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Abstract—This study presents a new QRS detection
algorithm making use of the background noise that is
inevitably present in electrocardiogram (ECG) recordings.
The algorithm suppresses noise, enhances the QRS-waves,
and applies a threshold for QRS detection. Noise
suppression and QRS enhancement are performed by a
band-pass filter stage followed by a nonlinear stage based
on the interaction of a particle inside an underdamped
monostable potential well. The nonlinear stage maximizes
the output when there is a QRS-wave and minimizes the
output otherwise. One of the instruments that the nonlinear
stage uses to enhance the QRS-waves is stochastic
resonance, where the output is maximized for a non-zero
intensity background noise. In terms of QRS-wave
detection F1 score, which ranges from 98.87% to 99.99% on
four major benchmarking databases (MIT-BIH Arrhythmia,
QT, European ST-T, and MIT-BIH Noise Stress Test), the
algorithm outperforms all existing ECG processing
algorithms. The study, for the first time, demonstrates QRS-
enhancement by facilitating stochastic resonance while
suppressing in-band noise of ECG signals. Detecting QRS-
waves as the ECG data streams, having a complexity of
O(n), and not requiring any training data make the
algorithm convenient for real-time ECG monitoring
applications with limited computational resources.

Index Terms— ECG monitoring, QRS-wave, Stochastic
resonance

I. INTRODUCTION

THE electrocardiogram (ECG) represents the electrical
activity of heart muscle and thus has significant clinical
value in assessing cardiovascular health. ECG allows tracking
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of heart rate (HR), which has diagnostic and prognostic
importance in cardiovascular (e.g., hypertension, coronary
artery disease, and cardiomyopathy [1], [2]), autonomic
nervous system (ANS) (e.g., diabetic neuropathy, myocardial
infarction (MI), and diabetes mellitus [3]-[5]) disorders.

In ECG, HR is obtained by first detecting heart beats from
the prominent peaks corresponding to depolarization of the
large mass of the ventricles, namely the QRS complex. Then,
the time difference between successive QRS-waves is used to
identify the instantaneous HR. One of the major challenges of
HR detection from ECG arises from the noise in a recording.
As classified in [6]-[8], electrode motion artifact, dc swing,
and high frequency noise are three common noise and
interference types that deteriorate ECG recordings independent
of the measurement instrumentation. Electrode motion artifacts
are a combination of high and low frequency components (0 to
~20 Hz [8]) originating from movement of a subject or applied
mechanical force on the electrodes [6], [8]. Muscle noise occurs
at high frequency (20 to 50 Hz [6]) and originates from
electrochemical processes in the activated skeletal muscles. DC
swing is a low frequency noise [7] that originates from
movements of subject or the leads [6], [7]. The bandwidth
overlap of these noise and interference sources and the QRS-
wave (8 to 50 Hz [9]) makes it challenging to accurately extract
the HR in a noisy ECG recording [6].

A common approach for QRS detection is noise suppression
followed by a QRS enhancement algorithm. In fact, low-
complexity  signal-enhancement-based QRS  detection
algorithms have resulted in detection sensitivity as high as
99.95% [10] and positive predictivity as high as 99.96% [11]
on the primary benchmarking database of MIT/BIH arrythmia
database [12]. On the other hand, in recordings with larger noise
and artifacts, the performance of such algorithms reduce as low
as 93.14% in sensitivity and 86.23% in positive predictivity
[13], [14]. Additionally, interpatient variation on ECG
morphologies also deteriorates the performance [15], [16].
Alternatively, neural network algorithms (e.g., convolutional
neural network [17]) can offer better performance in noisy
scenarios [15], [17]. However, the performance of a neural
network is highly data dependent. Therefore, to reflect the wide
spectrum of QRS waveform shapes and background noise and
artifact conditions, diverse training datasets are needed [15]-
[17].
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Fig. 1. Block diagram of the proposed QRS detection algorithm.

Algorithm 1 Complete QRS-Wave Detection Algorithm

Input: sg.;(t) (ECG signal)
Output: QRS orecteqr S€, +P, F1, DER, Acc (Performance metrics and
QRS-wave locations)

1 Spoise(t) < BPF(sgeg(t)) # ECG signal is band pass filtered
2 hopes Qopes bopes Yoper Aen opt PS(Spoise(t)) # Parameter selection

3 x(t) <SR (snoise(t), Ropts Aopts Dopts Yopts dthm) # SR with optimal
parameters

4 Souenpr(t) < HPF(x(t))

5 QRSdetected - TH(Suut,HPF(t))
obtain output QRS locations

6 TP' FN' FP « PM(QRSdetected! QRStrue)
obtained

7 Se,+P,F1,DER,Acc < DP(TP,FN,FP)
is obtained

# SR output is high pass filtered
# Constant threshold is applied to

# Performance metrics are

# Detection performance

Notably, additive noise in a signal — counterintuitively — can
potentially be used for signal enhancement, a phenomenon
named as stochastic resonance (SR) [18]. In fact, various
systems with nonlinear dynamics (e.g., rotating machine
bearing [19], [20], underwater acoustic communication [21],
information transmission in neural networks [22], and eye
movement desensitization [23]) make use of noise on the signal
and/or in the system to improve detection of weak signals below
the detection threshold. In a system facilitating SR, there is an
optimal level of noise intensity that maximizes the signal power
and/or detectability [18], [24]-[26].

Motivated by the low-complexities of signal-enhancement-
based QRS detection methods and high performances of
previous signal enhancement and detection methods facilitating
SR [19], [25], a novel low-complexity QRS detection algorithm
is proposed and investigated in this study. The algorithm
consists of a QRS enhancement and a QRS detection stage. The
core of the QRS enhancement stage is an innovative SR-QRS
enhancement block that acts as a nonlinear filter that facilitates
SR. The block makes use of the inevitable additive noise of
ECG to enhance QRS-waves while suppressing the noise
outside the QRS-wave regions. Additionally, two unique
properties make the proposed algorithm appropriate for real-
time ECG monitoring applications with limited computational
resources. First, the algorithm does not necessitate a reverse
search step and thus detects QRS-waves as the data streams
through. Second, the algorithm does not need any training data
for parameter optimization. The algorithm is implemented
using MATLAB (MathWorks, Natick, MA, USA) and provided
at “https://github.com/cihanbgungor/SR_QRS detector”.

