Session 1: Machine Learning and Security

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

GINN: Fast GPU-TEE Based Integrity for Neural Network
Training

Aref Asvadishirehjini
axal59430@utdallas.edu
University of Texas at Dallas
USA

ABSTRACT

Machine learning models based on Deep Neural Networks (DNNs)
are increasingly deployed in a wide variety of applications, ranging
from self-driving cars to COVID-19 diagnosis. To support the com-
putational power necessary to train a DNN, cloud environments
with dedicated Graphical Processing Unit (GPU) hardware support
have emerged as critical infrastructure. However, there are many
integrity challenges associated with outsourcing the computation
to use GPU power, due to its inherent lack of safeguards to ensure
computational integrity. Various approaches have been developed
to address these challenges, building on trusted execution envi-
ronments (TEE). Yet, no existing approach scales up to support
realistic integrity-preserving DNN model training for heavy work-
loads (e.g., deep architectures and millions of training examples)
without sustaining a significant performance hit. To mitigate the
running time difference between pure TEE (i.e., full integrity) and
pure GPU (i.e., no integrity) , we combine random verification of
selected computation steps with systematic adjustments of DNN
hyperparameters (e.g., a narrow gradient clipping range), which
limits the attacker’s ability to shift the model parameters arbitrarily.
Experimental analysis shows that the new approach can achieve a
2X to 20X performance improvement over a pure TEE-based solu-
tion while guaranteeing an extremely high probability of integrity
(e.g., 0.999) with respect to state-of-the-art DNN backdoor attacks.

CCS CONCEPTS

« Security and privacy — Hardware security implementation; »
Computing methodologies — Classification and regression trees.

KEYWORDS

Deep Learning, Trusted Exexution Environments, Intel SGX, In-
tegrity Preserving Deep Learning Training

ACM Reference Format:

Aref Asvadishirehjini, Murat Kantarcioglu, and Bradley Malin. 2022. GINN:
Fast GPU-TEE Based Integrity for Neural Network Training. In Proceedings
of the Twelveth ACM Conference on Data and Application Security and Privacy
(CODASPY °22), April 24-27, 2022, Baltimore, MD, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3508398.3511503

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY ’22, April 24-27, 2022, Baltimore, MD, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9220-4/22/04...$15.00
https://doi.org/10.1145/3508398.3511503

Murat Kantarcioglu
muratk@utdallas.edu
University of Texas at Dallas

USA

Bradley Malin

b.malin@vumc.org
Vanderbilt University Medical Center
USA

1 INTRODUCTION

Deep Learning (DL) is radically changing how machine learning
interacts with, and supports, society. Numerous industries increas-
ingly rely on DL models to make decisions, ranging from computer
vision, natural language processing to high-quality synthetic data
release [3]. One example is, Tesla that relies on DL for its autopilot
mode of operation [7] and it seems that, in the near future, DL
will be a routine technique for enabling autonomous vehicles to
commute on roads. Another prominent application of DL is Covid-
19 diagnosis [27], where wrong decisions can have irreversible
consequences. The training process for these DL models requires
a substantial quantity of computational resources (often in a dis-
tributed fashion) for training, which traditional CPUs are unable to
fulfill. Hence, special hardware, with massive parallel computing
capabilities, (e.g., GPUs, and TPUs) are often utilized. At the same
time, the DL model training process is increasingly outsourced to
the public cloud. This is natural, as applying cloud services (e.g.,
Amazon EC2, Microsoft Azure, or Google Cloud) for DL training
can be more fiscally palatable for companies, while also enabling
them to focus on the software product without worrying about
the hardware maintenance and quality service level agreements
of the hardware. Nevertheless, such outsourcing raises numerous
concerns with respect to the privacy and integrity of the learned
models. In recognition of the privacy and integrity concerns around
DL (and machine learning (ML) in general), a considerable amount
of research has been dedicated to applied cryptography, in three
general areas: 1) Multi-Party Computation (MPC) (e.g., [25]), 2) Ho-
momorphic Encryption (HE) (e.g., [10]), and 3) Trusted Execution
Environment (TEE) (e.g., [15, 16]). However, the majority of these
investigations are limited in that: 1) they are only applicable to
simple shallow network models, 2) they are evaluated with datasets
that have a few records (such as MNIST [21] and CIFAR10 [19]),
and 3) they incur an amount of overhead that is unacceptable for
real-life DL training workloads.

In an effort to mitigate some of these problems, and securely
move from CPUs to GPUs, the Slalom [37] system was developed to
focus on the computational integrity at the test phase while depend-
ing on the application context. It can also support enhanced data
privacy. However, at a much greater performance cost. Similarly,
Goten [26] introduced a privacy-preserving training and inference
solution based on TEEs and GPUs. However, the empirical analysis
suggested it is still not feasible to both enable privacy, and integrity
with an acceptable performance comparable to the non-private
setting (using GPU).

To address some of these limitations, we introduce GINN (See
Figure 1); a framework for integrity-preserving learning as a service
that provides integrity guarantees in outsourced DL model training

Session 1: Machine Learning and Security

in TEEs. We assume that only the TEE running in the cloud is
to be trusted, while all the other resources such as GPUs can be
controlled by an attacker to launch an attack (e.g., insert a trojan). In
this context, our goal is to support realistic DL training workloads
while ensuring data and model integrity. To achieve this goal, we
focus on the settings where maintaining the learning process’s
integrity is critical, while the training data may not contain privacy-
sensitive information. For example, for a traffic sign detection model
on public traffic sign images, it is desirable to prevent malicious
behaviors that can put the pedestrians or the driver in harm’s way.
This is because safety is of paramount importance in the above
scenario and trainers must ensure the integrity of the training
process to avoid unintended consequences.

The trivial approach of executing the entire learning process
inside a TEE is not scalable. This is mainly due to the fact that
TEEs based on CPU extensions are substantially slower compared
to GPUs. It should be noted that performance improvement tech-
niques, such as random matrix verification [37]), have been pro-
posed, but the gains achieved are insufficient to scale up to large DL
model learning settings. To significantly improve the performance
of pure TEE based approach (i.e., running entire DNN training
inside the TEE), we introduce an approach that incorporates ran-
domized verification into the DNN training process. This strategy is
based on the observation that it is unnecessary to verify all com-
putation steps of the GPU during the DNN training. Rather, we
only need to occasionally verify to ensure a very high likelihood of
catching any deviation.

Unfortunately, naive randomized verification of the DNN train-
ing steps may not be enough. Because, if the DNN training steps
is not adjusted properly, even an attack in one step could have
a devastating impact. For example, DNN training usually require
stochastic gradient descent (SGD) based updates using the current
batch of the data. If there are no limits on the SGD update step, the
attacker can arbitrarily modify the model even in a single update.
Given that randomized verification may itself be insufficient, we
further show how parts of the DNN hyperparameter setting pro-
cess, such as clipping rate should be modified to prevent single step
attacks, and require a larger number of malicious updates by an
attacker that controls the GPU. In other words, GINN limits the
amount of change an adversary can inflict on a model through a
single SGD update step. As a consequence, the adversary is forced
to keep attacking while, randomly, being verified by the TEE. Using
state-of-the-art backdoor attacks, we illustrate that a randomized
verification technique can detect attacks with a high probability
(e.g., 0.999) while enabling 2x-20x performance gains compared to
pure TEE based solutions.

