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ABSTRACT

A possibility of DM being multicomponent has a strong implication on resolving decades-long known cosmological problems on
small scale. In addition to elastic scattering, the model allows for inelastic interactions, which can be characterized by a ‘velocity
kick” parameter. The simplest 2cDM model with cross-section 0.01 < o/m < 1cm?g~" and the kick velocity Vi ~ 100km s~
have been shown to robustly resolve the missing satellites, core-cusp, and too-big-to-fail problems in N-body cosmological
simulations tested on Milky Way (MW)-like haloes of a virial mass ~5 x 10'' M, (Papers I & II). With the aim of further
constraining the parameter space available for the 2cDM model, we extend our analysis to dwarf and galaxy cluster haloes with
their virial mass of ~107—108 and ~10'3 — 10'* M, respectively. We find that o o/m > 0.1 cm?>g~! is preferentially disfavoured
for both dwarfs and galaxy cluster haloes in comparison with observations, while o o/m = 0.001 cm?g~! causes little perceptible
difference from that of the CDM counterpart for most of the cross-section’s velocity dependence studied in this work. Our main
result is that within the reasonable set of parameters, the 2cDM model can successfully explain the observational trends seen in
dwarf galaxy and galaxy cluster haloes, and the model leaves us an open window for other possible alternative DM models.
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1 INTRODUCTION

The success of the collisionless CDM paradigm on the large-scale
structure formation has made it the standard model of cosmology.
The ACDM-based simulations (e.g. Springel et al. 2005, 2008;
Diemand et al. 2008; Stadel et al. 2009; Klypin, Trujillo-Gomez &
Primack 2011) have consistently shown remarkable agreement with
observations on the large-scale structure (e.g. Tegmark et al. 2006;
Hinshaw et al. 2013), and the model has thus far served as a strong
foundation for studying many branches of astrophysical phenomena
both in observational and theoretical fields, providing us deeper and
enriching insights into the large-scale structure formation process.
From the other side, however, the ACDM model has faced outstand-
ing challenges. An N-body ACDM simulation is known to produce
centrally concentrated haloes (Dubinski & Carlberg 1991) in which
the halo density profiles have a characteristic cuspy inner profile (p
~ r~1) that is self-similar across a wide halo mass range (e.g. Prada
et al. 2012; Dutton & Maccio 2014) and can be well described by
a Navarro-Frenk—White (NFW) profile (Navarro, Frenk & White
1996b, 1997). The observations, on the other hand, have shown that
cored profiles with shallow inner density slope « ~ 0 in p ~ r*
tend to be favoured in dwarf galaxies (Swaters et al. 2003; de Blok
2010; Kuzio de Naray & Kaufmann 2011; Walker & Pefarrubia
2011; Oh et al. 2015). Related to this, the ACDM-predicted haloes
hosting dwarf galaxies (or massive subhaloes) in the Local Group
type of environment in simulations are significantly larger and
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more centrally concentrated compared to observations, known as
the too-big-to-fail (TBTF) problem (Boylan-Kolchin, Bullock &
Kaplinghat 2011; Garrison-Kimmel et al. 2014; Tollerud, Boylan-
Kolchin & Bullock 2014; Papastergis et al. 2015). The ACDM
model is also known to produce an excessive number of subhaloes
around such environment in simulations compared to observations
(missing satellites problem) (Klypin et al. 1999; Moore et al.
1999).

One of the favoured solutions to the small-scale problems without
disregarding the success of the ACDM on the large scale revolves
around baryonic physics. The radiative and thermal energy output
originating from the stellar feedback, including star formation and
supernovae (SN) feedback, could produce perturbations that disrupt
and modify the gravitational potential of the central part of dwarf
galaxy haloes. Earlier numerical studies predicted that removal of
baryonic contents in the halo centre by such means could lead to
the formation of a cored DM profile (Navarro et al. 1996b). For
instance, hydrodynamical simulations that employ a bursty, stellar
feedback with repeated gas outflows produced by SN explosions have
shown to transform the cuspy inner profile to a shallower one, thus
resolving the core-cusp problem (Read & Gilmore 2005; Governato
et al. 2012; Pontzen & Governato 2012; Teyssier et al. 2013; Read,
Agertz & Collins 2016; Tollet et al. 2016). The gas outflows as aresult
of the starbursts at higher redshift in dwarf galaxies have also been
observationally implied (van der Wel et al. 2011). Meanwhile, some
studies have shown that the consideration of baryon and baryonic
feedback is insufficient to account for the full resolution to the
problems (e.g. di Cintio et al. 2011; Kuzio de Naray & Spekkens
2011; Parry et al. 2012).
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The baryonic processes could also be a solution to the miss-
ing satellites problem. It has been proposed that in combination
with stellar feedback and heating from reionization and ultraviolet
background could alleviate the problems (e.g. Simpson et al. 2013;
Onorbe et al. 2015), while some studies show that such effects are
insufficient (Papastergis & Shankar 2016). In particular, an important
role played by tidal disruption or ram pressure stripping in addition
to the stellar feedback by means of removing baryonic matter from
dwarf galaxies has been proposed as a solution to reconcile the
problem (Brooks et al. 2013; Sawala et al. 2013; Arraki et al. 2014;
Brooks & Zolotov 2014; Sawala et al. 2016; Wetzel et al. 2016;
Sawala et al. 2017). In the meantime, Trujillo-Gomez et al. (2016)
recently showed even with an assumption of maximal feedback effect
that the discrepancy in the abundance of the satellite galaxies cannot
be fully reconciled. Taking into account baryonic processes could
also be the key to solve the TBTF problem (e.g. Madau, Shen &
Governato 2014; Brook & Di Cintio 2015); but see Garrison-Kimmel
et al. (2013) and Papastergis et al. (2015). Aside from baryons, the
DM physics itself might provide an alternative solution to the small-
scale problems. As pointed out by Garrison-Kimmel et al. (2013),
simultaneously resolving the intertwined small-scale problems by
baryonic processes alone still poses a challenge to the ACDM
paradigm. A plethora of DM models have therefore been proposed
without necessitating an extensive modification to the conventional
ACDM model. Particularly interesting is the SIDM model, which
allows elastic scattering between DM in non-relativistic regime
(Spergel & Steinhardt 2000). Studies have shown that the inclusion
of self-interactions of DM particles induces the creation of cores
in the density profile of low-mass haloes, resolving the core-cusp
problem with or without the need for baryonic processes (e.g. Davé
et al. 2001; Loeb & Weiner 2011; Rocha et al. 2013; Vogelsberger
et al. 2014; Elbert et al. 2015; Fry et al. 2015). Recent work by
Kamada et al. (2017) showed analytically that the observed diversity
of the rotation curves from low mass to spiral galaxies can also be
addressed by the SIDM scheme.

The N-component DM model (NcDM) with both elastic and
inelastic interactions in the dark sector is a very promising extension
of the ACDM model. The model was first proposed as a self-
interacting flavour-mixed DM (fmDM) (Medvedev 2000, 2001a,b,c)
in the context of dark matter halo evolution as a way to resolve the
substructure problem. The inelastic DM (iDM) and exothermic DM
(exDM) models were introduced in the context of the direct detection
DM experiments (Smith & Weiner 2001; Graham et al. 2010;
McCullough & Randall 2013). The excited DM (eDM) was proposed
in the context of 511-keV signal in the Galaxy (Finkbeiner & Weiner
2007). Despite differences in physics of interactions in the dark sector
and different evolution in the early universe, these models share much
in common. They all postulate (i) the existence of more than one
species, either different ‘mass eigenstates’ (in fmDM) or ‘excited
and ground states’ (in iDM, eDM, exDM), (ii) the sufficiently large
DM-DM cross-sections while matter-DM interactions are of much
smaller strength, and (iii) the possibility of inter-conversion of the
‘species’ in inelastic interactions, which can release/absorb energy
of Amc? (in fmDM) or AE; (in iDM, eDM, exDM). These models
have nearly identical implementation in cosmological N-body codes,
e.g. in GADGET (Medvedev 2014b; Todoroki & Medvedev 2019a)
and AREPO (Vogelsberger et al. 2016, 2019; Chua et al. 2021).

The 2cDM model is the simplest realization of the NcDM. It is
particularly interesting because it can resolve all the problems simul-
taneously, yet it does not violate all known constraints (Medvedev
2010a,b, 2014a,b). To our knowledge, 2cDM is the only model that
(i) reproduces observational data, (ii) does not contradict available
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observational constraints, and (iii) successfully and naturally evades
the early universe constraint (Medvedev 2014a), i.e. the Boltzmann
suppression of the abundance of ‘excited’ states after freeze-out. We
note that a consideration of possible multicomponent dark matter
that is similar to our model has also been studied in literature and
how such models affect the large-scale structure (e.g. Doroshkevich,
Khlopov & Klypin 1989; Foot & Vagnozzi 2015; Foot & Vagnozzi
2016).

The 2cDM model is characterized by the elastic (scattering) and
inelastic (conversion) cross-sections, o4(v) and o .(v), which can be
velocity-dependent, and the energy difference, AE; or Amc?, be-
tween the two species. Numerical DM-only simulations demonstrate
that Am < m (or AE; < mc?), that is m; ~ m; in order not to modify
the large-scale structure formation (Medvedev 2014b). It also appears
that cosmological simulations can constrain the normalized values
only: o(v)/m, o.(v)/m and Am/m. It is also convenient to introduce
a characteristic velocity Vi = cy/2Am/m; we will use Vi along
with Am/m. The 2cDM model’s detailed theoretical foundations are
described in Medvedev (2010a), Medvedev (2010b), and Medvedev
(2014a). Note also that SIDM is automatically included in NcDM
and corresponds to o.(v) =0and N = 1.

