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Abstract—This study presents a new QRS detection 
algorithm making use of the background noise that is 
inevitably present in electrocardiogram (ECG) recordings. 
The algorithm suppresses noise, enhances the QRS-waves, 
and applies a threshold for QRS detection. Noise 
suppression and QRS enhancement are performed by a 
band-pass filter stage followed by a nonlinear stage based 
on the interaction of a particle inside an underdamped 
monostable potential well. The nonlinear stage maximizes 
the output when there is a QRS-wave and minimizes the 
output otherwise. One of the instruments that the nonlinear 
stage uses to enhance the QRS-waves is stochastic 
resonance, where the output is maximized for a non-zero 
intensity background noise. In terms of QRS-wave 
detection 𝑭𝟏 score, which ranges from 98.87% to 99.99% on 
four major benchmarking databases (MIT-BIH Arrhythmia, 
QT, European ST-T, and MIT-BIH Noise Stress Test), the 
algorithm outperforms all existing ECG processing 
algorithms. The study, for the first time, demonstrates QRS-
enhancement by facilitating stochastic resonance while 
suppressing in-band noise of ECG signals. Detecting QRS-
waves as the ECG data streams, having a complexity of 
𝑶(𝒏), and not requiring any training data make the 
algorithm convenient for real-time ECG monitoring 
applications with limited computational resources. 

 
Index Terms— ECG monitoring, QRS-wave, Stochastic 

resonance 

I. INTRODUCTION 

 

HE electrocardiogram (ECG) represents the electrical 

activity of heart muscle and thus has significant clinical 

value in assessing cardiovascular health. ECG allows tracking 

of heart rate (HR), which has diagnostic and prognostic 

importance in cardiovascular (e.g., hypertension, coronary 

artery disease, and cardiomyopathy [1], [2]), autonomic 

nervous system (ANS) (e.g., diabetic neuropathy, myocardial 

infarction (MI), and diabetes mellitus [3]–[5]) disorders. 

 In ECG, HR is obtained by first detecting heart beats from 

the prominent peaks corresponding to depolarization of the 

large mass of the ventricles, namely the QRS complex. Then, 

the time difference between successive QRS-waves is used to 

identify the instantaneous HR. One of the major challenges of 

HR detection from ECG arises from the noise in a recording. 

As classified in  [6]–[8], electrode motion artifact, dc swing, 

and high frequency noise are three common noise and 

interference types that deteriorate ECG recordings independent 

of the measurement instrumentation. Electrode motion artifacts 

are a combination of high and low frequency components (0 to 

~20 Hz [8]) originating from movement of a subject or applied 

mechanical force on the electrodes [6], [8]. Muscle noise occurs 

at high frequency (20 to 50 Hz [6]) and originates from 

electrochemical processes in the activated skeletal muscles. DC 

swing is a low frequency noise [7] that originates from 

movements of subject or the leads [6], [7]. The bandwidth 

overlap of these noise and interference sources and the QRS-

wave (8 to 50 Hz [9]) makes it challenging to accurately extract 

the HR in a noisy ECG recording [6]. 

 A common approach for QRS detection is noise suppression 

followed by a QRS enhancement algorithm. In fact, low-

complexity signal-enhancement-based QRS detection 

algorithms have resulted in detection sensitivity as high as 

99.95% [10] and positive predictivity as high as 99.96% [11] 

on the primary benchmarking database of MIT/BIH arrythmia 

database [12]. On the other hand, in recordings with larger noise 

and artifacts, the performance of such algorithms reduce as low 

as 93.14% in sensitivity and 86.23% in positive predictivity 

[13], [14]. Additionally, interpatient variation on ECG 

morphologies also deteriorates the performance [15], [16]. 

Alternatively, neural network algorithms (e.g., convolutional 

neural network [17]) can offer better performance in noisy 

scenarios [15], [17]. However, the performance of a neural 

network is highly data dependent. Therefore, to reflect the wide 

spectrum of QRS waveform shapes and background noise and 

artifact conditions, diverse training datasets are needed [15]–

[17]. 
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 Notably, additive noise in a signal – counterintuitively – can 

potentially be used for signal enhancement, a phenomenon 

named as stochastic resonance (SR) [18]. In fact, various 

systems with nonlinear dynamics (e.g., rotating machine 

bearing [19], [20], underwater acoustic communication [21], 

information transmission in neural networks [22], and eye 

movement desensitization [23]) make use of noise on the signal 

and/or in the system to improve detection of weak signals below  

the detection threshold. In a system facilitating SR, there is an 

optimal level of noise intensity that maximizes the signal power 

and/or detectability [18], [24]–[26]. 

