
GINN: Fast GPU-TEE Based Integrity for Neural Network
Training

Aref Asvadishirehjini
axa159430@utdallas.edu

University of Texas at Dallas
USA

Murat Kantarcioglu
muratk@utdallas.edu

University of Texas at Dallas
USA

Bradley Malin
b.malin@vumc.org

Vanderbilt University Medical Center
USA

ABSTRACT

Machine learning models based on Deep Neural Networks (DNNs)

are increasingly deployed in a wide variety of applications, ranging

from self-driving cars to COVID-19 diagnosis. To support the com-

putational power necessary to train a DNN, cloud environments

with dedicated Graphical Processing Unit (GPU) hardware support

have emerged as critical infrastructure. However, there are many

integrity challenges associated with outsourcing the computation

to use GPU power, due to its inherent lack of safeguards to ensure

computational integrity. Various approaches have been developed

to address these challenges, building on trusted execution envi-

ronments (TEE). Yet, no existing approach scales up to support

realistic integrity-preserving DNN model training for heavy work-

loads (e.g., deep architectures and millions of training examples)

without sustaining a signi�cant performance hit. To mitigate the

running time di�erence between pure TEE (i.e., full integrity) and

pure GPU (i.e., no integrity) , we combine random veri�cation of

selected computation steps with systematic adjustments of DNN

hyperparameters (e.g., a narrow gradient clipping range), which

limits the attacker’s ability to shift the model parameters arbitrarily.

Experimental analysis shows that the new approach can achieve a

2X to 20X performance improvement over a pure TEE-based solu-

tion while guaranteeing an extremely high probability of integrity

(e.g., 0.999) with respect to state-of-the-art DNN backdoor attacks.

CCS CONCEPTS

• Security and privacy ! Hardware security implementation; •

Computing methodologies ! Classi�cation and regression trees.

KEYWORDS

Deep Learning, Trusted Exexution Environments, Intel SGX, In-

tegrity Preserving Deep Learning Training

ACM Reference Format:

Aref Asvadishirehjini, Murat Kantarcioglu, and Bradley Malin. 2022. GINN:

Fast GPU-TEE Based Integrity for Neural Network Training. In Proceedings

of the Twelveth ACM Conference on Data and Application Security and Privacy

(CODASPY ’22), April 24–27, 2022, Baltimore, MD, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3508398.3511503

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9220-4/22/04. . . $15.00
https://doi.org/10.1145/3508398.3511503

1 INTRODUCTION

Deep Learning (DL) is radically changing how machine learning

interacts with, and supports, society. Numerous industries increas-

ingly rely on DL models to make decisions, ranging from computer

vision, natural language processing to high-quality synthetic data

release [3]. One example is, Tesla that relies on DL for its autopilot

mode of operation [7] and it seems that, in the near future, DL

will be a routine technique for enabling autonomous vehicles to

commute on roads. Another prominent application of DL is Covid-

19 diagnosis [27], where wrong decisions can have irreversible

consequences. The training process for these DL models requires

a substantial quantity of computational resources (often in a dis-

tributed fashion) for training, which traditional CPUs are unable to

ful�ll. Hence, special hardware, with massive parallel computing

capabilities, (e.g., GPUs, and TPUs) are often utilized. At the same

time, the DL model training process is increasingly outsourced to

the public cloud. This is natural, as applying cloud services (e.g.,

Amazon EC2, Microsoft Azure, or Google Cloud) for DL training

can be more �scally palatable for companies, while also enabling

them to focus on the software product without worrying about

the hardware maintenance and quality service level agreements

of the hardware. Nevertheless, such outsourcing raises numerous

concerns with respect to the privacy and integrity of the learned

models. In recognition of the privacy and integrity concerns around

DL (and machine learning (ML) in general), a considerable amount

of research has been dedicated to applied cryptography, in three

general areas: 1) Multi-Party Computation (MPC) (e.g., [25]), 2) Ho-

momorphic Encryption (HE) (e.g., [10]), and 3) Trusted Execution

Environment (TEE) (e.g., [15, 16]). However, the majority of these

investigations are limited in that: 1) they are only applicable to

simple shallow network models, 2) they are evaluated with datasets

that have a few records (such as MNIST [21] and CIFAR10 [19]),

and 3) they incur an amount of overhead that is unacceptable for

real-life DL training workloads.

In an e�ort to mitigate some of these problems, and securely

move from CPUs to GPUs, the Slalom [37] system was developed to

focus on the computational integrity at the test phase while depend-

ing on the application context. It can also support enhanced data

privacy. However, at a much greater performance cost. Similarly,

Goten [26] introduced a privacy-preserving training and inference

solution based on TEEs and GPUs. However, the empirical analysis

suggested it is still not feasible to both enable privacy, and integrity

with an acceptable performance comparable to the non-private

setting (using GPU).

To address some of these limitations, we introduce GINN (See

Figure 1); a framework for integrity-preserving learning as a service

that provides integrity guarantees in outsourced DL model training

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

4

in TEEs. We assume that only the TEE running in the cloud is

to be trusted, while all the other resources such as GPUs can be

controlled by an attacker to launch an attack (e.g., insert a trojan). In

this context, our goal is to support realistic DL training workloads

while ensuring data and model integrity. To achieve this goal, we

focus on the settings where maintaining the learning process’s

integrity is critical, while the training data may not contain privacy-

sensitive information. For example, for a tra�c sign detectionmodel

on public tra�c sign images, it is desirable to prevent malicious

behaviors that can put the pedestrians or the driver in harm’s way.

This is because safety is of paramount importance in the above

scenario and trainers must ensure the integrity of the training

process to avoid unintended consequences.

The trivial approach of executing the entire learning process

inside a TEE is not scalable. This is mainly due to the fact that

TEEs based on CPU extensions are substantially slower compared

to GPUs. It should be noted that performance improvement tech-

niques, such as random matrix veri�cation [37]), have been pro-

posed, but the gains achieved are insu�cient to scale up to large DL

model learning settings. To signi�cantly improve the performance

of pure TEE based approach (i.e., running entire DNN training

inside the TEE), we introduce an approach that incorporates ran-

domized veri�cation into the DNN training process. This strategy is

based on the observation that it is unnecessary to verify all com-

putation steps of the GPU during the DNN training. Rather, we

only need to occasionally verify to ensure a very high likelihood of

catching any deviation.

Unfortunately, naive randomized veri�cation of the DNN train-

ing steps may not be enough. Because, if the DNN training steps

is not adjusted properly, even an attack in one step could have

a devastating impact. For example, DNN training usually require

stochastic gradient descent (SGD) based updates using the current

batch of the data. If there are no limits on the SGD update step, the

attacker can arbitrarily modify the model even in a single update.

Given that randomized veri�cation may itself be insu�cient, we

further show how parts of the DNN hyperparameter setting pro-

cess, such as clipping rate should be modi�ed to prevent single step

attacks, and require a larger number of malicious updates by an

attacker that controls the GPU. In other words, GINN limits the

amount of change an adversary can in�ict on a model through a

single SGD update step. As a consequence, the adversary is forced

to keep attacking while, randomly, being veri�ed by the TEE. Using

state-of-the-art backdoor attacks, we illustrate that a randomized

veri�cation technique can detect attacks with a high probability

(e.g., 0.999) while enabling 2x-20x performance gains compared to

pure TEE based solutions.

The speci�c contributions of this paper are as follows:

• We introduce the �rst approach to support integrity-preserving

DNN training by randomized veri�cation of stochastic gradi-

ent (SGD) steps inside TEE. This approach has an extremely

high probability of ensuring the integrity the DNN training.

• We illustrate how gradient clipping can be used as a defen-

sive measure against single (or infrequent) step attack in

combination with randomized veri�cation.