In Todoroki & Medvedev (2019a) and Todoroki & Medvedev
(2019b) (correspondingly, Papers I and IT), we introduced a simplistic
2c¢DM model, which incorporates two physical processes to the CDM
paradigm: (i) the hard-sphere elastic scattering and (ii) inelastic
mass conversion between two DM-species, labelled as heavy and
light (Medvedev 2000, 2001a,b,c, 2010a, 2014a,b). In the model,
the DM cross-section is generally assumed to be velocity-dependent,
which arises from the quantum mechanical formalism. Such cross-
section’s velocity dependence has been implied as a viable possibility
in simulations (Colin et al. 2002; Vogelsberger, Zavala & Loeb 2012;
Zavala, Vogelsberger & Walker 2013; Kaplinghat, Tulin & Yu 2016).
Similarly, the 2cDM model assumes the velocity-dependent cross-
section for the two separate physical processes (i) & (ii) mentioned
above as

o(v) = ao(v/vo)™ for scattering,
L oo(py/pi)(v/ve)* for conversion,

ey

where as and a. are the power-law indices of the elastic scattering
and the inelastic mass conversion processes, respectively, vy =
100 km s~! is the velocity normalization, and the coefficient o
is parametrized by expressing it in terms of the cross-section per unit
mass, oo/m, incm*g~". The (p//p;) prefactor, or o -prefactor, which is
the ratio of the initial to the final momenta of the interacting particle,
arises for the mass conversion to take into account the quantum
mechanical detailed balance in the forward and reverse interaction
probabilities. This pre-factor explicitly appears in all cases, except
for (as, a;) = (-2, —2).

Following Medvedev (2014b), we use the kick velocity parameter
of Vi = c/2Am/m ~ 100 km s~'. This kick velocity depicts the
boosted velocity of the light particle that was converted from the
heavy partner after the mass conversion takes place. That is, with the
mass degeneracy, we have a non-relativistic kick velocity, whereas a
relativistic kick velocity is in principle possible if the difference of
the two masses is assumed large.

In Papers I & II, the 2cDM model was tested on Milky Way (MW)-
like haloes in N-body cosmological numerical simulations and a set
of the model parameters were explored. We showed that the 2cDM
effectively resolves the small-scale problems, namely the (i) missing
satellites, (ii) TBTF, and (iii) core-cusp problems with most of the
available parameters. To address these problems and constrain the
model parameter space, the internal structure of the DM haloes and
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the abundance of the subhaloes were examined by looking at the
halo density profiles and maximum circular velocity functions (or
velocity functions for simplicity). Comparing with observations, we
found that cases with the power-law indices of the velocity-dependent
cross-section of (as, a.) with a = =2, —1, or 0, the self-interacting
DM cross-section per unit mass of 0.01 < o¢/m [cng‘1 1< 1,and
Vi ~ 100 km s~! can effectively solve the small-scale problems,
while Vi ~ 10—20 km s~! fails to do so when the model is tested on
an environment similar to the Local Group.

Note, however, that these works did not consider the effect of
baryonic feedback and the gas dynamics, which are non-negligible
and important especially in the formation and evolution process of
the MW-type halo, given the large relative abundance of the luminous
mass (i.e. lower mass-to-light ratio). Despite the lack of statistical
samples, the parameter space for the 2cDM model was extensively
explored, and their studies comprise strong implications that self-
interacting, multicomponent DM model is a possibility without
spoiling the success of ACDM on large scale.

In this Paper III, our objective is to further extend the studies
presented in Papers I & II to investigate the effect of 2cDM physics
to the dwarf and galaxy cluster (GC)-sized haloes. That is, it is
important to investigate whether the 2cDM model can still solve the
small-scale problems across many orders of magnitude in halo mass
and further deduce a tighter constraint on the set of parameters that
can be compatible with observations. For the ‘dwarf” simulations, we
focus on the internal structure of the DM haloes by examining the
DM density profiles. For the GC simulations, we examine a sample
of GC haloes and study their internal structure by looking at both the
density profiles and the fitting parameters. For this, we focus only
on a particular set of parameters that are not ruled out by the dwarf
simulations and the MW-sized simulations.

The paper is structured as follows. In Section 2, we describe
the simulation setup for both dwarfs and GCs. In Section 3, we
examine the inner structure of the DM haloes and explore the fitting
parameters in comparison with observations. Further, we also present
a quantitative measure on the DM velocity distributions on the radial
range and the mass loss due to the inelastic mass conversion of
the 2cDM model. Section 4 is dedicated to the GC simulations
where we examine the DM halo density profiles and the fitting
parameters to see whether the results of the 2cDM model meet the
observational expectations. In Section 6, we summarize our findings
and provide future prospects on the multicomponent DM model and
the constrains on its parameter space.

2 SIMULATIONS

As discussed in Papers I & II, we used the same set of numerical
techniques by implementing the 2cDM model in the TreePM/SPH
code GADGET-3 (Springel 2005; Springel et al. 2008) on N-body
cosmological simulations. In this work, we used two initial conditions
for the Dwarf and GC simulations. The cosmological parameters
were chosen to be consistent with Planck Collaboration XIII (2015),
where Q,, =0.31, 2, =0.69, Q, =0.048, 05 =0.83, n, =0.97, and
the normalized Hubble constant 4 = Hy/(100kms~! Mpc~!) = 0.67.
All simulations start at the initial redshift of z = 99 and run down to
the current time of z = 0. For identifying the haloes and extracting
their halo properties, we used the Amiga Halo Finder (Knollmann &
Knebe 2009).

In our simulations, each simulation particle is a macroscopic
representation of an ensemble of DM particles. We call this ensemble
a simulation particle or simply ’particle’. Each of this particle is given
a fixed mass, which is primarily determined by the simulation setup,
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Table 1. Summary of the simulations used in this work. My, is the
range of virial mass of the haloes. The box size refers to the side
length of the periodic cube, N is the total number of DM particles
in the simulation box, € is the Plummer-equivalent gravitational
softening length, and mpy is the DM mass per simulation particle.

Dwarf GC
Myir (M) ~107—10% 103—10™
N of halo sample 5 18-21
Box size (A~ 'Mpc) 0.3 50
Neot 2243 3843
€ (h™! kpe) 0.046 4.5
mpm Mg) 309 2.8 x 108

such as the cosmological parameters, the total number of simulation
particles, and the size of the simulation box used.

For the purpose of studying the internal structure of the 2cDM
haloes and exploring the parameter space, we use a set of high-
resolution simulations. Table 1 summarizes the basic parameters
used for the two cases: the dwarfs and GCs. For dwarfs, we used
a rather small cubic box of 300 4~! kpc per side length with 2243
particles. In such a small simulation box, the size of largest halo that
can be produced is limited to the order of 10® M, and the strong
environmental effects, such as the tidal stripping that could originate
from the host halo, are therefore absent. Thus, the setup is rather close
to an isolated dwarf halo and strictly speaking, it is not cosmological.
The largest halo on the order of 108 M, contains more than a million
simulation particles with a single DM mass of 309 M. The force
resolution is set to 46 h~! pc, which is small enough for our purposes
to study the internal structure of the five largest haloes over the range
of Myi; ~ 107 — 10® M.

For GCs, our sample contains haloes of the order 103 — 10'* M.
The simulation box size is 502~ Mpc for the side length and the total
number of particles is 384%. The force resolution is about two orders
of magnitude larger than the dwarf simulation (i.e. 4.5 h~! kpc), but
it provides enough accuracy in the inner radial profiles to ascertain
whether the 2cDM is capable of creating shallower inner slope as it is
indicated by observations for GCs. The total number of haloes studied
ranges from 18 to 21, depending on the choice of the parameters in
which some produced a few outliers that are mostly attributed to
numerical artefacts.

To ease the comparison among the models based on the different
set of parameters, we use the same initial condition that was used
for all cases tested on each setup for dwarf and GC simulations. The
cosmological parameters are also unchanged for all cases in order
to see the direct effect of each set of 2cDM parameter on the halo
properties.

3 DWARF HALOES

It has been observationally shown that low-mass galactic haloes,
including low surface brightness galaxies and dwarf spheroidals
(dSphs), tend to have shallower rotation curves in the inner radial
profile (de Blok et al. 2008; de Blok 2010; Oh et al. 2011, 2015),
which concurrently implies cored halo density profiles, as opposed
to the cuspy profiles predicted by N-body numerical simulations of
a ACDM cosmology (Flores & Primack 1994). There is a mixed
conclusion in literature that some claim that a cascade of early SN
feedback can transform a cuspy inner profile to cored one in dwarf
galaxies (e.g. Navarro, Eke & Frenk 1996a), while others argue that in
such DM-dominated systems, star formation-induced energetic SN
are inefficient to achieve such transformation based on observational
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Figure 1. The mean DM density profiles of 2cDM for dwarf haloes compared
with selected models. The solid or dashed curve is the mean and the shade is
1 o standard deviation among the sample of five most-resolved haloes. The
innermost radial range where numerical convergence fails based on two-body
collision criteria is not shown.

constraints (e.g. Kuzio de Naray & Kaufmann 2011). Here, we
study whether the 2cDM physics alone could sufficiently explain
the formation of cored density profiles in dwarf haloes without
considering the presence and the effects of baryonic physics.

