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Abstract—Smart contracts running on blockchains have
emerged as an indispensable mechanism to enhance trust,
security, transparency and traceability of data shared among
critical distributed applications. Unfortunately, a smart con-
tract deployed on a blockchain by itself is usually inadequate
in maintaining data security and privacy because the data
are replicated to all the nodes on the network. There has been
some recent work that tries to tackle this privacy leakage issue
in smart contract execution by integrating blockchains with
hardware supported trusted execution environments(TEEs).

Although TEEs ensure privacy to some extent, the smart
contract execution can still be compromised if the developed
code does not use the TEEs’ capabilities correctly. One im-
portant security issue for leveraging TEEs in practice is the
memory access pattern disclosure. Even though the TEEs
encrypt all the memory content during the program execution,
the memory access sequence can be observed by the malicious
operating system, and can be used to infer sensitive information
such as ’who submitted the second highest bid to the auction?”.
Hence, for enhanced security for TEE based applications, the
memory access pattern leakage need to be addressed. Given
these observations, an apparent question that comes to light
is, how can we use TEEs correctly to enable efficient, privacy
enhancing and secure applications? In this work, we address
this challenge in the context of digital auctions.

We develop a novel generic and secure framework that
allow an auction smart contract to run inside secure enclaves
over Intel SGX based TEEs on a blockchain. To our knowledge,
this is the first work that provides access pattern leakage
free TEE based secure auction smart contract deployment.
We achieve this by implementing oblivious execution (i.e.,
no memory access pattern leakage) of both first price and
second price sealed bid auctions as templates. Furthermore,
we implement an end-to-end encryption service to keep the
bids secure. Our empirical results and privacy analysis show
that this architecture does not cause a significant impact to
efficiency given the level of security achieved.

1. INTRODUCTION

Popularity of blockchains have grown significantly over
the past few years due to the benefits and advantages of-
fered by smart contracts [1]. Smart contracts provided on
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blockchain based platforms are used for many distributed
applications due to their security, immutability and persis-
tence properties.

One such important application of smart contracts is
auctions. Auction is a form of distributed application where
goods/properties are sold to the highest bidder via public
sale. Auctions are considered to be powerful price discovery
mechanisms to resolve resource allocation, service pricing
and when done online, facilitate many e-commerce solu-
tions. Blockchain based auctions such as [2], [3], [4] and
[5] have been proposed in the past for implementing both
sealed bid and open bid auctions. These auctions benefit
from trustworthiness of agreements in the digital world.

In a distributed application like auction, there are many
security and privacy challenges like having to trust the
auctioneer with sensitive bidding information over the
blockchain. Based on the common pattern of transactions
being performed, sensitive data like identity of the stake-
holders participating in the auction can be revealed.

Any security and privacy solution for implementing
smart contract based auctions need to address the scalability
challenges and may potentially need to scale for transactions
that may involve large number of users. Although there
are cryptographic solutions that leverage zero knowledge
proofs (e.g., [6] and [7]), they are not scalable enough for
many auction scenarios. Due to these efficiency and scala-
bility concerns, in this work, we focused leveraging Trusted
Execution Environment to achieve the desired security and
privacy goal while implementing privacy-preserving auction
smart contracts.

A Trusted Execution Environment, a.k.a TEE, is an area
on the main processor of a TEE enabled device that is
isolated from the system’s main Operating System (OS).
TEEs provide a more secure execution environment that uses
both hardware and software to protect the application’s data
and code. The chief advantage of using a TEE is that it
provides assurance that the code and data deployed inside
is protected with respect to confidentiality and integrity. TEE
has proven useful in protecting sensitive data and guarantee
secure information retrieval in public cloud environments
(e.g., [8]) as well as ensuring secure data analytic tasks
are being performed optimally (e.g., [9]). Moreover, recent
frameworks like Ekiden [10] and IBM developed Hyper-
ledger Fabric-SGX [11] showed the feasibility of running
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smart contracts in secure enclaves inside TEEs.

