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Abstract—Deep learning (DL) training is nondeterministic and
such nondeterminism was shown to cause significant variance
of model accuracy (up to 10.8%). Such variance may affect the
validity of the comparison of newly proposed DL techniques with
baselines. To ensure such validity, DL researchers and practition-
ers must replicate their experiments multiple times with identical
settings to quantify the variance of the proposed approaches and
baselines. Replicating and measuring DL variances reliably and
efficiently is challenging and understudied.

We propose a ready-to-deploy framework DEVIATE that (1)
measures DL training variance of a DL model with minimal
manual efforts, and (2) provides statistical tests of both accuracy
and variance. Specificallyy, DEVIATE automatically analyzes the
DL training code and extracts monitored important metrics (such
as accuracy and loss). In addition, DEVIATE performs popular
statistical tests and provides users with a report of statistical p-
values and effect sizes along with various confidence levels when
comparing to selected baselines.

We demonstrate the effectiveness of DEVIATE by performing
case studies with adversarial training. Specifically, for an adver-
sarial training process that uses the Fast Gradient Signed Method
to generate adversarial examples as the training data, DEVIATE
measures a max difference of accuracy among 8 identical training
runs with fixed random seeds to be up to 5.1%.

Tool and demo links: https://github.com/lin-tan/DEVIATE

Index Terms—deep learning, variance, nondeterminism

I. INTRODUCTION

With the increasing availability of large datasets and parallel
processing power, deep learning (DL) systems have demon-
strated their capability in challenging tasks such as image
processing [1], speech recognition [2], and natural language
processing [3]. Recently, DL systems are the key components
of safety-critical systems such as air traffic control [4], au-
tonomous vehicle [5], medical diagnostics [6], and malicious
code detector [7]. To improve model accuracy and training
efficiency for such DL systems, nondeterminism is used during
the training process such as the shuffling the order of training
data batch to prevent overfitting and speed up training [8]. Due
to this nondeterminism, performing the training multiple times
with an identical setting (i.e., same hyperparameters, same
GPU, same libraries, etc.) produces models with significantly
different accuracy [9].

The nondeterminism can be introduced by algorithmic
nondeterminism-introducing (NI)-factors and implementation-
level NI-factors. Algorithmic NI-factors are intentionally in-
troduced random processes (e.g., random seeds) that help im-

prove training efficiency and model accuracy. Implementation-
level NI factors are the optimization of DL algorithms on
parallel computing hardware (e.g., GPU) in DL libraries such
as TensorFlow, Pytorch, and cuDNN.

Recent research recognizes and quantifies the variance in
DL training [10], [9] by showing that both the algorithmic and
implementation-level NI-factors cause a significant variance
of DL system accuracy and training time between identical
training runs. This variance potentially could affect the validity
of the improvement claimed by newly proposed techniques in
the DL research community. DL researchers and practitioners
must perform their DL training experiment multiple times with
identical settings to measure the variance of their proposed
approaches and then compute the statistical test when com-
paring to the baseline approaches. With the tested results, DL
practitioners can make informed choices of techniques when
applying DL properly and effectively in their applications.

However, consistently replicating and measuring the ex-
perimental variances requires additional effort which could
be one of the reasons why measuring the variance of the
proposed techniques is often overlooked by prior work as
reported by a prior study [9]. For example, to measure the
variance, developers need to organize and perform identical
runs multiple times and make sure that the experiment is
correctly set up so that the runs are as identical with each
other as possible. In addition, once the data from the multiple
runs are collected, it is nontrivial to consistently select and
perform the correct statistical tests.

To aid with the replication and improvement of the val-
idation of research, we propose DEVIATE that (1) consis-
tently measures the variance with minimum user efforts, and
(2) provides appropriate statistical tests. DEVIATE replicates
multiple training runs with little to no input from the users.

DEVIATE automatically analyzes the DL system source
code, extracts important metrics (such as accuracy, loss...)
that are monitored by the authors, and stores those metrics
in a consistent format. DEVIATE performs popular statisti-
cal tests (such as confidence interval of standard deviation,
Mann—Whitney U-test, and Cohen’s d effect size) and provides
users with a report of how well the proposed technique
performs in comparison to the selected baselines.

To demonstrate the effectiveness of DEVIATE, we perform
a case study with adversarial training [11]. We found that
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Fig. 1: The overview of DEVIATE.

apart from the standard training approaches, other training
approaches can also have large variance. For example, with
the standard training procedure, Pham et al. report a difference
up to 1.9% in accuracy among 16 identical training runs of
ResNet56 network with fixed random seeds. However, with a
more complex adversarial training process [11] that uses Fast
Gradient Signed Method (FGSM) [12], DEVIATE measures
a difference of robustness (accuracy on adversarial samples)
and effectiveness (accuracy on natural samples) up to 5.1%
and 2.0% in accuracy, respectively, among only 8 identical
training runs with fixed random seeds.