To begin, we first present the halo density profiles and examine
the internal structure based solely on the DM mass distribution.
Subsequently, the parameters are constrained by applying the fit
to the profiles and comparing it with observations. We then study
the direct effects of the elastic scattering and mass conversion (or
‘quantum evaporation’ effects) of 2cDM in the DM velocity profiles
as well as the DM velocity distribution function within a halo. The
phase-space diagram is also shown to check the effects. Some of the
selected set of parameters are further studied to see the effects of
2cDM on the anisotropy radial profiles. Finally, in comparison with
the CDM counterpart, we quantify the fraction of halo mass that can
be lost or evaporated by the 2cDM physics.

A summary of the set of parameters explored in our dwarf
simulations is the following: (i) oo/m = 0.001, 0.01, 0.1, and
1 cng_l, (1) (a5, a.) = (X, Y) where X, Y = =2, —1, 0, which
gives nine cases in combination. The kick velocity V; = 100 km s~!
is used throughout this work as the fiducial value, which corresponds
to the mass degeneracy of Am/m ~ 10~% (see Section 1). Most of
these parameters are chosen in accord with the results from Papers I
&1L

3.1 Density profiles

Fig. 1 shows the mean DM halo density profiles for the selected
models to highlight the effect of 2cDM. We chose (0,0) (i.e. no
velocity dependence) with oo/m = 0.1 cm?g~! for all the cases
shown: SIDM (= elastic scattering only), 2cDMV, and 2cDM.
The CDM is also shown for a comparison. The sample consists of
the largest five haloes in the simulation box. It clearly shows that
the mass conversion is the key physical process that successfully
reduces the innermost density, as 2cDM{ and the full 2cDM (both
mass conversion and elastic scattering enabled) closely follow each

other’s trend. Their profiles start to deviate from the CDM and SIDM
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Figure 2. DM halo density profiles of the 2cDM models with the mean and
a lo standard deviation compared with the CDM model (grey solid curve).
The number of halo samples used was 5 (Table 1). The dash-dot, dotted,
dashed, and solid curves represent o o/m = 0.001, 0.01, 0.1, and 1 cm? g‘1 s

respectively.

at ~1 kpc with the chosen set of parameters, generally conforming
to the observed range.

To explore the parameter space further, Fig. 2 shows the compila-
tion of profiles for all the other cases of 2cDM. We immediately see
the prominent impact of a. on the formation of a cored density profile
by simply comparing the columns, whereas that of a, is minimal by
comparing the cases across the rows. In other words, the shape of
the profile is predominantly determined by the strength of mass
conversion rather than elastic scattering. This is particularly true for
low-mass systems such as the dwarf haloes considered here. Their
intrinsically small DM velocity has a significant effect on the cross-
section that is inversely proportional to the velocity.

The inverse velocity dependence of the interaction cross-section
affects the relative abundance of the DM species at large redshifts.
This is so because of a relatively small DM velocity dispersion and
larger density in high-z universe, which both enhance the DM self-
interaction rates. Provided that the average DM particle velocity
is smaller than Vi, these self-interactions lead to the predominant
conversion of the heavy species into the /ight ones, thus skewing the
DM species composition well before the galaxy formation starts
to take place. Note that in simulations, such a process leads to
a quick formation of a new, self-consistent quasi-steady-state DM
composition that is different from the initial 50:50 composition and
with appropriate self-consistent velocity distribution functions of the
species.

In this study, we tested the cases with a strong velocity dependence
of o ~ 1/v* on mass conversion, denoted as (X, —2) where X = —2,
—1, or 0. Irrespective to the choice of the value for X, we found that
these models with a. = —2 can cause a significant amount of mass
conversion from heavy to light soon after the simulations started (z
> 90). To see this, Fig. 3 shows the ratio of the DM species (within
the entire simulation box) as a function of the scale factor and its
radial profiles (for the five largest haloes in the simulation) for a
set of selected cases of (0,0) and (0, —2) to highlight the effect of
the strong velocity dependence. With the small simulation box size
used in this study, such early mass conversion quickly establishes a
quasi-steady state of the DM species within the simulation box. As

220Z 8unp Zo uo Jesn saleliqi sesuey| 1o Ausiaaiun Aq 6479819/6721/€/0 1 S/8101e/SEIUW/Wod dno-olWwapeoe//:sdny WwoJj papeojumoq


art/stab3764_f1.eps
art/stab3764_f2.eps

—e— (0,0) ag/m = 1 cmifg
{0,-2) ag/m = 0.01 cm?/g

— (0,0) go/m = 1 cm?/g
(0,-2) oa/m = 0.01 cm?/g

00 02 0.4 06 08 Lo 10 0.5 05 10

Scale factor iogn?'[kpc]
Figure 3. Ratio of the number density of the DM species within the entire
simulation box as a function of the scale factor (/eff) and halo-centric radius
(right). The shades are 1o spread from the five largest haloes.

a result, the distribution of the DM species within the haloes at later
times can mostly be ‘predetermined’ (or self-regulated) by this early
mass conversion for (0, —2). Meanwhile, the case with no velocity
dependence of (0,0) shows the mass conversion taking place at a
more gradual pace as halo formation progresses. For this case, the
inner halo structure along with the relative abundance of the DM
species evolves as time elapses and the large effects accumulate over
a long time at low redshifts.

We believe that this early mass conversion is likely the reason
for the formation of the steep inner halo density profiles that are
commonly seen among the cases with a strong velocity dependence,
such as (X, —2) and even (X, —1) with a larger cross-section of
oo/m. The exception is (—2, —2), in which case the o-prefactor
becomes identity and behaves similar to the case with (=2, —1).
The ‘predetermined’ halo structure by the early mass conversion
could also provide a possible explanation as to why there is little
difference in the shape of the density profiles regardless of the
value of o/m for those cases. From the physics point of view, mass
conversion characterizes the DM velocity distribution that deviates
from the CDM counterpart. The large amount of mass conversion
from heavy to light species implies that additional kinetic energy
is being distributed among DM. This process should affect the
subsequent halo formation process by making the halo formation
and evolution less efficient, especially in our small simulation
box where there are no larger haloes that could effectively trap
particles with large kinetic energy. We examine the velocity pro-
files for the relevant cases in the next section to seek for more
implications.

For the cases that do not impose a strong velocity dependence on
the species conversion [such as (X, 0)], the effect of evaporation
is clearly responsible for creating shallow logarithmic slopes as
compared to the CDM. Without explicit velocity dependence on the
conversion, the core density (p.) and core radius (r.) are primarily
determined by o (/m, gradually producing self-similar profiles at low
z. This particular model shows a consistent trend where a smaller p.
(and a larger r.) and a less steep inner profiles are created by larger
oo/m values. Unlike the cases with a. = —2, small DM velocities
in the early universe have no substantial effect in these models, and
therefore, the species conversion takes place as haloes evolve at late
times, small redshifts.

We note that this could also indicate that the choice of the starting
redshift of the simulations (z = 99 in this study) could potentially
affect the relative abundance of the DM species for those cases with a
strong velocity dependence. If, for example, the simulation is allowed
to start at even a higher redshift of z > 99, there is a possibility that
a larger number of DM species conversion can take place at early
times. For the cases with little to no velocity dependence, however,
we expect that such effect is not significant since the majority of
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Figure 4. Fitting parameters, p. and r¢, of the 2cDM models compared with
observations. The DM cross-section per unit mass (in cm?>g~!) over four
orders of magnitude are shown for each model with the mean, the 1o error
bars, and the five individual haloes with the faded colour. For models that
showed ‘cuspy’ profiles, the upper limits on r. are shown since the gISO
fitting model (a cored profile) tends to overpredict it, while underpredicting
pe. The crosses are taken from observational data on the MW dSphs (and
references therein Strigari et al. 2008; Burkert 2015).

the self-interactions would occur in the dense halo centre after halo
formation at much later time.

To quantitatively compare the density profiles with observations
and constrain the parameters, we use a cored density profile model,
which is a modified version of the isothermal (ZSO) model. Following
the formula introduced in Papers I & 11, we fit the dwarf halo density
profiles with the generalized isothermal model (gISO), which is given
by

2 -p/2
.
- (7) } , @
re

where p is a parameter that introduces a flexibility to the pure /SO
model for the outer slope of the density profile. Note that with p
— 2, the model is effectively reduced to the pure /SO model. This
model inevitably gives a poorer fit to the cases with cuspy inner
profiles. For example, most of (X, —2) and (X, —1) cases clearly do
not show a sign of core formation within the resolved radial scale,
which corresponds roughly to ~100 pc.

To ease the comparison with observations and mitigate the problem
arising from the fit, we take the total halo mass within 300 pc from the
halo centre (M99 = M(r < 300 pc)) instead of p., which tends to be
poorly determined, especially for the cuspy cases. The advantage of
M3y over p. is that it is a parameter that can simply be determined by
the number of DM particles that reside in < 300 pc independently of
the fitting model used. It also allows us to quantify the effectiveness
of the mass evaporation directly. For completeness, however, we
conducted the fit on all cases with gISO over the numerically resolved
radial range.