Still using TEEs directly on top of Blockchains do not
solve all the security and privacy issues. For example, the
OS can still monitor memory access patterns of the appli-
cations running inside a TEE. This memory access pattern
leakage has shown to disclose sensitive information even
if the entire program, memory and the data are encrypted
(e.g., [12]). For example, comparison operators in the smart
contract can disclose the operands that are being compared
based on memory location access. This is due to the fact
that the “IF-Statement” compares two operands keeping the
larger operand in the same memory location. A sophisticated
attacker can figure out when that memory location content
has changed and ultimately figure out bidder details. Hence,
in the context of auctions, by observing the memory access
patterns, and some known bids, a malicious OS may infer
some of the bid amounts. Therefore, at the very least, TEE
based solutions need to prevent this access pattern leakage.
Unlike the previous work that leverages TEEs for secure
smart contract execution [10], [11], we address this security
vulnerability for auction smart contracts. More specifically,
we address this challenge by building an auction framework
where important auction specific functions are implemented
without leaking any memory access patterns (See section 3
for more details).

In our framework, we implement both second price and
first price sealed bid auctions [13] over private blockchains
by enabling oblivious smart contract execution (e.g., no
memory access pattern leakage) inside TEE based secure.
To the best of our knowledge, this is the first work that
overcomes the security and privacy challenges presented
by running an auction smart contract inside a TEE. Our
framework is general in the sense that, any type of auction
can leverage our oblivious building blocks such as “oblivi-
ous max” operation to develop secure TEE based auctions
thereby preserving privacy of the participants/bidders.

1.1. Overview of Our Contributions

The fundamental contributions of our research is as
follows:

We provide a generic framework that allows any auc-
tion smart contract run securely inside an Intel SGX
(TEE) enclave while performing oblivious execution
to declare the winner over a private blockchain.
We create an end-to-end encryption service with
programming abstraction for oblivious execution of
auction logic for bid privacy protection.

We implemented a prototype and ran comprehensive
empirical evaluation under different deployment set-
tings.

We provide a detailed privacy and security analysis
of our framework.

The remainder of our paper is organized as follows:
In Section 2, we lay out the essential background to the
reader. In section 3, we discuss the system architecture. In
section 4, we discuss how the auction smart contracts are
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designed to prevent memory access leakage. In section 5,
we dive into the implementation details of our system.
Section 6 illustrates the performance of our system via a
thorough experimental evaluation. We subsequently analyze
the security and privacy offered by our system in Section
7. Section 8 compares our system with other blockchain
based applications that take advantage of TEEs. Finally, we
conclude the paper with section 9 while providing some
scope for the future work we intend to accomplish.

2. BACKGROUND

2.1. Hyperledger Fabric

Blockchains are segregated broadly into three types,
namely: 1) permissioned or private blockchains (e.g., Hyper-
ledger Fabric [14]); 2) permissionless or public blockchains
(e.g., Ethereum [15]); 3) consortium or hybrid blockchains
(e.g., Quorum [16]).

Hyperledger Fabric [14] is a private / permissioned
blockchain wherein participants are validated and known to
each other. It offers pluggable consensus protocols to allow
owners of the permissioned blockchain custom fit specific
use-cases and trust models. Hyperledger Fabric, owing to its
permissioned nature and consensus algorithm, does not em-
ploy any economic incentive in the form of cryptocurrencies
to achieve transaction validation. Hyperledger is particularly
used for employing smart contracts over the private chain.
Smart contracts are programs running over a blockchain
architecture that is intended to automatically execute, control
or document events and actions in compliance with the terms
and agreement of the contract. Smart contracts over the
Hyperledger Fabric framework are termed as “chaincode”.

2.2. Intel SGX

Intel Software Guard Extensions (SGX) is a Trusted
Execution Environment which is a secure area of the main
processor. It provides the isolation of execution of code
to maintain the integrity and confidentiality of running
applications. In Intel SGX, execution can be partitioned
into enclaves which are areas of execution in memory
with security protection. Furthermore, Intel SGX provides
remote attestation of the enclave identity. A third party can
verify any enclave’s identity and securely provision keys,
credentials and additional sensitive data into the enclave.
This is accomplished by the service that Intel provides called
the Intel Attestation Service. The infrastructure uses an
Enhanced Privacy ID (EPID) for hardware based attestation.
Additionally, Intel provides an Enclave Definition Language
for untrusted application components of an Intel SGX en-
abled application to interface with the trusted enclave. The
enclave uses both ECalls ("Enclave Call”’) and OCalls ("Out
Call”) to communicate within the enclave and outside the
enclave to an untrusted application respectively. We use
Intel SGX for enabling privacy and security for transaction
processing, consensus, smart contracts and key storage for
blockchains.
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2.3. Auctions

Auctions are popular examples of distributed applica-
tions implemented via smart contracts. In this work, we
predominantly look into two main types of auctions based
on the winner declaration strategy: 1) First price auction 2)
Second price auction.