II. DEVIATE

While replicating identical DL experiments and measuring
the variance of them may appear to be straightforward, this
task has many research and engineering challenges. First,
it requires extra efforts to automatically monitor important
metrics (e.g., epoch, accuracy, and loss) in training source
code and record them in an organized manner among identical
experiment runs. Since different users tend to use different
coding styles in writing source code (e.g., a simple for loop
or a dedicated method), automatically identifying the code
location that monitors training metrics is challenging. Second,
once the results from multiple experiment runs for both the
proposed approach and baselines are ready, it is nontrivial to
know which statistical tests to use for analyzing the variance
among multiple runs of individual approaches and evaluating
the improvements over baseline approaches with the variance
taken into account.

We introduce DEVIATE framework that addresses these
challenges. Figure 1 shows the overview of DEVIATE. The
code analyzer automatically processes the training source code
and extract the variables where important metrics such as
epoch, accuracy, and loss, are assigned. DEVIATE supports
an option for users to double-check the extracted metrics and
select only the relevant metrics if necessary. The code modifier
then injects the logging code into the original source code to
record these metrics. DEVIATE then systematically replicates
the experiments multiple times with the most identical setting

Fig. 2: Example of metrics (nat_acc and adv_acc) that
DEVIATE monitors.

from dl_logging_helper import DLVarLogger

1

2 for ii in range (max_num_training_steps) :

3 DLVarLogger.beginLoop (ii)

4 R

5 if ((ii % num_output_steps) == 0):

6 nat_acc = run(model.accuracy, dict=nat_dict)

7 adv_acc = run(model.accuracy, dict=adv_dict)

8 print (Step {}:({})’.format (ii, datetime.now()))
9 print ('nat accuracy {:.4}%’.format (nat_accx100))
10 DLVarLogger.log(’nat_accx100’, (nat_accx100))
11 print (adv accuracy {:.4}%’.format (adv_acc*100))
12 DLVarLogger.log(’adv_accx100’, (adv_acc * 100))
13 R
14 DLVarLogger.endLoop ()

16 DLVarLogger.endLogger ()

possible. Once the experiments are completed, DEVIATE
performs statistical tests to analyze the variance of the user’s
proposed approach as well as the comparison of the proposed
approaches with baselines. Hence, DEVIATE enables the re-
producibility of the proposed approach and ensures the validity
of comparison results.

Metric extraction: To measure the variance of DL training,
DEVIATE first needs to know what metrics to monitor and
record. DEVIATE analyzes user code and extracts variables
that store important metrics which measure the quality of the
model (e.g., accuracy) or the speed of the training process
(e.g., training time).

To design an automatic source code analyzer, we first collect
and manually analyze 52 research projects from published
papers that propose new DL approaches. These projects con-
tain the source code of DL experiments ranging from testing
new DL architectures to DL model compression to Neural
Architecture Search (NAS). From these projects, we observe
several heuristics that help DEVIATE correctly analyze and
modify source code.

The authors of the source code often monitor and log
the important metrics (e.g., loss or accuracy) in their code
(i.e., log to a file or print to the screen). DEVIATE ap-
plies this hypothesis and extracts variables from the log
and print statements. However, not all variables in these
statements are relevant, sometimes the authors print out the
runs’ information (e.g., model identifiers, training optimizer
names) or the settings (e.g., learning rates) which are not as
important as the metrics that measure the quality of the model.
DEVIATE applies another heuristic by selecting metrics that
are formatted as high precision floating numbers (i.e., with 4 or
more decimals) as the authors want to record important metrics
as accurately as possible. For example, Figure 2 presents
snippet of adversarial training code for ResNet32 and WRN32-
10 networks. Important metrics such as natural accuracy and
adversarial accuracy are assigned to variables nat_acc and
adv_acc (lines 5 and 6), respectively. The values of these
variables are printed using print statements (lines 8 and 10)
with high precision at 4 decimals.



DL model training is an iterative process where the model
is initialized (e.g., with random initial weights) and updated
at each iteration using the training data until a stopping
criterion is met (e.g., reached a certain loss threshold or a
fixed number of iterations is done). This iterative process is
often implemented as the main training loop with a counting
variable indicating the current iteration of the training process.
After each execution of this loop, the quality of the model
changes so the authors often record the quality and timing
metrics along with the counting variable within this loop at
some logging interval (i.e., skipping some iteration for better
efficiency). DEVIATE uses this observation to detect the loop
and count variable by detecting the looping variable that is
logged or printed along with other metrics. Once the main loop
is detected, the logged or printed metrics within this loop are
considered important measurements of the model quality and
model training time. In Figure 2, DEVIATE detects the main
loop (line 2) that contains print statements of the looping
variable ii along with important metrics for the model quality
(i.e., accuracy).