Fig. 4 shows M3 as a function of r. along with observational data
from the MW dSphs. For the reasons mentioned above, we take r, for
the cuspy ones as the upper limits. As expected, those ’cuspy’ cases
consistently show smaller M3y, due to stronger evaporation effect
induced by the stronger velocity dependence of the cross-section

Paso(r) = pc
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Figure 5. Mean velocity profiles of the five largest haloes for the selected models at z = 0. The top row is the root mean square velocity and the bottom row
shows the velocity dispersion computed at each radial bin. The mean and the standard deviation are calculated at each spherically radial bin. The grey curve is
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CDM for comparison. The dotted, dashed, and solid curves represent oo/m = 0.01, 0.1, and 1 cm“g™", respectively. The shades represent a 1o spread.

with either a. = —2 or —1. The only cases that show good agreement
with observations, and thus are unlikely to be ruled out are: (-2, —2),
(=1, —1),and (X, 0), where (X = —2, —1, 0), with o o/m = 0.001 and
0.01 cm?g~". In the meantime, o o/m = 0.1 and 1 cm?>g~" are likely
to be ruled out at least from the N-body simulation presented here.
However, given that our simulated haloes are effectively isolated
haloes without being affected by tidal stripping, the comparison made
with the observations is just to check whether the simulated results
are in the ballpark. In addition, our simulated haloes are about an
order of magnitude smaller than the suggested infall mass of ~10° M,
for the MW dSphs (Wolf et al. 2010). This further adds to a larger
uncertainty in the predicted values of M3 for the 2cDM models, and
a set of more extensive studies is thus required for the transparency
of the compared results.

3.2 Velocity profiles

By examining the density profiles, it is clear that the inelastic mass
conversion process plays a significant role in characterizing the DM
mass distribution within the dwarf haloes. As briefly mentioned
in Section 1, the most important feature of the mass conversion
is the non-relativistically boosted light particles escaping the halo,
which characterizes the DM velocity distribution. To study the effect
of mass conversion on the velocity distribution, we present the
velocity profiles of a set of selected cases in Fig. 5. Here, we focus
on examining the effect of each physical process on the velocity
distribution by selecting the following cases. To see how the elastic
scattering and the inelastic mass conversion affect the shape of the
profile, we compare the cases with (i) no velocity dependence of
the cross-section o for both elastic scattering and inelastic mass
conversion, i.e. (0,0), (ii) the velocity dependence of o is applied
only for the elastic scattering with a; = —2, or (—2, 0), (iii) a case
of (0, —2) where the o ’s velocity dependence is only on the inelastic
mass conversion, (iv) a case with strong velocity dependence of o
on both elastic and inelastic scattering, (—2, —2), and its duplicate
case with the elastic scattering process disabled, (=2, —=2)ci7', and
(v) another (—2, —2) case with the mass conversion disabled (or
equivalently, SIDM). A range of o ¢/m values from 0.01 to 1 cm?g~!
are presented for each case, which are also being compared with
the CDM counterpart. The first row represents v(r), which is the

root mean square of the velocity (v = \/v?), and the second row
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presents the velocity dispersion o2 = . (v — 7), both computed
in the spherically radial bins. The aim is to examine quantitatively
how much the inelastic mass conversion modifies the velocity profiles
compared to CDM.

For both v(r) and o2(r), what is consistently shown across the
models is that the ones with no velocity dependence in the inelastic
interaction (conversion) channel (the first and second columns) share
nearly identical profiles, as it is also true among the ones with a
stronger velocity dependence (third, fourth, and fifth columns). For
all the models, except for SIDM (which is equivalent to the ‘elastic-
only’ scattering model), the deviation from CDM is mainly due to
the reduced halo mass caused by the species conversion. We found
that the difference in the halo mass among the five most-resolved
haloes can be as large as a factor of 10 [by comparing (0, —2) and
CDM, as an example]. The absence of the overall halo mass loss in
SIDM is evident from that fact that SIDM profiles largely overlap
with their CDM counterparts, except for the innermost parts where
SIDM v(r) profiles show a small rise due to the exchange of kinetic
energies of DM particles through elastic scattering.

As it is pointed out earlier, the cases with a strong velocity
dependence, such as (0, —2), trigger efficient conversion at high
redshifts, which can significantly reduce the reservoir of the heavy
DM species (see Fig. 3). As a result, the quasi-steady state of DM
species established at such earlier time renders it more difficult for
haloes to grow in size, in contrast to their CDM counterparts. This
is seen from the smaller magnitude of the DM velocity (and hence
the halo masses) for the 2cDM models, which is a reflection of the
effect of species conversion process. On the other hand, the cases
with no velocity dependence, such as (0,0), have a gradual process
of species conversion and the effect is accumulated over time. This
allows haloes to evolve and grow at later times in such a way that the
difference in the o o/m consistently appears in their profiles according
to their sizes — larger o o/m values result in more conversion during
and after halo formation. A general feature that is commonly seen
across the 2cDM models, irrespective of their velocity dependence,
is the flattening of the inner profiles. The cases with a larger cross-
section consistently show the flattened radial range being expanding,
which indicates the formation of a larger core.

Another informative way of examining the consequence of the
inelastic mass conversion is to study the phase space. Fig. 6 shows
the phase-space diagram as a function of the halo radial range. In this

220Z 8unp Zo uo Jesn saleliqi sesuey| 1o Ausiaaiun Aq 6479819/6721/€/0 1 S/8101e/SEIUW/Wod dno-olWwapeoe//:sdny WwoJj papeojumoq


art/stab3764_f5.eps

= CDM

@

£ k

=4 50

=0 ‘
-50 (,.««- '
50

o

0 10 2 300 10 2 30 10 2 300 10 20 30
Halo—centric radius [kpc|

Figure 6. Phase-space diagram of the most massive halo with each pixel
representing a simulation particle. To illustrate the difference, (0,0) with
oo/m =0.01,0.1, and 1 cm?>g~" is displayed and compared with the CDM.
The colour scheme used here is based on the projected mass density with red
being the densest and blue being the least dense.

case, each pixel represents an individual DM simulation particle. To
illustrate the key point, only the (0,0) case is shown in comparison
with CDM. It captures the essential outcome of mass conversion
effect of the 2cDM model, as it is seen in the boosted light particles
receiving higher velocities (shown as blue pixelated dots) compared
to the particles in a CDM halo over and beyond the halo radial
range. Although these boosted particles are visible in the phase-space
diagram, their relative abundance is much smaller compared to the
halo mass. This makes it difficult for their radial velocity profiles
averaged in each radial bins (as in Fig. 5) to show any quantitatively
discernible difference among the models. We therefore show only the
phase-space diagram for a visual confirmation purpose here. It is also
interesting to see how the abundance of the substructures is reduced
in the 2cDM halo compared to the CDM counterpart. Substructures
appear as high concentrations of the particles in the phase space, and
such signature is smoothed out and disappears for (0,0) with a larger
cross-section value.

One could extend the study of the halo structure based on
the velocity component by examining the anisotropy of the halo.
The so-called anisotropy parameter is defined as g =1 — v} /lTr2
(Binney & Tremaine 2008), which describes the geometry of the
internal structure of the halo in terms of the velocity in the spherical
coordinates. Then, the sphericity, or isotropy, corresponds to 8 ~ 0
with v} & v2, while the degree of anisotropy increases as the radial
component dominates over the polar component (v3 < v?), giving B
— 1. We evaluate the mean anisotropy profile 8(r) of the five most
resolved haloes and it is presented in Fig. 7. Although B may not
be the most intuitive way to interpret quantitatively the anisotropy
within the haloes, we attempt to find any distinctive signature of the
2c¢DM compared with CDM here.

Despite the statistically poor sample, we find a clear transformation
of the degree of anisotropy within a halo for the (0,0) cases. Notably,
the rise of vy relative to v, (hence, declining 8 value) near the halo
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Figure 7. Mean anisotropy profile with the standard error from the sample
of five most revolved haloes. The individual halo profiles are also shown in

thin grey. oo/m is in cm?g~!.

centre is consistently seen among the halo sample for the case with
larger cross-section of oo/m = 0.1 and 1 cm?g~!, which are also
producing a clear cored inner density profile. We can see that their
halo structure is divided into two regimes — one that is more isotropic
(B — 0, inner part) and the other being more anisotropic (outer part
of halo). The boundary that separates these two regimes roughly
corresponds to the characteristic radius in the density profile where
the shape of the profile transforms from 3 to a shallower, cored one.
When the cases with og/m = 0.1 and 1 cm?®g~! are compared, one
can see that the size of the characteristic radius increases for the latter
case, indicating the expansion of the spherical core region inside the
halo due to the stronger mass evaporation effect accompanied with
a larger interaction rate.

While we looked at the anisotropy by computing S(r) using vir2

and v}, examining the velocity dispersion o? instead might allow
more physically oriented interpretation on the anisotropy since it
can be explained in terms of a ‘pressure’ force that appears in the
Jeans equations and how the 2cDM physics modifies it. However,
our studies show that there is no clear difference between v? and o2,
indicating that the former may mostly represent the static structure
of the haloes. As such, whether we use sz or o2 for computing
B(r) would not physically make any difference, given that the bulk
velocity is not easily quantifiable in the form of radial profiles for
the 2cDM haloes.

3.3 Mass loss fraction

We now quantify the fractional mass loss due to the 2cDM physics,
namely the mass conversion, on individual halo bases. In Fig. 8, we
compare the ratio of 2cDM halo mass to that of the CDM counterpart
as a function of the DM cross-section at z = 0 and examine how
much mass is lost from (i) the inner part of r < 300 pc (of which
the halo mass contained within is denoted as M3) (left-hand panel)
and from (ii) the halo virial radius of roughly R.;; ~ 20 kpc or less
for our halo sample (right-hand panel). We chose the (0,0) model,
where the cross-section has no dependency on the velocity for elastic
scattering, while mass conversion process has a dependency of 1/v
that arises from the o -prefactor.