The specific contributions of this paper are as follows:

e We introduce the first approach to support integrity-preserving
DNN training by randomized verification of stochastic gradi-
ent (SGD) steps inside TEE. This approach has an extremely
high probability of ensuring the integrity the DNN training.

o We illustrate how gradient clipping can be used as a defen-
sive measure against single (or infrequent) step attack in
combination with randomized verification.

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

e We show the effectiveness of our TEE randomized verifica-
tion and gradient clipping through extensive experimenta-
tion on DNN backdoor attacks.

2 BACKGROUND AND RELATED WORKS

Our system combines DNN training on specialized fast hardware
such as GPUs with TEEs based on Intel Software Guard Exten-
sions (SGX) to ensure the produced model’s integrity. Appendix A
provides a legend of the notation used in this paper.

2.1 Intel SGX

SGX [6] is an example of a common TEE that is available in many
modern-day computers and existing cloud infrastructure such as
Microsoft Confidential Computing Cloud [1]. As outlined in Table 3,
it provides a secluded hardware reserved area, namely, processor
reserved memory (PRM), that is kept private (i.e., it is not readable
in plaintext) from the host, or any privileged processes, and is free
from direct undetected tampering. It also supports remote attestation,
such that users can attest the running code within the enclave
before provisioning their secrets to a remote server. Calls from
routines that should transition to/from enclave are handled through
predefined entry points that are called Ecall/Ocall that must be
defined in advance, before building the enclave image. While it
provides security and privacy for applications, directly running
unmodified applications inside SGX can induce a significant hit on
performance because the memory and computational capacity are
limited.

2.2 Deep Learning Training

Over the past decade, Deep Neural Networks (DNN) have become
popular for solving problems related to computer vision and natu-
ral language processing [14, 20, 31, 35, 36]. In practice, these net-
works are stacks of layers, each of which perform a transforma-
tion 7‘-({4,(-) vl € |L| where X'*! = ?—,{)V(XI) and |L| is the num-
ber of layers. The training task is to learn the correct parameters
(point-estimates) ‘W* that optimizes (commonly minimizes) a task-
specific (e.g., classification) loss function £. The most common
approach for training a DNN is mini-batch Stochastic Gradient
Descent (SGD) [29]. A randomly selected mini-batch of a dataset is
fed to the DNN and the value of objective function £ is calculated.
This is usually referred to as the forward pass. Next, to derive the
partial gradients of £ with respect to W (V (ﬁ,) a backward pass is
performed [12]. Finally, the parameters are then updated according
to Equation 1, where 0 < & < 1 is referred to as the learning rate.
Depending on the complexity of the dataset and the task, this pro-
cess might require hundreds of passes (called epoch) over the input
dataset to achieve convergence.

t
W =W —aVE, 1)

2.3 Gradient Clipping

Gradient Clipping (GC) is a method that has been shown to help
mitigate the problem of exploding gradients during training [11].
Simply, GC forces the gradients into a narrow interval to prevent
very large updates during the SGD step. There have been some
efforts to analyze GC with respect to convergence. For instance,

Session 1: Machine Learning and Security

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

o OCON
LB - N
Randomness " m N . {- [] -.
@ e "
D‘ Backward
o

Figure 1: The main architecture of GINN. The TEE handles mini-batch selection, layer-specific randomness, and parameter
initialization. The GPU performs forward and backward passes over the mini-batch (items selected by SGX provided seed) and
reports the computed gradients to the TEE. TEE then clips the gradients and performs the weight update. Also, TEE preserves
the MAC-authenticated intermediate gradient reports. During verification, TEE performs the forward and backward passes
with the batch items along with layer-specific randomness (regenerated) and compares the gradients with the GPU’s report.

Zhang and colleagues [39] prove (assuming a fixed step size) that
training with GC can be faster than training without it. Moreover,
their theoretical analysis suggests that too small clipping values
can reduce the training performance (i.e., require more steps for
convergence). However, in practice, this performance reduction
is rarely observed. [5] has an interesting theoretical analysis cou-
pled with empirical evidence (symmetry of gradients distribution
with respect to the SGD trajectory) that answers the gap between
previous theoretical and practical observations. These results sug-
gest that GC could be leveraged in practical DNN training without
significant performance issues.

2.4 Attacks on DNN Models in Training Phase

Attacks on DNN models can be realized during both training or test
phases. However, GINN is concerned with integrity issues during
the training phase of DNN models, such that attacks related to
testing are out of the scope of this paper since test time attacks
have been addressed before (e.g., Slalom [37]). In the literature,
particularly in the computer vision community, targeted trojan
attacks on DNN classification models have become a real concern
as deep learning has grown in its adoption. These attacks tend to
alter the prediction of models when a specific condition in the input
is met. These conditions may be feature-based [13, 23] or instance-
based [30]. Recently, trojan attacks were extended to Reinforcement
Learning (RL) and text classification models [18, 34].

In practice, these attacks are implemented by manipulating sam-
ples during training through data poisoning. This could be achieved,
for instance, by stamping images with a certain pattern and modi-
fying the label of the image (e.g., changing “dog" to “cat"). Notably,
these models provide similar competitive classification test accu-
racy when compared to clean models (i.e., models that have not
been attacked). As a consequence, it is non-trivial to distinguish
trojaned models from non-trojaned models based on model accu-
racy alone. To make matters worse, even if the model owner was

aware of examples of the trojan trigger pattern, the owner would
need to patch the model through a retraining process to dampen
the efficacy of the trojan trigger pattern. Retraining does not always
guarantee complete removal of the trojan behavior from the model.
Various techniques have been proposed to diagnose and mitigate
the effect of trojaned models. However, all approaches developed
to date are either 1) based on unrealistic assumptions or 2) are
excessively costly. For instance, Neural Cleanse [38] requires access
to a sizable sample of clean inputs to reverse-engineer the backdoor
and has shown to be successful only for trigger patterns with a
relatively small size. ABS [22] improves upon Neural Cleanse in
that requires a significantly smaller number of samples; however,
it assumes that the neurons responsible for the trojan can activate
trojan behavior independently of each other, which is unlikely to
be true in practice.

2.5 Integrity Protection for DNN Training

[37] took the first step towards achieving both fast and reliable
execution in the test phase, but neglected the training phase. The
training phase is far more computationally demanding than the
test phase, such that verification of all steps in training requires
a substantially longer time because 1) parameters continuously
changing, and 2) the backward pass involves computing gradients
for both the inputs and the parameters, which requires a larger
amount of time than the forward pass alone. Moreover, attacking
the training pipeline to inject a trojan in the final model is quite
simple (i.e., replace the actual model with the desired attack model
by modifying the last SGD update) and, thus, is likely the most desir-
able form of attack for real world adversaries to launch. Altogether,
throughout this work, we mainly focus on showing the effective-
ness of our method at preventing this type of attack from being
successful. The main objective of GINN is to enable a high-integrity
training pipeline so that the users are assured that the model 1)
is built on the correct dataset and 2) uses the correct parameters

Session 1: Machine Learning and Security

without modification. If, at any point during the training, GINN
detects a deviation from the specified execution, it will not approve
the final model to ascertain its validity.