The rest of the paper is organized as follows. In Section II,
the proposed QRS detection algorithm and the benchmarking
datasets are presented. The results are presented in Section III,
which are followed by a discussion in Section IV. The paper is
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Fig. 2. Exemplary ECG signal (#116 of the MIT-BIH Arrhythmia
database) and waveforms within the signal processing chain. For
signal labels refer to the block diagram in Fig. 1. The constant
threshold level, true (QRS;-..) and detected (QRSierectea) QRS-
waves are given in the bottom sub-plot.

concluded in Section V.

Il. METHODS

A. Proposed QRS Detection Algorithm

The proposed QRS detection algorithm consists of a QRS
enhancement stage followed by a QRS detection stage as shown
in Fig. 1. The pseudocode of the algorithm is presented in
Algorithm 1. The QRS enhancement stage amplifies the QRS-
waves while suppressing noise. The out-of-band noise is
suppressed by a standard band-pass filter (BPF) block
implemented as a 4™ order finite impulse response (FIR) filter
with cutoffs of 0.05 and 100 Hz. (Line 1 of Algorithm 1).
Following parameter selection (Line 2 of Algorithm 1), the in-
band noise suppression and SR-QRS amplification are achieved
by the SR-QRS enhancement block (Lines 3 and 4 of Algorithm
1), which is detailed below in Section II.B. The QRS detection
stage consists of a constant thresholding block (Line 5 of
Algorithm 1), which is presented in Section II.C. Finally, the
performance metrics are obtained (Lines 6 and 7 of Algorithm
1). A 40 s portion of an example ECG recording (# 116) from
the MIT-BIH Arrhythmia database [12] and the corresponding
waveforms along the signal processing chain of the proposed
algorithm are presented in Fig. 2. The hard threshold level, as
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Fig. 3. Stochastic resonance (SR) illustration in a monostable well.
Two forces (s,,ise(t) and —%;X)) acting upon the particle are
shown on different points of the monostable well.

well as true (QRS;e) and detected (QRS jetectea) QRS-waves
are shown on the output of the SR-QRS enhancement block.

B. SR-QRS Enhancement Block

Stochastic resonance (SR) describes signal enhancement by
exploiting additive noise [18], [25]. This counterintuitive
performance improvement of noise necessitates a nonlinear
system, which allows complex interactions among the system
and noise [27]. Signal improvement exhibits itself in various
forms from signal-to-noise ratio (SNR) improvement [25], [26],
[28] to signal transmission [27], [29], [30].

A classical nonlinear system used to facilitate SR for weak
signal enhancement is an overdamped particle inside a one-
dimensional symmetric double well potential [18], [25].
Different damping and well potential shape combinations also
exhibit SR for non-periodic signals such as neural spikes [31],
[32], bearing faults [19], [20], and acoustic signals [21].
Notably, our investigation of an extracellular neural spike
detection algorithm based on SR facilitation using a monostable
well with adaptive damping control demonstrates an SNR
increase as large as 92 dB [32].

Motivated by our previous nonlinear filter system that results
in high SNR improvement [32], we design an SR-QRS
enhancement block for the proposed QRS detection algorithm.
Specifically, the SR-QRS enhancement block consists of an
underdamped particle in a monostable well (U-MS) with
adaptive damping control followed by a high-pass filter (HPF).
The sub-sections 1 through 4 below present the details of the
underdamped particle in a monostable well (U-MS) and the
sub-section 5 presents the HPF details.

1) Underdamped Brownian particle in a monostable potential
well (U-MS)

The core of the SR-QRS enhancement block is a nonlinear
filter modeling the dynamics of a particle in a monostable well
described by a function of U, (x) (Fig. 3).

Here, the band-pass filtered ECG recording, S,gise(t), is
applied as a time-varying force (Fig. 3) acting on the particle.
Notably, S,,ise(t), is a linear combination of the noise-free
ECG signal, s(t), and undesired in-band noise (e.g., electrode
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motion artifact, high-frequency noise, dc swing), n(t):

Snoise(t) = s(t) + n(t). (1)

In (1), the prominent features of s(t) have deterministic
characteristics owing to the physiological limits (e.g., QRS-
waves are high amplitude and short duration features). On the
other hand, n(t) exhibits stochastic characteristics. As such, the
stochastic n(t) causes the particle to exhibit the pattern of
motion of a Brownian particle, namely random small
fluctuations. Accordingly, the particle in such a system is
named as a Brownian particle.

The second force on the Brownian particle is proportional to

the slope of the monostable well and denoted as — dUdL(x).

The motion of the Brownian particle inside an underdamped
monostable potential well described by U, (x), is governed by
the generalized Langevin equation [33], [34], which takes the
form [25]:

d?x(t) dx(t) _  dUp(x)

dt2 dt dx + Snoise (t)a (2)

where x(t) is the Brownian particle position and y is the
damping factor. Specifically, (2) describes the dependence of
the acceleration and velocity of the particle (left-hand side) on
the two forces acting on the particle (right-hand side). The
monostable well potential and its derivative for the dimension
x are described as:

2 4
Uo(x) === +2=-. a,b>0 3)
dUdL;x)=ax +bx3. a,b>0 4)

where a and b are the well parameters that control stable point
depth and wall slope.

For the system governed by the equations (1) through (4), the
input is S,,:5¢(t) and the output is the particle position, x(t).
Therefore, noise suppression of the system translates into
restriction of the particle movement when the input is noise,
whereas QRS enhancement corresponds to large displacement
of the particle during QRS portions. It is noteworthy that with
the goal of detecting QRS-waves in this paper, the definition of
noise is extended to include all noisy ECG portions except the
QRS-wave segments. Although such ECG portions include
other physiologically important ECG features (e.g., P-wave and
T-wave), they are undesired from QRS-wave detection
perspective.

The following sub-section, Section I1.B.2, provides details
about how the nonlinear U-MS system performs in-band noise
suppression and facilitates SR for QRS enhancement.

2) U-MS in-band noise suppression and QRS enhancement
Two factors, namely small s,,,;5 (t) and large y, collectively
limit the particle movement and thus suppress the in-band
noise. First, Sp,i.(t) amplitude is smaller in noise portions
compared to the QRS-wave segments. Therefore, in those
portions, the particle in Fig. 3 is primarily under the influence

of n(t) and — %;x), and thus swings within a proximity around

the stable point. Second, for small s,,;5.(t) amplitudes, the
damping in the system is adjusted as high (i.e., y is large), which
further limits the particle movement.
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Fig. 4. In-band noise suppression and QRS enhancement are
demonstrated on example (a) noise-only and (b) QRS-wave
portions. For both columns, top and bottom rows respectively show
the input and output signals of the U-MS sub-block of the SR-QRS
enhancement block. Middle rows show the positions of the particle
for all time steps. A zoomed-in version of the particle positions
confined in a small region in (a) are displayed in the inset.

