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Abstract—Federated Learning (FL) is a distributed machine
learning protocol that allows a set of agents to collaboratively
train a model without sharing their datasets. This makes FL
particularly suitable for settings where data privacy is desired.
However, it has been observed that the performance of FL is
closely related to the similarity of the local data distributions of
agents. Particularly, as the data distributions of agents differ,
the accuracy of the trained models drop. In this work, we
look at how variations in local data distributions affect the
fairness and the robustness properties of the trained models in
addition to the accuracy. Our experimental results indicate
that, the trained models exhibit higher bias, and become
more susceptible to attacks as local data distributions differ.
Importantly, the degradation in the fairness, and robustness
can be much more severe than the accuracy. Therefore, we
reveal that small variations that have little impact on the
accuracy could still be important if the trained model is to
be deployed in a fairness/security critical context.

Keywords-Federated Learning, Algorithmic Fairness, Adver-
sarial Machine Learning

I. INTRODUCTION

Federated Learning (FL) [1] is a distributed machine

learning protocol. Through FL, a set of agents can collabo-

ratively train a model without sharing their data with each

other, or any other third party. This makes FL suitable to

settings where data privacy is desired. In this regard, FL

differs from the traditional distributed learning setting in

which data is first centralized at a place, and then distributed

to the agents [2, 3].

The decentralized nature of datasets in FL brings some

unique challenges. In particular, several works have observed

that the accuracy of the trained models can drop significantly

when the data distributions of the agents are different (the

so-called non-i.i.d. setting), and have tried to mitigate this

negative effect [4, 5, 6, 7, 8, 9].

To to best of our knowledge, the existing literature have

almost exclusively analyzed the impact of data distributions

on the accuracy. In contrast, in this work, we look at how

data distributions of agents affect the fairness and robustness

of the trained models. That is, we ask, how does the fairness

and robustness properties of the trained models change

with the distribution of agents’ datasets? In this work, we

quantify the bias exhibited by the model based on the

class-wise accuracies, (see Section III-A), and quantify the

robustness based on the resilience against model poisoning

attacks (see Section II-B and III-B).

Briefly, our analysis reveals that, just as for accuracy,

fairness and robustness of the trained models degrade as

the distribution of local datasets differ. More importantly

though, we show that this degradation can be much more

severe than the degradation of the accuracy. We believe these

observations can be important in several contexts. For ex-

ample, the existing defenses in the FL literature are usually

tested against different ratios of adversarial agents. However,

as we show that the models become more susceptible to

attacks as local data distributions change, it is also important

to test the effectiveness of the defenses under different local

data distributions.

The rest of the paper is organized as follows: in Section II,

we provide the necessary background and discuss the related

works. In Section III, we provide our experimental results,

and show how robustness and fairness of the trained models

change with the local data distributions. Finally in Sec-

tion IV, we discuss our results and provide some concluding

remarks.

II. BACKGROUND AND RELATED WORK

In this section, we provide the necessary background on

FL and explain model poisoning attacks.

A. Federated Learning (FL)

At a high level, FL is multi-round protocol between an

aggregation server and a set of agents in which agents jointly

train a model. Formally, participating agents try to minimize

the average of their loss functions,

argmin
w2Rd

f(w) =
1

K

K
X

k=1

fk(w),

where fk is the loss function of kth agent. For example, for

neural networks, fk is typically empirical risk minimization

under a loss function L such as cross-entropy, i.e.,
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fk(w) =
1

nk

nk
X

j=1

L(xj , yj ;w),

with nk being the total number of samples in agent’s dataset

and (xj , yj) being the jth sample.

Concretely, FL protocol is executed as follows: at round

t, server samples a subset of agents St, and sends them wt,

the model weights for the current round. Upon receiving

wt, kth agent initializes his model with the received weight,

and trains for some number of iterations, e.g., via stochastic

gradient descent (SGD), and ends up with weights wk
t . The

agent then computes his update as ∆k
t = wk

t �wt, and sends

it back to the server. Upon receiving the update of every

agent in St, server computes the weights for the next round

by aggregating the updates with an aggregation function

g : R|St|⇥d ! Rd and adding the result to wt. That is,

wt+1 = wt+ η · g({∆t}) where {∆t} = [k2St
∆

k
t , and η is

the server’s learning rate. For example, original FL paper [1]

and many subsequent papers on FL [10, 11, 12, 13, 14]

consider weighted averaging to aggregate updates. In this

context, this aggregation is referred as Federated Averaging

(FedAvg), and yields the following update rule,

wt+1 = wt + η

P

k2St
nk ·∆k

t
P

k2St
nk

.