GINN relies upon the proactive training as opposed to the post-
training or deployment-time methods to protect the health of a
DNN model. It should be noted that our approach is independent of
the attack strategy and is sufficiently generic to catch any continuous
attack during the training of a DNN model.

GINN limits the amount of change an adversary can inflict on a
model through a single SGD step. As a consequence, the adversary
is forced to keep attacking while being verified at random by the
TEE.

3 THREAT MODEL

Attacks on the integrity of DNNs can be orchestrated at differ-
ent stages of the model learning pipeline (e.g., data collection or
training). We assume the TEE node in GINN is trusted and the
bytes stored on the Processor Reserved Memory (PRM) are always
encrypted and authenticated before they are fetched inside the
CPU. We assume that the data sent to GINN is provided by honest
users via a secure/authenticated channel and is devoid of malicious
samples.! For the training phase, we assume that the adversary has
complete knowledge about the network structure, learning algo-
rithm, and inputs (after TEE performs an initial pre-processing) to
the model. In our threat model, the adversary is in complete control
of the host system’s software stack, and hardware (unprotected
RAM, GPU), except for the CPU package and its internals. Therefore,
the code that runs inside the enclave is free from tampering, and
the data that are accessed inside the cache-lines or registers are not
accessible to the adversary. For the inputs supplied to DNN tasks,
the adversary is capable of performing insertion, modification, and
deletion to influence the final model towards her advantage. Finally,
the adversary controls the communication between TEE and the
user, but cannot impose denial of service attacks. As a result, an
attacker may report falsified gradients at any time. Nonetheless, to
enable protection against rollback attacks, readers can refer to [24].

4 SYSTEM DESIGN

GINN offers integrity for the training phase of a DNN model while
inducing limited computational overhead. An overview of GINN is
illustrated in Figure 1.

Training Setup Before the training phase initiates, the training
dataset is decrypted and validated inside the TEE. We assume an
honest and authenticated user will send her data encryption key
K lient (after remote-attestation [4]) to the TEE. Next, the TEE
decrypts/verifies the initial encrypted dataset using the K jjepns
and supplies the trainer (GPU) the plain-text of the training set.
Lastly, the TEE allocates the necessary resources for the model
and initializes the parameters with random values for the GPU to
initiate the first SGD step.

Training with GINN 1) At the beginning of mini-batch SGD step i
(nominal), the TEE supplies the untrusted GPU with the pseudoran-
dom number generator (PRNG) seeds for the mini-batch selection
and the per-layer PRNG seeds (e.g., Dropout [32]) that are derived
within the TEE and supplied to the GPU. As a result, the adversary

IDetecting malicious samples is beyond the scope of this work.

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

will have to use the provided PRNGs for random choices. TEE gen-
erated randomness is applied to populate the data buffers of the
GPU with the correct batch. Depending on the number of layers,
other PRNG seeds will be generated for each layer to generate ran-
dom values for operations of each layer. 2) After completion of the
forward and backward passes over the mini-batch, the computed
gradients are sent back to the TEE. In our design, the GPU always
performs the forward and the backward passes and reports the
computed gradients to the TEE. 3) GINN always clips the reported
gradients and ensures that they are within a narrow range before
performing the update so that evolving the model towards the at-
tacker’s intended model requires a prolonged malicious intervention
by the attacker. 4) GINN updates the parameters (O(N) complex-
ity) with the clipped gradients and saves authenticated snapshots
of the state outside the TEE. 5) If the computation at this step is
randomly selected for verification, then the faulty behavior, if any
exists, can be detected. Otherwise, the chance that the model has
evolved towards the attacker’s desired optima likely requires mul-
tiple rounds, which provides ample opportunities for detection.
Additionally, the verification is performed randomly to prevent the
attacker from guessing which step is likely to be verified. In the
end, if the TEE does not detect any violation, it will certify the final
model (Appendix B) by digitally signing the model hash.
Probabilistic Verification with GINN The TEE randomly de-
cides whether or not to verify the computation over each mini-batch.
If the mini-batch is selected for verification, then the intermediate
results are saved and the verification task is pushed into a verifica-
tion queue. Verification by the TEE can take place asynchronously and
it does not halt the computation for future iterations on the GPU.
The authenticity of snapshots is always verified with a key that
is derived from a combination of the TEE’s session key, SK;ES)S("O"
and the corresponding iteration. When the TEE verifies the step i,
it populates the network parameters with the snapshot it created
for the step i — 1. It then regenerates the randomness designated to
step i to obtain the batch indices and correctly sets up the per-layer
randomness. Given that the TEE’s goal is to verify that the reported
gradients for step i are correctly computed, GINN does not keep
track of the activation results. Rather, it only requires the computed
gradients, batch mean/std (for BatchNorm layer), and the matrix
multiplication(MM) outcomes (in case random MM verification is
chosen).

Randomized Matrix Multiplication Verification with GINN
Matrix Multiplications (MMs) take up the bulk of the resource-heavy
computations in DNNs. In modern DNN frameworks, convolutional
and connected layers computation are implemented in the form
of a matrix multiplication in both of the forward and backward
passes. Table 4 in Appendix C depicts the computations in the for-
ward pass and backward gradient with respect to the weights and
previous layers’ outputs in the form of a rank 2 tensor multiplica-
tion. Fortunately, there exists an efficient verification algorithm (i.e.,
Freivalds’s randomized MM verification algorithm) for matrix mul-
tiplication([9]) when the elements of matrices belong to a field. In
this work, we leverage the Freivalds’s randomized MM verification
algorithms as well.

Session 1: Machine Learning and Security

5 INTEGRITY ANALYSIS

To achieve our integrity goal p; (i.e., the probability that an attacker
can modify the result without being detected is less than 1 — p;),
we need to derive the p, (i.e., the probability that TEE verifies an
SGD step).

5.1 Random Mini-Batch Verification

We define the total number of DNN training steps as B. For each
step, report Ry, (Vb € [1,B] A Ry € {0,1}) has a probability p. for
being corrupted (i.e., R, = 1) and the overall integrity probability
goal of p; (for example p; = 0.999).

We define V}, = 1 if a batch is chosen by the TEE for verification,
and the verification result indicates a malicious SGD step. If the
verification passes, then Vj, = 0.

We define random variable X = 3}, IET‘D ol V}, to be the total num-
ber of random verifications performed that resulted in catching a
malicious SGD step. It should be recognized that the TEE needs to
catch at least one deviation (i.e., X > 1) with probability greater
than p; to invalidate the overall model learning.

Theorem 1. Given a total of B steps during SGD training, a P,
probability of an SGD step being malicious, and P; probability of
detecting at least one malicious SGD step, the required probability of
choosing a step to verify (py) should be greater than
B—l(IOg(I*Pi) _ l).

log(1-pc)

Proor. We need to ensure that P(X > 1) (i.e., the probability that at
least one deviation is caught) is greater or equal to p;.