• We show the e�ectiveness of our TEE randomized veri�ca-

tion and gradient clipping through extensive experimenta-

tion on DNN backdoor attacks.

2 BACKGROUND AND RELATEDWORKS

Our system combines DNN training on specialized fast hardware

such as GPUs with TEEs based on Intel Software Guard Exten-

sions (SGX) to ensure the produced model’s integrity. Appendix A

provides a legend of the notation used in this paper.

2.1 Intel SGX

SGX [6] is an example of a common TEE that is available in many

modern-day computers and existing cloud infrastructure such as

Microsoft Con�dential Computing Cloud [1]. As outlined in Table 3,

it provides a secluded hardware reserved area, namely, processor

reserved memory (PRM), that is kept private (i.e., it is not readable

in plaintext) from the host, or any privileged processes, and is free

from direct undetected tampering. It also supports remote attestation,

such that users can attest the running code within the enclave

before provisioning their secrets to a remote server. Calls from

routines that should transition to/from enclave are handled through

prede�ned entry points that are called Ecall/Ocall that must be

de�ned in advance, before building the enclave image. While it

provides security and privacy for applications, directly running

unmodi�ed applications inside SGX can induce a signi�cant hit on

performance because the memory and computational capacity are

limited.

2.2 Deep Learning Training

Over the past decade, Deep Neural Networks (DNN) have become

popular for solving problems related to computer vision and natu-

ral language processing [14, 20, 31, 35, 36]. In practice, these net-

works are stacks of layers, each of which perform a transforma-

tion F ;
W

(·) 8; 2 |! | where X;+1 = F ;
W

(X;) and |! | is the num-

ber of layers. The training task is to learn the correct parameters

(point-estimates)W⇤ that optimizes (commonly minimizes) a task-

speci�c (e.g., classi�cation) loss function L. The most common

approach for training a DNN is mini-batch Stochastic Gradient

Descent (SGD) [29]. A randomly selected mini-batch of a dataset is

fed to the DNN and the value of objective function L is calculated.

This is usually referred to as the forward pass. Next, to derive the

partial gradients of L with respect toW (rL
W

), a backward pass is

performed [12]. Finally, the parameters are then updated according

to Equation 1, where 0 < U < 1 is referred to as the learning rate.

Depending on the complexity of the dataset and the task, this pro-

cess might require hundreds of passes (called epoch) over the input

dataset to achieve convergence.

WC+1 = WC � UrLC

WC (1)

2.3 Gradient Clipping

Gradient Clipping (GC) is a method that has been shown to help

mitigate the problem of exploding gradients during training [11].

Simply, GC forces the gradients into a narrow interval to prevent

very large updates during the SGD step. There have been some

e�orts to analyze GC with respect to convergence. For instance,

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

5

Randomness

t

W0 Wt+1

Batch

Forward Backward

SGD(0) SGD(t)

W1 W2 Wt

Forward Backward Forward Backward Forward Backward

UpdateClip

t

Figure 1: The main architecture of GINN. The TEE handles mini-batch selection, layer-speci�c randomness, and parameter

initialization. The GPU performs forward and backward passes over themini-batch (items selected by SGX provided seed) and

reports the computed gradients to the TEE. TEE then clips the gradients and performs the weight update. Also, TEE preserves

the MAC-authenticated intermediate gradient reports. During veri�cation, TEE performs the forward and backward passes

with the batch items along with layer-speci�c randomness (regenerated) and compares the gradients with the GPU’s report.

Zhang and colleagues [39] prove (assuming a �xed step size) that

training with GC can be faster than training without it. Moreover,

their theoretical analysis suggests that too small clipping values

can reduce the training performance (i.e., require more steps for

convergence). However, in practice, this performance reduction

is rarely observed. [5] has an interesting theoretical analysis cou-

pled with empirical evidence (symmetry of gradients distribution

with respect to the SGD trajectory) that answers the gap between

previous theoretical and practical observations. These results sug-

gest that GC could be leveraged in practical DNN training without

signi�cant performance issues.

2.4 Attacks on DNN Models in Training Phase

Attacks on DNN models can be realized during both training or test

phases. However, GINN is concerned with integrity issues during

the training phase of DNN models, such that attacks related to

testing are out of the scope of this paper since test time attacks

have been addressed before (e.g., Slalom [37]). In the literature,

particularly in the computer vision community, targeted trojan

attacks on DNN classi�cation models have become a real concern

as deep learning has grown in its adoption. These attacks tend to

alter the prediction of models when a speci�c condition in the input

is met. These conditions may be feature-based [13, 23] or instance-

based [30]. Recently, trojan attacks were extended to Reinforcement

Learning (RL) and text classi�cation models [18, 34].

In practice, these attacks are implemented by manipulating sam-

ples during training through data poisoning. This could be achieved,

for instance, by stamping images with a certain pattern and modi-

fying the label of the image (e.g., changing “dog" to “cat"). Notably,

these models provide similar competitive classi�cation test accu-

racy when compared to clean models (i.e., models that have not

been attacked). As a consequence, it is non-trivial to distinguish

trojaned models from non-trojaned models based on model accu-

racy alone. To make matters worse, even if the model owner was

aware of examples of the trojan trigger pattern, the owner would

need to patch the model through a retraining process to dampen

the e�cacy of the trojan trigger pattern. Retraining does not always

guarantee complete removal of the trojan behavior from the model.

Various techniques have been proposed to diagnose and mitigate

the e�ect of trojaned models. However, all approaches developed

to date are either 1) based on unrealistic assumptions or 2) are

excessively costly. For instance, Neural Cleanse [38] requires access

to a sizable sample of clean inputs to reverse-engineer the backdoor

and has shown to be successful only for trigger patterns with a

relatively small size. ABS [22] improves upon Neural Cleanse in

that requires a signi�cantly smaller number of samples; however,

it assumes that the neurons responsible for the trojan can activate

trojan behavior independently of each other, which is unlikely to

be true in practice.

2.5 Integrity Protection for DNN Training

[37] took the �rst step towards achieving both fast and reliable

execution in the test phase, but neglected the training phase. The

training phase is far more computationally demanding than the

test phase, such that veri�cation of all steps in training requires

a substantially longer time because 1) parameters continuously

changing, and 2) the backward pass involves computing gradients

for both the inputs and the parameters, which requires a larger

amount of time than the forward pass alone. Moreover, attacking

the training pipeline to inject a trojan in the �nal model is quite

simple (i.e., replace the actual model with the desired attack model

by modifying the last SGD update) and, thus, is likely the most desir-

able form of attack for real world adversaries to launch. Altogether,

throughout this work, we mainly focus on showing the e�ective-

ness of our method at preventing this type of attack from being

successful. The main objective of GINN is to enable a high-integrity

training pipeline so that the users are assured that the model 1)

is built on the correct dataset and 2) uses the correct parameters

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

6

without modi�cation. If, at any point during the training, GINN

detects a deviation from the speci�ed execution, it will not approve

the �nal model to ascertain its validity.

GINN relies upon the proactive training as opposed to the post-

training or deployment-time methods to protect the health of a

DNN model. It should be noted that our approach is independent of

the attack strategy and is su�ciently generic to catch any continuous

attack during the training of a DNN model.

GINN limits the amount of change an adversary can in�ict on a

model through a single SGD step. As a consequence, the adversary

is forced to keep attacking while being veri�ed at random by the

TEE.