Motivated by the low-complexities of signal-enhancement-

based QRS detection methods and high performances of 

previous signal enhancement and detection methods facilitating 

SR [19], [25], a novel low-complexity QRS detection algorithm 

is proposed and investigated in this study. The algorithm 

consists of a QRS enhancement and a QRS detection stage. The 

core of the QRS enhancement stage is an innovative SR-QRS 

enhancement block that acts as a nonlinear filter that facilitates 

SR. The block makes use of the inevitable additive noise of 

ECG to enhance QRS-waves while suppressing the noise 

outside the QRS-wave regions. Additionally, two unique 

properties make the proposed algorithm appropriate for real-

time ECG monitoring applications with limited computational 

resources. First, the algorithm does not necessitate a reverse 

search step and thus detects QRS-waves as the data streams 

through. Second, the algorithm does not need any training data 

for parameter optimization. The algorithm is implemented 

using MATLAB (MathWorks, Natick, MA, USA) and provided 

at “https://github.com/cihanbgungor/SR_QRS_detector”. 

 The rest of the paper is organized as follows. In Section II, 

the proposed QRS detection algorithm and the benchmarking 

datasets are presented. The results are presented in Section III, 

which are followed by a discussion in Section IV. The paper is 

concluded in Section V. 

II. METHODS 

A. Proposed QRS Detection Algorithm 

The proposed QRS detection algorithm consists of a QRS 

enhancement stage followed by a QRS detection stage as shown 

in Fig. 1. The pseudocode of the algorithm is presented in 

Algorithm 1. The QRS enhancement stage amplifies the QRS-

waves while suppressing noise. The out-of-band noise is 

suppressed by a standard band-pass filter (BPF) block 

implemented as a 4th order finite impulse response (FIR) filter 

with cutoffs of 0.05 and 100 Hz. (Line 1 of Algorithm 1). 

Following parameter selection (Line 2 of Algorithm 1), the in-

band noise suppression and SR-QRS amplification are achieved 

by the SR-QRS enhancement block (Lines 3 and 4 of Algorithm 

1), which is detailed below in Section II.B. The QRS detection 

stage consists of a constant thresholding block (Line 5 of 

Algorithm 1), which is presented in Section II.C. Finally, the 

performance metrics are obtained (Lines 6 and 7 of Algorithm 

1). A 40 s portion of an example ECG recording (# 116) from 

the MIT-BIH Arrhythmia database [12] and the corresponding  

waveforms along the signal processing chain of the proposed 

algorithm are presented in Fig. 2. The hard threshold level, as  

 
Fig. 1. Block diagram of the proposed QRS detection algorithm.  
 

 
Fig. 2. Exemplary ECG signal (#116 of the MIT-BIH Arrhythmia 
database) and waveforms within the signal processing chain. For 
signal labels refer to the block diagram in Fig. 1. The constant 
threshold level, true (𝑄𝑅𝑆𝑡𝑟𝑢𝑒) and detected (𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑) QRS-
waves are given in the bottom sub-plot. 

Algorithm 1 Complete QRS-Wave Detection Algorithm 

 Input: 𝑠𝐸𝐶𝐺(𝑡) (ECG signal) 

 Output: 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 , 𝑆𝑒, +𝑃, 𝐹1, 𝐷𝐸𝑅, 𝐴𝑐𝑐 (Performance metrics and  

                QRS-wave locations) 

  
1 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) ← 𝐵𝑃𝐹(𝑠𝐸𝐶𝐺(𝑡))                 # ECG signal is band pass filtered 

2 ℎ𝑜𝑝𝑡, 𝑎𝑜𝑝𝑡, 𝑏𝑜𝑝𝑡, 𝛾𝑜𝑝𝑡 , 𝑑𝑡ℎ𝑜𝑝𝑡
 ← 𝑃𝑆(𝑠𝑛𝑜𝑖𝑠𝑒(𝑡))        # Parameter selection  

3 𝑥(𝑡)  ← 𝑆𝑅 (𝑠𝑛𝑜𝑖𝑠𝑒(𝑡), ℎ𝑜𝑝𝑡, 𝑎𝑜𝑝𝑡, 𝑏𝑜𝑝𝑡, 𝛾𝑜𝑝𝑡 , 𝑑𝑡ℎ𝑜𝑝𝑡
)    # SR with optimal  

 parameters 
4 𝑠𝑜𝑢𝑡,𝐻𝑃𝐹(𝑡) ← 𝐻𝑃𝐹(𝑥(𝑡))                      # SR output is high pass filtered 

5 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ← 𝑇𝐻(𝑠𝑜𝑢𝑡,𝐻𝑃𝐹(𝑡))          # Constant threshold is applied to  
 obtain output QRS locations 
6 𝑇𝑃, 𝐹𝑁, 𝐹𝑃 ← 𝑃𝑀(𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 , 𝑄𝑅𝑆𝑡𝑟𝑢𝑒)     # Performance metrics are      
 obtained 
7  𝑆𝑒, +𝑃, 𝐹1, 𝐷𝐸𝑅, 𝐴𝑐𝑐 ←  𝐷𝑃(𝑇𝑃, 𝐹𝑁, 𝐹𝑃)      # Detection performance 
 is  obtained 
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well as true (𝑄𝑅𝑆𝑡𝑟𝑢𝑒) and detected (𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑) QRS-waves 

are shown on the output of the SR-QRS enhancement block.  

