decision with the stabilization or destabili-
zation of strongly connected subnetworks that do not contain any 
parity-invariant parts.

The parity symmetry of Boolean systems has led us to propose 
the parity-expanded network. Much like the STG, it is parity invari-
ant (up to node relabeling) and completely encodes the system’s 
dynamics, but its number of nodes grows linearly with the system 

Fig. 7. Summary of RBN attractor scaling fits. Symbols indicate the measured 
number of attractors and the lines represent fits of the form 〈A〉 = a + bNc using 
nonlinear least-square fitting (see Supplementary Code for implementation details). 
The fits yield intercept a = − 0.38, a = 0.44, and a = − 0.16 for the exact counts, 
upper bounds, and lower bounds, respectively. The exponents of the fits (c in 
〈A〉 = a + bNc) are reported in the legend; see the main text or Supplementary Code 
for bootstrapped confidence intervals. For reference, the sizes of previously con-
sidered asynchronous RBN ensembles (73, 74) and several genetic networks from 
biology (79–83) are annotated on the horizontal axis.
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dimension rather than exponentially. It unites large knockout and 
knock-in (constitutive activity) perturbations within the same frame-
work, greatly simplifying their analysis compared to the similar 
ideas presented in (31), upon which we build. This earlier construc-
tion made use of three types of nodes and lacked explicit dynamical 
structure, requiring careful case splitting and multiple system rep-
resentations to study system perturbations [see e.g., (54)]. Rather 
than distinguish nodes that correspond to on and off states at a defi-
nitional level, we distinguish these nodes by their behavior under a 
global parity transformation. This view elucidates the role of the parity-
expanded network as a parity invariant and of its stable motifs as strongly 
connected components that have no parity-invariant subgraphs. These 
insights have enabled our formal proofs of novel results that relate 
network reduction methods, driver sets, and stable motifs, results 
that we have leveraged to develop a fast attractor-finding method.

We have presented the time reversal of a stochastic update Bool-
ean system and demonstrated its usefulness in analyzing the for-
ward-in-time dynamics. Our implementation is closely related to 
GINsim’s model reversal (67). Just as stable motifs of a system de-
scribe stable spaces (subspaces that trajectories cannot exit) in the 
dynamics, stable motifs in the time reversal of that system describe 
unstable spaces (subspaces that trajectories cannot enter). This ob-
servation is especially helpful in eliminating states when searching 
for attractors via direct STG construction or in reducing the num-
ber of relevant initial conditions for study. In addition, it demon-
strates an important property: The activity of any stable motif of a 
system or its time reversal is constant for any attractor. In this way, 
time reversal and parity elucidate the “attractor-conserved” quanti-
ties of a system’s dynamics. These attractor-conserved quantities 
are only conserved within attractors and may initially vary. None-
theless, it is notable that there is a well-defined notion of time reversal 
in these inherently stochastic systems and that it yields asymptotic 
conservation laws.

By combining new results stemming from the parity-expanded 
network and time-reversal construction, we developed a method 
for fast attractor identification in stochastic update Boolean sys-
tems. We used this new method to explore the scaling in attractor 
number for asynchronous N − K Kauffman networks. Using these 
methods, we probed the power law scaling of the K = 2 critical 
(p = 0.5) Boolean networks under asynchronous update. Our new tech-
niques allowed us to find or bound the number of attractors in these 
networks for sizes larger than ever before considered (N = 16,384), 
and we cover much of the biologically relevant ranges of gene regu-
latory network sizes. The power law scaling that we observe is much 
lower (by a factor of about 10) than the theoretical maximum of ln4 
(72) and also lower than the originally conjectured 0.5 scaling expo-
nent (24). The low average number of attractors that we find (〈A〉 ≈ 
4 for networks with N ≈ 4000) is consistent with previous results on 
the average number of point attractors and stable synchronous at-
tractors in this ensemble (57, 61). Notably, the low attractor num-
ber and slow scaling appear even when upper bounds for attractor 
numbers are used in the calculations instead of exact attractor 
counts, meaning that the results are not explainable by a systematic 
undercounting of attractors in large networks. Extending the con-
sidered network size beyond N = 4096 for the more easily computed 
lower bounds on the attractor size does not change the scaling ex-
ponent estimate. Because the exact counts and the lower bounds are 
in close agreement, this increases our confidence that we have con-
sidered sufficiently large N for the exact counts of attractors.

The relatively slow growth of the average number of attractors 
compared to (i) the originally conjectured 0.5 scaling exponent and 
(ii) the current cell type scaling estimate of 0.70 [0.88/1.26 = 0.70, 
based on the experimental data from (43)] has several possible 
explanations that suggest follow-up investigations. One possibility 
is that timing-specific attractors contribute substantially to the cell 
type scaling, implying that gene-regulatory synchrony plays a cru-
cial role in a cell’s ability to differentiate. Alternatively, the scaling 
of the attractor number under stochastic update might vary be-
tween critical RBN ensembles (e.g., it may differ in ensembles using 
canalizing functions or threshold functions), and some of these 
other ensembles could more accurately reproduce the observed cell 
type scaling. Analysis of the attractor number scaling in other RBN 
ensembles using our approach should help answer this question. It 
is also possible that gene regulatory networks of living organisms 
have evolved to increase the number of robust attractors, a process 
that is not fully captured by these ensembles of RBN.

The methods developed here can be readily applied to the nu-
merous published Boolean models of biological systems to elucidate 
their full attractor repertoire. Our framework can also bring further 
insight into a variety of models that could be reformulated as Boolean 
models. For example, the quenched Glauber dynamics set on a net-
work (75), models of binary opinion propagation (8), or the 
Hopfield model (23) can be expressed with threshold Boolean func-
tions. The stable motifs of these systems, and correspondingly the 
trap spaces of their dynamics, can be identified as particular in-
stances of strongly connected subgraphs. In the Watts model of 
opinion propagation, the percolation of an opinion depends on the 
existence of a strongly connected subgraph of early adopters, who 
can be influenced by a single neighbor to adopt the opinion (18). 
We expect that future adaptation of our methods to these models 
will be able to reveal rare attractors (metastable states).

Apart from the direct application to Boolean models that we 
have emphasized here, time reversal and parity play a role in de-
scribing the fundamental logical relationships between entities in 
complex systems more generally. In this view, the logical parity in-
version and time reversal of a system describe a coarse-grained and 
discretized version of the dynamics, which, in turn, provides insight 
into the dynamics of more detailed models; see e.g., (45, 76) for fur-
ther discussion. While the extent to which our key results generalize 
beyond the stochastic Boolean systems presented here remains an 
open question, we are encouraged by preexisting analogs of ex-
panded networks in multilevel systems (55) and ODEs (56), as well 
as by results connecting logic-based models to ODEs (45, 76–78). 
Although our focus here is at the level of interaction logic, our re-
sults suggest a new approach to analyzing complexity: studying the 
relationship of a complex system to its logical parity inversion and 
time reversal to constrain the system’s repertoire of emergent 
behaviors.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/29/eabf8124/DC1

View/request a protocol for this paper from Bio-protocol.
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