3 THREAT MODEL

Attacks on the integrity of DNNs can be orchestrated at di�er-

ent stages of the model learning pipeline (e.g., data collection or

training). We assume the TEE node in GINN is trusted and the

bytes stored on the Processor Reserved Memory (PRM) are always

encrypted and authenticated before they are fetched inside the

CPU. We assume that the data sent to GINN is provided by honest

users via a secure/authenticated channel and is devoid of malicious

samples.1 For the training phase, we assume that the adversary has

complete knowledge about the network structure, learning algo-

rithm, and inputs (after TEE performs an initial pre-processing) to

the model. In our threat model, the adversary is in complete control

of the host system’s software stack, and hardware (unprotected

RAM, GPU), except for the CPU package and its internals. Therefore,

the code that runs inside the enclave is free from tampering, and

the data that are accessed inside the cache-lines or registers are not

accessible to the adversary. For the inputs supplied to DNN tasks,

the adversary is capable of performing insertion, modi�cation, and

deletion to in�uence the �nal model towards her advantage. Finally,

the adversary controls the communication between TEE and the

user, but cannot impose denial of service attacks. As a result, an

attacker may report falsi�ed gradients at any time. Nonetheless, to

enable protection against rollback attacks, readers can refer to [24].

4 SYSTEM DESIGN

GINN o�ers integrity for the training phase of a DNN model while

inducing limited computational overhead. An overview of GINN is

illustrated in Figure 1.

Training Setup Before the training phase initiates, the training

dataset is decrypted and validated inside the TEE. We assume an

honest and authenticated user will send her data encryption key

 2;84=C (after remote-attestation [4]) to the TEE. Next, the TEE

decrypts/veri�es the initial encrypted dataset using the 2;84=C
and supplies the trainer (GPU) the plain-text of the training set.

Lastly, the TEE allocates the necessary resources for the model

and initializes the parameters with random values for the GPU to

initiate the �rst SGD step.

TrainingwithGINN 1) At the beginning of mini-batch SGD step i

(nominal), the TEE supplies the untrusted GPU with the pseudoran-

dom number generator (PRNG) seeds for the mini-batch selection

and the per-layer PRNG seeds (e.g., Dropout [32]) that are derived

within the TEE and supplied to the GPU. As a result, the adversary

1Detecting malicious samples is beyond the scope of this work.

will have to use the provided PRNGs for random choices. TEE gen-

erated randomness is applied to populate the data bu�ers of the

GPU with the correct batch. Depending on the number of layers,

other PRNG seeds will be generated for each layer to generate ran-

dom values for operations of each layer. 2) After completion of the

forward and backward passes over the mini-batch, the computed

gradients are sent back to the TEE. In our design, the GPU always

performs the forward and the backward passes and reports the

computed gradients to the TEE. 3) GINN always clips the reported

gradients and ensures that they are within a narrow range before

performing the update so that evolving the model towards the at-

tacker’s intended model requires a prolonged malicious intervention

by the attacker. 4) GINN updates the parameters ($(#) complex-

ity) with the clipped gradients and saves authenticated snapshots

of the state outside the TEE. 5) If the computation at this step is

randomly selected for veri�cation, then the faulty behavior, if any

exists, can be detected. Otherwise, the chance that the model has

evolved towards the attacker’s desired optima likely requires mul-

tiple rounds, which provides ample opportunities for detection.

Additionally, the veri�cation is performed randomly to prevent the

attacker from guessing which step is likely to be veri�ed. In the

end, if the TEE does not detect any violation, it will certify the �nal

model (Appendix B) by digitally signing the model hash.

Probabilistic Veri�cation with GINN The TEE randomly de-

cides whether or not to verify the computation over eachmini-batch.

If the mini-batch is selected for veri�cation, then the intermediate

results are saved and the veri�cation task is pushed into a veri�ca-

tion queue. Veri�cation by the TEE can take place asynchronously and

it does not halt the computation for future iterations on the GPU.

The authenticity of snapshots is always veri�ed with a key that

is derived from a combination of the TEE’s session key, (B4BB8>=
(⌧-

and the corresponding iteration. When the TEE veri�es the step i,

it populates the network parameters with the snapshot it created

for the step i � 1. It then regenerates the randomness designated to

step 8 to obtain the batch indices and correctly sets up the per-layer

randomness. Given that the TEE’s goal is to verify that the reported

gradients for step 8 are correctly computed, GINN does not keep

track of the activation results. Rather, it only requires the computed

gradients, batch mean/std (for BatchNorm layer), and the matrix

multiplication(MM) outcomes (in case random MM veri�cation is

chosen).

Randomized Matrix Multiplication Veri�cation with GINN

MatrixMultiplications (MMs) take up the bulk of the resource-heavy

computations in DNNs. In modern DNN frameworks, convolutional

and connected layers computation are implemented in the form

of a matrix multiplication in both of the forward and backward

passes. Table 4 in Appendix C depicts the computations in the for-

ward pass and backward gradient with respect to the weights and

previous layers’ outputs in the form of a rank 2 tensor multiplica-

tion. Fortunately, there exists an e�cient veri�cation algorithm (i.e.,

Freivalds’s randomized MM veri�cation algorithm) for matrix mul-

tiplication([9]) when the elements of matrices belong to a �eld. In

this work, we leverage the Freivalds’s randomized MM veri�cation

algorithms as well.

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

7

5 INTEGRITY ANALYSIS

To achieve our integrity goal ?8 (i.e., the probability that an attacker

can modify the result without being detected is less than 1 � ?8),

we need to derive the ?E (i.e., the probability that TEE veri�es an

SGD step).

5.1 Random Mini-Batch Veri�cation

We de�ne the total number of DNN training steps as ⌫. For each

step, report '1 (81 2 [1,⌫] ^ '1 2 {0, 1}) has a probability ?2 for

being corrupted (i.e., '1 = 1) and the overall integrity probability

goal of ?8 (for example ?8 = 0.999).

We de�ne +1 = 1 if a batch is chosen by the TEE for veri�cation,

and the veri�cation result indicates a malicious SGD step. If the

veri�cation passes, then +1 = 0.

We de�ne random variable - =
P d⌫⇥?E e

1=1
+1 to be the total num-

ber of random veri�cations performed that resulted in catching a

malicious SGD step. It should be recognized that the TEE needs to

catch at least one deviation (i.e., - � 1) with probability greater

than ?8 to invalidate the overall model learning.

Theorem 1. Given a total of B steps during SGD training, a %2
probability of an SGD step being malicious, and %8 probability of

detecting at least one malicious SGD step, the required probability of

choosing a step to verify (?E) should be greater than

⌫�1(
log(1�?8)
log(1�?2)

� 1).

P����. We need to ensure that % (- � 1) (i.e., the probability that at

least one deviation is caught) is greater or equal to ?8 .

% (- � 1) = 1 � % (- = 0) � ?8

1 � ?8 � % (- = 0)

1 � ?8 �

✓

d⌫ ⇥ ?E e

0

◆

?02 (1 � ?2)
d⌫⇥?E e

1 � ?8 � (1 � ?2)
d⌫⇥?E e

log(1 � ?8) � d⌫ ⇥ ?E e log(1 � ?2)

?E > ⌫�1(
log(1 � ?8)

log(1 � ?2)
� 1) (2)

⇤

As shown in Figure 8 in Appendix D, we only need to verify a

small subset of the batch computations inside the TEE to ensure

a high probability of correct computation. For example, for large

datasets such as Imagenet [8], when corruption probability is %0.5,

we need to randomly verify %1 of computation to achieve 0.9999

correctness probability on the computation outsourced to the GPU

.

5.2 Random Mini-Batch Veri�cation with
Randomized Matrix Multiplication

Since Freivalds’s randomized matrix multiplication veri�cation

scheme [9] is a randomized algorithm, it is possible that the scheme

will falsely attest to the validity of the MM operations performed

by the GPU. Thus, in addition to the previous con�guration, the

veri�cation can be replicated : times to decrease the chance of

encountering a false negative. The scheme has no false positive, so

if the matrix multiplication is correct then the veri�cation succeeds.