A first price auction is a type of auction where the high-
est bidder/winner pays the bid made by him/her on auction
completion. A second price auction is a slightly different
kind of auction where the highest bidder/winner pays the bid
made by the second highest bidder of the auction. In many
areas second price auction is favored compared to first price
auction because second price auctions are designed to give
bidders confidence to bid their best price without overpaying
[17].

Auctions are also divided based on the bidding tech-
nique. The division renders the following two types of
auctions: 1) Sealed bid auction; 2) Open Bid auction.

Sealed bid auctions are auctions where the bid is sealed
amongst bidders when submitting to auctioneer. Here the
auctioneer is a trusted party and only the auctioneer can open
it and calculate the winner. Open bid auctions are the exact
opposite where bids are known to everyone. For our case,
to maintain privacy and security, we focus on the sealed bid
auctions.

3. SYSTEM ARCHITECTURE

In this paper, we propose a pragmatic system named SE-
CAUCTEE that allows any auction protocol to run securely
using TEEs. There are primarily four components of our
SECAUCTEE system, each playing a crucial role to achieve
the overall goal. In the remainder of this section, we discuss
these components.

3.1. On-Chain oblivious Execution

Trivial execution of the programs usually change the
memory access pattern based on the input data. For example,
”IF-Statements” are one of the main culprits in revealing
access patterns. On the other hand, oblivious execution, in
essence, hides access patterns of an algorithm. In other
words, a data oblivious program is a program in which
with any data access, the program executes the exact same
code path. In other words, whose memory access pattern is
independent of input values.

Here, we are assuming that an attacker can always
observe Enclave calls (ECalls) and Outside Calls (OCalls)
of the Intel SGX processor but not the internal CPU register
operations. In addition, the attacker can also record the time
to execute and any resource access as a result of the above
calls.

1. There are other ways to achieve data obliviousness, e.g., using ORAM
constructions [18] but in this work, we focus on much more efficient imple-
mentation tailored for auction use case. Such tailored oblivious solutions
have been developed for data processing (e.g., [9]) but not auctions
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In the case of auctions, once the data is accepted by
every bidder and the bidding phase comes to an end, the
smart contract computes the winner. The algorithm used
by the smart contract intrinsically is a comparison based
algorithm and with many “IF-Statements” to determine the
winner of the auction during declaration phase, and naive
implementation leaks memory access. For example, in the
case of a sealed-bid auction there are O(n) comparisons
where n is the number of bids made by the bidders. If for
example, Bidder 1 is the first bidder and has bid the highest,
the first comparison will save Bidder 1 as the winner and
all the other comparisons will result in no change in the
memory location for the winner. As a result, the attacker
now has the knowledge of the bidder identities and their
bids which violates the privacy of the bidders in a sealed
bid auction.

To address the above scenario, we implement assem-
bly language programming based comparison which ma-
nipulates CPU registers. Assembly language is a low-level
language that’s purpose is to interface directly with a com-
puter’s hardware. In the case of auctions, we replace the
comparison “IF-Statement” with an “asm” block that is an
assembly code that assigns the values to be compared to
separate registers and then based on the condition we want
to test (here being a comparison), we set a flag that allows us
to determine the maximum bid. We exit out of the assembly
code with the binary value stored in the flag and then execute
a simple arithmetic toggle that retains the value if the flag
is unset (i.e. value = 0) indicating that the new value is not
greater than the current maximum or changes the value to
the new bid if the flag is set (i.e. value = 1) indicating that
the new value is indeed greater than the current maximum.

We perform this for both first price and second price
sealed bid auctions. Further details regarding execution of
the contract is described in section 4.

3.2. Blockchain-TEE Integration

As shown in Figure 1, we deploy our private blockchain
over Intel SGX machines. Our system is general in the sense
that any private blockchain can be integrated with TEE. We
have the orderer and the certificate authority as separate
containers.