By comparing the left-hand and right-hand panels, it is immedi-
ately clear that the mass loss is more substantial in the inner part
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halo mass in log(M300/Mg). The right-hand panel shows the c—M relation
for the CDM haloes (grey dots) and their mean and standard deviation (black
square) and an extrapolated relation from Dutton & Maccio (2014).

than the virial range. This is a direct reflection of the fact that mass
conversion takes place more in the halo centre, where the DM density
is the highest. For example, the case with o-o/m = 1 cm?g ™! shows that
the mass reduction achieved in the inner part is ~90 per cent, whereas
that of over the virial range is only ~50 per cent (on average) relative
to the CDM halo mass. For the case with o¢/m = 0.01 cm’g~!,
the mass reduction is kept minimal (~10 per cent) in both regimes.
In either case, our results indicate that small haloes with M ~
107 —108Mg, are not completely blown away by losing all of its mass
even with a case with a strong interaction rate provided by a large
oo/m value.

Note that a more accurate representation is M3g than My since
the boundary of halo may not be well defined, resulting in a
larger scatter among the M2PM/MEPM sample compared to that of
MEM /MSEM. We emphasize that the mass loss fraction presented
here is predominantly due to the mass conversion and is independent
of environmental effects, such as tidal stripping, since the small box
size we use does not contain any other large haloes. Interestingly,
it appears that the fractional mass loss does not seem to strongly
depend on the size of halo here; that is, the largest halo (open circle)
is not necessarily the one that shows the strongest reduction of mass
compared to the other smaller haloes within our sample (My;, ~
107=108Mp).

Furthermore, Fig. 9 (left-hand panel) shows the fitting parameters
r. and p, for each halo in the sample along with their halo masses at
r < 300 pc in log scale. The general trend shows that a halo with a
larger core radius r. tends to have a lower core density p. with some
scatter [see Salucci et al. (2012), for example]. Although this trend
consistently appears among the cases with different o¢/m values,
as a stronger species conversion producing haloes with a larger r.
and smaller p., the interdependency of the two parameters is not
well established here with the limited halo sample. Additionally,
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the trend does not seem to necessarily correlate with the halo mass.
While this could well be within statistical fluctuations, given that
the halo mass range in our small sample is narrow, it could also
imply a signature from the 2cDM physics for the apparent no halo—
mass dependence. For example, Kamada & Kim (2020) considered a
similar exothermic DM self-interaction scheme and studied it over a
wide halo—mass range. They found a strong halo-mass dependence,
especially for the smaller haloes where the effect of the DM self-
interactions appears to be stronger. It is not clear how much of
the difference in the detailed DM physics implementation, including
2cDM’s evaporation effect or their treatment of gravothermal fluid, is
attributed to the apparent discrepancy in the halo-mass dependence.

In regard to this, we checked the halo concentration—mass (c—M)
relation for the CDM haloes to see if the CDM haloes follow the gen-
eral trend of an extrapolated mean c—M relation. The concentration
parameter is defined in terms of the virial quantity as cy00 = Rao0/7s,
which describes the halo concentration derived from an NFW profile
based on the density contrast exceeding 200 times of the critical
density of the universe. In our notations, the halo virial quantities are
Ryir = Rogo and My;. = M»g (not to be confused with M3, used for
dwarf haloes in Section 3 where 300 meant r < 300 pc). Fig. 9 (right-
hand panel) shows the c—M relation from the CDM haloes compared
with an extrapolated relation based on an NFW fit (Dutton & Maccio
2014). It shows that the five largest haloes in our sample do not
strictly follow the extrapolated power-law relation, and hence, the
apparent no halo—mass dependence might not simply be associated
with the 2cDM physics. It also shows that the largest CDM halo
in our sample does seem to have the largest concentration value.
This raises a question of whether the halo concentration correlates
well with the 2cDM evaporation effect within the halo centre. In
principle, the rate of DM self-interactions can be enhanced if the
halo has a higher concentration. Since this is not clearly seen in our
haloes (which can be considered ‘field’ haloes), the non-linear halo
evolution involving the halo accretion and merger history could be
playing a role in determining the effectiveness of the evaporation
from the 2cDM physics. In any case, a more extensive simulation
study would be required to fully understand this.

4 GALAXY CLUSTER HALOES

As the largest gravitationally bound objects found in the universe,
GCs offer a crucial venue to explore and study the 2cDM model
on the high-mass end of the halo-mass function. Similar to dwarf
galaxies, GCs are DM-dominated with high mass-to-light ratios,
which makes them best suited for studying the role of DM played
on cosmological scales. According to the bottom-up scenario, small
structures form in the early universe, continuously accrete mass, and
experience mergers by gravity over the cosmic time-scale to form
GCs at later times. With such a long time-scale evolutionary process,
DM haloes grow in size and can cover many decades of mass range,
which places dwarf galaxy haloes and GCs at the both ends of the
extreme in halo mass. In this section, we study whether the 2cDM
model is capable of reproducing agreement with observations by
further constraining the model parameter on GC haloes.
Simulations: To achieve our goal, we test the 2cDM model on
GCs by examining the internal structure of the halo and compare
the results with observationally available data. We chose a set of
simulations with the total number of simulation particles of 3843
with a cubic side length of 50 2~'Mpc. The force resolution is set to
4.5 h~! kpc, which is small enough to allow us to discern whether the
given set of parameters can be ruled out. That is, some observational
studies have shown that a typical GC core size can be <50—100 kpc
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(Allen, Evrard & Mantz 2011), and hence if the 2cDM GC core size
exceeds 100 kpc, we can safely rule out the particular set of model
(although this requires caution since it is subject to the baryonic
effects as well, which is discussed in the Section 5). We explored
some of the most promising cases that have survived the parameter
studies on the MW-sized in Papers I & II and dwarf-sized haloes
(Section 3).

Halo sample: The simulation box size is large enough, for our
purposes, to have a GC sample of ~20 in the range log(M,;;/Mg) ~
13.5—14.5 with the mean of 13.9 £ 0.3. We study the sample taken at
z = 0.25, which corresponds to the redshift of some of the observed
GCs we use for comparison. The haloes were selected based on
the total number of particles contained within the virial halo radius,
Nhao(<Ryir) > 100000. This yields about 20 haloes on average in
our simulations over the mass range mentioned above. Our sample
consists of both dynamically relaxed and unrelaxed haloes.

4.1 Density profiles

Observationally, the mass distribution of GCs is probed by gravita-
tional lensing, X-ray emission, and optical observables. In particular,
taking the advantage of the deep gravitational potentials produced
by GCs, gravitational lensing technique provides a robust way
of probing the mass distribution of GCs regardless of whether
it is luminous or dark matter. It also has an advantage of not
necessitating the assumption of the hydrostatic equilibrium unlike in
X-ray observations. Based on Einstein’s theory of general relativity,
a presence of mass or deep gravitational potential, such as in GCs,
creates curvature in its surrounding space—time and deflects the path
of light rays, resulting in the distortion patterns seen in the image of
the distant background galaxies. Mass distribution can be mapped by
measuring such distortion that appears as giant arcs centred around
the gravitational potential (strong lensing) and by systematically
studying a weaker and more coherent distortion patterns on the image
of background galaxies (weak lensing) (e.g. Bartelmann & Schneider
2001). A disadvantage of the lensing method, especially relevant to
the strong lensing, is that it is sensitive to the mass projection bias
due to the triaxial halo shape (e.g. White, van Waerbeke & Mackey
2002; Torri et al. 2004; Gavazzi 2005; Hennawi et al. 2007). The
CLASH cluster survey (Postman et al. 2012) used a selection criteria
of clusters based on X-ray morphology specifically for avoiding such
disadvantage.

The conventional ACDM in N-body simulations has shown to
reproduce a cuspy density profile for GC haloes, which is well
described by an NFW profile. This raises a possible tension with
some observational studies that have shown a flat or mildly cuspy
inner density profiles in the observed GC haloes (Ettori et al. 2002;
Sand et al. 2004; Newman et al. 2011, 2013b), whereas other studies
have shown that there is no such tension (Schmidt & Allen 2007).
Here, we check whether the 2cDM model is capable of producing a
density profile that is consistent with both of the pictures mentioned
above.

Based on the previous results, including what is shown in the
previous sections on dwarf galaxy haloes, we select a set of
parameters that are considered to be most promising. To account
for the possibility of having a shallower (or mildly shallower) inner
profile found in dwarf galaxies, we choose only relatively small
cross-sections, namely oo/m = 0.01 and 0.1 cm’g~!, and the set of
velocity-dependent models used are (=2, —2), (—1, —1), (0,0), (-2,
0), and (—1, 0).

Fig. 10 overlays the promising cases of 2cDM profiles on observa-
tional data. Although our simulation data do not allow us to probe as
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Figure 10. The mean DM density profiles of selected 2cDM models for
GC haloes compared with observations [from Newman et al. (2013b)]. The
solid or dashed curves are the mean. The standard deviation is not shown
in order not to lose the clarity. The innermost radial range where numerical
convergence fails based on two-body collision criteria is not shown. oo/m is
incm?g~!.

deep the inner-radial range as the observational data, we are resolving
enough range to see the characteristic radii where the turnover occurs
for some of the 2cDM models. Overall, the cases presented here with
o¢/m=0.01cm?g~! follow a similar trend with the CDM except that
they show mildly shallower profiles towards smaller r/R,;;, which
are well within the observationally inferred range. Those cases with
(X, 0) with oo/m = 0.1 cm?’g~" (dashed curves), on the other hand,
give much larger core radii with smaller central density. This implies
that even with a possible presence of baryon, which would induce a
deeper gravitational potential in the cluster centre, the cross-section
value greater than 0.1 cm?g~! would likely to fail to conform to the
observations.