Three factors; namely large s;,,ise (t), small y, and stochastic
resonance; jointly result in large displacement of the particle
during the QRS portions of the ECG recording and thus QRS
enhancement. First, QRS-wave portions of the ECG signal
apply sufficiently large s, ,;s. (t) force to push the particle away
from the stable point towards the walls of the potential well.
Second, to maximize both signal enhancement and noise
suppression, the system adapts a dynamic adjustment of the
damping coefficient, y, depending on the input signal
amplitude: For good noise suppression, y is increased when
Snoise (t) is small; whereas for good QRS enhancement, y is
reduced when s,,;..(t) is large. Specifically, the damping
factor is adjusted to y = 120 for the range of input amplitude

Snoi P
Snoise @) < % and Yy =0.12 for Snoise(t) = —nO:ErPD
th th

Where Sp ;e pp 18 the peak-to-peak value of the entire recording
and d;, = 10 is the damping factor threshold. Third, an
optimum intensity of the additive stochastic n(t) causes QRS-
enhancement by facilitating stochastic resonance. To
understand, a QRS-wave portion without and with n(t) can be
considered. In a hypothetical scenario of n(t) = 0, the particle
moves away from the stable point solely by the force exerted by
the QRS-wave. In a practical non-zero n(t) case, the n(t)
increases the force exerted by the QRS-wave and thus assists
the particle displacement, thereby enhancing the output. Here,
the noise intensity is critical: Small noise intensities would not
be sufficient to displace the particle any further, whereas higher
noise densities would swamp the QRS-wave. A probabilistic
investigation of the system using the Fokker-Planck equation to
characterize the noise-dependent space-time probability density
function of the Brownian particle is beyond the scope of this
study. However, readers are referred to [35] for such an analysis
for a similar system.

The in-band noise suppression is demonstrated in Fig. 4 (a),
where for a noise-only portion with a peak-to-peak value of
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to 2.8 X 1075 (73 dB noise suppression). Additionally, the role
of dynamic damping adjustment in improving the noise
suppression is illustrated in Fig. 5. For the same input, in
contrast to an output noise peak-to-peak value of 0.2 obtained
when ¥ is static, the dynamic adjustment results in an output
noise peak-to-peak value of 1073. The in-band noise
suppression performance is assessed on three ECG recordings
from the MIT-BIH Arrhythmia database [12]. For low- (# 103),
medium- (# 116), and high-noise (# 207) recordings, the ECG
in-band ([0.05 Hz-100 Hz]) noise power suppression of the SR-
QRS Enhancement Block are respectively found as
85.6 dB,82.68 dB, and 72.33 dB.

QRS-enhancement by the U-MS is demonstrated in Fig. 4(b),
where for a large s,,i50(t) due to a QRS-wave, the force
exerted onto the particle is large and the damping coefficient is
small (y = 0.12), thereby allowing the particle to escape from
the stable point and enhancing the signal. For a QRS-wave with
a peak-to-peak value of ~2.4, the output has a peak-to-peak
value of ~2200. QRS-enhancement is also demonstrated in
Fig. 5 as the large peaks at the output that are synchronized with
the QRS-waves of the input. Facilitation of stochastic resonance
in QRS enhancement is demonstrated in Fig. 6 in the Section
III. In Fig. 6, ASNR peaks for a non-zero noise intensity for
different noise types.

3) Numerical solution of the U-MS

The solution of (2), x(t), can be approximated by an iterative
numerical method, namely the fourth-order Runge-Kutta (RK)
method [25], [36]:

x[n+1] = x[n] + (p; + 2p, + 2p3 + ps)h/6, %)
y[n+ 1] = y[n] + (k, + 2k, + 2k; + k,)h/6, (6)

where x[n] is the nt" sample of x(t), y[n] is the n" sample of

dx(t)
dt

pseudocode of the solution, k; through k,, and p; through p,

are provided in the pseudocode, Algorithm 2.

, and h is the step size of the RK approximation. The

4) Parameter selection of the U-MS

Parametric search of well and solver parameters (i.e.,
a, b, h,y,d;y,) is performed to optimize QRS enhancement. The
search is conducted without the need for a priori knowledge of
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Algorithm 2 SR - QRS Enhancement Block - Numerical Solution

Input: s, (t), h,a, b, v, d., (Band pass filtered ECG signal and
parameters)
Output: x(t) (Output signal)

1 x(1)«o0 # Initial value to x(t) is set

2 y(1)«o0 # Initial value to y(t) is set

3 Spoisepp < max(sm,l-se (t)) — min (Spoise(£))  # Signal peak-to-peak
amplitude is set

4 for (i = 1tolength(Spyise(t)) — 1)) do

5 if (Snoise (") < Snoise,pp/dth) then
6 y < vy * 10 # Damping coefficient is increased for low amplitude
samples of the signal
7 else
8 y < y/100 # Damping coefficient is reduced for high amplitude
samples of the signal

9 end if

10 p1 < y(D

1 kl < _a*x(i)_b *x(i)3 — Vb1 +Snoise(i)

12 Py <y +kyxh/2

3 ky « —ax* (x(@) +py*h/2) = b (x(0) * py * h/2)* —yp, +
Snoise (l)

1 ps <« y(@) +kyxh/2

15 ky « —ax* (x[i] +p, * h/2) — b+ (x(Q) * p, * h/2)* —yps +
Snoise (i + 1)

16 Pa ey +ks*h

7 ky & —ax (x(@) +p3*h) = b+ (x()) *p3 * h)* —yp, +
Shoise (l + 1)

18 x(@i+1) «x(@)+ @@ +2*p, +2%p;+p,)*h/6  # The next
x(*) is obtained from the calculated slopes

19 y(i+1)«y@)+ (ky+2%ky,+2xks+k,)*h/6 #The next
y(*) is obtained from the calculated slopes

20  end for

21 return x(t)

the true QRS locations, QRS- The optimization aims to
maximize the output SNR defined as:

App of QRS—wave

Standard deviation of a noise segment

SNR = 20l0g( ), (7
where A,, is the average peak-to-peak amplitude of 100
arbitrarily selected QRS-waves. QRS regions are segmented as
100 ms time windows centered around the detected QRS-wave
points, QRS jerecteq- The 100 QRS gerecteq POINt set consists of
one automatically and arbitrarily selected QRSgetecteq pOINt
using the rand function of MATLAB and the 99 QRS etected
points succeeding it. A total of 100 noise segments (~1 s each)
are selected arbitrarily inside the sections between the selected
100 QRS segments.