Given that each SGD step contains< independent MM operations,

SGX SGXRMM

0.5

1

1.5

2

2.5

3

3.5

4

0
.
93

1
.
6

0
.
42

1
.
04

0
.
29 0
.
63

VGG19

T
h
ro
u
g
h
p
u
t
(I
m
ag
es
/S
ec
)

SGX SGXRMM

1
.
1

1
.
63

0
.
47

1
.
05

0
.
33

0
.
7

VGG16

SGX SGXRMM

1
.
05 1
.
15

0
.
73 0
.
93

0
.
43 0
.
51

ResNet152

SGX SGXRMM

3
.
93

4
.
41

2
.
24

3
.
01

1
.
43

1
.
79

ResNet34

Throughput Performance (ImageNet)

Forward Backward Overall

Figure 2: Throughput of the SGD training step for

VGG19,VGG16, ResNet152, and Resnet34 on ImageNet

dataset with respect to forward and backward passes.

“SGXRMM” refers to Freivalds’ MM veri�cation scheme,

while “SGX” refers to the baseline case of fully computing

theMMoperation. RMMcan lead to veri�cation that is twice

as fast as full MM veri�cation in case of a VGG architecture.

which are to be repeated : times (independently), and random

values are uniformly sampled from a �eld of size |(|, the probability

of error (attesting to the validity of a malicious MM operation) is

less than U = 1
|(|<: . We de�ne the random variable+ 0

1
= 1 if '1 = 1

(i.e., corrupt report of a malicious step) and ""_E4A8 5 ~(1) = 0

(Freivalds’s veri�cation rejects the equality), otherwise + 0
1
= 0

Also, de�ne - =
P d⌫⇥?E e

1=1
+ 0
1
. We need to detect at least one devi-

ation with probability greater than ?8 while conducting random

matrix multiplication veri�cation.

Theorem 2. If random matrix multiplication veri�cation is applied,

then, given the con�guration of Theorem 1, the required probability

of choosing a step to verify (?E) should be greater than

⌫�1(
log(1�?8)

log((1+(U�1)?2)
� 1).

P����. Again, we need to ensure that % (- � 1) (i.e., the probability that

at least one deviation is caught) is greater or equal to ?8 .

% (- � 1) � ?8

1 � % (- = 0) � ?8

1 � ?8 �

✓

d⌫ ⇥ ?E e

0

◆

(?2 (1 � U))0((1 � ?2) + ?2U)
d⌫⇥?E e

1 � ?8 � ((1 � ?2) + ?2U)
d⌫⇥?E e

log(1 � ?8) � d⌫ ⇥ ?E e log((1 � ?2) + ?2U)

?E > ⌫�1(
log(1 � ?8)

log((1 + (U � 1)?2)
� 1) (3)

⇤

The threshold in Theorem 2 yields approximately the same val-

ues as Theorem 1 when U ! 0. However, the randomized MM

veri�cation requires a $(# 2) operations for a # ⇥ # matrix, com-

pared to an iterative algorithm that requires $(# 3) operations.

6 EXPERIMENTAL EVALUATION

All of our experiments were run on a server with a Linux OS, Intel

Xeon CPU E3-1275 v6@3.80GHz, 64GB of RAM and an NVIDIA

Quadro P5000 GPU with 16GB of memory. Our attack code is im-

plemented in python 3.6 using the PyTorch library. We use Intel

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

8

(a) Large with multiple colorvariations (b) Small with low color variations in two separate corners

(c) Gray scale (d) Instagram Kelvin Filter

(e) Color Rotation Filter (f) Mix of Rotation and Instagram Nashville Filters

Figure 3: All examples of triggers on CIFAR10 images

1 2 3 4 5 6

0.00

0.02

0.04

backdoor trigger

V
er
f
R
at
e

MNIST based on backdoor trigger

1 2 3 4 5 6

0.00

0.02

0.04

0.06

backdoor trigger

V
er
f
R
at
e

GTSRB based on backdoor trigger

1 2 3 4 5 6

0.00

0.10

0.20

backdoor trigger

V
er
f
R
at
e

CIFAR10 based on backdoor trigger

0.2 0.5 0.9

0.00

0.02

0.04

Attack Start Epoch

V
er
f
R
at
e

MNIST based on start epoch of attack

0.2 0.5 0.9

0.00

0.02

0.04

0.06

Attack Start Epoch

V
er
f
R
at
e

GTSRB based on start epoch of attack

0.2 0.5 0.9

0.00

0.10

0.20

Attack Start Epoch

V
er
f
R
at
e

CIFAR10 based on start epoch of attack

0.1 0.5 0.9

0.00

0.02

0.04

Poisoning Rate

V
er
f
R
at
e

MNIST based on poisoning rate

0.1 0.5 0.9

0.00

0.02

0.04

0.06

Poisoning Rate

V
er
f
R
at
e

GTSRB based on poisoning rate

0.1 0.5 0.9

0.00

0.10

0.20

Poisoning Rate

V
er
f
R
at
e

CIFAR10 based on poisoning rate

Figure 4: A boxplot representation of the veri�cation rates required by TEE for detection failure  10�3. Based on the attack

hyper-parameters: 1) backdoor trigger type (�rst row). 2) epoch that attack starts (second row, 20%⇥,50%⇥, and 90%⇥|epochs|).

3) backdoor poisoning ratio

Table 1: Trained models with restricted clipping and learn-

ing rate

Dataset clip lr %clean %attack total

GTSRB 10�4 10�4 � %95 � %85 124

MNIST 10�4 5 ⇥ 10�5 � %95 � %85 49

CIFAR10 5 ⇥ 10�4 10�1 � %90 � %85 94

SGX for the TEE plaform. For SGX proof-of-concept implementa-

tion, we signi�cantly modi�ed the DarkNet [28] library to run the

experiments.

Table 2: ImageNet (Re-)Training onResNet34’s Last Five Lay-

ers with 4?>2⌘B = 30, 4?>2⌘_0CC02: = 3, ?>8B_A0C4 = 0.5

#class targets GC clean accr trojan accr # steps verf. rate

10 5 0.71 1.0 280 0.024

10 2 0.71 1.0 280 0.024

10 0.0005 0.57 0.99 2540 0.0027

50 5 0.71 0.93 181 0.038

50 2 0.71 0.93 181 0.038

50 0.0005 0.57 0.92 1380 0.005

Our SGX code has been tested with SDK 2.9 and the code runs

inside a Docker container in hardware mode. Our experiments are

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

9

designed to investigate e�ciency and e�ectiveness. First, we evalu-

ate the degree to which integrating randomized matrix veri�cation

in�uences the computational e�ciency of the process. Second, we

analyze the e�ectiveness of gradient clipping in forcing the attacker

to deviate from the honest protocol in higher number of mini-batch

steps. Various attack hyper-parameters (e.g., poisoning rate) were

evaluated in determining their importance towards a successful

attack with minimal deviation. This is important because, if the at-

tacker needs to deviate in more mini-batch steps, then the TEE can

detect such deviations with a smaller number of random veri�cation

steps (i.e., ?2 is higher in equation 2).

The following is an enumeration of experiments in the order

they are discussed. In section 6.1, we analyze the performance of

our system for a large dataset. For this experiment we use Ima-

geNet [8], which consists of RGB images of 1000 categories. Next in

section 6.2 we analyze the performance for a much smaller dataset,

CIFAR10 [19]. CIFAR10 dataset contains RGB images of 32 by 32

pixels in 10 categories of objects or animals. Then in section 6.3 we

analyze the impact of the heap allocated to the enclave. For this

experiment we used images from ImageNet dataset. In section 6.4

we seek to evaluate the impact of gradient clipping, in an attack

scenario for three di�erent datasets and contemplate about the po-

tential veri�cation rate necessary for a TEE to catch the malicious

execution. CIFAR10, MNIST [21] (black-white digit images from

0 to 9), and GTSRB [33] (RGB images of tra�c signs) are used to

conduct this analysis. Afterwards, in section 6.5, we investigate

whether training with gradient clippings can have an unusually

high impact on the quality of the models, especially if the chance

of the training being attacked is not high. Finally, in section 6.6, we

conducted a similar analysis on ImageNet (an instance of a very

large dataset) to observe the potential impact of gradient clipping

on big datasets.