In practice, rounds can go on indefinitely, as new agents can

keep joining the protocol, or until the model reaches some

desired performance metric (e.g., accuracy) on a validation

dataset maintained by the server.

It has been shown that models trained via FL can perform

better than locally trained models at agents’ side in various

settings [1, 15]. In contrast, as noted before, it has also

been observed that the performance of FL drops drastically

when local data distributions of agents differ significantly,

i.e., when data is distributed in a non-i.i.d. fashion among

agents [4, 5, 6, 7, 8, 9].

B. Backdoor Attacks and Model Poisoning

Training time attacks against machine learning models

can roughly be classified into two categories: targeted [10,

11, 16, 17], and untargeted attacks [18, 19]. In untargeted

attacks, the adversarial task is to make the model converge

to a sub-optimal minima or to make the model completely

diverge. Such attacks have been also referred as convergence

attacks, and to some extend, they are easily detectable by

observing the model’s accuracy on a validation data.

On the other hand, in targeted attacks, adversary wants

the model to misclassify only a set of chosen samples

with minimally affecting its performance on the main task.

Such targeted attacks are also known as backdoor attacks.

A prominent way of carrying backdoor attacks is through

trojans [16, 17]. A trojan is a carefully crafted pattern

that is leveraged to cause the desired misclassification. For

example, consider a classification task over cars and planes

and let the adversarial task be making the model classify

blue cars as plane. Then, adversary could craft a brand logo,

put it on some of the blue car samples in the training dataset,

and only mislabel those as plane. Due to this attack, the

attacked model would potentially learn to classify a blue

car with the brand logo as a plane. At the inference time,

adversary can present a blue car sample with the logo to

the model to activate the backdoor. Ideally, since the model

would behave correctly on blue cars that do not have the

trojan, it would not be possible to detect the backdoor on a

clean validation dataset.

In FL, the training data is decentralized and the ag-

gregation server is only exposed to model updates. Given

that, backdoor attacks are typically carried by constructing

malicious updates. That is, adversary tries to create an update

that encodes the backdoor in a way such that, when it is

aggregated with other updates, the aggregated model exhibits

the backdoor. This has been referred as model poisoning

attack [10, 11, 12]. For example, an adversary could control

some of the participating agents in a FL instance and train

their local models on trojaned datasets to construct malicious

updates.

III. EXPERIMENTS

We now show how fairness and robustness of the trained

models are impacted due to differences in local data distribu-

tions via experiments. The general setting of our experiments

are as follows: we are training models via FL for classifica-

tion tasks among 10 agents where in each around, an agent

trains his local model for 2 epochs with a batch size of

256 with the Adam optimizer [20]. We train until the model

converges on the training dataset, and do our measurements

on a held-out test dataset.

We use two datasets: Fashion MNIST [21], and CI-

FAR10 [22]. On Fashion MNIST, we use the LeNet

model [23], and on CIFAR10, we use a 6-layer convolutional

neural network, consisting of 3 convolutional and 3 fully-

connected layers.

To simulate different data distributions, we distribute the

initial datasets to agents using Dirichlet distribution with

different concentration parameters (denoted as α) as in [24].

Higher values of α indicate the distribution of agents’ local

datasets over the classes in the dataset are more similar.

Our implementation is in PyTorch [25], and our

code is publicly available at https://github.com/TinfoilHat0/

Fairness-Robustness-in-FedLearning. All the reported re-

sults are averaged over 5 runs, and are presented in mean ±
std format.

A. Fairness

We quantify the bias of the model as the difference

between the highest and the lowest accuracy across the
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Table I: Effect of data distribution on fairness for Fashion

MNIST (top), and CIFAR10 (bottom) datasets.

