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Abstract
With their Discovery of Inference Rules from Text (DIRT) algorithm, Lin and Pantel (2001) made a seminal contribution to
the field of rule acquisition from text, by adapting the distributional hypothesis of Harris (1954) to patterns that model binary
relations such as X treat Y, where patterns are implemented as syntactic dependency paths. DIRT’s relevance is renewed in
today’s neural era given the recent focus on interpretability in the field of natural language processing. We propose a novel
take on the DIRT algorithm, where we implement the distributional hypothesis using the contextualized embeddings provided
by BERT, a transformer-network-based language model (Vaswani et al., 2017; Devlin et al., 2018). In particular, we change
the similarity measure between pairs of slots (i.e., the set of words matched by a pattern) from the original formula that relies
on lexical items to a formula computed using contextualized embeddings. We empirically demonstrate that this new similarity
method yields a better implementation of the distributional hypothesis, and this, in turn, yields patterns that outperform the
original algorithm in the question answering-based evaluation proposed by Lin and Pantel (2001).
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1. Introduction
Lin and Pantel (2001) proposed a method for the ac-
quisition of rules from text through an extension of
the distributional hypothesis (Harris, 1954) to rules.1

That is, “if two paths tend to link the same set of
words, . . . their meanings are similar.” The resulting
algorithm, called Discovery of Inference Rules from
Text (DIRT), has had a wide impact in natural language
processing (NLP). For example, it has been shown
that such rules acquisition improves question answer-
ing (Ravichandran and Hovy, 2002), information ex-
traction (Shinyama and Sekine, 2006), and textual en-
tailment (Melamud et al., 2013b). For example, the pat-
tern X treat Y may be used to extract the answer to the
question Which drugs relieve stomach ache? (Mela-
mud et al., 2013b). The algorithm itself has been im-
proved and adapted to various scenarios (see the Re-
lated Work section for a larger discussion).
Unfortunately, the idea of using such rule acquisi-
tion and the DIRT algorithm have largely been forgot-
ten once the “deep learning tsunami” hit NLP around
2015 (Manning, 2015). While neural network have
brought unquestionable performance improvements to
most NLP tasks (as one example among many, the
leader board for TACRED,2 a popular relation extrac-
tion task, is completely dominated by neural methods),
some advantages of rule-based approaches have been
lost. Most importantly, rule-based models are inter-
pretable. That is, every model decision can be assigned
to one or a small number of rules, which, generally, are
understandable by humans. Moreover, unlike post-hoc
explainability methods (Ribeiro et al., 2016; Ribeiro et

1Alternatively called patterns or paths.
2https://paperswithcode.com/sota/

relation-extraction-on-tacred

al., 2018) the interpretability provided by rules is ac-
tionable, i.e., a human expert can correct a rule that
does not perform as intended (Valenzuela-Escárcega et
al., 2016). This actionable interpretability mitigates the
technical debt of NLP systems (Sculley et al., 2015),
which is one of the reasons why they were popular in
industry (Chiticariu et al., 2013).
Motivated by these observations, in this paper we aim
to combine the advantages of modern neural direc-
tions with the benefits provided by rule-based meth-
ods. More concretely, we propose a new take on
the DIRT algorithm, where we implement the distri-
butional hypothesis using the contextualized embed-
dings provided by BERT, a transformer-network-based
language model (Vaswani et al., 2017; Devlin et al.,
2018). In particular, we change the similarity measure
between pairs of slots (i.e., the set of words matched by
a pattern) from the original formula that relies on lex-
ical items to a formula computed in embedding space.
We empirically demonstrate that this new similarity
method yields a better implementation of the distribu-
tional hypothesis, i.e., we have a better understanding
if “two paths tend to link the same set of words.”
The key contributions of our work are:

• To our knowledge, this is the first work that com-
bines contextualized embeddings with the dis-
covery of rules. The resulting algorithm, called
BERT-Informed Rule Discovery (BIRD), aims to
marry the advantages of both approaches. That
is, we use the capacity of transformer networks to
semantically model text, but output interpretable
rules, similar to the original DIRT algorithm.

• We reproduce the rule learning evaluation from
original DIRT paper (Lin and Pantel, 2001), and

https://paperswithcode.com/sota/relation-extraction-on-tacred
https://paperswithcode.com/sota/relation-extraction-on-tacred


showed that BIRD performs better than the orig-
inal DIRT algorithm in most scenarios. We per-
form a qualitative analysis of the outputs, which
indicates that operating in embedding space gen-
eralizes better.