The selection of the well/solver parameter values is
conducted through a three-step parametric search maximizing
the SNR improvement of the system defined as ASNR =
SNR,,: — SNR;;,; where SNR,,,; and SNR;,, are respectively
the SNR of the output and input signals. The three steps consist
of (1) initialization of the parameters, (2) forward parametric
search, and (3) reverse parametric search. The forward
parametric search order is in the direction that parameter
specificity increases. The parameters that affect the most
characteristics of the system and the solution are optimized
first. Therefore, the first parameter that is optimized is the h
parameter, which defines the step size of the RK solver and thus
affects the whole solution regardless of where the particle is
inside the well. Then, a and b parameters that describe the well
properties altogether (e.g., curvature, depth, steepness) are
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optimized. The damping of the system is different depending
on the input signal amplitude and thus is an input-specific
behavior of the system. The two parameters, y and d;,, define
the damping behavior and thus these parameters are optimized
the last. The forward parametric search follows the order of h —
a = b -y — dgy, and the reverse parametric search follows the
orderofy - b = a - h.

At the initialization step, well/solver parameters are initialized
with values as follows [31], [32]: hy = 40, a;, = —1000, b, =
1, ¥o =1, dipo = 2. Notably, the numerical solution of (2)
diverges when a parameter value is arbitrarily
increased/decreased from the initial value, thereby causing
MATLAB to halt. For a time-efficient search that minimizes the
search time, the search of a parameter is carried out in multiple
non-overlapping search windows with identical length.
Specifically, the initial search window is shifted in the positive
and negative directions by an amount equal to the window
length until the output diverges in the new search window. In
each search round, the parameter value that locally maximizes
the SNR is found via a 50-step sweep. Finally, the local maxima
of all search rounds are compared to find the parameter value
of the global maximum. The search window length, pyindows
for a parameter p, where p € {a, b, h,y, d;}, is set at the initial
search step as Pyingow = Pup — Piow- Here, py,, and py,,, are
respectively the upper and the lower boundaries of the initial
search window and are selected such that they satisfy

SNRlppiiom) — SNRIp| = 3 dB.

5) High-pass filter

While adaptive adjustment of the damping coefficient based
on the input signal amplitude improves in-band noise
suppression performance, it also introduces a minor change to
the system response. Increasing the damping in small-
amplitude portions of the signal that immediately follows a
large amplitude QRS-wave causes the particle to move around
anew x location, thereby resulting in a bistable behavior as seen
in the 3™ row of Fig. 2. Using a 4" order FIR high-pass-filter
with a cutoff frequency of 10 Hz, the bistable behavior is
eliminated (Fig. 2 — 4" row, red waveform) before the signal is
fed to the QRS-Detection stage.

C. QRS-Detection Stage

A constant threshold of 0.1 is applied on the QRS-
enhancement stage output to determine the QRS-waves,
QRS etecteqa- In the binary output of the threshold stage, the
time instances corresponding to the data points at the center of
a ‘0’-to-‘I’ transition followed by a ‘/’-to-‘0’ transition are
identified as the QRSgetecteq- Based on the identified QRS-
waves, the performance metrics, TP, FN, and FP are obtained
by comparing the locations of the QRS ;.¢ecteq With true QRS-
waves, QR S, obtained from database annotations. For each
QRSgetecteds QRSirye 1s searched within a £150 ms time
window centered around QRS;.,. following ANSI/AAML
EC38 [37] and EC57 [38] and studies in [39]-[42]. A
QRS etecteq inside a search window is counted as a true
positive, TP. The search windows with no QRSgetectea are
counted as false negatives, FN. The number of false positives,
FP,is calculated as the difference of the number of QRS tectea
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Fig. 6. QRS enhancement (right y-axes) and QRS detection (left y-axes) performance results of the proposed algorithm when (a) em noise, (b)
ma noise, (¢) bw noise, and (d) em + ma + bw is added to ECG signal as in (9). QRS enhancement results are given in ASNR,. and
ASNR jorecteas Which respectively correspond to ASNR calculated using QRS and QRS etected-

TABLE |
CHARACTERISTICS OF THE PUBLICLY AVAILABLE DATABASES USED
FOR VALIDATION

Recording

# of s . Total #

Database recordings (Il-clz) dura'tlon of beats
(min)

MIT-BIH Arrhythmia 48 360 30 109518

MIT-BIH NST 12 360 30 25590

QT 105 250 15 87708

EDB 90 250 120 790558

and TP.

Based on TP, FN, and FP; detection performance is
evaluated by five metrics, namely sensitivity (Se), positive
predictivity (+P), F1 score (F1), detection error rate (DER),
and accuracy (Acc) given as:

Se (%) = —— %100, +P (%) = —— 100,
FLO0) = 50 ®
DER (%) =" + 100, Acc (%) = ——— 100.
D. Datasets

The algorithm is initially assessed in terms of how different
noise intensities affect the QRS enhancement and QRS
detection performance. Accordingly, the noise recordings (i.e.,
em, ma, and bw) in the MIT/BIH NST database [6] are used to
vary the noise intensity in a controlled manner. In [6], em, ma,
and bw correspond to electrode motion artifact, muscle artifact,
and baseline wander, respectively. Specifically, recordings with
different noise intensities, S,,;s¢(t), are obtained via linear
summation of a low noise ECG signal (recording 100 of the

ermitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/

MIT-BIH Arrhythmia database [12]), s(t), with the noise
recording, n(t), weighed by a noise intensity factor, g, as
follows:

Snoise(t) = s(t) + g * n(t). )

Additionally, the QRS-wave detection performance of the
proposed algorithm is evaluated wusing the standard
benchmarking datasets of the MIT-BIH Arrythmia [12], QT
[43], European ST-T (EDB) [44], and MIT-BIH Noise Stress
Test (NST) [6] databases. The major features of these databases
(i.e., number of recordings, recording length, and total number
of beats) are provided in Table I.