6.1 TEE Performance On ImageNet With
Common Architectures

We tested TEE performance on popular DNN architectures such

as VGG16, VGG19 ([31]), ResNet152, and ResNet34 ([14]) with the

ImageNet ([8]) dataset. Figure 2 illustrates the throughput of the

deep networks (i.e., the number of images processed per second

during the DNN training). Usually, most of the computation takes

place in the convolution and fully-connected layers of the network.

However, the backward pass yields a smaller throughput, on av-

erage, because it involves one more MM (weight gradients and

input gradients) than the forward pass, which only invokes MM

once (i.e., output of convolution or fully-connected layers). The

implementation is quite e�cient in terms of MM operations, which

uses both vectorized instructions along with multi-threading. We

note that the baseline GPU, which lacks TEE support and integrity

protection, signi�cantly outperforms the pure TEE baseline. For

instance, the overall throughput for ResNet34 is about 60 images

per second, whereas the pure SGX baseline solution is about 1.5

images per second.

Both VGG networks gives better improvements (⇡ 2.2X) than

ResNet (⇡ 1.2X). Considering that the TEE randomly decides to

verify an SGD step with probability ?E , the overall improvement is

approximately multiplied by 1
?E
X. For instance, if we assume the

attacker only needs to deviate with probability 7⇢�5 (i.e., deviating

only 70 steps out of 1M steps), then we can detect such deviation

with ?E ⇡ 0.1 (See Figure 8d in Appendix). For VGG networks,

this means that approximately 22X performance improvement in

throughput compared to a pure TEE-based solution that veri�es

every step. Nonetheless, as our experiment results suggest, we

believe that attacking deep models that are trained on very large

datasets should require a signi�cantly larger number of deviations.

This, in return, may result in a much greater performance gain.

6.2 TEE Performance on CIFAR10

Figure 5 depicts the throughput performance for the CIFAR10

dataset and 9 di�erent VGG architectures . We chose three popular

VGG(11,13,16) architectures adapted for CIFAR10 image inputs with

custom fully connected layers attached to its end. FC-1 is one layer

(128 ⇥ 10), FC-2 is two layers (128 ⇥ 64, 64 ⇥ 10), and FC-3 is two

layers (256⇥ 128, 128⇥ 10). For CIFAR10, our veri�cation technique

generally do not bene�t from randomized matrix multiplication

scheme as it did for ImageNet. This is mainly because most of the

operations and network layers �t well within the hardware mem-

ory limit. Therefore, since the dimensions of MM operations are

not too large, using randomized MM veri�cation does not improve

performance signi�cantly.

6.3 Enclave Heap Size Impact on TEE
Performance

Figure 6 depicts the impact of the heap size on the performance of

DNNs for a single SGD step. It can be seen that increasing the heap

size substantially beyond the available hardware limit (to around

92MB) can induce a negative impact on the performance. This is es-

pecially the case for the VGG architecture. This result is mainly due

to two factors. First, it causes driver level paging, which must evict

enclave pages that require an extra level of encryption/decryption.

Second, there is a non-trivial amount of extra bookkeeping required

for the evicted pages.

6.4 Combined Impact of Gradient Clipping and
Learning Rate on Attack Success

As we discussed in Section 1, if the SGD updates are not bounded,

the attacker can launch a successful attack by deviating from the

correct training in a single update step. To prevent this, we require

each update to be clipped using the gradient clipping approach.

We conducted series of experiments to understand how gradient

clipping impacts the attacker success in poisoning the model during

training. As shown in Table 1, we selected the models that achieved

high performance on both clean and poisoned test samples (267

out of 600+). 2 First, during the attack, attacker follows the correct

protocol (mini-batch SGD) until 4?>2⌘0CC02: . At this epoch, the

attacker starts attacking by injecting a certain number of poisoned

samples (?>8BA0C4 ⇥ 10C2⌘_B8I4) from every class into the training

batch and labels it as the target label. The attacker continues to

attack until they achieve a desired threshold in terms of success rate

(correctly classifying backdoored samples as the attacker’s target

2We also performed a series of experiment for the scenario where the attack is per-
formed on steps chosen at random. However, this type of attack was not successful,
such that we do not report those results here.

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

10

SGX SGXRMM

20

40

60

59
.
84

45
.
75

17
.
02

34
.
59

13
.
25 17
.
07

VGG11-FC1

T
h
ro
u
g
h
p
u
t
(I
m
ag
es
/S
ec
)

SGX SGXRMM

57
.
11

45
.
3

16
.
99

31
.
44

13
.
1

15
.
73

VGG11-FC2

SGX SGXRMM

57
.
42

53
.
27

17
.
1

32
.
76

13
.
18 17
.
3

VGG11-FC3

SGX SGXRMM

50
.
91

41
.
36

16
.
26

24
.
89

12
.
32

12
.
75

VGG13-FC1

SGX SGXRMM

47
.
99

42
.
32

16
.
11

31
.
62

12
.
06 16

.
76

VGG13-FC2

SGX SGXRMM

48
.
31

40
.
75

16
.
04

32
.
66

12
.
04 16

.
99

VGG13-FC3

SGX SGXRMM

40
.
18

34
.
02

10
.
75

19
.
25

8
.
48 9
.
82

VGG16-FC1

SGX SGXRMM

39
.
3

30
.
67

10
.
78

19
.
87

8
.
46 9
.
96

VGG16-FC2

SGX SGXRMM

38
.
1

34
.
39

10
.
72

17
.
43

8
.
36

9
.
01

VVG16-FC3

Throughput Performance (CIFAR10)

Forward Backward Overall

Figure 5: Throughput of SGD training step for VGG19,VGG16, ResNet152, and Resnet34 on CIFAR10 dataset. Randomized

Matrix Multiplication (Freivalds’ scheme) can make veri�cation twice faster in case of VGG architecture.

(100,32) (150,48) (180,64) (200,80) (220,96)
0.1
0.25

0.5

0.75

1.0

1.25

1.5

1.75

(SGX Max Heap Size, Blocking Size) MB

T
h
ro
u
g
h
p
u
t
(I
m
ag
es
/S
ec
)

VGG19 VGG16 ResNet152 ResNet34

SGX SGX RMM

(a) Available heap with respect to throughput

(100,32) (150,48) (180,64) (200,80) (220,96)

0

100

200

(SGX Max Heap Size, Blocking Size) MB

T
im

e
(S
ec
)

(b) Available heap with respect to time spent on matrix-

matrix(vector) multiplication

Figure 6: The impact of increasing TEE heap size on (a) over-

all throughput and (b) the time spent in matrix multipli-

cation routine. VGG shows signi�cant reduction in perfor-

mance as opposed to ResNet.

label). Once it passes the threshold, the attacker halts the attack

and returns to the honest protocol, while observing the decay in

attack success rate. If the success rate falls below a desired lower

threshold, the attacker transitions back to attack mode and repeats

the aforementioned strategy. The CIFAR10 ([19]), GTSRB ([33])

and MNIST ([21]) datasets were used to analyze the impact of

multiple factors imposed by the attacker. For MNIST, and GTSRB,

the Adam [17] optimizer (which requires a smaller initial learning

rate), and for the CIFAR10 dataset, SGD with momentum are used.

Additionally, for MNIST, and GTSRB 10% of the training set was

chosen for the validation set to help adjust the learning rate based

on the validation set loss. Same for the CIFAR10 dataset, the learning

rate was set to decay (by tenfold) at �xed epochs (40, 70, 100).