2. Related Work
Rule learning approaches for natural language process-
ing tasks achieved peak popularity in the late 1990s
– early 2000s (Yarowsky, 1995; Riloff, 1996; Collins
and Singer, 1999; Riloff et al., 1999; Yangarber, 2003;
McIntosh and Curran, 2008, inter alia). As mentioned,
these directions have the advantage of interpretabil-
ity that is actionable. However, most of these early
approaches were iterative semi-supervised algorithms,
i.e., they alternate between learning new rules, and ac-
quiring new training examples for their respective tasks
(e.g., pairs of entities for binary relation extraction)
from matches of the current set of rules. These itera-
tive strategies have been shown to be prone to semantic
drift where “ambiguous or erroneous” information is
“introduced in the iterative process” (McIntosh, 2010).
In contrast, DIRT implements a single pass algorithm
that directly implements the distributional hypothesis
for rules (Lin and Pantel, 2001). Despite its simplicity,
Lin and Pantel (2001) have shown that DIRT performs
well for a complex question answering task.
Following the original algorithm, several extensions to
DIRT have been introduced. Dinu and Wang (2009)
use a hand-crafted lexical resource to increase the orig-
inal inference rule collection as well as ruling out some
of the incorrect rules. Melamud et al. (2013b) also use
lexical expansion; they improve the learning of infer-
ence rules between rare patterns by lexically expanding
the collection of slot-filler words of paths with semanti-
cally similar words. Bhagat et al. (2007) determine the
directionality of an inference rule by an algorithm that
uses the distributional hypothesis and selectional pref-
erences. Szpektor and Dagan (2008) adapt DIRT for
unary patterns, in order to learn unary entailment rules.
Ibrahim et al. (2003) propose an approach that applies
a modified version of DIRT to the same monolingual
parallel corpus used by Barzilay and McKeown (2001).
Chklovski and Pantel (2004) extend DIRT to consider
also antonyms (i.e., opposite meanings). Sun and Gr-
ishman (2010) extend the ideas in DIRT to relation ex-
traction by a clustering approach that uses pattern clus-
ters to guide relation extraction methods. Several pre-
vious works have been focused on providing context-
sensitive extensions to DIRT, addressing the issue of
multiple senses per pattern. Examples include learn-
ing selectional preferences (Pantel et al., 2007; Roberto
et al., 2007; Szpektor et al., 2008), integrating word-
level and topic-level representations (Melamud et al.,
2013a), modeling senses as latent variables (Dinu and
Lapata, 2010), and using a Deep Belief Network based
model as a topic model (Guo et al., 2019). However,
to the best of our knowledge, we are the first to adapt

DIRT to work with contextualized embeddings.
In our approach, we rely on transformer networks to
generate contextualized embeddings (Vaswani et al.,
2017). In particular, we use BERT, which is a Trans-
former encoder stack that is pre-trained on a very large
corpus using masked language model and next sen-
tence prediction tasks (Devlin et al., 2018).
Our method is close in spirit to Soares et al. (2019).
Similar to our direction, they use transformer networks
to propose a novel take on the distributional hypothesis
for binary relation extraction. However, there are two
key differences between the approach of Soares et al.
(2019) and ours. First, they train binary classifiers on
top of a transformer encoder. In contrast, we produce a
collection of rules that extract and explain the relations
of interest. We argue that our method is preferable in
scenarios where interpretability is crucial, e.g., legal or
medical. Second, Soares et al. (2019) rely on distant
supervision to generate training data, i.e., they auto-
matically align a database of entity pairs that match the
relation of interest with sentences that contain them.
In contrast, our approach relies on a bootstrapping ap-
proach, which is more applicable in real-world scenar-
ios where such databases are not available.
Several extensions to BERT have been proposed re-
cently to learn relation classifiers from few training
examples (few-shot learning), which is similar to our
training process (Gao et al., 2019; Sabo et al., 2021).
However, these directions are radically different from
this work: they generate transformer variants, which
have the same interpretability issues as the original
BERT, whereas we produce rules.