[ll. RESULTS

QRS enhancement performance of the proposed algorithm is
first analyzed for different noise intensities for each noise type
in the MIT-BIH NST database; namely em, ma, and bw.
Specifically, the SNR improvements for a range of noise
standard deviations are obtained by sweeping g in (9) for each
noise type. The noise standard deviation is increased until the
output SNR drops to below 40 dB. For each g value of the input,
Snoise (t), having an SNR of SNR;,,, the algorithm is optimized
separately to obtain the largest output SNR, SNR,,,,; following
the procedure described in Section II1.B.4. SNR improvement is
calculated as ASNR = SNR,,; — SNR;,,. Variation of ASNR
with noise standard deviation for each of the three noise types
and the combined noise obtained as n(t) = em + ma + bw are
as shown in Fig. 6. It is noteworthy that Fig. 6 shows two
different ASNR calculated wusing (7): ASNR;r,. and
ASNR jotectea respectively correspond to ASNR calculated
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Fig. 7. QRS enhancement (ASNR) for the proposed algorithm, PT,
and Elgendi algorithms when all noise types (em, ma, bw, and em +
ma + bw) are added to ECG signal as in (9).

TABLE Il
QRS DETECTION PERFORMANCE EVALUATION OF THE PROPOSED
ALGORITHM ON THE MIT-BIH ARRHYTHMIA DATABASE

reffrg . (Z;);Zfz z Se(%) +P(%) DER  Acc (%)
105 2572 9996 100 0039  99.96
107 2137 99.96 100 0046  99.96
108 1774 99.95 100 0056  99.95
109 2532 9996 100 0039  99.96
111 2124 99.95 100 0047 999
116 2412 99.42 100 058  99.42
121 1863 99.89 100 0.1 99.89
201 1963 99.95 100 005  99.95
203 2080 99.83 100 0.168  99.83
205 2657 99.93 100 0075  99.93
207 1860 9925 982 2.6 97.47
208 2055 99.66 100 034 99.66
217 2208 99.9 100 0.09 99.9
228 2053 99.86 100 0.14  99.86
233 3079 99.97 100 003 99.97
Remaining 74349 100 100 0 100
Overall 109518 99.95 _ 99.96 __ 0.09 __ 99.91

using QRS;ye and QRS jotecteq- In addition to the investigation
of how SNR changes with noise intensity, the proposed
algorithm is also evaluated in terms of how QRS detection
performance changes with the noise. For the same algorithm
parameters optimized to maximize ASNRgetected> QRS
detection performances are obtained following the procedure
explained in Section II.C. For the three noise types, Se, +P, and
FI score metrics obtained for each g are presented in Fig. 6 (a)-
(¢). The results for the combined noise of n(t) = em + ma +
bw are presented in Fig. 6 (d). A closer look into the Fig. 6
reveals that, for all noise cases, for even high noise levels, Se
remains greater than 99.92, whereas +P and F1 dampen with
increasing noise levels. A decrease in ASNR;,,. with noise
intensity is expected to increase FPs. In fact, for the noise types
ma, bw and em 4+ ma + bw ; for noise standard deviations
that are respectively greater than ~0.1, ~0.33, and ~0.2;
ASNR;yye, +P, and F1 start decreasing. However, it should
also be considered that, as noise intensity increases, the SR-
QRS enhancement block can erroneously enhance noise
portions as well as the true QRS-waves, which would cause
ASNR;;e to remain high while increasing FPs. As a matter of
fact, for em, the +P and F1 decrease when noise exceeds
~0.15; whereas the ASNR;,,. >~ 71 dB for noise levels up to
~0.37. Notably, the discussion above cannot be generalized for

g a germittgd,_ but republication/redistribution requires IEEE permission. See http://www.ieee.or;
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TABLE IlI
QRS DETECTION COMPARISON ON MIT-BIH ARRHYTHMIA DATABASE
QRS detection method Se (%) +P (%)

This work Stochastic Resonance 99.95 99.96
Martinez, 2004 [50] Wavelet Transform (WT) 99.80 99.86
Martinez, 2010 [11] Phasor Transform 99.69 99.96
Ghaffari, 2009 [51] Discrete WT (DWT) 99.91 99.88
Nayak, 2019 [10] DFOD + SE + HT 99.95 99.94
Burguera, 2019 [60] Smoothing and PVD 99.57 99.37
Chen, 2020 [63] HC and DWT 99.89 99.94
Merah, 2015 [14] Stationary WT (SWT) 99.84 99.88
Modak, 2021 [64] MAF + TAT 99.82 99.88
Rahul, 2021 [52] Third power + AT 99.81 99.85
Jia, 2020 [15] CNN 99.89 99.90
Xiang, 2018 [62] ! CNN 99.77 99.91
Chandra, 2019 [39] CNN 99.84 99.95
Zahid, 2022 [58] CNN 99.85 99.82
Cai, 2020 [40] CNN 99.95 99.94
Hossain, 2019 [59] CEEMD 99.96 99.89
Tueche, 2021 [53] PT-based 99.65 99.69
Peimankar, 2021 [54] CNN-LSTM 99.61 99.52
Xiong, 2021 [55] Energy Segmentation 99.36 99.78
Rahul, 2021b [56] Third power + AT 99.82 99.85
Pander, 2022 [41] FCMC 99.82 99.88
Lee, 2022 [57] EMD 99.83 99.92
Yakut, 2018 [69] PT-based 99.83 99.83

" Excludes recordings 102 & 104. DFOD: Digital Fractional Order
Differentiator, SE: Shannon Energy, HT: Hilbert Transform, PVD:
Peak-Valley Detector, HC: Hierarchical Clustering, MAF: Moving
Average Filter, TAT: Time/Amplitude Threshold, AT: Adaptive
Thresholding, CEEMD: Complete Ensemble Empirical Mode
Decomposition, LSTM: Long short-term memory, FCMC: Fuzzy c-
median Clustering, EMD: Empirical Mode Decomposition.

ASNR jotectea, Which is calculated using the QRS etected, SOME
of which are FPs.

It should be noted that, the essence of the proposed algorithm
is QRS detection following QRS enhancement. Therefore, the
SNR improvement is compared with the state-of-the-art QRS
detection algorithms that perform QRS enhancement prior to
detection, namely Pan-Tompkins (PT) [45] and Elgendi [46].
These algorithms are implemented using the MATLAB codes
provided in [47] and [48], respectively. The comparison is
performed for all noise types and presented in Fig. 7, where
ASNR difference between the proposed algorithm and the other
two ranges from 21.6 dB for the bw noise to 82.91 dB for the
combined em + ma + bw noise. Notably, for all noise types,
the proposed algorithm offers significantly better ASNR than
the PT and Elgendi methods.