DEVIATE utilizes these heuristics to archive a high extrac-
tion accuracy (98.7% — Section III) but since it is not 100%, it
provides users the options to double-check and, if necessary,
modify the list of extracted important variables. Once the user
confirms the list, DEVIATE injects logging statements that
will systematically log the selected variables in a consistent
format. For example, Figure 2 shows the injected logging
statements (lines 9 and 11) as well as the injected marking
statements (lines 2 and 13) that indicate the beginning and the
end of the training loop to monitor each iteration.

Variance measurements and statistical tests: For each se-
lected metric, DEVIATE records the value for each iteration.
The user can select an aggregate strategy for each metric. For
example, when analyzing the validation accuracy of a model,
the user can choose to analyze the best accuracy among all
iterations. Alternatively, the user can choose to analyze the
validation accuracy of the last iteration. For some metrics, such
as running time, the user can choose to analyze the average
running time across all iterations.

For each set of identical experiments, DEVIATE computes
the mean, the standard deviation, the coefficient of variation
(i.e., the ratio of the standard deviation over mean), the max-
imum and minimum values as well as the sample range (i.e.,
the difference between maximum and minimum values) of the
aggregated values across all identical runs. Since the range
of the recorded metrics can be very different, DEVIATE then
sorts the selected metrics using the coefficient of variation. The
coefficient of variation presents the mean normalized standard
deviation of the selected metrics and can be compared across
different metrics.

DEVIATE provides several statistical tests to assess the
similarity of sample distribution such as the Student T-test,
the Mann Whitney U-test. DEVIATE reports the p-value of
the test as well as the effect size (i.e., computed as the
Cohen’s d [13]). To compare two sets of identical experiments,

DEVIATE performs statistical tests between pairs of matched
metrics (i.e., with the same name or matched by users).

III. EVALUATION

In this section, we test the accuracy of DEVIATE’s metric
extraction module against a benchmark of 21 projects for
techniques that improve DL efficiency. We also demonstrate
DEVIATE’s usefulness in quantifying the variance of DL
system training by applying DEVIATE to a DL project.

(A) Metric extraction performance: One of the main features
of DEVIATE is its ability to detect metrics to monitor (e.g.,
accuracy, loss, time, etc. ). Since we apply several heuristics
to detect these metrics, we want to test how well DEVIATE
extracts such metrics in a wide range of research source
code. To do this, we collect a set of 54 research projects
from papers that focus on efficient DL such as distillation,
quantization, model pruning, efficient DL architecture, and
neural architecture search (NAS). Out of these, we select
21 projects that use Python, clearly documented so that we
can identify the main training files. The reason that we only
focus on projects that are written in Python is that Python
is the most popular language used for machine learning [14].
DEVIATE requires the main training file to be provided for
each experiment because automatically detect such a file is
nontrivial and remains as future work.

We prepare the extracted main training files to be used as
a metric detection test dataset by manually investigating each
file to identify the metrics that indicate the performance of
the model. These metrics could be general metrics such as
accuracy, loss, and time. We also identify metrics specific to
each approach (e.g., compression rate for pruning techniques).
All manual inspection is done by two authors independently
and any disagreements are resolved in the end.

We apply DEVIATE metric extraction module on the metric
test data to see how well our extraction heuristics are working.
DEVIATE fails to extract metrics from 7 projects due to
training code spread across multiple source code files and be-
spoke metric logging code. Supporting such projects remains
as future work. DEVIATE successfully extracts the main loop
for all other 14 projects and extracts 153 variables with an
accuracy of 98.7%. Overall, DEVIATE has good accuracy in
extracting the main training loops and metrics. DEVIATE also
provides users with options to remove incorrect or add missing
metrics in case the automatically extract metrics do not meet
the user requirements.

(B) Adversarial training case study: Recently, adversarial
training, which focuses on improving the robustness of the
DL system training has become popular. One of the first
adversarial training approaches [11] trains robust DL models
directly on adversarial example instances. Such work claims
robustness of resulted models but their evaluation fails to take
into account the variance of the DL system. We investigate
how the variance in DL training affects the robustness of



TABLE I: The accuracy (%) difference between adversarial training runs

Training Test
Network accadw accnat acCqdy acCnat
Attack Diff SDev Avg Diff SDev Avg Row Attack Diff SDhev Avg Diff SDev Avg
1 FGSM 5.1 1.7 93.6
ResNet32 FGSM 4.0 1.5 97.6 3.9 1.5 93.0 5> PGD <0.1 <0.1 <0.1 2.0 0.7 87.8
3  FGSM 1.1 0.4 96.2
WRN32-10 FGSM 0.4 0.1 99.5 0.9 0.3 96. 4 PGD <0.1 <0.1 <0.1 1.1 0.3 91.4

the adversarial training process by applying DEVIATE on the
source code' provided by the authors.