B. SR-QRS Enhancement Block 

Stochastic resonance (SR) describes signal enhancement by 

exploiting additive noise [18], [25]. This counterintuitive 

performance improvement of noise necessitates a nonlinear 

system, which allows complex interactions among the system 

and noise [27]. Signal improvement exhibits itself in various 

forms from signal-to-noise ratio (SNR) improvement [25], [26], 

[28] to signal transmission [27], [29], [30]. 

A classical nonlinear system used to facilitate SR for weak 

signal enhancement is an overdamped particle inside a one-

dimensional symmetric double well potential [18], [25].  

Different damping and well potential shape combinations also 

exhibit SR for non-periodic signals such as neural spikes [31], 

[32], bearing faults [19], [20], and acoustic signals [21]. 

Notably, our investigation of an extracellular neural spike 

detection algorithm based on SR facilitation using a monostable 

well with adaptive damping control demonstrates an SNR 

increase as large as 92 dB [32].  
Motivated by our previous nonlinear filter system that results 

in high SNR improvement [32], we design an SR-QRS 

enhancement block for the proposed QRS detection algorithm. 

Specifically, the SR-QRS enhancement block consists of an 

underdamped particle in a monostable well (U-MS) with 

adaptive damping control followed by a high-pass filter (HPF). 

The sub-sections 1 through 4 below present the details of the 

underdamped particle in a monostable well (U-MS) and the 

sub-section 5 presents the HPF details. 

 
1) Underdamped Brownian particle in a monostable potential 
well (U-MS) 

The core of the SR-QRS enhancement block is a nonlinear 

filter modeling the dynamics of a particle in a monostable well 

described by a function of 𝑈0(𝑥) (Fig. 3). 

Here, the band-pass filtered ECG recording, 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡), is 

applied as a time-varying force (Fig. 3) acting on the particle. 

Notably, 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡), is a linear combination of the noise-free 

ECG signal, 𝑠(𝑡), and undesired in-band noise (e.g., electrode 

motion artifact, high-frequency noise, dc swing), 𝑛(𝑡): 

𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) = 𝑠(𝑡) + 𝑛(𝑡).        (1) 

In (1), the prominent features of 𝑠(𝑡) have deterministic 

characteristics owing to the physiological limits (e.g., QRS-

waves are high amplitude and short duration features). On the 

other hand, 𝑛(𝑡) exhibits stochastic characteristics. As such, the 

stochastic 𝑛(𝑡) causes the particle to exhibit the pattern of 

motion of a Brownian particle, namely random small 

fluctuations. Accordingly, the particle in such a system is 

named as a Brownian particle. 

 The second force on the Brownian particle is proportional to 

the slope of the monostable well and denoted as −
𝑑𝑈0(𝑥)

𝑑𝑥
. 

The motion of the Brownian particle inside an underdamped 

monostable potential well described by 𝑈0(𝑥), is governed by 

the generalized Langevin equation [33], [34], which takes the 

form [25]: 

𝑑2𝑥(𝑡)

𝑑𝑡2 + 𝛾
𝑑𝑥(𝑡)

𝑑𝑡
= −

𝑑𝑈0(𝑥)

𝑑𝑥
+ 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡),     (2) 

where 𝑥(𝑡) is the Brownian particle position and 𝛾 is the 

damping factor. Specifically, (2) describes the dependence of 

the acceleration and velocity of the particle (left-hand side) on 

the two forces acting on the particle (right-hand side). The 

monostable well potential and its derivative for the dimension 

𝑥 are described as: 

𝑈0(𝑥) =
𝑎𝑥2

2
 +

𝑏𝑥4

4
.    𝑎, 𝑏 > 0       (3) 

 
𝑑𝑈0(𝑥)

𝑑𝑥
= 𝑎𝑥 + 𝑏𝑥3.    𝑎, 𝑏 > 0     (4) 

where 𝑎 and 𝑏 are the well parameters that control stable point 

depth and wall slope. 