3. Approach

3.1. Review of the Original DIRT Algorithm
Since our work is a neural interpretation of the DIRT al-
gorithm, for completeness we begin with an overview
of the original algorithm. Informally, DIRT learns in-
ference rules from text such as “X is the author of Y
≈ X writes Y”. Some of these inferences are not exact
paraphrases (but are still relevant and potentially use-
ful!) such as “X is the author of Y ≈ X is known for
Y”. More formally, DIRT is initialized with the left-
hand side of the above inference rule, which is imple-
mented as a syntactic pattern (or path) connecting two
concepts (see next subsection for details), and infers
one or more possible matches for the right-hand side,
where each match is represented as a similar syntactic
path. DIRT bootstraps such syntactic paths using an
adaptation of Harris’ Distributional Hypothesis prin-
ciple (Harris, 1954) to rules. That is, Lin and Pantel
(2001) built upon the original distributional hypothe-
sis, which states that words that occur in the same con-
texts tend to have similar meanings, by rephrasing it
for rules: “if two paths tend to link the same sets of
words, we hypothesize that their meanings are similar.”
For example, the three example paths above are likely



Figure 1: Example dependency tree, which matches the
syntactic path nsubj←write→dobj.

to extract similar pairs of concepts such as <“F. Scott
Fitzgerald,” “The Great Gatsby”>.

3.1.1. Extraction of paths:
DIRT extracts syntactic paths from dependency trees.
Figure 1 shows an example dependency tree generated
by the Stanford CoreNLP dependency parser (Man-
ning et al., 2014). DIRT defines a syntactic path
as a concatenation of connected dependency relations
and words, but the words at the two ends of the path
are excluded. For example, for the sentence in Fig-
ure 1, the path between “Hemingway” and “novel” is
nsubj←write→dobj. The variables at the two ends
of a path are called slots: we use SlotX to indicate the
slot on the left-hand side of the path, and SlotY the slot
on the right-hand side. Slots can be single- or multi-
word noun phrases.

3.1.2. Similarity between two paths:
As we are extracting paths, we record and update the
frequency of occurrences of each noun phrase as a slot-
filler of a path. For each instance of a path p with w1 as
the SlotX filler and w2 as the SlotY filler, we increase
the frequency count of two triples (p, SlotX, w1) and (p,
SlotY, w2). In this context, (SlotX, w1) and (SlotY, w2)
are called features of the path p.
The similarity between two paths is computed based on
the intuition that the more slot fillers two paths share,
the more similar they are. However, not all words are
equally significant. DIRT considers this fact by com-
puting the mutual information between a slot w and a
path p:

mi(p, slot, w) = log(
|p, slot, w| × |∗, slot, ∗|
|p, slot, ∗| × |∗, slot, w|

) (1)

where |p, slot, w| denotes the frequency count of the
triple (p,slot,w), |p, slot, ∗| denotes

∑
w |p, slot, w|,

and |∗, ∗, ∗| denotes
∑

p,slot,w |p, slot, w|.
The similarity between a pair of slots is defined as:

sim(slot1, slot2) =

∑
w∈T (p1,s)∩T (p2,s)

mi(p1,s,w)+mi(p2,s,w)∑
w∈T (p1,s)

mi(p1,s,w)+
∑

w∈T (p2,s)
mi(p2,s,w)

(2)

In the above equation, slot1 and slot2 are the same type
of slots (SlotX or SlotY) of two different paths, p1 and
p2, and T (pi, s) is the set of the slot-fillers for the s slot
of path pi.

Finally, the similarity between two paths p1 and p2 is
defined as the geometric mean of the similarities of
their left and right slots:

S(p1, p2) =
√

sim(SlotX1, SlotX2)× sim(SlotY1, SlotY2) (3)

3.1.3. Searching for the most similar paths:
Given a path, the goal of the DIRT algorithm is discov-
ering the most similar paths to it according to the (re-
vised) distributional hypothesis. However, computing
the similarity of the input path with all of the extracted
paths in a corpus is infeasible. Therefore, the algorithm
makes the search space smaller, by first selecting a set
of candidate paths with an inexpensive heuristic. A
candidate path is defined as a path that has at least one
common slot filler with the input path. Next, for each
candidate path, the number of shared slot fillers with
the input path is counted and the paths with the num-
ber of the shared fillers less than a fixed percentage of
the total number of unique slot fillers for the input and
candidate paths are filtered out. DIRT used 1% for this
threshold.
The key building block in DIRT is Equation 2, which
measures the similarity of two slots in different paths.
The numerator of this equation requires that the two
paths share slot fillers that are lexically identical. This
is an important limitation: two paths that populate slots
with fillers that are semantically similar but lexically
distinct, e.g., one path extracts “F. Scott Fitzgerald”
while another extracts “Francis Scott Key Fitzgerald,”
will be considered to have a similarity of 0. Our ap-
proach mitigates this problem by computing the simi-
larity of slots in the semantic space produced by trans-
former networks’ contextualized embeddings.