6.4.1 Backdoor Trigger Pa�ern. We applied 6 di�erent backdoor

triggers (Figure 3). The MNIST dataset only has single channel

images, we converted it to a three channel image to apply the

triggers 3 to 6. As shown in Figure 4 (�rst row) the trigger pattern

can signi�cantly in�uence the e�ectiveness of the attack. The red

lines show the median, while the green dots correspond to the mean.

In all of the datasets, the �rst trigger pattern (Figure 3a) was the

most e�ective. This pattern covers a wider range of pixels compared

to the second trigger type (Figure 3b). As a consequence, it is more

likely that themodel can remember the trigger pattern across longer

periods of SGD steps. Moreover, since photo �lters (e.g. Instagram)

have become popular, we investigated the potential for conducting

attacks using some of the �lters (or transformations) as the trigger

pattern. However, covering a very wide range of pixels does not lead

to a stealthy attack, as illustrated by the last four patterns. These

patterns cover the whole input space and transform it to a new one

that they share a lot of spacial similarities while only di�erent in

tone or scale (e.g. Figure 3d). Learning to distinguish inputs that are

similar, and only di�erent in their tone, is demanding in terms of

continuity of the attack. In this case, both of the images (that is, with

and without the trigger) are in�uencing most of the parameters

and �lters in a contradictory manner (di�erent classi�cation label).

Thus, it takes a signi�cant number of steps for the network to learn

to distinguish them when gradient clipping is applied.

6.4.2 A�ack Start Epoch. Another major factor in�uencing the

evasiveness of the attack is when the attacker initiates the attack.

For instance, early in the training phase the learning rate will be

high, such that a savvy attacker might believe that they can avoid

low clipping values by initiating their attack. However, if the attack

begins too early, then it is unlikely that the model has yet con-

verged. As a result, the attack may need to commit a substantially

higher number of (unnecessarily) poisoned batches, which, in turn,

would raise the probability of detection. Yet even if the attacker was

successful, once they halt the attack, the model will likely evolve

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

11

the parameters back to a clean state relatively quickly, such that,

once again, the attacker would need to re-initiate their attack. Ad-

ditionally, because of a low clipping value, if the attacker waits

until later in the training process, the attack is again unlikely to be

e�ective. In this case, this would mainly be due to the considerably

smaller learning rate. As shown in Figure 4, the best time to attack

is when 1) the model has a relatively low loss on clean training

inputs and 2) the combination of learning rate and clipping value

(e�ective attainable update) allows the model to move toward at-

tacker’s desired optima. For MNIST, which is a trivial learning task,

attacking early endows the attacker with a better chance to launch

a stealthier attack. We believe that this is due, in part, to the faster

convergence of the model. After a few epochs, the system quickly

reaches a stable, low training loss for clean images. As a result, after

reaching the desired attack success threshold, the attack success is

generally preserved far longer than the other two datasets.

6.4.3 Mini-Batch Poisoning Ratio. Another critical factor is ?>8BA0C4 ,

the ratio of the number of poisoned samples in the batch to the

batch size. This is particularly the case when gradient clipping is

applied. Setting ?>8BA0C4 appropriately can help the attacker by

moving more parameters toward the desired optima. However, go-

ing beyond a ratio of 0.9 (i.e., ?>8BA0C4 > 0.9) can impact the training

negatively for both clean inputs and poisoned inputs. As depicted

in Figure 4, our experiments suggest that �lling more than half

the batch with poisoned samples seems to be e�ective across all

datasets. For the MNIST dataset, it appears that higher values can

achieve slightly better performance, however, this �nding is not

replicated in more complex datasets. For example, for the GTSRB

dataset, we did not observe a successful attack on the model where

clean input accuracy is close to the clean input accuracy where

there is no attack.

6.5 Impact of Gradient Clipping for Honest
Trainers

One important question is whether the gradient clipping (applied

to prevent the attacker from changing parameters in a given mini-

batch update) can have a performance impact on training when

there is no attack. We ran six experiment con�gurations, repeated

5 times, each with di�erent randomness (initialization, batch order,

etc.). Initial learning rates are set 2 (0.1, 0.01) and clipping thresh-

olds are set 2 (=8;, 0.001, 0.0005) (nil stands for no gradient clipping).

In total, there were 30 ResNet56 (complex architecture with state-of-

the-art performance) models trained on the CIFAR10 dataset (with

no attack) for 200 epochs. Usually, for the SGD [29] optimizer with

momentum, a learning rate value of 0.1 is chosen, (and for Adam

optimizer a value less than 0.001). The reader can refer to [2] for an

introductory background on deep learning optimization paradigms.

For these experiments, we used the con�guration with unbounded

gradient updates as the main reference point. For learning decay

schedule, we used a �xed decay by tenfold at epochs (50, 90, 130,

160).

Figure 7a shows the mean and standard deviation (dashed lines)

of test accuracy taken for 5 runs at each epoch for the two learning

rate con�gurations. As it can be seen, both models start to take

giant leaps toward convergence at the �rst two learning decays

enforced by the scheduler. Note that these reference runs have no

(a) Mean and STD of reference accuracy across 5 repeats for each epoch

0 20 40 60 80 100 120 140 160 180 200

0.30
0.40
0.50
0.60
0.70
0.80
0.90

Epoch

M
ea
n
A
cc
u
ra
cy

lr=10�1 lr=10�2

mean std

0 50 100 150 200

0.00

0.02

0.04

0.06

ST
D
A
cc
u
ra
cy

(b) Highest test accuracy gap across 5 repeats

60 80 100 120 140 160 180 200

�0.10

�0.05

0.00

0.05

Epoch

B
es
t
D
i�
er
en
ce lr=10�1 lr=10�2 clip=5.10�4 clip=10�3

(c) Lowest test accuracy gap across 5 repeats

60 80 100 120 140 160 180 200
�0.15

�0.10

�0.05

0.00

0.05

Epoch

W
o
rs
t
D
i�
er
en
ce

Figure 7: 7a Reference Models (no gradient clipping)

mean/std on test accuracy of 5 repeats for two di�erent

learning rates. Each con�guration had 5 repeats and a ref-

erence model (no attack and unbounded updates). 7b For

each run con�guration the test accuracy di�erence38 5 5;A ,2;8?

is de�ned as <0G
⇣

022
A4?

;A ,2;8?
� 022

A4?

A4 5

⌘

8A4? 2 [1, 5]. 7c

<8=
⇣

022
A4?

;A ,2;8?
� 022

A4?

A4 5

⌘

8A4? 2 [1, 5]

gradient clipping enforcement during the update step. Toward the

end of training, the setting with the higher initial learning rate

slightly outperforms in terms of accuracy ratio.

In Figure 7b, the largest di�erence (accuracy rate) with respect

to the reference run is plotted for each combination of learning rate

and clipping value. The plot shows that test accuracy is minimally

in�uenced by the clipping value. Rather, the test accuracy is highly

dependent on the learning rate value. When ;A = 0.1, both clipping

values can achieve values that are close to the reference runs that

have no gradient clipping. In Figure 7c, the opposite - that is, the

smallest di�erence - of the previous measure is plotted. Again, by

the end of the training, the gaps are signi�cantly reduced for the

case where a better learning rate is chosen. Therefore, having a

smaller clipping value has minimal impact on the performance,

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

12

which is notable because it is crucial to set a reasonable learning

rate.

Overall, Figure 7 shows that clipping has negligible impact on

the learning task once an appropriate learning rate is chosen. It can

be seen that, if the trainer chooses an acceptable learning rate for

the task, small clipping values (e.g., 0.001 or 0.0005) do not impede

the learning task. Once the model passes the �rst learning rate

decay schedule, all of the con�gurations behaves the same in terms

of their test performance compared to their reference model (no

gradient clipping limit).