PX21)=1-P(X=0) > p;

1-pi = PX=0)
BX py
L-pi 2 ([.])pﬂ(l = pe)l B2
L=pi 2 (1-pe)tPPe]
log(1-pi) = [BXpoy]log(l-pc)
1, log(1 = ps)
o > Bi(——"1_1 2
b (log(l - pe)) @
[m]

As shown in Figure 8 in Appendix D, we only need to verify a
small subset of the batch computations inside the TEE to ensure
a high probability of correct computation. For example, for large
datasets such as Imagenet [8], when corruption probability is %0.5,
we need to randomly verify %1 of computation to achieve 0.9999
correctness probability on the computation outsourced to the GPU

5.2 Random Mini-Batch Verification with
Randomized Matrix Multiplication

Since Freivalds’s randomized matrix multiplication verification
scheme [9] is a randomized algorithm, it is possible that the scheme
will falsely attest to the validity of the MM operations performed
by the GPU. Thus, in addition to the previous configuration, the
verification can be replicated k times to decrease the chance of
encountering a false negative. The scheme has no false positive, so
if the matrix multiplication is correct then the verification succeeds.
Given that each SGD step contains m independent MM operations,

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

Throughput Performance (imageNet)

sGx soxt sx saxnt sax saxnt sGx s6xi
<<<<<<<< Restetss

Figure 2: Throughput of the SGD training step for
VGG19,VGG16, ResNet152, and Resnet34 on ImageNet
dataset with respect to forward and backward passes.
“SGXRMM>» yeofers to Freivalds MM verification scheme,
while “SGX” refers to the baseline case of fully computing
the MM operation. RMM can lead to verification that is twice
as fast as full MM verification in case of a VGG architecture.

which are to be repeated k times (independently), and random
values are uniformly sampled from a field of size |S|, the probability
of error (attesting to the validity of a malicious MM operation) is
less than a = W We define the random variable Vb’ =1ifR, =1
(i.e., corrupt report of a malicious step) and MM_verify(b) = 0

(Freivalds’s verification rejects the equality), otherwise Vl: =0

Also, define X = 3, l[ljfp o Vb' . We need to detect at least one devi-
ation with probability greater than p; while conducting random
matrix multiplication verification.

Theorem 2. If random matrix multiplication verification is applied,
then, given the configuration of Theorem 1, the required probability
of choosing a step to verify (py) should be greater than

-1 log(1-p;)
B (togtart@-1pay ~ V-

ProoOF. Again, we need to ensure that P(X > 1) (i.e., the probability that
at least one deviation is caught) is greater or equal to p;.

PX>1) = p;
1-PX =0 > p;
g > (5PNt - @ - poy+ peay e
1=pi 2 (1=pe) + pee) P!
log(l—p:) = [Bxpyllog((l-pc)+pea)
L1 logl=p)
P> P g @ vp ©
m]

The threshold in Theorem 2 yields approximately the same val-
ues as Theorem 1 when ¢ — 0. However, the randomized MM
verification requires a O(N?) operations for a N X N matrix, com-
pared to an iterative algorithm that requires O(N3) operations.

6 EXPERIMENTAL EVALUATION

All of our experiments were run on a server with a Linux OS, Intel
Xeon CPU E3-1275 v6@3.80GHz, 64GB of RAM and an NVIDIA
Quadro P5000 GPU with 16GB of memory. Our attack code is im-
plemented in python 3.6 using the PyTorch library. We use Intel

Session 1: Machine Learning and Security CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

(d) instogram

Kelvin Filter

() Color Rotation Filter (£) Mix of Rotation and Instagram Nashville Filters

Figure 3: All examples of triggers on CIFAR10 images

MNIST based on backdoor trigger GTSRB based on backdoor trigger CIFAR10 based on backdoor trigger
1 0.06 : 0.20 $
o 004 o . ® +
& _ £ 0.04 ! =t _
5 T 5 010 |
2 0.02 E 2 o0 i _
: - T g [——
000 T T T T T T 000 = T T T T T 000 T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
backdoor trigger backdoor trigger backdoor trigger
MNIST based on start epoch of attack GTSRB based on start epoch of attack CIFAR10 based on start epoch of attack
- + 0.20 $
' 0.06 :
o 0.04 . + 2 i 2 +
g ! £ 0.04 g _
E B 4 + 5 010 * .
£ 002 — 2 002 ES + B 1
0.00 ‘ ‘ : 0.00 ! ‘ : 0.00 ‘ : ‘
0.2 05 0.9 0.2 05 0.9 02 05 0.9
Attack Start Epoch Attack Start Epoch Attack Start Epoch
MNIST based on poisoning rate GTSRB based on poisoning rate CIFAR10 based on poisoning rate
+ * 0.20 $
- - 0.06 :
v 0.04 1 ! ® % ® +
5 .] 5
1 0.04
sg 0.02 o I % t E 0.10 F —+ +
= ! E E = 0.02 + . E +
0.00 Q : = 0.00 ; |__._A_IT : 0.00 % : ‘_%_'
0.1 05 0.9 0.1 05 0.9 0.1 05 0.9
Poisoning Rate Poisoning Rate Poisoning Rate

Figure 4: A boxplot representation of the verification rates required by TEE for detection failure < 1073. Based on the attack
hyper-parameters: 1) backdoor trigger type (first row). 2) epoch that attack starts (second row, 20%X,50%X%, and 90%Xx|epochs|).
3) backdoor poisoning ratio

Table 1: Trained models with restricted clipping and learn- Table 2: ImageNet (Re-)Training on ResNet34’s Last Five Lay-
ing rate ers with epochs = 30, epoch_attack = 3, pois_rate = 0.5
Dataset clip Ir %clean | %attack | total #class targets GC | clean accr | trojan accr | # steps | verf. rate
GTSRB 10-% 102 > %95 > %85 124 10 5 0.71 1.0 280 0.024
= e > % 10 2 0.71 1.0 280 0.024
MNIST 10 -t > X 1701 2 %95 2 785 49 10 0.0005 0.57 0.99 2540 0.0027
CIFARI0 | 5x 10 10 > %90 | >%85 | 94 = 5 o 093 51 T 003
50 2 0.71 0.93 181 0.038
50 0.0005 0.57 0.92 1380 0.005
SGX for the TEE plaform. For SGX proof-of-concept implementa-
tion, we significantly modified the DarkNet [28] library to run the Our SGX code has been tested with SDK 2.9 and the code runs
experiments. inside a Docker container in hardware mode. Our experiments are

Session 1: Machine Learning and Security

designed to investigate efficiency and effectiveness. First, we evalu-
ate the degree to which integrating randomized matrix verification
influences the computational efficiency of the process. Second, we
analyze the effectiveness of gradient clipping in forcing the attacker
to deviate from the honest protocol in higher number of mini-batch
steps. Various attack hyper-parameters (e.g., poisoning rate) were
evaluated in determining their importance towards a successful
attack with minimal deviation. This is important because, if the at-
tacker needs to deviate in more mini-batch steps, then the TEE can
detect such deviations with a smaller number of random verification
steps (i.e., p¢ is higher in equation 2).