Following the investigation of the effect of noise on QRS
enhancement and detection, the detection performance of the
algorithm is assessed on a wide range of ECG morphologies
using publicly available benchmarking databases, namely MIT-
BIH Arrhythmia, QT, and EDB:

QRS-wave detection performance of the proposed algorithm
on the MIT-BIH Arrhythmia database is presented in Table II.
In Table II, the recordings with non-zero DER are presented
individually, while the remaining recordings are grouped at the
last row. The average Se and +P values for the database are
99.95% and 99.96%, respectively. A further investigation on
FPs and FNs on recordings with high DER (DER > 0.2)
reveals that, right bundle branch block (RBBB) beats are
responsible from 95% of all FPs (36 FPs), whereas left bundle
branch block (LBBB) beats are responsible from 53.3% of all
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TABLE IV TABLE VI
QRS DETECTION COMPARISON ON THE QT DATABASE QRS DETECTION COMPARISON ON THE RECORDINGS 118E12 AND
118E00 OF THE MIT-BIH NST DATABASE
1 0, 0,
QRS detection method Se (%) +P (%) QRS detection Se P F1 Score
This work Stochastic Resonance 99.99 99.99 method (%) (%) (%)
Martinez, 2004 [50] Wavelet Transform (WT) 99.92 99.88 This work Stochastic 99.61/ 100/ 99.81/
Martinez, 2010 [11] Phasor Transform 99.95 99.93 Resonance 99.78  99.83 99.8
Ghaffari, 2009 [51] Discrete WT (DWT) 99.94 99.91 . 1 96.58/  84.36/ 90.05/
Nayak, 2019 [10] DFOD + SE + HT 99.95  99.98 Physionet [65] GQRS 8277 627 7135
Burguera, 2019 [60] Smoothing and PVD 99.89 99.99 1 83.05/  94.92/ 88.44/
Chen, 2020 [63] HC and DWT 99.92 99.96 Pan, 1985 [45] PT 20.48 59.81 30.49
Merah, 2015 [14] Stationary WT 99.94 99.89 . 1 91.72/  77.65/ 84.09/
Cai, 2020 [40] CNN 99.97  99.99 Martinez, 2004 [S0] WIT 8201 6536 7274
Hossain, 2019 [59] CEEMD 99.97 99.93 . 1 94.19/ 94.44/ 94.18/
Rahul, 2021 [52] Third power + AT 999  99.94 Xiang, 2018 [62] CNN 7732 7212 7036
Peimankar, 2021 [54] CNN-LSTM 99.7 99.19 1 98.68/  90.89/ 94.6/
Pander, 2022 [41] FCMC 9991  99.93 Chandra, 2019 [39] CNN 8822 7137 78.9
Lee, 2022 [.5'.7] : EMD : : 99.99 99.98 Merah, 2015 [14] Stationary WT %3361/ ‘())8.822/ ‘())9.128/
DFOD: Digital Fractional Order Differentiator, SE: Shannon : 0.27 1.23
Energy, HT: Hilbert Transform, PVD: Peak-Valley Detector, HC: Rahul, 2021b [56] Third power + AT 97.49/ 98.27/ 97.87/
Hierarchical Clustering, CEEMD: Complete Ensemble Empirical 91 93.54 92.25
Mode Decomposition, AT: Adaptive Thresholding, LSTM: Long " Implemented in [17]. AT: Adaptive Thresholding. In each row
short-term memory, FCMC: Fuzzy c-median Clustering, EMD: the first result is for the recording 118e12 and the second is for the
Empirical Mode Decomposition. 118e00.
TABLE V TABLE VII
QRS DETECTION COMPARISON ON THE EDB QRS DETECTION PERFORMANCE EVALUATION OF THE PROPOSED
ALGORITHM ON THE MIT-BIH NST DATABASE
1 0, 0,
QRS detection method Se (%) +P (%) ECG Total # Se p FI Score
This work Stochastic Resonance 99.93 99.97 record #  of beats (%5) (%) (%)
Martinez, 2004 [50] Wavelet Transform (WT) 99.61 99.48 118e24 2278 99.65 100 99.83
Martinez, 2010 [11] Phasor Transform 99.67 99.73 118el8 2278 99.61 100 99.81
Ghaffari, 2009 [51] Discrete WT (DWT) 99.63 99.55 118el2 2278 99.61 100 99.81
Nayak, 2019 [10] DFOD + SE + HT 99.87 99.86 118e06 2278 99.56 99.92 99.74
Burguera, 2019 [60] Smoothing and PVD 99.88 99.98 118e00 2278 99.78 99.83 99.8
Xiong, 2021 [55] Energy Segmentation 99.77 99.65 118e_6 2278 99.48 99.69 99.58
Rahul, 2021b [56] Third power + AT 99.71 99.8 119¢24 1987 100 100 100
Pander, 2022 [41] FCMC 99.67 99.86 119¢e18 1987 100 100 100
DFOD: Digital Fractional Order Differentiator, SE: Shannon 119e12 1987 99.1  99.85 9947
Energy, HT: Hilbert Transform, PVD: Peak-Valley Detector, AT: 11906 1987~ 9849 9839  98.44
Adaptive Thresholding, FCMC: Fuzzy c-median Clustering. 119200 1987 99.5 9644 97.95
119¢_6 1987 89.02 95.21 92.01
FNs (32 FNs). Of the remaining FNs, 30% originate from Overall 25590 98.65 99.11 9887
normal beats, whereas premature ventricular contractions TABLE VI
(PVCs) and the RBBB are responsible from the remaining QRS DETECTION COMPARISON ON THE MIT-BIH NST DATABASE
16.7%. Notably, the wide S-features of the RBBB merge with QRS detection Se +P F1 Score
the T-waves, which are erroneously enhanced and detected as method () () (%)
QRE-fW.aVGS bydthef algorithm. In LBhB?l, the wide }?R.S-.Waﬁe This work zzi:;ﬁ:l;:?; 98.65 99.11 98.87
wit ?tmt dQ ari. S eat:;rtehs mzrge with t tehT'W;VSe that lsﬁn.thi Benitez, 2000 [66]  Hilbert Transform 9348 90.6 92.02
opposite direction, and thus decreasing the QRS-wave heig Khamis, 2016 [13] UNSW 9314 8623 8955
[49] and preventing the algorithm to properly enhance the QRS- Pan, 1985 [45] ! PT 93.15  81.83 87.12
wave amplitudes before detection. A comparison of the QRS- GR, 2015 [67] ! ~GR 91.6  86.36 88.9
wave detection performance with the most cited [13], [14], [45], Merah, 2015 [14] Stationary WT 953 93.98 94.63
d p Jia, 2020 [15] CNN 99.25  96.31 97.76
[46], [50], [51] and recent [41], [52]-[58] QRS detectors  gigendi, 2013 [46] ~ Squaring+MA 9539 9025 9274
reporting MIT-BIH Arrhythmia database results is given in  Pander, 2022 [41] FCMC 9527 947 94.98
Table III. The achieved +P and F/ is better than all algorithms  _Rahul, 2021b [56] _ Third power + AT 97.58  96.04 96.8