For the system governed by the equations (1) through (4), the 

input is 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) and the output is the particle position, 𝑥(𝑡). 
Therefore, noise suppression of the system translates into 

restriction of the particle movement when the input is noise, 

whereas QRS enhancement corresponds to large displacement 

of the particle during QRS portions. It is noteworthy that with 

the goal of detecting QRS-waves in this paper, the definition of 

noise is extended to include all noisy ECG portions except the 

QRS-wave segments. Although such ECG portions include 

other physiologically important ECG features (e.g., P-wave and 

T-wave), they are undesired from QRS-wave detection 

perspective.    

The following sub-section, Section II.B.2, provides details 

about how the nonlinear U-MS system performs in-band noise 

suppression and facilitates SR for QRS enhancement. 

 
2) U-MS in-band noise suppression and QRS enhancement 

Two factors, namely small 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) and large 𝛾, collectively 

limit the particle movement and thus suppress the in-band 

noise. First, 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) amplitude is smaller in noise portions 

compared to the QRS-wave segments. Therefore, in those 

portions, the particle in Fig. 3 is primarily under the influence 

of 𝑛(𝑡) and −
𝑑𝑈0(𝑥)

𝑑𝑥
, and thus swings within a proximity around 

the stable point. Second, for small 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) amplitudes, the 

damping in the system is adjusted as high (i.e., 𝛾 is large), which 

further limits the particle movement. 

 
Fig. 3.  Stochastic resonance (SR) illustration in a monostable well. 

Two forces (𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) and −
𝑑𝑈0(𝑥)

𝑑𝑥
) acting upon the particle are 

shown on different points of the monostable well. 
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Three factors; namely large 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡), small 𝛾, and stochastic 

resonance; jointly result in large displacement of the particle 

during the QRS portions of the ECG recording and thus QRS 

enhancement. First, QRS-wave portions of the ECG signal 

apply sufficiently large 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) force to push the particle away 

from the stable point towards the walls of the potential well. 

Second, to maximize both signal enhancement and noise 

suppression, the system adapts a dynamic adjustment of the 

damping coefficient, 𝛾, depending on the input signal 

amplitude: For good noise suppression, 𝛾 is increased when 

𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) is small; whereas for good QRS enhancement, 𝛾 is 

reduced when 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) is large. Specifically, the damping 

factor is adjusted to 𝛾 = 120 for the range of input amplitude 

𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) <
𝑠𝑛𝑜𝑖𝑠𝑒,𝑝𝑝

𝑑𝑡ℎ
 and 𝛾 = 0.12 for 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) ≥

𝑠𝑛𝑜𝑖𝑠𝑒,𝑝𝑝

𝑑𝑡ℎ
 

where 𝑠𝑛𝑜𝑖𝑠𝑒,𝑝𝑝 is the peak-to-peak value of the entire recording 

and 𝑑𝑡ℎ = 10 is the damping factor threshold. Third, an 

optimum intensity of the additive stochastic 𝑛(𝑡) causes QRS-

enhancement by facilitating stochastic resonance. To 

understand, a QRS-wave portion without and with 𝑛(𝑡) can be 

considered. In a hypothetical scenario of 𝑛(𝑡) = 0, the particle 

moves away from the stable point solely by the force exerted by 

the QRS-wave. In a practical non-zero 𝑛(𝑡) case, the 𝑛(𝑡) 

increases the force exerted by the QRS-wave and thus assists 

the particle displacement, thereby enhancing the output. Here, 

the noise intensity is critical: Small noise intensities would not 

be sufficient to displace the particle any further, whereas higher 

noise densities would swamp the QRS-wave. A probabilistic 

investigation of the system using the Fokker-Planck equation to 

characterize the noise-dependent space-time probability density 

function of the Brownian particle is beyond the scope of this 

study. However, readers are referred to [35] for such an analysis 

for a similar system.  
The in-band noise suppression is demonstrated in Fig. 4 (a), 

where for a noise-only portion with a peak-to-peak value of 

0.12 (top row), the positions of the particle at different time 

steps are shown with blue dots (middle row). As seen at the 

bottom row, the small amplitude 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) and the high 

damping coefficient of 𝛾 = 120 limit the peak-to-peak output 

to 2.8 × 10−5 (73 dB noise suppression). Additionally, the role 

of dynamic damping adjustment in improving the noise 

suppression is illustrated in Fig. 5. For the same input, in 

contrast to an output noise peak-to-peak value of 0.2 obtained 

when 𝛾 is static, the dynamic adjustment results in an output 

noise peak-to-peak value of 10−3. The in-band noise 

suppression performance is assessed on three ECG recordings 

from the MIT-BIH Arrhythmia database [12]. For low- (# 103), 

medium- (# 116), and high-noise (# 207) recordings, the ECG 

in-band ([0.05 Hz-100 Hz]) noise power suppression of the SR-

QRS Enhancement Block are respectively found as 

85.6 𝑑𝐵, 82.68 𝑑𝐵, and 72.33 𝑑𝐵. 