Dirichlet α Accuracy Bias

1.0 90.08± 0.17 24.48± 1.84

0.5 89.06± 0.31 37.3± 5.83

0.25 88.02± 1.81 45.78± 25.62

Dirichlet α Accuracy Bias

1.0 76.52± 0.76 29.03± 2.3

0.5 75.17± 0.62 35.6± 6.04

0.25 72.27± 1.81 42.6± 14.79

classes. That is, if Mc is model M 0s accuracy on class c,

we have that,

BiasM = maxc (Mc)� minc (Mc) ,

where thehigher values for bias indicates the model is less

fair across classes.

Our results are presented in the Table I. As can be seen

from these results, bias exhibited by the model increases as

local dataset distributions differ more. Interestingly though,

the rate of increase in the bias seems much higher than

the degradation in the accuracy. For example, for Fashion

MNIST dataset, we see that, as we go from α = 1 to

α = 0.25, the overall accuracy drops by merely about 2%,

but the bias of the model almost doubles.

B. Robustness

We now test how robustness of the model changes against

model poisoning attacks for different data distributions. In

this experiment, we designate one of the agents (out of

ten) as the adversary. We fix his dataset to 1000 samples

uniformly sampled from the initial training dataset. The

corrupt agent carries a backdoor attack by (i) adding a

trojan to pattern to his samples, (ii) and mislabeling all his

dataset as a chosen target class (see Figure 1). We measure

the success of adversary’s attack (denoted as backdoor

accuracy) by measuring the accuracy of the model on the

poisoned test dataset (whose samples have the trojan pattern,

and labeled as the target class chosen by the adversary).

Lower values for backdoor accuracy indicates the model is

more robust.

We present the results for robustness in Table II. As can

be seen, the trained models become more susceptible to

attack as local data distributions become less similar. The

results seem more pronounced on Fashion MNIST than on

CIFAR10. We believe this is due to the fact that, the attack

is already quite successful on α = 1 CIFAF10, so, there is

less room to improve the attack in that setting.

Regardless, we believe the main takeaway of our result

is that, any defense mechanism deployed in the FL setting

Table II: Effect of data distribution on robustness for Fashion

MNIST (top), and CIFAR10 (bottom) datasets.

Dirichlet α Accuracy Backdoor Accuracy

1.0 89.87± 0.14 64.34± 5.12

0.5 89.58± 0.2 69.78± 2.58

0.25 88.47± 0.77 77.34± 2.84

Dirichlet α Accuracy Backdoor Accuracy

1.0 75.72± 0.34 89.66± 0.81

0.5 74.64± 0.13 90.37± 0.4

0.25 71.75± 1.45 91.49± 0.68

(a)

(b)

Figure 1: Samples from trojaned base classes and corre-

sponding target classes. Trojan pattern is a 5-by-5 plus sign

that is put to the top-left of objects. For Fashion MNIST (a),

the backdoor task is to make model classify trojaned inputs

as sneakers. For CIFAR10 (b), it is to make model classify

trojaned samples as horses. For Fashion MNIST, we note

that original images are in grayscale, and these figures are

normalized as they appear in training/test datasets.

should be tested against different data distributions, in ad-

dition to different adversarial agents ratios as is commonly

done.

C. Robustness under a Defense

Based on our insight from the robustness experiments, we

now look at how the robustness is impacted when a defense

is deployed under different distributions. To do so, we deploy

a recent defense introduced in [26] called robust learning

rate (RLR). This approach merely modifies the learning rate

of aggregation server, per round and per dimension, based

on the sign information of agents’ updates, and is agnostic

to the aggregation function itself.
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Table III: Effect of data distribution on robustness under

RLR defense for Fashion MNIST (top), and CIFAR10

(bottom) datasets.

Dirichlet α Accuracy Backdoor Accuracy

1.0 88.99± 0.26 0.48± 0.64

0.5 87.96± 0.79 3.62± 2.88

0.25 84.12± 1.4 0.38± 0.44

Dirichlet α Accuracy Backdoor Accuracy

1.0 74.09± 0.54 20.22± 6.66

0.5 69.38± 1.75 13.26± 3.09

0.25 57.07± 3.01 29.89± 20.99

Concretely, the defense introduces a hyperparameter

called the learning threshold, denoted as θ at the server-side.