The following is an enumeration of experiments in the order
they are discussed. In section 6.1, we analyze the performance of
our system for a large dataset. For this experiment we use Ima-
geNet [8], which consists of RGB images of 1000 categories. Next in
section 6.2 we analyze the performance for a much smaller dataset,
CIFAR10 [19]. CIFAR10 dataset contains RGB images of 32 by 32
pixels in 10 categories of objects or animals. Then in section 6.3 we
analyze the impact of the heap allocated to the enclave. For this
experiment we used images from ImageNet dataset. In section 6.4
we seek to evaluate the impact of gradient clipping, in an attack
scenario for three different datasets and contemplate about the po-
tential verification rate necessary for a TEE to catch the malicious
execution. CIFAR10, MNIST [21] (black-white digit images from
0 to 9), and GTSRB [33] (RGB images of traffic signs) are used to
conduct this analysis. Afterwards, in section 6.5, we investigate
whether training with gradient clippings can have an unusually
high impact on the quality of the models, especially if the chance
of the training being attacked is not high. Finally, in section 6.6, we
conducted a similar analysis on ImageNet (an instance of a very
large dataset) to observe the potential impact of gradient clipping
on big datasets.

6.1 TEE Performance On ImageNet With
Common Architectures

We tested TEE performance on popular DNN architectures such
as VGG16, VGG19 ([31]), ResNet152, and ResNet34 ([14]) with the
ImageNet ([8]) dataset. Figure 2 illustrates the throughput of the
deep networks (i.e., the number of images processed per second
during the DNN training). Usually, most of the computation takes
place in the convolution and fully-connected layers of the network.
However, the backward pass yields a smaller throughput, on av-
erage, because it involves one more MM (weight gradients and
input gradients) than the forward pass, which only invokes MM
once (i.e., output of convolution or fully-connected layers). The
implementation is quite efficient in terms of MM operations, which
uses both vectorized instructions along with multi-threading. We
note that the baseline GPU, which lacks TEE support and integrity
protection, significantly outperforms the pure TEE baseline. For
instance, the overall throughput for ResNet34 is about 60 images
per second, whereas the pure SGX baseline solution is about 1.5
images per second.

Both VGG networks gives better improvements (~ 2.2X) than
ResNet (~ 1.2X). Considering that the TEE randomly decides to
verify an SGD step with probability p,, the overall improvement is
approximately multiplied by piUX. For instance, if we assume the

10

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

attacker only needs to deviate with probability 7E-5 (i.e., deviating
only 70 steps out of 1M steps), then we can detect such deviation
with p, ~ 0.1 (See Figure 8d in Appendix). For VGG networks,
this means that approximately 22X performance improvement in
throughput compared to a pure TEE-based solution that verifies
every step. Nonetheless, as our experiment results suggest, we
believe that attacking deep models that are trained on very large
datasets should require a significantly larger number of deviations.
This, in return, may result in a much greater performance gain.

6.2 TEE Performance on CIFAR10

Figure 5 depicts the throughput performance for the CIFAR10
dataset and 9 different VGG architectures . We chose three popular
VGG(11,13,16) architectures adapted for CIFAR10 image inputs with
custom fully connected layers attached to its end. FC-1 is one layer
(128 x 10), FC-2 is two layers (128 X 64, 64 X 10), and FC-3 is two
layers (256 x 128, 128 X 10). For CIFAR10, our verification technique
generally do not benefit from randomized matrix multiplication
scheme as it did for ImageNet. This is mainly because most of the
operations and network layers fit well within the hardware mem-
ory limit. Therefore, since the dimensions of MM operations are
not too large, using randomized MM verification does not improve
performance significantly.

6.3 Enclave Heap Size Impact on TEE
Performance

Figure 6 depicts the impact of the heap size on the performance of
DNN:ss for a single SGD step. It can be seen that increasing the heap
size substantially beyond the available hardware limit (to around
92MB) can induce a negative impact on the performance. This is es-
pecially the case for the VGG architecture. This result is mainly due
to two factors. First, it causes driver level paging, which must evict
enclave pages that require an extra level of encryption/decryption.
Second, there is a non-trivial amount of extra bookkeeping required
for the evicted pages.

6.4 Combined Impact of Gradient Clipping and
Learning Rate on Attack Success

As we discussed in Section 1, if the SGD updates are not bounded,
the attacker can launch a successful attack by deviating from the
correct training in a single update step. To prevent this, we require
each update to be clipped using the gradient clipping approach.
We conducted series of experiments to understand how gradient
clipping impacts the attacker success in poisoning the model during
training. As shown in Table 1, we selected the models that achieved
high performance on both clean and poisoned test samples (267
out of 600+). 2 First, during the attack, attacker follows the correct
protocol (mini-batch SGD) until epochg;qer- At this epoch, the
attacker starts attacking by injecting a certain number of poisoned
samples (poisrqre X batch_size) from every class into the training
batch and labels it as the target label. The attacker continues to
attack until they achieve a desired threshold in terms of success rate
(correctly classifying backdoored samples as the attacker’s target

2We also performed a series of experiment for the scenario where the attack is per-
formed on steps chosen at random. However, this type of attack was not successful,
such that we do not report those results here.

Session 1: Machine Learning and Security

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

Throughput Performance (CIFAR10)

=N
=
et

S
2

] 59.84
] 57.11
] 57.42

o~
]
@

I3
=2
v
<+

'
S
L

17.02
3.25

17.1
3.18

0o
S
L

Throughput (Images/Sec)

=
=

T T
SGX goxRMM SGX goWRMM SGX W RMM SGX goyRMM
VGG11-FC1 VGG11-FC2 VGG11-FC3 VGG13-FC1

47.99

SGX

VGG13-FC2

~
o
<

40.18

N
=3
<
>

SGX SGX SGX

SGX

SGxRMM sGxRMM SGXRMM

sGxRMM

sGxRMM

VGG13-FC3 VGG16-FC1 VGG16-FC2 VVG16-FC3

’ 00 Forward [l 0 Backward [l 0 Overall

Figure 5: Throughput of SGD training step for VGG19,VGG16, ResNet152, and Resnet34 on CIFAR10 dataset. Randomized
Matrix Multiplication (Freivalds’ scheme) can make verification twice faster in case of VGG architecture.

g 175 & - - 0= - -0 - - - -0
B
e 15 . o o o
g 12 W VG619 O VGG16 A ResNet152 () ResNet3d
= 10 SGX - - SGX RMM
2

075
) | SEEISES EERERE] IERNES & -
g 05 - = = = = == L= ii= o
£ 025 Ff ﬁ —ﬁ‘ ——il

(100,32) (150,48) (180,64) (200,80) (220,96)

(SGX Max Heap Size, Blocking Size) MB

(a) Available heap with respect to throughput

200

100

Time (Sec)

(100,32) (150,48) (180,64) (200,80) (220,96)

(SGX Max Heap Size, Blocking Size) MB

(b) Available heap with respect to time spent on matrix-
matrix(vector) multiplication

Figure 6: The impact of increasing TEE heap size on (a) over-
all throughput and (b) the time spent in matrix multipli-
cation routine. VGG shows significant reduction in perfor-
mance as opposed to ResNet.

label). Once it passes the threshold, the attacker halts the attack
and returns to the honest protocol, while observing the decay in
attack success rate. If the success rate falls below a desired lower
threshold, the attacker transitions back to attack mode and repeats
the aforementioned strategy. The CIFAR10 ([19]), GTSRB ([33])
and MNIST ([21]) datasets were used to analyze the impact of
multiple factors imposed by the attacker. For MNIST, and GTSRB,
the Adam [17] optimizer (which requires a smaller initial learning
rate), and for the CIFAR10 dataset, SGD with momentum are used.
Additionally, for MNIST, and GTSRB 10% of the training set was
chosen for the validation set to help adjust the learning rate based

1

on the validation set loss. Same for the CIFAR10 dataset, the learning
rate was set to decay (by tenfold) at fixed epochs (40, 70, 100).