QRS-enhancement by the U-MS is demonstrated in Fig. 4(b), 

where for a large 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) due to a QRS-wave, the force 

exerted onto the particle is large and the damping coefficient is 

small (𝛾 = 0.12), thereby allowing the particle to escape from 

the stable point and enhancing the signal. For a QRS-wave with 

a peak-to-peak value of ~2.4, the output has a peak-to-peak 

value of ~2200. QRS-enhancement is also demonstrated in 

Fig. 5 as the large peaks at the output that are synchronized with 

the QRS-waves of the input. Facilitation of stochastic resonance 

in QRS enhancement is demonstrated in Fig. 6 in the Section 

III. In Fig. 6, ∆𝑆𝑁𝑅 peaks for a non-zero noise intensity for 

different noise types. 

 
3) Numerical solution of the U-MS  

The solution of (2), 𝑥(𝑡), can be approximated by an iterative 

numerical method, namely the fourth-order Runge-Kutta (RK) 

method [25], [36]: 

𝑥[𝑛 + 1] = 𝑥[𝑛] + (𝑝1 + 2𝑝2 + 2𝑝3 + 𝑝4)ℎ/6,  (5) 

        𝑦[𝑛 + 1] = 𝑦[𝑛] + (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)ℎ/6,  (6) 

where 𝑥[𝑛] is the 𝑛𝑡ℎ sample of 𝑥(𝑡), 𝑦[𝑛] is the 𝑛𝑡ℎ sample of 
𝑑𝑥(𝑡)

𝑑𝑡
, and ℎ is the step size of the RK approximation. The 

pseudocode of the solution, 𝑘1 through 𝑘4, and 𝑝1 through 𝑝4 

are provided in the pseudocode, Algorithm 2. 

 

4) Parameter selection of the U-MS 

Parametric search of well and solver parameters (i.e., 

𝑎, 𝑏, ℎ, 𝛾, 𝑑𝑡ℎ) is performed to optimize QRS enhancement. The 

search is conducted without the need for a priori knowledge of 

 
Fig. 4. In-band noise suppression and QRS enhancement are 
demonstrated on example (a) noise-only and (b) QRS-wave 
portions. For both columns, top and bottom rows respectively show 
the input and output signals of the U-MS sub-block of the SR-QRS 
enhancement block. Middle rows show the positions of the particle 
for all time steps. A zoomed-in version of the particle positions 
confined in a small region in (a) are displayed in the inset. 

 
Fig. 5. Noise suppression and QRS enhancement achieved by 
adaptive adjustment of damping coefficient, 𝛾.  
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the true QRS locations, 𝑄𝑅𝑆𝑡𝑟𝑢𝑒 . The optimization aims to 

maximize the output SNR defined as:  

  𝑆𝑁𝑅 = 20𝑙𝑜𝑔 (
𝐴𝑝𝑝 𝑜𝑓 𝑄𝑅𝑆−𝑤𝑎𝑣𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑛𝑜𝑖𝑠𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
), (7)  

where 𝐴𝑝𝑝 is the average peak-to-peak amplitude of 100 

arbitrarily selected QRS-waves. QRS regions are segmented as 

100 ms time windows centered around the detected QRS-wave 

points, 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑. The 100 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  point set consists of 

one automatically and arbitrarily selected 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  point 

using the 𝑟𝑎𝑛𝑑 function of MATLAB and the 99 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

points succeeding it. A total of 100 noise segments (~1 s each) 

are selected arbitrarily inside the sections between the selected 

100 QRS segments.  
 The selection of the well/solver parameter values is 

conducted through a three-step parametric search maximizing 

the SNR improvement of the system defined as ∆𝑆𝑁𝑅 =
𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛; where 𝑆𝑁𝑅𝑜𝑢𝑡 and 𝑆𝑁𝑅𝑖𝑛 are respectively 

the SNR of the output and input signals. The three steps consist 

of (1)  initialization of the parameters, (2) forward parametric 

search, and (3) reverse parametric search. The forward 

parametric search order is in the direction that parameter 

specificity increases. The parameters that affect the most 

characteristics of the system and the solution are optimized 

first. Therefore, the first parameter that is optimized is the ℎ 

parameter, which defines the step size of the RK solver and thus 

affects the whole solution regardless of where the particle is 

inside the well. Then, 𝑎 and 𝑏 parameters that describe the well 

properties altogether (e.g., curvature, depth, steepness) are 

optimized. The damping of the system is different depending 

on the input signal amplitude and thus is an input-specific 

behavior of the system. The two parameters, 𝛾 and 𝑑𝑡ℎ, define 

the damping behavior and thus these parameters are optimized 

the last. The forward parametric search follows the order of ℎ →
𝑎 → 𝑏 → 𝛾 → 𝑑𝑡ℎ and the reverse parametric search follows the 

order of 𝛾 → 𝑏 → 𝑎 → ℎ. 