6.6 Gradient Clipping Impact Analysis On
Large Dataset

We investigated our attack on the ImageNet dataset with the ResNet34

architecture. The state-of-the-art reference achieves an accuracy

(rate) of 0.73. However, we only reinitialized and trained the fully-

connected plus the last four convolutional layers (10M out of 21M

parameters). We used an SGD optimizer for 30 epochs, and the

initial learning rate was set to 0.05. Additionally, the learning rate

was set to decay (by tenfold) at �xed epochs (4, 7, 13). Also, ?>8BA0C4
was 0.5, and the �rst trigger pattern (Figure 3a) was used as the

only pattern (resized to 256x256). Finally, at the beginning of the

third epoch (one epoch before the �rst decay) the attack started.

6.6.1 Gradient Clipping Impact on Poisoning Backdoor A�ack Eva-

siveness. We conducted the attack for a subset of source labels (10,

and 50 out of 1000 classes) to a single target class. Table 2 shows

that small clippings (2 and 5) forces the attacker to continue for

a longer period of time, which results in a small veri�cation rate

while supporting a reasonable performance loss (around 0.02). It

is evident that the total number of malicious steps to launch suc-

cessful attacks (achieved within 30 epochs of training) demands a

very low veri�cation rate, given the detection failure < 10�3. It is

common for models that are built on the ImageNet to perform more

than 1M SGD steps. To require anything beyond 0.1 veri�cation

rate, the total number of steps that the attacker intervenes should

be below 70, which is unlikely given the strict gradient clippings.

6.6.2 Gradient Clipping Impact On Training W.O A�ack. To inves-

tigate if the optimal accuracy that can be achieved for the cur-

rent setting (partial retraining) , we selected four clipping values:

unbounded, mild (5.0), low (5.0), and tiny (0.0005). The training

with unbounded clipping value was unstable and the model barely

achieved an accuracy of 0.01. We believe that this is an example of

how gradient clipping can help large DNN models converge faster.3

However, the training with the low clipping values converged to

an acceptable optima of ⇡0.72 accuracy. It should be noted that we

only trained the model for far fewer iterations than what is usual for

ImageNet (1M-2M steps). Additionally, for the tiny clipping value,

the model converged to an optimum accuracy rate of ⇡0.61. We

wish to highlight that, for large datasets (millions of inputs), if the

trainer can choose a suitable learning rate, gradient clipping values

that are not signi�cantly smaller than the learning rate, are unlikely

to incur an unacceptable performance overhead, and empirically,

3Training from scratch with unbounded clipping can potentially take at least a week
using a single GPU of 16GB.

we observe that gradient clipping can also help the model converge

faster.

7 CONCLUSION

This paper introduced the GINN system, which provides integrity

in outsourced DNN training using TEEs. As our experimental in-

vestigation illustrates, GINN scales up to realistic workloads by

randomizing both mini-batch veri�cation and matrix multiplica-

tion to achieve integrity guarantees with a high probability. We

have further shown that random veri�cation in combination with

hyperparameter adjustment (e.g., setting low clipping rates), can

achieve 2X-20X performance improvements in comparison to pure

TEE-based solutions while catching potential integrity violations

with a very a high probability.

8 ACKNOWLEDGEMENTS

The research reported herein was supported in part by NIH award

1R01HG006844, NSF awards, CNS-1837627, OAC-1828467, IIS-1939728,

DMS-1925346, CNS-2029661 and ARO award W911NF-17-1-0356.

REFERENCES
[1] [n.d.]. Con�dential computing on Azure. https://docs.microsoft.com/en-

us/azure/con�dential-computing/overview#introduction-to-con�dential-
computing

[2] [n.d.]. Intro to optimization in deep learning: Momentum, RMSProp and
Adam. https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-
adam/. Accessed: 2010-09-30.

[3] Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham,
and Latanya Sweeney. 2019. Privacy Preserving Synthetic Data Release Us-
ing Deep Learning. In Machine Learning and Knowledge Discovery in Databases,
Michele Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley, and Geor-
giana Ifrim (Eds.). Springer International Publishing, Cham, 510–526.

[4] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. ACM New York, NY, USA.

[5] Xiangyi Chen, Zhiwei Steven Wu, and Mingyi Hong. 2020. Understanding Gradi-
ent Clipping in Private SGD: A Geometric Perspective. arXiv:2006.15429 [cs.LG]

[6] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1–118.

[7] Rov Csongor. [n.d.]. Tesla Raises the Bar for Self-Driving Carmakers.
www.blogs.nvidia.com/blog/2019/04/23/tesla-self-driving/

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

[9] Rusins Freivalds. 1977. Probabilistic Machines Can Use Less Running Time.. In
IFIP congress, Vol. 839. 842.

[10] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International conference on machine
learning. PMLR, 201–210.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. 10.11 Optimization
for Long-Term Dependencies. Deep Learning (2016), 408–411.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. 6.5 Back-Propagation
and Other Di�erentiation Algorithms. Deep Learning (2016), 200–220.

[13] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving Machine Learning as a Service. CoRR
abs/1803.05961 (2018). arXiv:1803.05961 http://arxiv.org/abs/1803.05961

[16] Nick Hynes, Raymond Cheng, and Dawn Song. 2018. E�cient Deep Learning
on Multi-Source Private Data. CoRR abs/1807.06689 (2018). arXiv:1807.06689
http://arxiv.org/abs/1807.06689

[17] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

13

[18] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. 2019. TrojDRL:
Trojan Attacks on Deep Reinforcement Learning Agents. CoRR abs/1903.06638
(2019). arXiv:1903.06638 http://arxiv.org/abs/1903.06638

[19] Alex Krizhevsky, Vinod Nair, and Geo�rey Hinton. [n.d.]. CIFAR-10 (Canadian
Institute for Advanced Research). ([n. d.]). http://www.cs.toronto.edu/~kriz/
cifar.html

[20] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. Imagenet classi�ca-
tion with deep convolutional neural networks. In Advances in neural information
processing systems.

[21] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. (2010). http://yann.lecun.com/exdb/mnist/

[22] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and
Xiangyu Zhang. 2019. ABS: Scanning Neural Networks for Back-Doors by
Arti�cial Brain Stimulation. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS ’19).
https://doi.org/10.1145/3319535.3363216

[23] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang,
and Xiangyu Zhang. 2017. Trojaning attack on neural networks. (2017).

[24] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 1289–1306. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/matetic

[25] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. IACR Cryptology ePrint Archive 2017
(2017), 396. http://eprint.iacr.org/2017/396

[26] Lucien KL Ng, Sherman SM Chow, Anna PYWoo, Donald PHWong, and Yongjun
Zhao. 2021. Goten: GPU-Outsourcing Trusted Execution of Neural Network
Training. In Proceedings of the AAAI Conference on Arti�cial Intelligence, Vol. 35.
14876–14883.

[27] Harsh Panwar, P.K. Gupta, Mohammad Khubeb Siddiqui, Ruben Morales-
Menendez, and Vaishnavi Singh. 2020. Application of deep learning for fast
detection of COVID-19 in X-Rays using nCOVnet. Chaos, Solitons & Fractals 138
(2020), 109944. https://doi.org/10.1016/j.chaos.2020.109944

[28] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/.

[29] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.
The annals of mathematical statistics (1951).

[30] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison Frogs! Targeted Clean-Label
Poisoning Attacks on Neural Networks. In Advances in Neural Information
Processing Systems 31. http://papers.nips.cc/paper/7849-poison-frogs-targeted-
clean-label-poisoning-attacks-on-neural-networks.pdf

[31] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[32] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
over�tting. The journal of machine learning research (2014).