3.2. DIRT with Contextualized Embeddings
In this subsection, we detail our method called BIRD
(BERT-Informed Rule Discovery). In particular, we
extend DIRT by introducing two path similarity mea-
sures which are computed using the contextualized em-
beddings provided by BERT. Similar to DIRT, we start
the rule discovery with the phase in which we extract
paths. This phase is identical to DIRT. However, we
compute the similarity between a pair of paths differ-
ently. We introduce two algorithms for computing the
similarity between a pair of paths: Unweighted BIRD
and Weighted BIRD.

3.2.1. Unweighted BIRD:
We first compute an embedding vector for each of the
slots of a given path p. In order to achieve this goal, we
feed each sentence in which the path p was observed
in the corpus during the path extraction phase into a
BERT model as shown in Figure 2. The BERT model
does not have a head (e.g., a fully connected layer) on
top, which means it outputs the final hidden states for
each input token. We use the hidden states correspond-
ing to the SlotX and SlotY filler tokens to generate slot



Figure 2: Each sentence of a path is fed to a
BERT model in order to obtain contextual embed-
dings of slot-fillers (eSlotX and eSlotY ). Slot-fillers
can be single-word or multi-word noun phrases. In
the example sentence, SlotX contains two words
(Ernest Hemingway) and SlotY contains a single
word (novel).

embeddings. If the filler of a slot is a multi-token ex-
pression rather than a single token, we compute and
keep the average of the embeddings of the multi-token
phrase. Once we have computed all of the individual
slot-filler embeddings, we compute the embedding of a
slot of a path as the average of all individual slot-filler
embeddings:

Es =
1

n

∑
i

esi (4)

where esi denotes the individual embedding for the
filler of slot s in the ith sentence of a certain path, n is
the number of sentences where the path matches, and
Es denotes the embedding of the slot s of the path.
Then, the similarity between a pair of slots is defined
as:

sim(slot1, slot2) = cosine similarity(Es1 , Es2) (5)

where slot1 and slot2 refer to the same slot type (SlotX
or SlotY) of p1 and p2 paths. Further, Es1 and Es2 refer
to the embeddings of this slot for p1 and p2.
Finally, the similarity between a pair of paths p1 and p2
is defined as the arithmetic mean3 of the similarities of
their SlotX and SlotY slots:

sim(p1, p2) =
sim(SlotX1,SlotX2)+sim(SlotY1,SlotY2)

2 (6)

3.2.2. Weighted BIRD:
Weighted BIRD differs from Unweighted BIRD in
how the embedding of a slot of a path is computed.
While having more common slot-fillers generally im-
plies more similarities between a pair of paths, the orig-
inal DIRT algorithm hypothesized that not all common

3We chose the arithmetic mean here because the cosine
similarity values may be negative, which would break the ge-
ometric mean used in the original DIRT algorithm.

slot-fillers are equally important and influential. For
instance, let us assume that we are computing the simi-
larity between the path “X writes Y” and another path.
Further, let us assume that “novel” and “it” are two
common slot-filler words for the SlotY.4 Because the
word “it” is much more frequent than the word “novel”,
its informativeness is likely to be reduced. Following
this observation, we employ the mutual information in-
troduced in Equation 1 as the weights 5 for the individ-
ual embeddings of the slot-fillers of a path when we
compute the embedding of a slot of a path. Hence,
we revisit Equation 4 and redefine a slot embedding
as the weighted average of the individual embeddings
where the weights are the mutual information between
the path slot and its slot-fillers:

Es =
∑
i

mi(p, s, wi)× esi (7)