As a more quantitative way to study the profiles, we show some
of the cases with the mean radial density profile with 1o spread
(shaded) and the fit (solid & dashed curves) in Fig. 11. Also shown
in each panel is the mean profile of the CDM model (red dotted)
for comparison. Having shown that the 2cDM model creates cored
density profiles in dwarf galaxy and MW-sized haloes (Section 3,
Papers I & 1II), it might be natural to consider a cored profile, such
as gISO profile, for cluster density profiles as well. However, since
the observed cluster data that we want our data to be compared
with can be described by either an NFW or its modified version
of the generalized NFW (gNFW) (Newman et al. 2011, 2013a,b;
Meneghetti et al. 2014; Umetsu et al. 2016), we fit our cluster sample
with the gNFW model written as

_ Ps
/)P fr)3E

where p, and r; are the characteristic density and radius, respectively,
and f is the logarithmic inner slope that adds statistical flexibility to
the fitting model as opposed to that of the constant value of g = 1
for the CDM model. Note that the gNFW is effectively reduced to
the NFW if § — 1.

We found that with the chosen set of parameters, the 2cDM
model can successfully create both a shallower and an NFW-like
inner profile, and the gNFW model gives a reasonable fit. The
other implications are the following: (i) The (X,0) models, where

p(r) &)
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Figure 11. Mean radial density profiles with 1o spread for the sample of
GC haloes in comparison with CDM (red dotted). The gNFW fit are shown

in solid and dashed curves. o /m is in cm?g ™.

X ={ — 2, —1, 0}, produce mild to relatively strong reduction
on the inner mass density with oo/m = 0.01 and 0.1 cm?g~". (ii)
The symmetric cases of (—2, —2) and (—1, —1), which we tested
only with o¢/m = 0.01 cm’g~!, show a somewhat weaker effect on
the density reduction in the innermost part compared to the (X, 0)
counterparts. Their gNFW fit also turned out nearly identical to that
of the CDM model.

The relatively strong effect seen in the (X, 0) models with o o/m =
0.1 cm?g~! implies that a larger cross-section value of oo/m =
1 cm?g~! or greater for those models would likely produce a much
shallower inner profile with a larger core radius (=100 kpc), thereby
it could potentially conflict with observations even with the presence
of baryons since the domination of baryons by mass in GCs does not
extend beyond 100 kpc. In the meantime, any values in the range of
0.01 < oo/m < 0.1 cm®g~! within those models can be plausible,
given that we do not consider baryonic effects.

4.2 Fitting parameters

4.2.1 B versus ry

One of the primary outcomes of imposing inelastic mass conversion
along with the elastic scattering to a DM model is creation of a
shallower inner slope of DM halo density profile. The f parameter
obtained from the gNFW fitting model quantifies any deviation of
the inner slope from a cuspy one and thus provides us a quantitative
measure on the strength of the effect of the 2cDM physics. By
evaluating 8 in comparison with observations, it would then provide
another way of constraining the parameters used in the 2cDM model.
Here, we study the correlation between the two fitting parameters,
and rg, and discuss the implications.

Fig. 12 shows f versus r, from our sample overlaid the observa-
tional data from Newman et al. (2013a). The selected observational
data consist of A383, A611, A963, and MS2137 (1o confidence
region) with their mean virial mass ranging from ~log(M,;;//Mg) =
14.5-14.9, which is by a factor of ~7 larger than the mean of our
sample halo mass, but our largest halo differs from them by a factor
of only less than 2. For comparison purposes, we also show the case
with CDM (red triangles) in all the panels.
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Figure 12. Correlation between f§ and r; for the selected set of parameters
of 2cDM, CDM (red), and observations (shaded). Each circle (2cDM) and
triangle (CDM) represents individual halo from our sample. The large stars
and triangle with error bars are the mean and the 1o spread.

We confirm that the CDM model is well within the observational
range with the mean  ~ 1, consistent with previous studies that
an NFW function can describe the observed GC density profile
reasonably well. Closely following the CDM trend is the symmetric
cases of (=2, —2) and (—1, —1) with o¢/m = 0.01 cm?g~" (upper
left-hand panel). This in turn implies that with those particular set
of parameters on ¢, and a., oo/m = 0.01 cm?>g~! is hitting the lower
limit and any smaller cross-section would yield results that are no
more different than the collisionless CDM model. The (X, 0) models,
on the other hand, show a clear deviation from the CDM, and the
larger cross-section value yields £ much less than 1, corresponding
to a shallower inner density profile. A particularly strong flattening of
the inner slope is clearly seen for the cases with o o/m = 0.1 cm?g~"
where f drops below 0, although we note that our results are still
in agreement with observations within the 2o confidence level (not
shown). In the meantime, the cases with (X, 0)o¢/m = 0.01 cm’g~!
show the mean value of the logarithmic inner slope () ~ 0.5 and
are well within the observed data. We caution, however, that the
goodness of the gNFW fit is being compromised for these cases with
o¢/m = 0.01 cm?g~" for all the (X, 0) models due to the lack of
spatial resolution in the innermost region of the halo. That is, the
density profiles shown in Fig. 11 imply that the actual value of j
should be smaller than what we have obtained from the fit. Lastly,
there is a minimal difference between (—2, 0), (—1, 0), and (0,0),
and our results indicate that the difference is simply due to statistical
in nature.

A further implication on the cross-section is that a larger value
of ao/m 2 0.1 cm?g™! is likely to produce a large core that is
inconsistent with observations and therefore might be excluded from
the plausible parameter space in the 2cDM model. This is consistent
with the numerical results presented in Papers I & II for N-body
simulations that the 2cDM model seems to consistently reproduce
agreement with observations over the many decades of halo mass
most well with oo/m < 0.1 cm?>g~", regardless of the choice of a;
and a.. We argue that this constrain would remain plausible even
with the possibility of including baryonic physics in our simulations.
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4.2.2 Concentration parameter

For consistency check, we also examined the concentration parame-
ter of our cluster sample with observations. The parameter naturally
appears in both an NFW and gNFW profiles, and hence they can
be measured and compared with observations. Both observational
and theoretical studies have shown that the concentration can be
dependent on the halo mass and the redshift or its assembly history,
both in a form of declining power laws over a given halo mass range
(e.g. Bullock et al. 2001; Buote et al. 2007; Schmidt & Allen 2007;
Duffy et al. 2008; Maccio, Dutton & van den Bosch 2008; Okabe
et al. 2010; Oguri et al. 2012).

Such power-law dependency could, however, give us an over-
estimate of the DM annihilation flux signal (or y-ray detection
signal) expected from the highly concentrated substructures, and
more modest substructure boosts are expected from a much smaller
mass scale (Sanchez-Conde & Prada 2014). It has been raised that
there may be a tension between the observed concentration and
the one from numerical simulations, in which the former appears
to have some factors larger concentration than that of simulations
(Broadhurst et al. 2008; Oguri et al. 2009), whereas some studies
found otherwise (Merten et al. 2015; Sereno et al. 2015; Umetsu et al.
2016). Here, we briefly summarize the results on the concentration,
or more specifically the concentration—-mass (c—-M) relation, for the
2cDM and the CDM.

From the gNFW fit, we found that the mean concentration from
the sample is (ca00) = 15.5 = 6.0 for the case with (=2, 0)oo/m =
0.1 cm’g~!, whereas that of CDM is (cy0) = 5.1 & 2.1 with 1o
error. The cases with (=2, —2) and (—1, —1)o¢/m = 0.01 cm?g~!
are only marginally different from CDM. In general, the value of the
mean concentration for the case with a larger cross-section turned out
much smaller when an NFW is used for the fit. For example, (-2,
0)oo/m = 0.1 cng*1 gives (ca00) ~ 2, which is roughly a factor
of 7 smaller than the value from gNFW. The large discrepancy is
attributed to the poorer fit given by NFW compared to the gNFW for
profiles that have a shallower inner density slope, and thus a similar
but more mild discrepancy is seen in the cases with (—1, 0) and (0,
0)o¢/m = 0.1 cm?>g~!. In the meantime, for the cases with smaller
cross-section of oo/m = 0.01 cm? ¢~ ! are within 1o from each other
between gNFW and NFW.

We found that there is an inconsistent trend in the values of r;
hence c¢y99, when compared between the gNFW and NFW in the
2c¢DM results, especially for the cases with a large cross-section value
of 0.1 cm?g ™! for (X, 0). While for the NFW fit, a larger cross-section
yields a larger-scale radius r; with a smaller concentration c;go, the
gNFW gives the opposite trend with a larger cross-section producing
a smaller 7 and a higher c,g9. Even though the goodness of the fit in
terms of the reduced x? value does not differ significantly between
the two profile models (especially true if the profile shape is close
to that of CDM), the gNFW profile captures the mildly shallower
or flat inner part of density profile better. In other words, the gNFW
is more sensitive in determining the turnover of the profile, which
is where 7 is essentially defined. For the 2cDM model, the DM
mass is re-distributed and pushed outward after the mass conversion
interactions take place, resulting in the shift of the position of ry in
the density profile and creating a more sudden turnover compared to
a more smooth transition seen in an NFW profile. The inconsistent
trend found in the concentration from NFW and gNFW can thus
mostly be due to (i) the inability of the NFW profile model to
accurately determine r, for a flat profile and (ii) the gNFW can
be too sensitive to the more drastic turnover of a flat 2cDM density
profiles.
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Due to the limited statistical sample over the range of halo mass and
the GC counts, we do not attempt to fit our data on the c—M relation
with a power law. The relatively large scatter among the sample also
prevents us from drawing any firm conclusion on the anticorrelation
of the c—M relation seen in literature. Our results, however, highlight
that in terms of the concentration parameter, a cross-section value
of oo/m = 0.01 cm?>g~" in the 2cDM model, especially for the
cases with (=2, —2) and (—1, —1), yields good agreement with the
CDM. The only minute difference from the CDM is that there is
an implication from the density profile that the innermost slope (r <
10 kpc) is shallower. If there is a better numerical resolution to resolve
the inner radial region, then the fitting parameter obtained from the
gNFW would have been slightly affected and possibly producing
a slightly larger concentration than the CDM. It is inconclusive
whether the tension between the numerical/theoretical predictions
and observations can be explained by the 2cDM.