The peer primarily composes of 4 components: the
chaincode enclave, the enclave registry, the enclave endorse-
ment validation (not shown) and the chaincode package
bundler (not shown). The chaincode enclave is described
more in section 3.4. The enclave registry is a chaincode of
itself that runs outside the SGX enclave to maintain a list
of all prevailing chaincode enclaves in the network.

For the Blockchain to take complete advantage of the
Intel SGX TEE environment, the chaincode is run in the
Hardware Mode (secure mode) that accommodates for Intel
SGX attestation support. The blockchain uses Intel Attesta-
tion Service to verify and attest the hardware. Enhanced
Privacy ID (EPID) based attestation is performed using
a Service Provider ID and the primary key provided by
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the Intel Attestation Service thereby, confirming that the
Hardware is indeed an Intel approved TEE.

3.3. End-to-end encryption with Auction Flow

The chaincode enclave creates a public private key/pair
of its own and makes the public key accessible to everyone
by allowing it to be accessed by a GET method on the
chaincode. Once the chaincode keys are created, the chain-
code starts the bidding phase. Herein, each participating
bidder encrypts the bids using their chaincode public key
(as shown in Step 2 Bidding Phase) in Figure 1. They use
the encryption service to create Bidder Public/Private key
pair for signing purposes (Step 3) and subsequently, send
the Bidder public key to the auction chaincode (Step 4). The
bidder then signs the encrypted bid and send the signed bid
to the contract (Step 5).

Once the chaincode ends the bidding phase, the declare
winner phase begins which involves running the on-chain
oblivious execution described in Section 3.1. When the
winner is determined by the contract, the contract signs
the result with it’s private key and then notifies the bidders
(Step 1 Declare Phase) so that the result can be accessible
by a GET method (getSignedWinner). The bidder then uses
the encryption service to verify whether the result is really
coming from the chaincode by using the encryption service
as shown in Step 2 of the Declare Phase. For this step, the
encryption service uses the chaincode public key to verify
the source.

3.4. Chaincode in an enclave

Each chaincode spawned from the peer running on Intel
SGX runs in its own separate enclave so that it can isolate
itself from the peer node and the other chaincodes. The
enclave is initiated with a blockchain shim that allows it to
be called by the peer. In order to interact with the chaincode,
a bidder must send the call to the peer. The peer verifies the
identity of the bidder by using a certificate authority and it
then forwards the request to the enclave. The enclave’s shim
is used as an interface between the peer and the chaincode.
The chaincode responds to the request with the desired result
and the peer returns back the result in a Base64 format with
the public key and signature. The chaincode execution does
not leave its trace in any system logs or peer logs thereby
keeping the execution secure.

4. SMART CONTRACTS

Code Block 1 portrays a simple comparison between
bidl and bid2 to return a true/false flag in the form of
an integer. This Code Block 1, in our implementation is
replaced by Algorithm 2 which calculates the true/false flag
is replaced by the code in Algorithm 2.

int maximum(int bidl, int bid2) {
if (bidl > bid2) {
return 0;
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} oelse {

return 1;

Code Block 1: Non oblivious Maximum

Algorithm 2 replaces the “IF-Statement” with an As-
sembly Language Block that directly manipulates the CPU
registers to get the final answer (please note attacker cannot
observe the CPU registers). To expound on the Assembly
Block, clc on line 4 clears the carry flag. In other words,
the EFlags register in the Intel x86 architecture which holds
the CF flag is set to 0. Line 5 and Line 6 of Algorithm
2 moves first bid and second bid to the EAX and EBX
registers respectively. ECX and EDX registers are initially
set to 0 as done in line 7 and line 8. "mov]” basically moves
a 32 bit integer either between registers or from a value to
a register. In algorithm 2, we only use movl to move 32 bit
integers to registers. So for example, “movl x, y” will copy
the value of x into y where x is the 32 bit integer and y is
the register.

int maximum(int bidl ,
int returnvalue = 0;
asm (

”cle \n”

"movl %1, %%ecax
"movl %2, %%ebx
"movl $0, %%ecx \n”
"movl $0, %%edx \n”
“cmp %%ebx , %%eax \n”
adc %ecx , %hedx \n”
"movl %0, %%edx”

: ”=d”(returnvalue)

: 7g”(bidl), 7g”(bid2)

)

return

int bid2) {

\n”
\n”

returnvalue ;

Algorithm 2: Oblivious Maximum

“cmp” is the compare operation that compares values of
2 registers. cmp %%ebx, % %eax’ resembles “cmp destina-
tion, source”. Consequently on line 10, an “adc” operation
is executed which stands for Add With Carry. The result
of the addition performed is stored in the EDX register.
Finally, to read the result / contents of the EDX register a
movl operation is performed which returns the result (either
0 or 1, depending on the comparison result) and stores it
inside “returnvalue”.