4. Experimental Results
4.1. Experimental Settings
For reproducibility purposes, we reimplemented the
original DIRT evaluation as closely as possible. Lin
and Pantel (2001) built their evaluation using the first
six questions from the TREC-8 Question Answering
Track for evaluation. We list these questions in Ta-
ble 1. TREC (Text REtrieval Conference) is an ongo-
ing annual workshops with the purpose of supporting
and promoting research within the information retrieval
community. Its Question Answering Track aimed at
answering natural language questions, such as those in
Table 1 (Voorhees and others, 1999).
The goal of this evaluation is to learn syntactic paths
that may answer each of these questions. To this end,
each question is transformed into a DIRT/BIRD seed
path manually. These paths are shown in column four
in the table; the third column lists their English repre-
sentations. We had to slightly modify Q2 and Q5 in
order to extract useful paths from them as it is not pos-
sible to express them using a single, contiguous path
in the dependency tree. The original TREC Q2 was
“What was the monetary value of the Nobel Peace Prize
in 1989?”. The pattern “X is monetary value of Y”
cannot be represented via a contiguous syntactic path
due to the modifier “monetary,” which is not part of
the path that connects X and Y. To address this, we re-
placed “monetary value” with “price” in Q2, so it can
be represented with the path “X is price of Y”. Simi-
larly, we modified Q5 by replacing “managing direc-
tor” with “director.”
For this evaluation, we manually verified the top 40
most similar paths for each of the paths in the fourth
column of Table 1, via DIRT, Unweighted BIRD, and

4For example, the following two sentences would yield
these values for SlotY: “Hemingway wrote his first novel in
1926,” and “Hemingway wrote it in 1926”.

5Mutual information scores can be negative, but this is
fine as we can do algebraic operations on embeddings.



Q# Question
English

Representation of
Path

Path

Q1
Who is the author of the book, “The Iron Lady: A Biography
of Margaret Thatcher”?

X is author of Y nsubj←author→nmod of

Q2 What was the price of the Nobel Peace Prize in 1989? X is price of Y nsubj←price→nmod of

Q3 What does the Peugeot company manufacture? X manufactures Y nsubj←manufacture→dobj

Q4 How much did Mercury spend on advertising in 1993?
X spends Y nsubj←spend→dobj

spends X on Y dobj←spend→nmod on

Q4e

How much did Mercury spend on advertising in 1993?
How much time did the average person spend on social media
in 2018?
How much energy did the company spend on the project?

spends X on Y dobj←spend→nmod on

Q5 What is the name of the director of Apricot Computer? X is director of Y nsubj←director→nmod of

Q6 Why did David Koresh ask the FBI for a word processor?

X asks Y nsubj←ask→dobj

asks X for Y dobj←ask→nmod for

X asks for Y nsubj←ask→nmod for

Table 1: The first six TREC-8 questions used for evaluation. Each question is accompanied by its corresponding
syntactic path that becomes the seed path for that question.

Weighted BIRD algorithms. Lin and Pantel (2001) ac-
cept a found path as “correct” if it is possible to create
a sentence with the path to answer the question which
is being evaluated. For example, let us assume that one
of the found paths for Q1 is “X writes Y”. If a sentence
containing this path could be used to answer Q1 then
we will accept the path. In this case, it is possible to
create such a sentence (e.g., “Hugo Young wrote the
book”) and therefore we judge the path as correct.
Not all found paths deemed as correct are strict para-
phrases of the queried path. For example, “X is known
for Y” can be used to answer Q1 (e.g., “Hugo Young is
known for the book “The Iron Lady: A Biography of
Margaret Thatcher”), but the path is not a strict para-
phrase of “X is author of Y”. Lin and Pantel (2001)
show some leniency when evaluating the found paths.
For example, they judge paths such as “X edits Y” or
“X translates Y” as correct for Q1. For these reasons,
we also add a new extra criterion for evaluation of paths
by manually judging whether the found paths are strict
paraphrases of the queried path. Obviously, the set of
strict paraphrases is a subset of the set of correct paths.
All these annotations were performed by two annota-
tors (the authors). The Kappa inter-annotator agree-
ment was 56%, which is considered moderate (Landis
and Koch, 1977). This is encouraging considering the
complexity of the task, and the fact that rules were eval-
uated out of context, i.e., without access to sentences
where they match.
We performed our evaluation with a corpus of
100,000 randomly chosen English Wikipedia articles.
We created our corpus from Tensorflow Wikipedia
Dataset (TFDS Team, 2021) which contains all of the
Wikipedia articles.