5 DISCUSSION

The results shown in this work do not consider the baryonic physics.
For DM-dominated systems, this is a reasonable assumption in
general, at least for the purpose of testing and constraining a DM
model. However, both observations and numerical simulations have
shown that even for DM-dominated systems, the baryonic physics
plays a role in certain regimes, although the significance of the effect
may depend on the assumptions and models at hand. In this section,
we discuss the implications from this work and the possible effects
of including baryonic and 2cDM physics combined on dwarf and
GC systems.

5.1 Implications on baryonic effects

5.1.1 Dwarf galaxies

Dwarf galaxies are known to host relatively small fraction of stars and
gas and mostly dominated by DM mass (high mass-to-light ratios).
It is therefore unlikely that the inclusion of baryons in our analysis
would significantly affect the overall shape of the 2cDM density
profiles shown in this work. However, unlike GCs, they are formed
in the early universe via the bottom-up structure formation scenario.
This requires us to examine how the 2cDM physics plays a role in
terms of the halo evolutionary processes. To quantitatively check this,
we examined the evolution of the fitting parameters from the gISO
profile, namely r., p., and p [in equation (2)], over the scale factor of
0.25 <a <1(0 <z < 3). We found that the evolution of p. follows a
power law with the logarithmic slope of dlog p./dloga ~ 1.4, which
is nearly independent of whether the elastic scattering, inelastic mass
conversion, or both are assumed in the 2cDM model with (-2, —2).
The slope is also insensitive to the cross-section, at least for smaller
ones (og/m = 0.001 and 0.01 cm?g~!). The evolution of p as a
function of scale factor also shows a modest power-law relation: it
indicates that the haloes can be better described as isothermal as
early as z = 3. In addition, we also found that as opposed to the
gradual increase of p., the core radius steadily decreases towards
the current time. Consequently, in this scenario it is likely that the
formation of gas and stars in such a less dense environment induced
by 2cDM at earlier time could delay the burst of star formation
significantly, which is believed to occur at later time of around
z~ 1

The FIRE hydrodynamical simulations (Ofiorbe et al. 2015)
showed that a bursty stellar feedback can create a DM density core
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size of ~1 kpc in the innermost region of dwarf galaxies only above
a stellar mass of My, ~ 10%3 Mg, depending on the star formation
histories. Similarly, Governato et al. (2012) found the inefficiency in
the transfer of stellar feedback energy to DM in the system below
the virial halo mass of M.;; ~ 5 x 10° Mg, to soften the cuspy DM
density profile. In this work, we showed that the 2cDM model can
create a sizable DM density core even in the virial halo mass of as
small as M,;; ~ 10’78 M, which is up to a few orders of magnitude
smaller than their counterparts, and that our results show that the
mass conversion naturally creates a core without relying on baryonic
feedback.

5.1.2 Galaxy clusters

Possible baryonic effect in GCs can particularly be noticeable in
the core of clusters where the complex interplay among the central
galaxies, hot bubbles, cold stream, etc. is not well understood (e.g.
McNamara & Nulsen 2007). However, it has been observed that
the central region (as small as » ~ 10 kpc) is dominated by stellar
mass, and hence the total density profile (luminous + DM) has a
logarithmic inner slope steeper than that of an NFW (e.g. Sand et al.
2004; Newman et al. 2013a,b). CDM-based numerical simulations
generally confirm this picture. Meanwhile, the so-called overcooling
problem has also been well known in the numerical simulations
to cause condensation of baryonic matter in the deep gravitational
potential, which induces an overconcentration of cold gas in the
cluster centre, resulting in excessive star formation (e.g. Borgani &
Kravtsov 2011). This is generally attributed to the inefficiency of the
baryonic feedback processes, namely active galactic nuclei (AGN)
feedback, of which its strength and efficiency can be controlled by
the assumed parameters associated with them. In fact, numerical
simulations with an AGN feedback have predicted both a cuspy
(Schaller et al. 2015) and a shallower DM inner density profile
(Martizzi et al. 2012; Martizzi, Teyssier & Moore 2013), in which
the latter can primarily be created by a strong AGN feedback.
That is, the feedback can be energetic enough to quench late star
formation and turn the cuspy DM density profile to a flat one
by means of causing a strong perturbation in the gravitational
potential and removing the DM mass from the central part of
clusters.

Due to the nature of the 2cDM model to create a shallower
gravitational potential in the halo centre, which leads to producing a
flat core in the DM density profile, the model naturally alleviates the
so-called overcooling problem seen in the CDM without relying on
the baryonic feedback. In fact, for the cases with o' o/m = 0.01 cm?g ™!
tested in this work, creation of a core size of ~30 kpc is evident,
while with oo/m = 0.1 cm?g~! they are ~60 kpc (note that these
values do not necessarily correspond to the characteristic radius
rs measured from an NFW or gNFW profile). In other words, the
DM density within such radial range is noticeably reduced and the
gravitational potential can significantly be shallower compared to
that of a CDM halo. The immediate impact is a suppression of
overly concentrated cold gas in the core; thus, it follows that it
could inhibit the excessive star formation. Such effect is expected
to be particularly significant for cases with o¢/m > 0.1 cm?g™!
within the 2cDM paradigm. In the meantime, combining a strong
AGN feedback, as described in Martizzi et al. (2013), for example,
with the 2cDM model, would likely create a core size that is
larger than what is observed, especially for the cases with o¢/m 2
0.1 cm?g~" or greater. This would certainly worsen the discrepancy
with observations.
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The effect of including baryons on the c—M relation has also
been studied in literature and implied to have a non-negligible
impact (e.g. Fedeli 2012). This, however, is not trivial because the
measurement of the concentration requires accurate determination
of the characteristic radius r, that is dependent on how well a gNFW
or NFW model fits the data. In Section 4.2.2, we showed that the
value of 7 starts to deviate from each other in between gNFW and
NFW for the case with larger cross-section values, mostly owning
to the lack of accuracy in NFW to capture the shallower inner slope.
We argue that although our results are inconclusive as to whether
the apparent discrepancy found by some studies in the c—M relation
can be explained by the 2cDM model, inclusion of baryonic physics
would unlikely transform the inner DM density profile to be an
even shallower one, unless a strong AGN feedback is employed.
However, additional presence of baryon concentration induced by
the gas cooling and the presence of large stellar mass in the central
region could enhance the DM concentration in that region through
gravitational attractions, which would help make a flat 2cDM profile
more similar to that of a cuspy CDM-like profile. Therefore, there
lies no problem with 2cDM since some observational studies found
that the observed c—M relation agrees with that of CDM predictions.

5.2 Constrains from cluster mergers

Cluster merger has been studied widely and it is of great importance
in establishing a firm evidence of DM existence (Clowe, Gonzalez &
Markevitch 2004). It has also been used to constrain the self-
interacting nature of DM based on the offset between the collisionless
stellar component and the DM component, measured from optical
images and gravitational lensing data. The well-known Bullet Cluster
shows that the gas distribution detected in the optical or X-ray
images lags behind the collisionless stars and DM (Markevitch et al.
2004), which signifies that DM cannot be fluid-like or any more than
modestly collisional. The other merging clusters were also studied
to set a constrain on the self-interacting nature of DM. Similar to
the Bullet Cluster, their inferred self-interaction cross-section per
unit mass (o/m) based on the scattering depth of the DM, tpy =
(o/m)Xppm, where Xpy is the DM surface mass density estimated
from lensing data, has been reported to be o/m < O(1) cm?g™!
as an order of magnitude estimate for the upper limit (Markevitch
et al. 2004; Bradac et al. 2008; Merten et al. 2011; Clowe et al.
2012; Dawson et al. 2012; Harvey et al. 2015). Theoretical and
numerical simulations of cluster merger have also reached a similar
constrain (e.g. Randall et al. 2008; Kahlhoefer et al. 2014; Robertson,
Massey & Eke 2017). The inferred cross-section value of o(/m
< 0.1 cm?g™! as the 2cDM model’s preferred value is clearly in
reasonable agreement with those cluster merger studies.

6 SUMMARY

In this work, we explored the effect of the 2cDM physics on the
DM haloes of the size of hosting dwarf galaxies and clusters of
galaxies, effectively covering seven orders of magnitudes in the virial
halo mass. Following the studies on the MW-sized haloes presented
in Papers I & 11, the results presented in this work place a more
stringent constrain on the 2cDM model parameters based on the
N-body cosmological simulations.