and Se is better than all algorithms except [59] (underlined).
QRS-wave detection performance and the comparison with
the state-of-the-art QRS detectors reporting results from the QT
database are given in Table IV. The proposed algorithm
achieves 99.99% average Se and 99.99% average +P on 105 15-
minute ECG recordings and outperforms all of the algorithms.
The QRS-wave detection performance and the comparison
with the state-of-the-art QRS detectors on the EDB database are
given in Table V. The proposed algorithm achieves an average
Se 0 99.93% and an average +P of 99.97% on 90 120-minute

g a germittgd,_ but republication/redistribution requires IEEE permission. See http://www.ieee.or;
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" Implemented in [13]. GR: Gutierrez Rivas algorithm, MA:
Moving Average, FCMC: Fuzzy c-median Clustering, EMD:
Empirical Mode Decomposition, AT: Adaptive Thresholding.

ECG recordings. Compared with the prior art, the achieved Se
value is better than all and +P is better than all except [60]
(underlined).

Additionally, the QRS detection performance of the
algorithm is evaluated in noisy ECG recordings of the MIT-BIH
NST database. For recordings with SNR values of 12 dB
(recording 118e12) and 0 dB (recording 118e00) in the MIT-
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BIH NST database, detection performances of the algorithm are
presented in Table VI, which also presents the performances of
other algorithms for the corresponding recordings. The results
for all recordings in the database and a comparison of the
performance with other QRS detectors are presented in Tables
VII and VIIL. In all twelve 30-minute noisy ECG recordings of
the database, the proposed algorithm achieves an average Se of
98.65% and +P of 99.11%, and thus a better F/ than all other
algorithms.

Finally, the computational complexity of the proposed
algorithm is investigated since the complexity is one of the
metrics affecting the applicability of the algorithm in real-time
heart rate monitoring applications (e.g., wearables) using ECG.
Overall, the complexity increases linearly with the data length.
More specifically, referring to the pseudocode in Algorithm 1,
calling the PS function and assignment of the optimized
parameters in line 2 add 3420n + 47134 units of operation.
Calling the SR with optimized parameters and assignment of
x(t) in line 3 add 71n — 69 units of operation. Applying
constant threshold by calling the TH function on Sy gpr (t)
and assignment of the QRS j.¢ecteq 10 line 5 add 50n + 2 units
of operation. Obtaining performance metrics and detection
performance by calling PM and DP functions and assignment
of metrics in lines 6 and 7 add 33841 units of operation. The
complexity of band pass and high pass filters are 6n + 65 units
of operation each. In total, the complete QRS-wave detection
algorithm consists of 35537 + 81038 units of operation where
n is the total number of samples of a signal, and thus achieving
O0(n) complexity in Big Oh notation. Accordingly, in terms of
computation time, the proposed algorithm achieves a low
average computation time of 0.3435+0.0026 s per recording of
the MIT-BIH Arrhythmia database using a PC with Intel(R)
Core(TM) i7-8750H CPU @ 2.20 GHz and 16.0 GB of RAM
with 1 TB SSD. In another system with a slightly different
configuration of Intel(R) Core(TM) i5-7500 CPU @ 3.4 GHz
and 16.0 GB of RAM with 1 TB HDD, the average computation
time per the same recording is similar (0.3992+0.0084 s).

IV. DISCUSSION

The analyses using individual noise types and a combined
version of different noise types in Fig. 6 reveal that the proposed
algorithm improves the SNR of QRS features as high as 89 dB
(em+ma+bw noise). Furthermore, even for high noise
intensities, an SNR improvement (ASNR jotecteq) 0f 32 dB can
be obtained (em+ma+bw noise).

Additionally, the algorithm facilitates the existing noise in
the recordings to improve the SNR, a result that holds for all
three noise types as well as their combination. However, there
is an optimum noise level, where the SNR improvement is
maximized, and thus verifying the SR facilitation. As the noise
intensity is increased past the optimum level, the noise starts
swamping the ECG signal. For the em, the SNR improvement
peaks when the standard deviation is 0.146, whereas for the
other noise types the optimum noise standard deviations are
0.096 for ma, 0.233 for bw, and 0.447 for the noise types
combined.

When compared with common QRS enhancement
algorithms of Pan-Tompkins [45] and Elgendi [46] in Fig. 7, the
proposed algorithm achieves better SNR improvement by

ermitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/

amounts varying between 82.9 dB (em + ma + bw) and 73.8
dB (em). The better SNR improvement is observed not only for
the optimum em noise standard deviation of 0.146, but also
even for the noise-free signal, where ASNR peaks for the Pan-
Tompkins and the Elgendi algorithms. Finally, for the largest
noise intensity tested (noise standard deviation = 0.9), the SR
algorithm achieves ~28 dB greater ASNR than the Elgendi
algorithm. It should be noted that, the significantly better SNR
improvement of the proposed algorithm for small noise
intensities does not translate into equally better QRS detection
performance. In fact, for an em noise standard deviation of
0.219, the SR algorithm achieves an F'/ score of 96.32% for the
recording 100 of MIT-BIH Arrhythmia database; whereas the
Pan-Tompkins and the Elgendi algorithms achieve F/ scores of
98.95% and 97.4%, respectively.

The distinguishing feature of the proposed algorithm is its
better detection performance for high noise intensities. For
instance, for an em noise standard deviation of 0.73, the
proposed algorithm achieves 99.92% of detection sensitivity,
whereas Se drops to 90.33% and 88.51% for the Pan-Tompkins
and the Elgendi algorithms, respectively. High added noise
intensities are more realistic in real life applications since ECG
recording from the active subject is distorted with noise caused
by activity of subject, movement of the electrodes, or muscle
artifacts [10], [13], [60]. Thus, performance improvement of the
proposed algorithm at high noise intensities indicates that the
proposed algorithm can be used for QRS-wave detection from
noisy ECG recordings.