For the implementation of BIRD, we used the BERT
model of Hugging Face Transformers library (Wolf et
al., 2020). We used the cased BERTBASE model as it
matched both our cased data as well as the compute
resources available to us. The Hugging Face BERT
model accepts sentences with a maximum length of 512
tokens. For this reason, as well as for reducing compu-
tational costs, we discarded sentences with more than
512 tokens in the corpus. We also observed that very
long sentences tend to be noisy, so discarding those
sentences can potentially improve the results as well.
We discarded these sentences for both of BIRD and
DIRT implementations.

4.2. Results
The results of the evaluation are presented in Table 2.
Each row in the table corresponds to a seed path for
one of the TREC questions; the Path column matches
the Path column in Table 1. Note that a couple of ques-
tions have more than one seed path and, thus, are listed
multiple times in the table (once per seed path). For ex-
ample, we used three seed paths for Q6, similar to Lin
and Pantel (2001). Also, because the verb “spend” in
Q4 has multiple senses, e.g., “spending time” is differ-
ent from “spending money,” we evaluated Q4.2 twice:
the first time keeping the original word sense for the
verb (spending money), and the second time (Q4.2e)
allowing any sense of the verb as correct.
For each path, we found the top 40 most similar paths
using the three approaches discussed: Unweighted
BIRD, Weighted BIRD, and our implementation of
DIRT. For each approach, we used two criteria for
evaluation: we counted the number of “correct” found
paths as well as the number of “strict paraphrases”



Q# Path Unweighted BIRD
(out of 40)

Weighted BIRD
(out of 40)

DIRT
(out of 40)

Correct Strict
Paraphrase Correct Strict

Paraphrase Correct Strict
Paraphrase

Q1 X is author of Y 23 10 24 11 20 5

Q2 X is price of Y 18 9 21 10 9 3

Q3 X manufactures Y 32 10 33 12 30 8

Q4.1 X spends Y 7 0 9 0 9 2
Q4.2 spends X on Y 13 6 12 6 19 8
Q4.2e spends X on Y 25 14 24 11 25 11

Q5 X is director of Y 17 11 17 12 16 11

Q6.1 X asks Y 15 2 16 2 8 1

Q6.2 asks X for Y 14 7 13 6 4 2

Q6.3 X asks for Y 21 2 25 3 15 5

Table 2: Evaluation results for the two BIRD variants compared against the original DIRT algorithm (our imple-
mentation).

Q# Learned Path English
Representation Example Sentence of the Learned Path from Corpus

Q1

nsubj←write→dobj X writes Y Johnston wrote a diary chronicling his activities in the war.

nsubj←writer→nmod of X is writer of Y Thomas Adolphus Trollope was an English writer of over 60 books.

nmod:poss←book←nsubj Y is X’s book Pignat’s latest book is a picture book of acrostic poetry about trees.

nsubj←author→dobj X authors Y In later years, Almond authored eight novels in the Alford Saga.

Q2

nmod at←sell→dobj sells Y at X Molycorp, Inc. sold 28,125,000 shares at $14 in its IPO.

acl→pay→nmod for X paid for Y It was the highest price paid for a motorcycle at auction at that time.

nsubjpass←give→nmod for X is given for Y A budget is given for the total cost of the solution.

compound←value→nmod of Y value of X In around 1820 the part of the Marshal-land had a rent value of £58.

Table 3: Example paths learned by BIRD for the first two TREC-8 questions.

found.

4.3. Discussion
Table 2 shows that, overall, BIRD outperforms the
original DIRT. Table 3 provides examples of the paths
learned by BIRD. In several cases, when BIRD per-
forms better than DIRT, it performs nearly twice bet-
ter (Q6.3), twice better (Q2 and Q6.1), or more than
three times better (Q6.2). In general, BIRD outper-
forms DIRT in all of the questions except in Q4, which
we discuss later in this subsection. Further, Weighted
BIRD performs slightly better than Unweighted BIRD
in most of the questions. We believe this is due to
the fact that the mutual information provides additional
insight into the importance of the contextualized em-
beddings associated with the corresponding slot fillers.
We also observed that Unweighted and Weighted BIRD
have a considerable overlap between their found paths
as depicted in Table 4. However, both BIRD vari-
ants have a low overlap with DIRT. This implies that
one could further improve results with an ensemble of
BIRD and DIRT methods.