6.4.1 Backdoor Trigger Pattern. We applied 6 different backdoor
triggers (Figure 3). The MNIST dataset only has single channel
images, we converted it to a three channel image to apply the
triggers 3 to 6. As shown in Figure 4 (first row) the trigger pattern
can significantly influence the effectiveness of the attack. The red
lines show the median, while the green dots correspond to the mean.
In all of the datasets, the first trigger pattern (Figure 3a) was the
most effective. This pattern covers a wider range of pixels compared
to the second trigger type (Figure 3b). As a consequence, it is more
likely that the model can remember the trigger pattern across longer
periods of SGD steps. Moreover, since photo filters (e.g. Instagram)
have become popular, we investigated the potential for conducting
attacks using some of the filters (or transformations) as the trigger
pattern. However, covering a very wide range of pixels does not lead
to a stealthy attack, as illustrated by the last four patterns. These
patterns cover the whole input space and transform it to a new one
that they share a lot of spacial similarities while only different in
tone or scale (e.g. Figure 3d). Learning to distinguish inputs that are
similar, and only different in their tone, is demanding in terms of
continuity of the attack. In this case, both of the images (that is, with
and without the trigger) are influencing most of the parameters
and filters in a contradictory manner (different classification label).
Thus, it takes a significant number of steps for the network to learn
to distinguish them when gradient clipping is applied.

6.4.2 Attack Start Epoch. Another major factor influencing the
evasiveness of the attack is when the attacker initiates the attack.
For instance, early in the training phase the learning rate will be
high, such that a savvy attacker might believe that they can avoid
low clipping values by initiating their attack. However, if the attack
begins too early, then it is unlikely that the model has yet con-
verged. As a result, the attack may need to commit a substantially
higher number of (unnecessarily) poisoned batches, which, in turn,
would raise the probability of detection. Yet even if the attacker was
successful, once they halt the attack, the model will likely evolve

Session 1: Machine Learning and Security

the parameters back to a clean state relatively quickly, such that,
once again, the attacker would need to re-initiate their attack. Ad-
ditionally, because of a low clipping value, if the attacker waits
until later in the training process, the attack is again unlikely to be
effective. In this case, this would mainly be due to the considerably
smaller learning rate. As shown in Figure 4, the best time to attack
is when 1) the model has a relatively low loss on clean training
inputs and 2) the combination of learning rate and clipping value
(effective attainable update) allows the model to move toward at-
tacker’s desired optima. For MNIST, which is a trivial learning task,
attacking early endows the attacker with a better chance to launch
a stealthier attack. We believe that this is due, in part, to the faster
convergence of the model. After a few epochs, the system quickly
reaches a stable, low training loss for clean images. As a result, after
reaching the desired attack success threshold, the attack success is
generally preserved far longer than the other two datasets.

6.4.3 Mini-Batch Poisoning Ratio. Another critical factor is poisygte,
the ratio of the number of poisoned samples in the batch to the

batch size. This is particularly the case when gradient clipping is

applied. Setting poisrqre appropriately can help the attacker by

moving more parameters toward the desired optima. However, go-
ing beyond a ratio of 0.9 (i.e., poisrqre > 0.9) can impact the training

negatively for both clean inputs and poisoned inputs. As depicted

in Figure 4, our experiments suggest that filling more than half
the batch with poisoned samples seems to be effective across all

datasets. For the MNIST dataset, it appears that higher values can

achieve slightly better performance, however, this finding is not

replicated in more complex datasets. For example, for the GTSRB

dataset, we did not observe a successful attack on the model where

clean input accuracy is close to the clean input accuracy where

there is no attack.

6.5 Impact of Gradient Clipping for Honest
Trainers

One important question is whether the gradient clipping (applied
to prevent the attacker from changing parameters in a given mini-
batch update) can have a performance impact on training when
there is no attack. We ran six experiment configurations, repeated
5 times, each with different randomness (initialization, batch order,
etc.). Initial learning rates are set € (0.1,0.01) and clipping thresh-
olds are set € (nil, 0.001, 0.0005) (nil stands for no gradient clipping).
In total, there were 30 ResNet56 (complex architecture with state-of-
the-art performance) models trained on the CIFAR10 dataset (with
no attack) for 200 epochs. Usually, for the SGD [29] optimizer with
momentum, a learning rate value of 0.1 is chosen, (and for Adam
optimizer a value less than 0.001). The reader can refer to [2] for an
introductory background on deep learning optimization paradigms.
For these experiments, we used the configuration with unbounded
gradient updates as the main reference point. For learning decay
schedule, we used a fixed decay by tenfold at epochs (50, 90, 130,
160).

Figure 7a shows the mean and standard deviation (dashed lines)
of test accuracy taken for 5 runs at each epoch for the two learning
rate configurations. As it can be seen, both models start to take
giant leaps toward convergence at the first two learning decays
enforced by the scheduler. Note that these reference runs have no

12

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

(a) Mean and STD of reference accuracy across 5 repeats for each epoch

STD Accuracy

2 0.90 >——gO—pg -
£ 080 0.06
3 828 o Ir=10"! ®m Ir=1072 0.04
< g —— mean --- std
o 0.50 0.02
£ 0.40 \ :
= 0.30 U“*’“\"‘l\{t"".‘”v**f-%‘f—#ik”l‘.‘ 0.00
T T T T T T 11 T
0 20 40 50 60 80 100 120 140150160 180 200
Epoch
(b) Highest test accuracy gap across 5 repeats
|
w 005 ylolr=10"1mlr=10"2 clip=5.10"% - - - clip=10~2
Q
S 0.00 e g am oy
g
o=}
= —0.05
R TNV PN R
2 -0.10
s}
T T T T T T T \
60 80 100 120 140 160 180 200
Epoch
(c) Lowest test accuracy gap across 5 repeats
3]
=]
&
€
@)
=
60 80 100 120 140 160 180 200
Epoch
Figure 7: 7a Reference Models (no gradient clipping)

mean/std on test accuracy of 5 repeats for two different
learning rates. Each configuration had 5 repeats and a ref-
erence model (no attack and unbounded updates). 7b For
each run configuration the test accuracy difference dif fi; 1ip

. rep rep
is defined as max (acclr’clip accref) Vrep € [1,5]. 7c

. rep rep
min (acclr,clip accref) Vrep € [1,5]

gradient clipping enforcement during the update step. Toward the
end of training, the setting with the higher initial learning rate
slightly outperforms in terms of accuracy ratio.

In Figure 7b, the largest difference (accuracy rate) with respect
to the reference run is plotted for each combination of learning rate
and clipping value. The plot shows that test accuracy is minimally
influenced by the clipping value. Rather, the test accuracy is highly
dependent on the learning rate value. When Ir = 0.1, both clipping
values can achieve values that are close to the reference runs that
have no gradient clipping. In Figure 7c, the opposite - that is, the
smallest difference - of the previous measure is plotted. Again, by
the end of the training, the gaps are significantly reduced for the
case where a better learning rate is chosen. Therefore, having a
smaller clipping value has minimal impact on the performance,

Session 1: Machine Learning and Security

which is notable because it is crucial to set a reasonable learning
rate.