The “maximum” function described in Algorithm 2 is
the central recipe to make our auctions oblivious. We use
the function in both Second Price Auction and First Price
Auction as shown in Algorithm 3 and Algorithm 4 respec-
tively. The maximimum value is stored in the "max” variable
and the ID of the bidder that bid the maximum value is
stored in the “maxID” variable. On similar lines, ’secMax”
and “secMaxID” variables store the second maximum bid
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Figure 1: SECAUCTEE: Architecture Diagram
made and the bidder ID that made the second maximum bid
respectively. int max = 0;
int maxID = 0;
int max = 0; int b = 0;
int maxID= 0; for (int i = 0; i < user_count; i++) {

int secMaxID = 0;

int b = 0; // b is the selector

for (int i = 0; i < user_count; i++) {
bid = getBid(i);
bidderID = getBidderID (i);

b = maximum(secondMax, bid);
secMax = (1-b)#xsecMax + bxbid;

b = maximum(max, secMax);

int tempMax = max;

int tempMaxID = maxID;

max = (l-b)xmax + bxsecMax;
maxID = (1-b)smaxID + b=xsecMaxID;

secMax = bsxtempMax + (l-b)xsecMax;

secMaxID = (1-b)xsecMaxID + bxbidderID ;

secMaxID = bxtempMaxID + (1-b)secMaxID;

Algorithm 3: Oblivious Second Price Auction
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bid = getBid(i);
bidderID = getBidderID (i);

b = maximum(max, bid);
max = (l-b)*max + bxbid;
maxID = (1-b)xmaxID + bxbidderlID;

Algorithm 4: Oblivious First Price Auction

5. IMPLEMENTATION
5.1. Platform details

Considering hyperledger and Intel Software Guard Ex-
tensions (SGX) as the choice of Private blockchain and
Trusted Execution Environment respectively running on
Linux (Ubuntu). The chaincode is primarily written in C++.
We used docker containers to deploy the orderer, certificate
authority and peer nodes over the architecture of SGX ma-
chines. The containers were deployed as separate microser-
vices over all the bare metal machines. Network connectivity
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was set up amongst all machines. We used Fabric Private
Chaincode concept-release 2.0 to deploy the hyperledger
fabric blockchain over Intel SGX. We used SGX Software
Development Kit (SDK) v2.6 to interface the chaincode with
the enclave. SGX SSL based off of OpenSSL 1.1.0j was
used to create the certificates for both the bidders and the
chaincode. We used openssl RSA algorithm (Asymmetric
Encryption) with a minimum key length of 3072 bits to
generate bidder public/private keys.

5.2. Private Chain Specifications

Sgxtop is used to validate that the chaincode is indeed
running inside an SGX enclave. Since maximum payload
size submitted by a bidder in a transaction is upper bounded
by 3072 bits, the peer node must support this limitation.
Therefore, the enclave registry chaincode provided by Fabric
Private Chaincode is modified to accommodate for larger
transactions in golang. A configuration is provided for the
peer to run the chaincode in an enclave or outside the
enclave. The chaincode running inside the enclave lives on
one and only one machine. Since the enclave cannot be split
into two, execution of the chaincode remains in one peer.

5.3. Transaction Commitment

Analogous to the hyperledger fabric that validates trans-
actions using the validation system chaincode (VSCC), the
enclave transaction validator explained in Section 3, per-
forms the same validation. The orderer service on receipt
of the transaction assigns it to a block and subsequently
broadcasts the block to all the peers thereby creating con-
sensus. The ordering service options to evaluate was Raft
vs. Kafka and we use Raft simply because the success rate
and throughput to commit transactions is much more higher
than Kafka.