Specifically, the adversarial training process trains a network
(e.g., ResNet32 or WideResNet32-10) from scratch on the
CIFARI10 dataset using only adversarial examples generated
from adversarial attacks (e.g., Fast Gradient Signed Method—
FGSM [12] or Projected Gradient Descent—PGD [11]). The
trained models are evaluated by both their effectiveness (accu-
racy on the unseen natural (i.e., benign) input and their robust-
ness (accuracy on the unseen adversarial example input). In
this case study, we investigate the accuracy variance of both
natural input (acc,q:) and adversarial input (accyq,) during
training and inference (i.e., test) among replicated runs. We
disable all algorithm NI-factors and using the fixed random
seed provided by the authors. Table 1 shows the maximum
difference (Diff), standard deviation (SDev), and the average
(Avg) of the Training and Test accuracy of the adversarial
input (accqqd,) and normal input (acc,qt). The columns Artack
denote the method that generates the adversarial examples.

DEVIATE successfully detects the two metrics (i.e., adver-
sarial example accuracy—accqq,, and natural sample accuracy
accpqe) in both training and test code, adds monitoring code,
performs 32 fixed-seed identical training runs for four train-
ing configurations (8 runs each), and presents the accuracy
variance of DL adversarial training automatically. In addition,
DEVIATE presents p-values of comparison of pairs of network
and attack technique combination.

1) Large accuracy differences: The variance of test accy,q+
and test accyq, reveals the stability of the trained models
when applied in the real world. In particular, ResNet32 models
trained with FGSM attack have test acc,q, (i.€., adversarial
robustness) difference of 5.1% (when test using FGSM attack,
shown on row 1). The same training configuration also has
a large test accpq: (i.e., effectiveness) difference of 2.0%.
Since the main focus of adversarial training is increasing the
adversarial robustness while also maintaining the effectiveness
of the trained models, such large differences in both categories
should be taken into consideration by DL practitioners. Our re-
sult demonstrates that it is nontrivial to estimate such variance
and shows the importance of DEVIATE.

2) Impact of variance on valid comparison: We use the
two training configurations using FGSM attacks to demon-
strate DEVIATE’s capacity in helping DL researchers and

Uhttps://github.com/MadryLab/cifar10_challenge

practitioners compare different training configurations. Table I
shows that between the two configurations using FGSM attack
(rows 1 and 3), the one with the WRN32-10 network has
better adversarial robustness against white-box FGSM attack
with an average test accqqy Of 96.2% (comparing to average
robustness of 93.6% of ResNet32 models). DEVIATE com-
putes the Mann—Whitney U-test which confirms that WRN32-
10 models are significantly (p-value of < 0.05) more robust
than ResNet32 with a Cohen’s d effect size of 3 (which is a
very large effect). However, in the extreme case, where each
configuration is only run once, the difference in robustness
could be just 0.2% between 95.6% (the most robust ResNet32
model) and 95.8% (the least robust WRN32-10 model). This
example shows the importance of DEVIATE'’s replication
runs and the statistical test in making valid comparisons and
conclusions about the improvement of DL approaches.

IV. RELATED WORK

The most relevant work is a recent study that quantifies the
variance caused by nondeterministic factors in deep learning
training from scratch [9]. Our work differs as DEVIATE is
a ready-to-deploy framework that replicates DL experiments
with minimal user effort and also automatically generates
a variance report for a newly proposed approach as well
as comparisons with other approaches. We also study an
additional training approach (i.e., adversarial training), which
is not studied in the prior work. Other than this, our work
primarily relates to the work that provides benchmarks for DL
hardware [15] and DL frameworks [16], [17], [18], [19], [20],
[21]. None of the benchmarking work considers the impact of
NI-factors and the variance among multiple identical training
runs like our work.

V. CONCLUSIONS

Deep learning (DL) training is nondeterministic which both
the DL algorithm and DL software implementation cause
significant a variance of model accuracy. Such variance may
affect the validity of the comparison results of newly proposed
DL techniques with baselines. To ensure such validity, DL
researchers and practitioners must replicate their experiments
multiple times with identical settings to quantify the variance
of the proposed approaches and baselines. We propose DEVI-
ATE that (1) measures DL training variance of a DL model
with minimal manual efforts, and (2) provides statistical tests
of both accuracy and variance.
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