For every dimension where the sum of signs of updates is

less than θ, the learning rate is multiplied by -1. This is to

maximize the loss on that dimension rather than minimizing

it. That is, with a learning threshold of θ, the learning rate

for the ith dimension is given by,

ηθ,i =

(

η
�

�

P

k2St
sgn(∆k

t,i)
�

� � θ,

�η otherwise.

For example, consider FedAvg and let ηθ denote

the learning rate vector over all dimensions, i.e.,

[ηθ,1, ηθ,2, . . . , ηθ,d]
>. Then, the update rule with the RLR

defense takes the form,

wt+1 = wt + ηθ �

P

k2St
nk ·∆k

t
P

k2St
nk

,

where � is the element-wise product operation.

The experimental results under this defense is presented

in Table III. If we compare Table II (robustness with no

defense), and Table III, we see that the defense diminishes

the attack significantly as indicated by the smaller backdoor

accuracies. However, at least for CIFAR10 case, the defense

becomes substantially weak for α = 0.25 as evidenced

by the low accuracy, and high backdoor accuracy values.

Therefore, we can see that local data distributions can

substantially tamper with the robustness of the model, even

when a defense is deployed.

D. Interplay between Fairness and Robustness

We also look at how a defense might affect the fairness

of the model. For example, we see that the RLR defense

substantially reduces the backdoor accuracy, but it comes at

the cost of some accuracy. We wonder, whether the defense

itself can degrade the fairness of the model, and if it does,

how this degradation is impacted by the data distributions.

Our experiments with RLR indicates that, the defense itself

might make the model less fair, and this effect is increased as

local data distributions differ more. In Table IV, we present

Table IV: Interplay between fairness and robustness under

backdoor attack without any defense for Fashion MNIST

(top), and CIFAR10 (bottom) datasets.

Dirichlet α Accuracy Backdoor Accuracy Bias

1.0 89.87± 0.14 64.34± 5.12 29.1± 4.57

0.5 89.58± 0.2 69.78± 2.58 32.8± 10.11

0.25 88.47± 0.77 77.34± 2.84 33.88± 4.5

Dirichlet α Accuracy Backdoor Accuracy Bias

1.0 75.72± 0.34 89.66± 0.81 35.16± 3.96

0.5 74.64± 0.13 90.37± 0.4 32.02± 4.75

0.25 71.75± 1.45 91.49± 0.68 56.5± 20.66

Table V: Interplay between fairness and robustness under

backdoor attack with RLR defense for Fashion MNIST (top),

and CIFAR10 (bottom) datasets.

Dirichlet α Accuracy Backdoor Accuracy Bias

1.0 88.99± 0.26 0.48± 0.64 31.84± 5.83

0.5 87.96± 0.79 3.62± 2.88 32.62± 7.78

0.25 84.12± 1.4 0.38± 0.44 51.56± 10.93

Dirichlet α Accuracy Backdoor Accuracy Bias

1.0 74.09± 0.54 20.22± 6.66 45.52± 7.18

0.5 69.38± 1.75 13.26± 3.09 63.1± 8.81

0.25 57.07± 3.01 29.89± 20.99 90.26± 1.36

the bias of the model under the model poisoning attack

without any defense. In Table V, we present the bias of the

model under the model poisoning attack with RLR defense.

As can be seen, we observe that the bias exhibited by the

model increases under the defense even though the attack

itself is much less successful.

IV. DISCUSSION AND CONCLUSION

In this work, we have explored how the differences in

local data distributions of the participating agents in a

FL setting affect the fairness and robustness properties of

the trained models. Our brief experimental analysis have

indicated that, just as for accuracy, as the local distributions

among agents differ, the fairness and robustness of the

trained models degrades. Further, we have showed that these

properties might degrade much faster than the accuracy.

Regardless, our work is a limited exploration of the

topic, and we believe there are some avenues for further

work. Most importantly, we wonder whether the existing

algorithms that are developed to remedy the accuracy drop

in non-i.i.d. settings [4, 5, 6, 7, 8, 9], can remedy the fairness

and robustness issues as well. Also, the robustness notions

we considered in our work was merely against model poi-

soning attacks. It might be interesting to see how robustness

of the models change against privacy attacks [27].
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