6. EXPERIMENTAL EVALUATION

We primarily evaluate the execution time while main-
taining stability and security of the system. We examine
effects of altering number of bidders, number of bids and
number of bids per bidder taking part in the auction process.

6.1. Experiment Setup

We use hyperledger fabric provided docker containers
to deploy our private blockchain over bare metal machines
hosted locally.We use fabric-private-chaincode developed by
IBM as a means to integrate the peer containers with the
SGX architecture to deploy chaincode in separate enclaves.
Bash scripts are used to control the deployment of chain-
codes.

Since our framework is not deployed on the public
network, neither does it use any public chain, we do not
report any monetary costs. This would be an issue on public
blockchain such as Ethereum where smart contrats need to
pay for the gas.
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Our experimentation setup involves first fixing the num-
ber of bids per user and then changing the number of users
per round. We evaluate the time taken to complete the
auction when the number of bids per user are 5 bids, 10
bids and 100 bids. We then fix the number of users to say
1000 and then change the number of bids per user. That
way, we have a comprehensive insight into the performance
of our system.

6.2. Results

Our results are pertinent to the Time Analysis under 3
different scenarios. Here we measure the time it takes for
both the bidding and declare phase cumulatively in a sealed
bid second price auction since we wanted to measure the
performance for one whole round of auction.

6.2.1. Encryption and Signing. In this scenario, once the
public key is available on the chaincode for retrieval, each
bidder uses the Encryption service to download encryption
key to encrypt the bid with the chaincode public key and
signs it with bidder’s own private key. The chaincode han-
dles the verification and decryption on receipt of the bid.
As shown in Figure 2a and Figure 2b, the red line indicates
that the time taken to complete the auction when bids are
fixed to 100 per user and users are varied from 5 to 1000.
Time taken is longest compared to the other two scenarios
because the overhead to encrypt, sign, verify and decrypt
takes the most time. Moreover, since the number of bids
for 1000 users is the highest where the total number of
bids become 1000*100 = 100,000 bids as shown by the
red line in Figure 2c and 2d, the declaration phase is also
the longest. This validates the general rule of thumb being
security always comes at a cost to efficiency.

6.2.2. No encryption, Only signing. This setting involves
the case where the bids merely being signed for integrity
purposes and no encryption is involved (i.e., no privacy
protection for the bids). Here, we are able to gain a little bit
of efficiency due to the removal of encryption and decryp-
tion operations. However, total time required still does not
drop that much due to the fact that since bidding is done
randomly, in order to verify the signed bid, the chaincode
has to retrieve each distinct bidder public key from the
blockchain state. This causes the maximum overhead as
depicted by the yellow line in Figure 2.

6.2.3. No encryption, No signing. This is the final scenario
to test where there is neither encryption nor signing of the
bids is involved. Clearly, in this setting, an attacker not
only see all the bids, it can further issue fake bids. Not
surprisingly, this is the most efficient scenario since there
is no requirement to encrypt, decrypt, sign or verify the
bids. The chaincode does not have to retrieve keys from
the blockchain state but still have to retrieve the stored bids
from the blockchain state. The blue line in Figure 2 indicates
that it is the most efficient as compared to the other two
scenarios.
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Figure 2: SECAUCTEE Experimental Results: Time Analysis for contract execution over Private Blockchain Hyperledger

deployed in Intel SGX.

7. SECURITY AND PRIVACY ANALYSIS

In this section, we give an overview of the oblivious
execution guarantees provided by our system. First, we
assume that due to SGX capabilities, a malicious attacker
cannot observe the register contents. In other words, an
attacker can only observe the memory access patterns. Be-
low, we formally define what is leaked during the program
execution for an adversary that can observe only memory
access patterns. Protection against other type of side channel
attacks such as timing, energy consumption is outside the
scope of this work, and not modeled in our security analysis.

Let, Bid = {Bids,.., Bid,} be the bids submitted
by different bidders, FBid = {EBids,...EBid,} be the
encrypted version of those bids, O be the output of the
auction after the execution of the auction smart contract.

o Memory Access Pattern (A4,): Suppose AUC is
the auction executed and during the execution AUC
accessed {EBids, ..., EBid,}, then, A, is the se-
quence of memory locations that are written and/or
accessed during the AUC execution. The memory
access pattern captures all the memory access se-
quence of during the secure auction execution.
Adversary View (v): The view of an adversary
observing the system is v = {EBid, O}. View is
the information that is accessible to an adversary.