The analysis of QRS detection performance of the proposed
algorithm for varying noise intensities in Fig. 6 reveals that,
unlike ASNR, the detection performance metrics of Se and +P
do not display the characteristic bell curve shape of the SR.
Both metrics reduce with increasing noise intensity with the
decrease being more substantial for +P because of the increase
in FP count. In fact, for all noise types, Se remains greater than
99.92%; whereas the +P drops from 100% to 60.85% as noise
standard deviation is increased from 0 to 0.9. Notably, the
severity of detection performance degradation is different for
different noise types. Despite the large drop in +P for em; the
+P remains greater than 99.87% for all noise intensities for the
bw noise. The poor performance for the em and the combination
noise can be explained by the existence of features similar to
characteristic QRS features in those noise types. Therefore, the
number of FP is greater for these noise types as in Fig. 8(a) and
Fig. 8 (d), compared to the ma (Fig. 8(b)) and bw (Fig. 8(c)).

Based on the QRS detection performance results evaluated
on the MIT-BIH Arrhythmia, QT, EDB, and the NST databases,
which are summarized in Tables III, IV, V, and VIII; the
proposed SR algorithm outperforms all algorithms in terms of
F1 score, which provides a balance between Se and +P.

The computation time and algorithm complexity of the
proposed algorithm are compared with algorithms that report
their complexities in Table IX. It is worth noting that
computation time is dependent also on the available
computation resources: Two faster algorithms use more
powerful computation environments [53], [55]. However, the
proposed algorithm runs faster than integrated energy [61]
implementation despite being implemented on a less powerful
computer.
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Fig. 8. Detection results of the proposed algorithm for a 30 s portion of the recording 100 of the MIT-BIH Arrhythmia database, ECG, and noise
added versions of it, ECG,,;s,; When (a) em (b) ma (c) bw, and (d) em + ma + bw are individually added as in (9) with g = 1. The output of the
QRS-Enhancement stage, SR, upr, the constant threshold level, QRS,,,. (black dots) and QRS ;... (red dots) are shown for each noise type.
The signals are separated by an offset for visualization purposes. The results demonstrate the greater numbers of FPs for the em and em +

ma + bw cases compared to the ma and bw.

TABLE IX
COMPLEXITY COMPARISON ON THE MIT-BIH ARRHYTHMIA DATABASE
QRS detection Computation Complexity
method time (s) (Big Oh)
. Stochastic 0.3435+
This work Resonance 0.0026 0(m)
Tueche, 2021 [53] PT-based 0.31 N/A
Pan, 1985 [45] ! PT 0.576 o)
Liu, 2019 [61] Integrated energy 0.414 N/A
Physionet [65] ! JQRS 0.558 N/A
Elgendi, 2013 [46] Squaring + MA 0.3 N/A
. Energy
Xiong, 2021 [55] Segmentation 0.22 N/A
Xiang, 2018 [62] CNN 14.53 ~0(n)?
Yuen, 2019 [17] CNN-LSTM N/A ~0(n)

" Implemented in [61], 2 BigOh complexity is given in [68]. MA:
Moving Average, LSTM: Long short-term memory

Based on the QRS-wave detection accuracy comparisons on
four benchmarking databases (total of 14,175 minutes of
recordings and over a million QRS-waves to detect) with
varying difficulty levels, only three studies report slightly better
performances in either Se or +P, but not simultaneously in
both: For the MIT-BIH arrhythmia database, [59] reports better
Se (+0.01%) and for the EDB database, [60] reports better +P
(+0.01%); while for the QT database, there are not any better
algorithms than the proposed algorithm. In the NST database,
[15] reports better Se (+0.6%). Compared with those methods
reporting better Se or +P performances, the proposed algorithm
has two distinctive properties:

ermitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/|

First, the proposed algorithm detects QRS-waves as the data
streams through without running a reverse search step.
Therefore, unlike [59], [60], the proposed method offers real-
time QRS-detection, thereby making it more appropriate for
real-time monitoring of ECG in wearable/injectable systems
with limited computational resources. Second, the proposed
algorithm does not need any training data for parameter
optimization. On the contrary, as the authors point out in [15],
the highly-complex (6-layers) convolutional neural network
(CNN) is highly dependent on the training data. In fact, for the
recordings 118el12 and 118e00, the proposed algorithm
achieves better detection performance than all other methods
including two other CNN methods [39], [62] (Table VI).

Despite achieving high SNR improvement and QRS
detection performances, there are some limitations of the
proposed algorithm. First, the algorithm contains several
variables that need to be manually optimized before fed with a
recording. On the other hand, the parameter optimization is
performed based on maximization of SNR of the ECG
recording calculated using only the detected QRS waves,
without the need for apriori knowledge on the true QRS
locations [32].

Second, the algorithm complexity is dominated by the
parametric search step. It is important to note that, for a given
dataset, optimization of all parameters is performed only once
for the first recording. For each of the other recordings, the only
parameter that needs to be optimized individually is /: All other
parameters are held constant. The search for /4 introduces a
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constant factor to Big Oh notation complexity and the
complexity of the algorithm remains O(n). The parametric
search of / parameter increases the run time by ~5%.

Additionally, the study has one major limitation. The three
noise recordings (i.e., em, ma, bw) used to investigate the effect
of noise intensity on SNR improvement and QRS detection are
static noise recordings from the MIT-BIH NST database.
Although the recordings well reflect the time and frequency
characteristics of three major noise sources in an actual ECG
recording, further analyses could be performed on multiple
noise recordings, which is left as a future study.

V. CONCLUSION

The study investigates a new QRS detection algorithm that
enhances QRS in a nonlinear system modeling the movement
of a particle inside a monostable potential-well with the x-
position of the particle in the potential-well being the output.
The SNR improvement with noise intensity displays the
characteristic bell curve shape of stochastic resonance, which
peaks at a non-zero noise intensity. Accordingly, in four
benchmarking databases, the proposed algorithm outperforms
all existing QRS-detection algorithms in terms of F1 score.
Notably, the algorithm offers real-time QRS-detection and does
not rely on training datasets. In a realistic ECG-based HR
monitoring scenario, the proposed algorithm can detect the
QRS features of a noisy recording after the algorithm
parameters are optimized once and solely based on maximizing
the output SNR for that recording. The future steps will be
towards fully automating the parameter search step in a
computationally efficient way and implementing the algorithm
in a wearable ECG system to evaluate the algorithm in ECG
recordings with varying noise conditions.
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