Overall, Figure 7 shows that clipping has negligible impact on
the learning task once an appropriate learning rate is chosen. It can
be seen that, if the trainer chooses an acceptable learning rate for
the task, small clipping values (e.g., 0.001 or 0.0005) do not impede
the learning task. Once the model passes the first learning rate
decay schedule, all of the configurations behaves the same in terms
of their test performance compared to their reference model (no
gradient clipping limit).

6.6 Gradient Clipping Impact Analysis On
Large Dataset

We investigated our attack on the ImageNet dataset with the ResNet34
architecture. The state-of-the-art reference achieves an accuracy
(rate) of 0.73. However, we only reinitialized and trained the fully-
connected plus the last four convolutional layers (10M out of 21M
parameters). We used an SGD optimizer for 30 epochs, and the
initial learning rate was set to 0.05. Additionally, the learning rate
was set to decay (by tenfold) at fixed epochs (4, 7, 13). Also, poisrare
was 0.5, and the first trigger pattern (Figure 3a) was used as the
only pattern (resized to 256x256). Finally, at the beginning of the
third epoch (one epoch before the first decay) the attack started.

6.6.1 Gradient Clipping Impact on Poisoning Backdoor Attack Eva-
siveness. We conducted the attack for a subset of source labels (10,
and 50 out of 1000 classes) to a single target class. Table 2 shows
that small clippings (2 and 5) forces the attacker to continue for
a longer period of time, which results in a small verification rate
while supporting a reasonable performance loss (around 0.02). It
is evident that the total number of malicious steps to launch suc-
cessful attacks (achieved within 30 epochs of training) demands a
very low verification rate, given the detection failure < 1073, It is
common for models that are built on the ImageNet to perform more
than 1M SGD steps. To require anything beyond 0.1 verification
rate, the total number of steps that the attacker intervenes should
be below 70, which is unlikely given the strict gradient clippings.

6.6.2 Gradient Clipping Impact On Training W.O Attack. To inves-
tigate if the optimal accuracy that can be achieved for the cur-
rent setting (partial retraining) , we selected four clipping values:
unbounded, mild (5.0), low (5.0), and tiny (0.0005). The training
with unbounded clipping value was unstable and the model barely
achieved an accuracy of 0.01. We believe that this is an example of
how gradient clipping can help large DNN models converge faster.?
However, the training with the low clipping values converged to
an acceptable optima of ~0.72 accuracy. It should be noted that we
only trained the model for far fewer iterations than what is usual for
ImageNet (1M-2M steps). Additionally, for the tiny clipping value,
the model converged to an optimum accuracy rate of =0.61. We
wish to highlight that, for large datasets (millions of inputs), if the
trainer can choose a suitable learning rate, gradient clipping values
that are not significantly smaller than the learning rate, are unlikely
to incur an unacceptable performance overhead, and empirically,

3Training from scratch with unbounded clipping can potentially take at least a week
using a single GPU of 16GB.

13

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

we observe that gradient clipping can also help the model converge
faster.

7 CONCLUSION

This paper introduced the GINN system, which provides integrity
in outsourced DNN training using TEEs. As our experimental in-
vestigation illustrates, GINN scales up to realistic workloads by
randomizing both mini-batch verification and matrix multiplica-
tion to achieve integrity guarantees with a high probability. We
have further shown that random verification in combination with
hyperparameter adjustment (e.g., setting low clipping rates), can
achieve 2X-20X performance improvements in comparison to pure
TEE-based solutions while catching potential integrity violations
with a very a high probability.

8 ACKNOWLEDGEMENTS

The research reported herein was supported in part by NIH award
1R01HGO006844, NSF awards, CNS-1837627, OAC-1828467, I1S-1939728,
DMS-1925346, CNS-2029661 and ARO award W911NF-17-1-0356.

REFERENCES

[1] [n.d.]. Confidential computing on Azure. https://docs.microsoft.com/en-
us/azure/confidential-computing/overview#introduction-to-confidential-
computing

[n.d.]. Intro to optimization in deep learning: Momentum, RMSProp and
Adam. https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-
adam/. Accessed: 2010-09-30.

Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham,
and Latanya Sweeney. 2019. Privacy Preserving Synthetic Data Release Us-
ing Deep Learning. In Machine Learning and Knowledge Discovery in Databases,
Michele Berlingerio, Francesco Bonchi, Thomas Gértner, Neil Hurley, and Geor-
giana Ifrim (Eds.). Springer International Publishing, Cham, 510-526.

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. ACM New York, NY, USA.

Xiangyi Chen, Zhiwei Steven Wu, and Mingyi Hong. 2020. Understanding Gradi-
ent Clipping in Private SGD: A Geometric Perspective. arXiv:2006.15429 [cs.LG]
Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1-118.

Rov Csongor. [n.d.]. Tesla Raises the Bar for Self-Driving Carmakers.
www.blogs.nvidia.com/blog/2019/04/23/tesla- self-driving/

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

Rusins Freivalds. 1977. Probabilistic Machines Can Use Less Running Time.. In
IFIP congress, Vol. 839. 842.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International conference on machine
learning. PMLR, 201-210.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. 10.11 Optimization
for Long-Term Dependencies. Deep Learning (2016), 408-411.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. 6.5 Back-Propagation
and Other Differentiation Algorithms. Deep Learning (2016), 200-220.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving Machine Learning as a Service. CoRR
abs/1803.05961 (2018). arXiv:1803.05961 http://arxiv.org/abs/1803.05961

Nick Hynes, Raymond Cheng, and Dawn Song. 2018. Efficient Deep Learning
on Multi-Source Private Data. CoRR abs/1807.06689 (2018). arXiv:1807.06689
http://arxiv.org/abs/1807.06689

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[2]

[3

[4

—
i)

[11

[12

[13

[14

[16]