We believe BIRD performs better than DIRT for three
reasons. First, because it operates in a semantic space
that does not require exact lexical match between slot
fillers, BIRD suffers less from lexical sparsity than the
original DIRT algorithm. This allows it to learn rele-
vant patterns and examples that are more different lex-
ically. Second, BIRD is powered by a transformer net-
work architecture, which takes advantage of the atten-
tion mechanism. The attention mechanism looks at the
entire input sequence, and creates an embedding rep-
resentation for the slot-filler tokens holistically which
captures the meanings of the slot fillers more precisely
by looking at their context. On the other hand, DIRT
pays attention solely to the slot-filler tokens, missing
important contextual information. Third, BERT’s pow-
erful pretraining allows it to provide high-quality and
accurate embeddings for slot-fillers, which further con-
tributes to BIRD’s superior performance.

On the other hand, DIRT outperformed BIRD in Q4.
Q4 is focused on the verb “spend” which has three main
meanings: spending time, spending money, and spend-
ing energy/effort. However, the TREC question asks



Q# U. BIRD ∩W. BIRD U. BIRD ∩ DIRT W. BIRD ∩ DIRT

Correct Strict
Paraphrase Correct Strict

Paraphrase Correct Strict
Paraphrase

Q1 21 10 8 4 8 4
Q2 14 7 1 1 1 1
Q3 27 9 10 1 10 2
Q4.1 6 0 3 0 4 0
Q4.2 10 6 5 3 4 3
Q4.2e 19 11 6 5 5 4
Q5 15 11 3 3 4 3
Q6.1 14 2 3 1 3 1
Q6.2 12 6 2 0 1 0
Q6.3 19 2 8 2 9 3

Table 4: The pairwise intersections of the paths found by Unweighted BIRD, Weighted BIRD, and DIRT in the
evaluation.

about spending money on advertising and the evalua-
tion measure accepts a found path as correct only if
it is possible to use the path to answer this particular
TREC question. This effectively rejects most of the
learned paths that are about “spending time”. We in-
spected all of the instances of the path “X spends Y” in
our corpus. We noticed that 88% of the instances have
the meaning of spending time and only 10% have the
meaning of spending money. However, it is not always
possible to detect the meaning of the verb by looking
only at the slot-fillers. For example, in the sentence he
spent the majority of his career in England, the SlotY
filler is “majority” or in the sentence He spent a great
deal of time in Hong Kong, the SlotY filler is “deal”.
This class of words (majority, deal, rest, portion, bulk,
etc.) look neutral to DIRT because DIRT considers
only slot-fillers. In contrast, BERT understands that
those words are related to the concept of time in those
sentences because of its attention mechanism. There-
fore, we believe BIRD focused more on the “spending
time” meaning of the verb spend, and this caused it to
perform worse compared to DIRT on this question. In
other words, while contextualized embeddings do gen-
eralize better than the lexical approach in DIRT, they
also carry an enhanced risk of potential semantic drift.

Following this observation, we decided to extend Q4
to include all the meanings of the verb “spend” and
evaluate BIRD as well DIRT on it. In order to do
that, we added a question to the original Q4 evalua-
tion, where we considered the meanings of “spending
time” as well as “spending energy/effort” as correct.
We call this question Q4e (which stands for Q4 ex-
tended). When performing the evaluation, we judge a
found path as correct if it can be used to answer any of
the three questions of Q4e. We performed this evalu-
ation for Q4.2 where DIRT particularly had performed
better than BIRD and called it Q4.2e. We observed that
this time BIRD performed as well as DIRT in terms
of correct found paths and slightly better than DIRT in
terms of finding strict paraphrases.

5. Conclusions
In this work we proposed a novel implementation of
Harris (1954)’s distributional hypothesis for rules. In
particular, we proposed to measure the similarity be-
tween pairs of slots (i.e., the set of concepts matched by
a pattern) using contextualized embeddings instead of
lexical overlap. This new slot similarity measure pro-
vides a quantitative interpretation of the distributional
hypothesis for rules, which states that “if two paths
tend to link the same set of words, . . . their meanings
are similar.” This, in turn, allowed us to discover new
patterns that are similar to a single seed pattern in an
empirical evaluation. This evaluation showed that our
strategy performs considerably better than the original
DIRT algorithm that inspired us.
At a higher level, this work fits in the exciting space that
combines deep learning and symbolic methods. Our
work carries some of the advantages of both directions:
we take advantage of the better generalization power
of transformer networks, but output rule-based models,
which carry the interpretability of symbolic methods.
For reproducibility, we share the source code
and data generated in this work at this URL:
https://github.com/clulab/releases/tree/
master/lrec2022-bird.
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