At the initialization step, well/solver parameters are initialized 

with values as follows [31], [32]: ℎ0 = 40, 𝑎0 = −1000, 𝑏0 =
1, 𝛾0 = 1, 𝑑𝑡ℎ,0 = 2. Notably, the numerical solution of (2) 

diverges when a parameter value is arbitrarily 

increased/decreased from the initial value, thereby causing 

MATLAB to halt. For a time-efficient search that minimizes the 

search time, the search of a parameter is carried out in multiple 

non-overlapping search windows with identical length. 

Specifically, the initial search window is shifted in the positive 

and negative directions by an amount equal to the window 

length until the output diverges in the new search window. In 

each search round, the parameter value that locally maximizes 

the SNR is found via a 50-step sweep. Finally, the local maxima 

of all search rounds are compared to find the parameter value 

of the global maximum. The search window length, 𝑝𝑤𝑖𝑛𝑑𝑜𝑤 , 

for a parameter 𝑝, where 𝑝 ∈ {𝑎, 𝑏, ℎ, 𝛾, 𝑑𝑡ℎ}, is set at the initial 

search step as 𝑝𝑤𝑖𝑛𝑑𝑜𝑤 = 𝑝𝑢𝑝 − 𝑝𝑙𝑜𝑤. Here, 𝑝𝑢𝑝 and 𝑝𝑙𝑜𝑤  are 

respectively the upper and the lower boundaries of the initial 

search window and are selected such that they satisfy 

|𝑆𝑁𝑅|𝑝𝑢𝑝(𝑙𝑜𝑤)
− 𝑆𝑁𝑅|𝑝0

| = 3 𝑑𝐵. 

 
5) High-pass filter 

While adaptive adjustment of the damping coefficient based 

on the input signal amplitude improves in-band noise 

suppression performance, it also introduces a minor change to 

the system response. Increasing the damping in small-

amplitude portions of the signal that immediately follows a 

large amplitude QRS-wave causes the particle to move around 

a new 𝑥 location, thereby resulting in a bistable behavior as seen 

in the 3rd row of Fig. 2. Using a 4th order FIR high-pass-filter 

with a cutoff frequency of 10 Hz, the bistable behavior is 

eliminated (Fig. 2 – 4th row, red waveform) before the signal is 

fed to the QRS-Detection stage.  

C. QRS-Detection Stage 

A constant threshold of 0.1 is applied on the QRS-

enhancement stage output to determine the QRS-waves, 

𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 . In the binary output of the threshold stage, the 

time instances corresponding to the data points at the center of 

a ‘0’-to-‘1’ transition followed by a ‘1’-to-‘0’ transition are 

identified as the 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 . Based on the identified QRS-

waves, the performance metrics, 𝑇𝑃, 𝐹𝑁, and 𝐹𝑃 are obtained 

by comparing the locations of the 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  with true QRS-

waves, 𝑄𝑅𝑆𝑡𝑟𝑢𝑒, obtained from database annotations. For each 

𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 , 𝑄𝑅𝑆𝑡𝑟𝑢𝑒 is searched within a ±150 ms time 

window centered around 𝑄𝑅𝑆𝑡𝑟𝑢𝑒 following ANSI/AAML 

EC38 [37] and EC57 [38] and studies in [39]–[42]. A 

𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  inside a search window is counted as a true 

positive, 𝑇𝑃. The search windows with no 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  are 

counted as false negatives, 𝐹𝑁. The number of false positives, 

𝐹𝑃, is calculated as the difference of the number of 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

Algorithm 2 𝑆𝑅 - QRS Enhancement Block - Numerical Solution 

 Input: 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡), ℎ, 𝑎, 𝑏, 𝛾, 𝑑𝑡ℎ (Band pass filtered ECG signal and    

             parameters) 

 Output: 𝑥(𝑡)  (Output signal) 

  
1 𝑥(1) ← 0                                                        # Initial value to 𝑥(𝑡) is set 
2 𝑦(1) ← 0                                                        # Initial value to 𝑦(𝑡) is set 

3 𝑠𝑛𝑜𝑖𝑠𝑒,𝑝𝑝 ← max(𝑠𝑛𝑜𝑖𝑠𝑒(𝑡)) − min (𝑠𝑛𝑜𝑖𝑠𝑒(𝑡))      # Signal peak-to-peak  

 amplitude is set 
  

4 for (𝑖 = 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑛𝑜𝑖𝑠𝑒(𝑡)) − 1)) do 