[33] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. 2012. Man vs. computer:
Benchmarking machine learning algorithms for tra�c sign recognition. Neural
Networks (2012). https://doi.org/10.1016/j.neunet.2012.02.016

[34] Lichao Sun. 2020. Natural Backdoor Attack on Text Data. arXiv:2006.16176 [cs.CL]
[35] Christian Szegedy, Sergey Io�e, Vincent Vanhoucke, and Alexander A Alemi.

2017. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-�rst AAAI conference on arti�cial intelligence.

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition.

[37] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, veri�able and private exe-
cution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287
(2018).

[38] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao. 2019.
Neural Cleanse: Identifying andMitigating Backdoor Attacks in Neural Networks.
In 2019 IEEE Symposium on Security and Privacy.

[39] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. 2019. Why gra-
dient clipping accelerates training: A theoretical justi�cation for adaptivity.
arXiv:1905.11881 [math.OC]

A SYMBOLS

B MODEL SIGNING BY TEE

We assume, an honest and authenticated user will send her data

encryption key 2;84=C (after remote-attestation) to the TEE. Next,

the TEE decrypts and veri�es the initial encrypted dataset using the

Table 3: Symbols and Acronyms Description

Category Symbol Description

TEE

 B4BB8>=
(⌧-

TEE’s session key for learning task

(86B
(⌧-

SGX signature signing key

 2;84=C client’s encryption key

(86E
2;84=C

clients public key

PRM Processor Reserved Memory

EPC Enclave Page Cache

Neural Network

RMM Randomized Matrix Multiplication

FV Full Veri�cation (No RMM)

DNN Deep Neural Network

FC Fully-Connected

General

W model parameters

3B training dataset

E_=D< model version number

verf_rate rate for the TEE to verify a training step

 2;84=C and supplies the trainer (GPU) the plain-text of the training

set. If the TEE fails to detect any violations of the protocol during

training, it will sign the following message that certi�es the �nal

model where W is the model parameters, 3B is training dataset,

E_=D< is the model version number, (��256 is Sha 256 bit crypto-

graphic hash function,

(��256((��256(W)| |E_=D< | |(��256(3B)| |(86E
2;84=C

)

with signature key (86B
(⌧-

of the enclave.

C MATRIX MULTIPLICATION OPS OF
COMMON DNN LAYERS

Table. 4 shows common MM operations in DNNs. Connected and

convolutional layers use MM routines to compute feed forward

output, parameter gradients, and input gradients.

D VERIFICATION PROBABILITY GROWTH
WITH RESPECT TO DETECTION
PROBABILITY

Fig. 8 shows how veri�cation probability changes with respect to

the probability that a batch step is maliciously manipulated by the

attacker. First row shows the veri�cation probability for a dataset

with 60K samples. Second row depicts the required for much bigger

dataset (1M samples) over di�erentmini-batch sizes. The smaller the

mini-batch size is, there is a higher chance for detecting malicious

behavior.

E GINN BLOCKING OF BIG MATRICES

By default, GINN allocates/releases resources on a per layer basis.

In the event that even for a single sample, it is not possible to satisfy

the memory requirements of network (either large network or large

inputs), GINN breaks each layer even further.

For convolutional layers, the main memory bottleneck is im2col4

which converts the layer’s input (for each sample) of size 28 ·F8 ·⌘8
to [:2 · 28] ⇥ [F> · ⌘>] (k is kernel window size) matrix for a more

e�cient matrix multiplication. GINN divides the inputs across the

channel dimension and processes the 8<22>; on maximum possible

channels that can be processed at once.

4extracts redundant patches from the input image and lays in columnar format

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

14

Table 4: Matrix Multiplication Operations

Layer Type Pass Computation Veri�cation (Sub)Batched/ Precomp.

Fully Connected

Forward O[⌫][$] = I[⌫][�] ⇥ (W[$][�])
|

Υ[�][1] = (W[$][�])
| ⇥ R[$][1]

Z[⌫][1] = I[⌫][�] ⇥ Υ[�][1]

Z0
[⌫][1] = O[⌫][$] ⇥ R[$][1]

YES / YES

Backward Parameters

Gradient
rW
[$][�]

= (rO
[⌫][$]

)| ⇥ I[⌫][�]

Υ[⌫][1] = I[⌫][�] ⇥ R[�][1]

Z[$][1] = (rO
[⌫][$]

)| ⇥ Υ[⌫][1]

Z0
[$][1] = rW

[$][�]
⇥ R[�][1]

YES / NO

Backward Inputs

Gradient
rI
[⌫][�]

= rO
[⌫][$]

⇥W[$][�]

Υ[$][1] = W[$][�] ⇥ R[�][1]

Z[⌫][1] = rO
[⌫][$]

⇥ Υ[$][1]

Z0
[⌫][1] = rI

[⌫][�]
⇥ R[�][1]

YES / YES

Convolutional

Forward O[5][F> .⌘>] = W[5][:2
.⇠8] ⇥ I[:2

.⇠8][F> .⌘>]

Υ[1][:2
.⇠8] = R[1][5] ⇥W[5][:2

.⇠8]

Z[1][F> .⌘>] = Υ[1][:2
.⇠8] ⇥ I[:2

.⇠8][F> .⌘>]

Z0
[1][F> .⌘>] = R[1][5] ⇥ O[5][F> .⌘>]

NO / YES

Backward Parameters

Gradient
rW
[5][:2

.⇠8]
= rO

[5][F> .⌘>]
⇥ (I[:2

.⇠8][F> .⌘>])
|

Υ[F> .⌘>][1] = (I[:2
.⇠8][F> .⌘>])

| ⇥ R[:2
.⇠8][1]

Z[5][1] = rO
[5][F> .⌘>]

⇥ Υ[F> .⌘>][1]

Z0
[5][1] = rW

[5][:2
.⇠8]

⇥ R[:2
.⇠8][1]

NO / NO

Backward Inputs

Gradient
rI
[:2

.⇠8][F> .⌘>]
= (W[5][:2

.⇠8])
| ⇥ rO

[5][F> .⌘>]

Υ[1][5] = R[1][:2
.⇠8] ⇥ (W[5][:2

.⇠8])
|

Z[1][F> .⌘>] = Υ[1][5] ⇥ rO
[5][F> .⌘>]

Z0
[1][F> .⌘>] = R[1][:2

.⇠8] ⇥ rI
[:2

.⇠8][F> .⌘>]

NO / YES

1 1.5 2 2.5 3 3.5 4 4.5 5

·10�4

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Corruption Probability (?2)

V
er
i�
ca
ti
o
n
P
ro
b
ab
il
it
y
(?

E
)

epochs= 200,dataset size = 60 , ?8 > 0.99

1 = 64

1 = 128

1 = 256

1 = 512

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5

·10�4

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Corruption Probability (?2)

epochs= 200,dataset size = 60 , ?8 > 0.999

1 = 64

1 = 128

1 = 256

1 = 512

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·10�5

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Corruption Probability (?2)

V
er
i�
ca
ti
o
n
P
ro
b
ab
il
it
y
(?

E
)

epochs= 200,dataset size = 1" , ?8 > 0.99

1 = 64

1 = 128

1 = 256

1 = 512

(c)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·10�5

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Corruption Probability (?2)

epochs= 200,dataset size = 1" , ?8 > 0.999

1 = 64

1 = 128

1 = 256

1 = 512

(d)

Figure 8: Required veri�cation probability with respect to

batch corruption probability and the desired integrity prob-

ability for a �xed 200 epochs and di�erent SGD batch size.

For fully-connected layers, the main memory bottleneck is the

parameters matrixW[$]·[�] that does not depend on the batch size.

GINN divides the matrix across the �rst dimension (rows), and

processes the outputs on the maximum possible size of rows that

�ts inside the TEE for the corresponding layer.

Session 1: Machine Learning and Security CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

15