Now, there exists a probabilistic polynomial time simulator
S that can simulate the memory access pattern .A,, using the
adversary v.

Theorem 1. The proposed secure auction execution does
not reveal anything other than the view v since all the A,
can be simulated using the v.

Proof. We show there exists a polynomial size simulator S
such that the A, can be simulated using only the v.

First, the S generates random values that are the same
size as the F Bid, and put them to the memory locations that
will be accessed by AUC. Please note that irrespective of the
input values, algorithm 3 and algorithm 4 access exactly the
same memory locations, and update fix locations irrespective
of the input. Then S will access these locations, and put
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random values for updated memory locations. Finally, S will
output the O (i.e., the correct output of the auction). First of
all, please note that the S access exactly the same locations
as the real execution. Since, all the updates reflected to mem-
ory is encrypted by the TEE, the random values generated by
the S is computationally indistinguishable from the actual
values outputted during the execution.”> Therefore, S can
simulate the A, using only the v. O

The above theorem implies that from the memory access
pattern point of view, an attacker can only learn the total
number of bids, and the auction output and nothing else.

8. RELATED WORK

TEEs and Public Blockchains:. TEEs and smart
contracts have supplementing properties that allows us to
design a system to utilize the strengths of both technolo-
gies and design a distributed, highly available and reliable
yet secure and privacy-preserving application. For example,
Ekiden [10] has proposed a novel architecture that lever-
ages TEEs to deploy smart contracts in enclaves thereby
separating consensus from execution. They have created a
privacy-preserving solution for running smart contracts in
a TEE environment. Although Ekiden [10] ensures smart
contract execution while preserving confidentiality, they do
not address the sensitive information leakage when an at-
tacker can observe the memory locations when the smart
contract is performing computation over the blockchain
deployed in an Intel SGX enclave. Since the computations
are performed obliviously in our system, the attacker will not
have knowledge of the bidders or the bids being compared
even though he/she may have access to system memory.

Auctions and TEEs:. There are multiple proposed
systems that claim to preserve privacy by using Intel SGX
and a Private Blockchain architecture but fail to cover all
attack vectors. Strain [20], for example, proposes a new
sealed-bid auction protocol over a permissioned blockchain
to guarantee bid confidentiality against malicious parties.

2. This is sometimes referred as semantically secure encryption. It is
assumed that semantically secure encrypted values are computationally
indistinguishable from random values [19].
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It takes advantage of zero-knowledge proofs, their solu-
tion allow participants the ability to verify each outcome
based on broadcast strategy. Although Strain’s architecture
is efficient and latency is asymptotically optimal, it does
not use a secure hardware to protect building blocks like
cryptographic keys, system logs, transaction details, etc.
Privacy-preserving Computation using TEEs:.

TEEs have been used for supporting privacy-preserving data
analytics outside the context of blockchains and smartcon-
tracts. For example, SGX-BigMatrix [9] have implemented
a practical data analytic framework with trusted proces-
sors. Another such implementation of oblivious execution
of programs has been carried out by [18]. They attempt to
leverage programming language techniques to offer efficient
memory-trace oblivious program execution and provide for-
mal security guarantees.

Although, these types of solutions address some data se-
curity and privacy challengs, they do not address distributed
applications like Blockchains. Their oblivious execution of
the data analytics framework serves as a motivation in our
effort to implement oblivious execution of smart contracts
over a Blockchain architecture.

9. CONCLUSIONS

As Blockchains gain significance in the computer in-
dustry with more and more distributed applications being
developed over smart contracts to serve out various use-
cases, privacy and security becomes a dominant challenge
that needs to be addressed. We propose a novel framework to
achieve data privacy and security for any auction algorithm
as precedent to achieve the same for distributed applica-
tions as smart contracts deployed over a private blockchain
running inside secure enclaves. Furthermore, we maintain
privacy and security by oblivious execution of the auction
algorithm inside the smart contracts. We have also imple-
mented an end-to-end encryption service to send and receive
signed encrypted messages between the user and the smart
contract running inside the enclave.
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