5      if (𝑠𝑛𝑜𝑖𝑠𝑒(𝑖) < 𝑠𝑛𝑜𝑖𝑠𝑒,𝑝𝑝/𝑑𝑡ℎ) then   

6           𝛾 ← 𝛾 ∗ 10 # Damping coefficient is increased for low amplitude 
           samples of the signal 

7      else 
8           𝛾 ← 𝛾/100 # Damping coefficient is reduced for high amplitude  
           samples of the signal 

9      end if 
10       𝑝1 ← 𝑦(𝑖)  
11       𝑘1 ← −𝑎 ∗ 𝑥(𝑖) − 𝑏 ∗ 𝑥(𝑖)3 − 𝛾𝑝1 + 𝑠𝑛𝑜𝑖𝑠𝑒(𝑖) 
12       𝑝2 ← 𝑦(𝑖) + 𝑘1 ∗ ℎ/2  
13       𝑘2 ← −𝑎 ∗ (𝑥(𝑖) + 𝑝1 ∗ ℎ/2) − 𝑏 ∗ (𝑥(𝑖) ∗ 𝑝1 ∗ ℎ/2)3  − 𝛾𝑝2 + 
       𝑠𝑛𝑜𝑖𝑠𝑒(𝑖)  

14       𝑝3 ← 𝑦(𝑖) + 𝑘2 ∗ ℎ/2  
15       𝑘3 ← −𝑎 ∗ (𝑥[𝑖] + 𝑝2 ∗ ℎ/2) − 𝑏 ∗ (𝑥(𝑖) ∗ 𝑝2 ∗ ℎ/2)3  − 𝛾𝑝3 +  
       𝑠𝑛𝑜𝑖𝑠𝑒(𝑖 + 1)  

16       𝑝4 ← 𝑦(𝑖) + 𝑘3 ∗ ℎ  
17       𝑘4 ← −𝑎 ∗ (𝑥(𝑖) + 𝑝3 ∗ ℎ) − 𝑏 ∗ (𝑥(𝑖) ∗ 𝑝3 ∗ ℎ)3  − 𝛾𝑝4 + 
       𝑠𝑛𝑜𝑖𝑠𝑒(𝑖 + 1)  

18       𝑥(𝑖 + 1) ← 𝑥(𝑖) + (𝑝1 + 2 ∗ 𝑝2 + 2 ∗ 𝑝3 + 𝑝4) ∗ ℎ/6      # The next  
       𝑥(∙) is obtained from the calculated slopes 

19       𝑦(𝑖 + 1) ← 𝑦(𝑖) + (𝑘1 + 2 ∗ 𝑘2 + 2 ∗ 𝑘3 + 𝑘4) ∗ ℎ/6     # The next   
       𝑦(∙) is obtained from the calculated slopes 

20 end for 
21 return 𝑥(𝑡) 
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and TP. 

Based on 𝑇𝑃, 𝐹𝑁, and 𝐹𝑃; detection performance is 

evaluated by five metrics, namely sensitivity (𝑆𝑒), positive 

predictivity (+𝑃), F1 score (𝐹1), detection error rate (𝐷𝐸𝑅), 

and accuracy (𝐴𝑐𝑐) given as: 

 𝑆𝑒 (%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100, +𝑃 (%) =

𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100,  

        𝐹1 (%) =
2∗𝑆𝑒∗(+𝑃)

𝑆𝑒+(+𝑃)
,                  (8) 

𝐷𝐸𝑅 (%) =
𝐹𝑃+𝐹𝑁

𝑇𝑃
∗ 100, 𝐴𝑐𝑐 (%) =

𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
∗ 100. 

D. Datasets 

The algorithm is initially assessed in terms of how different 

noise intensities affect the QRS enhancement and QRS 

detection performance. Accordingly, the noise recordings (i.e., 

𝑒𝑚, 𝑚𝑎, and 𝑏𝑤) in the MIT/BIH NST database [6] are used to  

vary the noise intensity in a controlled manner. In [6], 𝑒𝑚, 𝑚𝑎, 

and 𝑏𝑤 correspond to electrode motion artifact, muscle artifact, 

and baseline wander, respectively. Specifically, recordings with 

different noise intensities, 𝑠𝑛𝑜𝑖𝑠𝑒(𝑡), are obtained via linear 

summation of a low noise ECG signal (recording 100 of the  

MIT-BIH Arrhythmia database [12]), 𝑠(𝑡), with the noise 

recording, 𝑛(𝑡), weighed by a noise intensity factor, 𝑔, as 

follows: 

𝑠𝑛𝑜𝑖𝑠𝑒(𝑡) = 𝑠(𝑡) + 𝑔 ∗ 𝑛(𝑡).        (9) 

Additionally, the QRS-wave detection performance of the  

proposed algorithm is evaluated using the standard 

benchmarking datasets of the MIT-BIH Arrythmia [12], QT 

[43], European ST-T (EDB) [44], and MIT-BIH Noise Stress 

Test (NST) [6] databases. The major features of these databases 

(i.e., number of recordings, recording length, and total number 

of beats) are provided in Table I.  