Constraining the parameters is one of the major goals of this
work, and we first tested the promising set of parameters on dwarf
haloes. Those promising parameters that were inferred from Papers
I & 1II include the symmetric cases of (as, a.) = (=2, —2), (—1,
—1), and (0,0), and others with as, a. = —2, —1, and 0, totalling
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Table 2. Yes-and-no table summarizing the general compatibility of each model to observations. Results on MW haloes are from Papers I & II, and that of
Dwarf and GC are from this work. YES implies the set of parameter reproducing a consistent result with observations, while NO indicates otherwise. ‘Maybe’
is for the inconclusive cases where additional work such as with baryonic physics would be required. (NO) means the case is likely to be ruled out based on
what the results on a similar case with a smaller or larger cross-section values implied. All the cases with ‘=" have not been explicitly tested. The acronyms of
VF and RHDF are velocity function and radial halo distribution function, respectively. For Dwarf Density Profile, Y/N is stated by considering what is shown in
both Figs 2 and 4 combined. All SIDM cases are (—2, —2)-based with the inelastic mass conversion disabled (hence, elastic interactions only). The cases with
(—4, X) where X = —2, —1, 0 are omitted here since they were shown to be disfavoured in the previous work. The theoretical preference is stated based on the
theory regarding the power-law velocity dependence in the 2cDM model (see Appendix A).

MW Dwarf GC Theoretical
Model oolm Density profile VF RHDF Density profile Density profile B-rs c—M relation preference
(-2,-2) 0.001 - - - YES - - - YES
0.01 Maybe Maybe YES Maybe YES YES YES YES
0.1 YES YES YES NO - - - YES
1 YES YES YES NO - - - YES
10 NO YES - NO - - - YES
(-1,-2) 0.001 - - - NO - - -
0.01 Maybe YES YES NO - - -
0.1 YES YES YES NO - - -
1 YES YES YES NO - - -
10 NO YES - NO - - -
0, -2) 0.001 - - - NO - - -
0.01 Maybe YES YES NO - - -
0.1 YES YES YES NO - - -
1 YES YES YES NO - - -
10 NO YES - NO - - -
(-2,-1) 0.001 - - - Maybe - - -
0.01 Maybe Maybe YES Maybe - - -
0.1 YES YES YES NO - - -
1 YES YES YES NO - - -
10 NO YES - NO - - -
(-1,-1) 0.001 - - - YES - - -
0.01 Maybe Maybe YES Maybe YES YES YES
0.1 YES YES YES NO - - -
1 YES YES YES NO - - -
10 NO YES - NO - - -
0, -1) 0.001 - - - Maybe - - -
0.01 Maybe Maybe YES Maybe - - -
0.1 YES YES YES NO - - -
1 YES YES YES NO - - -
10 NO YES - NO - - -
(=2,0) 0.001 - - - YES - - -
0.01 Maybe Maybe Maybe YES YES YES YES
0.1 YES Maybe YES NO Maybe Maybe YES
1 YES YES NO NO - - -
10 NO NO (NO) NO - - -
(=1,0) 0.001 - - - YES - - -
0.01 Maybe Maybe Maybe YES YES YES YES
0.1 YES Maybe YES NO Maybe Maybe YES
1 YES YES NO NO - - -
10 NO NO (NO) NO - - -
(0,0) 0.001 - - - YES - - - YES
0.01 YES Maybe Maybe YES YES YES YES YES
0.1 YES Maybe YES NO Maybe Maybe YES YES
1 YES YES NO NO - - - YES
10 NO NO (NO) NO - - - YES
SIDM 0.001 - - - - - - -
0.01 YES (NO) - - - - -
0.1 YES NO - Maybe - - -
1 YES NO Maybe - - - -
10 - - - - - - -
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nine sets of DM cross-section’s velocity-dependent or independent
models. Note that models with o(v) o 1/v* (i.e. either a; or a. =
—4) were not considered in this work due to the fact that such strong
velocity dependence puts DM close to reaching the fluid regime with
characteristically high interaction rates within the reasonable choice
of cross-section values. The other key parameter chosen as a fiducial
value for both dwarf and GC is the kick velocity Vi = c/2Am/m =
100 km/s, which accounts for the mass degeneracy between the two
mass eigenstates as Am/m ~ 1078 — 1077, Additionally, we explored
the four decades of DM cross-section values ranging from o¢/m =
0.001 to 1 cm?g~!, where we excluded a case with 10 cm?g ™! for the
similar reason to the case with o (v) o« 1/v*. By examining the halo
structures of the top five most well-resolved haloes in our sample
with their virial mass of ~107 — 108 M, we found the following:

(i) oo/m20.1 cm?>g~" are generally disfavoured for all the models.
The cross-section can be as small as o¢/m = 0.001 cm?g~"! for (-2,
-2), (=2, —1), (—=1, —1), and (0, —1) to show at least a modest
deviation from the cuspy NFW profile in the logarithmic inner slope.
However, with such a small cross-section, the 2cDM models such
as (=2, 0), (—1, 0), and (0,0) make little difference and their halo
profiles are nearly identical to the CDM counterpart. From this,
our results indicate that the minimum cross-section value to make
some noticeable flattening of the inner density profile lies somewhere
between 0.001 < oo/m < 0.01 cm?g~! in the 2cDM model.

(i) Models with a strong velocity dependence of the inelastic
interaction (conversion) cross-section, in particular, any models with
a. = —2 regardless of the base cross-section (o(/m) value, can
exhibit early species conversions at large redshift when the mean
DM velocity is small. In our dwarf galaxy simulations with a small
simulation box, this quickly establishes a quasi-steady state in the
DM species composition that is different from the initial one. This
process self-consistently ‘predetermines’ the halo structure at early
times, resulting in the halo density profiles that can be disfavoured
when compared against observational data [for example, (—1, —2)
and (0, —2) seen in Fig. 2].

(iii)) The mass loss fraction due mainly to the inelastic mass
conversion is particularly profound near the halo centre (» < 300 pc)
compared to that of within the entire halo virial range (Fig. 8). On
average, a 2cDM halo with (0,0) can lose ~10 per cent for o¢/m =
0.01, ~70 per cent for oo/m = 0.1, and ~90 per cent for oo/m =
1 cm?g~! of DM mass from r < 300 pc in comparison with the CDM
counterpart.

Following from what is implied in the dwarf haloes, we chose only
a limited set of parameters that are considered to be some of the most
promising to further test the 2cDM model on the GCs. The selected
parameters are the symmetric cases of (—2, —2), (—1, —1), (0, 0) and
afew asymmetric cases of (—2, 0) and (—1, 0). The cross-section was
chosen to be either 0.1 or 0.01 cm?g~!, excluding 1 cm?g~!, which
is unlikely to be plausible. We studied a cluster sample of ~20 taken
at z = 0.25 over the halo mass (M.;) range of 10'* — 10'> M, and
performed a fit on the density profile with the gNFW and NFW
radial profiles and examined the fitting parameters by comparing
with observational data. The key findings are as follows:

(i) oo/m =0.01 cm?g~! can create density profiles that are not too
dissimilar to that of CDM but with a slightly shallower, less cuspy
inner slope. Thus, with such cross-section, the 2cDM could provide
both possibilities of creating an NFW-like and a shallower profile
with a reasonable (observationally speaking) core size of ~30 kpc.
With a possible baryonic physics in consideration along with 2cDM,
the presence of baryonic mass in the halo centre would unlikely
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make 2cDM incompatible with observations, for the dominance of
stellar mass in the central galaxies typically does not exceed a few
tens of kpc measured from the halo centre. However, we note that a
possible cumulative effect of strong AGN feedback and 2cDM in the
central region could compromise the agreement with observations
by creating unrealistically large core size.

(i1) The concentration parameters derived from the gNFW and
NFW profiles show generally reasonable agreement with both
observations and CDM-based numerical predictions. We found some
degree of deviation from CDM for cases with a larger cross-section
of oo/m = 0.1 cm?>g~!, but the resulting concentration can still be
within the error due to the relatively large scatter in the sample.

For both dwarf and GC simulations performed in this work, we
have enough spatial resolution to probe the radial scale of our
interest to recognize whether a certain set of parameters should be
ruled out. While some parameters are shown to be inconsistent with
observations and can be ruled out, there remains a handful of them
that can still be a possibility, even when the baryonic physics is
considered. We summarize the entire list of 2cDM parameters that are
either tested or implied in this work and from Papers I & I in Table 2.
By considering MW, dwarf, GC, and possible effects from including
baryonic physics, the 2cDM’s most preferred cross-section value is
o¢/m < 0.1 cm?>g~!, which is in agreement with both observations
and theoretical/numerical predictions on self-interacting DM models
(e.g. Peter et al. 2013; Rocha et al. 2013). We also found that the
symmetric models of (as, a.) = (=2, —2), (—1, —1), and (0,0) gener-
ally work well to reproduce desirable results. These symmetric cases
are also theoretically preferred (see Appendix A). The implication
is that with the inelastic mass conversion, the model allows both a
strong velocity-dependent and velocity-independent cross-section as
a possibility. To further investigate the model, it needs to be tested
with a set of dark matter plus baryonic hydrodynamics simulations
with a better statistical sample than what is presented in this work.
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APPENDIX: THE SYMMETRIC CASES

Two models of o (v), namely (0,0) and (—2, —2), are natural from
the physics point of view; hence, they are of the most interest. This
is explained in detail in Medvedev (2014a). The analysis is based
on the general properties of the scattering matrix (S-matrix) and the
results are given in equations (2.17-2.19) in that paper. The (0,0)
model corresponds to the s-wave scattering (also referred to as the
‘hard sphere’ scattering) in which the elastic scattering cross-section
is velocity independent and the inelastic one scales inversely with the
initial particle momentum; thus, o5 ~ const., . ~ 1/v. The second
model (—2, —2) corresponds to the case when the inelastic elements
of the S-matrix have the maximum amplitude. In this case, it was
shown that both cross-sections have the same velocity dependence:

os~vZ?tando, ~ v 2
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