(17

Session 1: Machine Learning and Security

[18] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. 2019. TrojDRL:
Trojan Attacks on Deep Reinforcement Learning Agents. CoRR abs/1903.06638
(2019). arXiv:1903.06638 http://arxiv.org/abs/1903.06638
Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. [n.d.]. CIFAR-10 (Canadian
Institute for Advanced Research). ([n.d.]). http://www.cs.toronto.edu/~kriz/
cifar. html
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems.
Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. (2010). http://yann.lecun.com/exdb/mnist/
Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and
Xiangyu Zhang. 2019. ABS: Scanning Neural Networks for Back-Doors by
Artificial Brain Stimulation. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS ’19).
https://doi.org/10.1145/3319535.3363216
Yinggi Liu, Shiging Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. 2017. Trojaning attack on neural networks. (2017).
Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 1289-1306. https://www.usenix.org/
conference/usenixsecurity17/technical- sessions/presentation/matetic
Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. IACR Cryptology ePrint Archive 2017
(2017), 396. http://eprint.iacr.org/2017/396
Lucien KL Ng, Sherman SM Chow, Anna PY Woo, Donald PH Wong, and Yongjun
Zhao. 2021. Goten: GPU-Outsourcing Trusted Execution of Neural Network
Training. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
14876-14883.
Harsh Panwar, P.K. Gupta, Mohammad Khubeb Siddiqui, Ruben Morales-
Menendez, and Vaishnavi Singh. 2020. Application of deep learning for fast
detection of COVID-19 in X-Rays using nCOVnet. Chaos, Solitons & Fractals 138
(2020), 109944. https://doi.org/10.1016/j.chaos.2020.109944
[28] Joseph Redmon. 2013-2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/.
Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.
The annals of mathematical statistics (1951).
Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison Frogs! Targeted Clean-Label
Poisoning Attacks on Neural Networks. In Advances in Neural Information
Processing Systems 31. http://papers.nips.cc/paper/7849-poison-frogs-targeted-
clean-label-poisoning-attacks- on-neural-networks.pdf
Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research (2014).
[33] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. 2012. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural
Networks (2012). https://doi.org/10.1016/j.neunet.2012.02.016
Lichao Sun. 2020. Natural Backdoor Attack on Text Data. arXiv:2006.16176 [cs.CL]
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
2017. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-first AAAI conference on artificial intelligence.
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition.
Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private exe-
cution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287
(2018).
B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao. 2019.
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks.
In 2019 IEEE Symposium on Security and Privacy.
[39] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. 2019. Why gra-
dient clipping accelerates training: A theoretical justification for adaptivity.
arXiv:1905.11881 [math.OC]

[19]

[20

[21

[22]

[23

[24

[25

™
&

[27]

[29]

[30]

[31]

[32]

[37]

[38]

A SYMBOLS
B MODEL SIGNING BY TEE

We assume, an honest and authenticated user will send her data
encryption key K_jj.pn; (after remote-attestation) to the TEE. Next,
the TEE decrypts and verifies the initial encrypted dataset using the

14

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

Table 3: Symbols and Acronyms Description

Category Symbol Description
Koy " TEE’s session key for learning task
Sig3ex SGX signature signing key
K lient client’s encryption key
TEE S19 ient clients public key
PRM Processor Reserved Memory
EPC Enclave Page Cache
RMM Randomized Matrix Multiplication
FV Full Verification (No RMM)
Neural Network DNN Deep Neural Network
FC Fully-Connected
w model parameters
ds training dataset
General .
v_num model version number
verf rate | rate for the TEE to verify a training step

K. Jient and supplies the trainer (GPU) the plain-text of the training
set. If the TEE fails to detect any violations of the protocol during
training, it will sign the following message that certifies the final
model where W is the model parameters, ds is training dataset,
v_num is the model version number, SHA256 is Sha 256 bit crypto-
graphic hash function,

SHA256(SHA256('W)||lo_num||SHA256(ds)||Sig;;, p)
with signature key Sigg . of the enclave.

C MATRIX MULTIPLICATION OPS OF
COMMON DNN LAYERS

Table. 4 shows common MM operations in DNNs. Connected and
convolutional layers use MM routines to compute feed forward
output, parameter gradients, and input gradients.

D VERIFICATION PROBABILITY GROWTH
WITH RESPECT TO DETECTION
PROBABILITY

Fig. 8 shows how verification probability changes with respect to
the probability that a batch step is maliciously manipulated by the
attacker. First row shows the verification probability for a dataset
with 60K samples. Second row depicts the required for much bigger
dataset (1M samples) over different mini-batch sizes. The smaller the
mini-batch size is, there is a higher chance for detecting malicious
behavior.

E GINN BLOCKING OF BIG MATRICES

By default, GINN allocates/releases resources on a per layer basis.
In the event that even for a single sample, it is not possible to satisfy
the memory requirements of network (either large network or large
inputs), GINN breaks each layer even further.

For convolutional layers, the main memory bottleneck is im2col*
which converts the layer’s input (for each sample) of size c; - w; - h;
to [k? - ¢i] X [wo - ho] (k is kernel window size) matrix for a more
efficient matrix multiplication. GINN divides the inputs across the
channel dimension and processes the im2col on maximum possible
channels that can be processed at once.

4extracts redundant patches from the input image and lays in columnar format

Session 1: Machine Learning and Security

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

Table 4: Matrix Multiplication Operations

Layer Type Pass Computation Verification (Sub)Batched/ Precomp.
Yy = Wo)™ X Riojn)
Forward O[B] [o] = I[B][l] X (W[O] [I])T Z[B][l] = I[B] X Y[I][l] YES / YES
Fully Connected Z’[B][l] = O[B][O] X R[O][I]
Yig)01) = 81011 X Ry
BaCkwérri;iﬁmmrs Vionn = Vo)™ * s Zion = (Vo)™ X Visi YES / NO
Z' 101 = Viogn X Runny
Yioi1 = Woin X R
Bacﬁiﬁiﬁputs Visim = Va0 * Wiown Zintn = Vo) X Yiolnn YES / YES
Z' w1111 = Vi X R
Y. = R X Wi .cil
Forward Ofiwo hol = Wisiike.ci X L1k, Cillvo-ho) Z1]wo-hol = Y1) (k2.1 X L (k2.Cil . o) NO/ YES
Convolutional Z' 1) woho] = R0 X OLf 1w o]
Yo hollt] = Tie2.cilwo-ho) T X Rik2.ci1)
Backward Parameters W _yO (I) Z[f][l] _voO X Y ho]l1] NO/NO
Gradient Ik.CA T Y [llwo-ho] ™ VIR Cillwo-ho) U10wo-hol oo
Z' 110 = Vi fe.cg * R can
Y10 = Rpee.c) X Wypiee.e)”
Bacg:;‘iieﬁpms Vi et = Wi e X Vi ay | Z000w0 k0] = Y0r1 X Vo o] NO / YES
Z'1)iwe-ho) = Riuie.cy X V[Jl'<2.c,-][wo4ho]

epochs= 200,dataset size = 60K, p; > 0.99

epochs= 200,dataset size = 60K, p; > 0.999

e — b=64 [. b=64
ol b=128 0 b b=128
3 : - - b=256 . - - b=256
| oss |-
% D - b=512 . - b=512
2 wf . ol . —
2 . .
2 st ozs |- .
& . : . .
= 02 |- . . 02 . .
§ . - . R
g st .. o 1 AN .
§ 0 b el ERT of e teall Teelll
of ol
T R R S R T S
sz s 5 s 1 s s s @ s 3 s 4 s s
Corruption Probability (pc) - Corruption Probability (pc) ot
(a) (b)
epochs= 200,dataset size = 1M, p; > 0.99 epochs= 200,dataset size = 1M, p; > 0.999
‘T — b=64 o — b=64
e b=128 o b=128
s - b=256 E - b=256
b =512 04 b =512

Verification Probability (po)

s s s s 1w s
Corruption Probability (pe) 1075
(©

T a5 2 28 55 4 48

Corruption Probability (pc) 105

(d

For fully-connected layers, the main memory bottleneck is the
parameters matrix W[oj.[1] that does not depend on the batch size.
GINN divides the matrix across the first dimension (rows), and
processes the outputs on the maximum possible size of rows that
fits inside the TEE for the corresponding layer.

Figure 8: Required verification probability with respect to
batch corruption probability and the desired integrity prob-
ability for a fixed 200 epochs and different SGD batch size.

15