III. RESULTS 

 QRS enhancement performance of the proposed algorithm is 

first analyzed for different noise intensities for each noise type 

in the MIT-BIH NST database; namely 𝑒𝑚, 𝑚𝑎, and 𝑏𝑤. 

Specifically, the SNR improvements for a range of noise 

standard deviations are obtained by sweeping 𝑔 in (9) for each 

noise type. The noise standard deviation is increased until the 

output SNR drops to below 40 dB. For each 𝑔 value of the input, 

𝑠𝑛𝑜𝑖𝑠𝑒(𝑡), having an SNR of 𝑆𝑁𝑅𝑖𝑛, the algorithm is optimized 

separately to obtain the largest output SNR, 𝑆𝑁𝑅𝑜𝑢𝑡 following 

the procedure described in Section II.B.4. SNR improvement is 

calculated as ∆𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛. Variation of ∆𝑆𝑁𝑅 

with noise standard deviation for each of the three noise types 

and the combined noise obtained as 𝑛(𝑡) = 𝑒𝑚 + 𝑚𝑎 + 𝑏𝑤 are  

as shown in Fig. 6. It is noteworthy that Fig. 6 shows two 

different ∆𝑆𝑁𝑅 calculated using (7): ∆𝑆𝑁𝑅𝑡𝑟𝑢𝑒 and 

∆𝑆𝑁𝑅𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 respectively correspond to ∆𝑆𝑁𝑅 calculated 

TABLE I 
CHARACTERISTICS OF THE PUBLICLY AVAILABLE DATABASES USED 

FOR VALIDATION 

Database 
# of 

recordings 

𝒇𝒔 

(Hz) 

Recording 

duration 

(min) 

Total # 

of beats 

MIT-BIH Arrhythmia 48 360 30 109518 
MIT-BIH NST 12 360 30 25590 

QT 105 250 15 87708 

EDB 90 250 120 790558 

 
 

 
Fig. 6.  QRS enhancement (right y-axes) and QRS detection (left y-axes) performance results of the proposed algorithm when (a) 𝑒𝑚 noise, (b) 
𝑚𝑎 noise, (c) 𝑏𝑤 noise, and (d) 𝑒𝑚 + 𝑚𝑎 + 𝑏𝑤 is added to ECG signal as in (9). QRS enhancement results are given in ∆𝑆𝑁𝑅𝑡𝑟𝑢𝑒 and 

∆𝑆𝑁𝑅𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑, which respectively correspond to ∆SNR calculated using 𝑄𝑅𝑆𝑡𝑟𝑢𝑒 and 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑. 
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using 𝑄𝑅𝑆𝑡𝑟𝑢𝑒 and 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 . In addition to the investigation 

of how SNR changes with noise intensity, the proposed 

algorithm is also evaluated in terms of how QRS detection 

performance changes with the noise. For the same algorithm 

parameters optimized to maximize ∆𝑆𝑁𝑅𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 , QRS 

detection  performances are obtained following the procedure 

explained in Section II.C. For the three noise types, Se, +P, and 

F1 score metrics obtained for each 𝑔 are presented in Fig. 6 (a)-

(c). The results for the combined noise of 𝑛(𝑡) = 𝑒𝑚 + 𝑚𝑎 +
𝑏𝑤 are presented in Fig. 6 (d). A closer look into the Fig. 6 

reveals that, for all noise cases, for even high noise levels, 𝑆𝑒 

remains greater than 99.92, whereas +𝑃 and 𝐹1 dampen with 

increasing noise levels. A decrease in ∆𝑆𝑁𝑅𝑡𝑟𝑢𝑒 with noise 

intensity is expected to increase FPs. In fact, for the noise types 

𝑚𝑎,  𝑏𝑤  and 𝑒𝑚 + 𝑚𝑎 + 𝑏𝑤 ; for noise standard deviations 

that are respectively greater than ~0.1, ~0.33, and ~0.2;  

∆𝑆𝑁𝑅𝑡𝑟𝑢𝑒, +𝑃 , and 𝐹1  start decreasing. However, it should 

also be considered that, as noise intensity increases, the SR-

QRS enhancement block can erroneously enhance noise 

portions as well as the true QRS-waves, which would cause 

∆𝑆𝑁𝑅𝑡𝑟𝑢𝑒 to remain high while increasing FPs. As a matter of 

fact, for 𝑒𝑚 , the +𝑃  and 𝐹1 decrease when noise exceeds 

~0.15; whereas the ∆𝑆𝑁𝑅𝑡𝑟𝑢𝑒 >∼ 71 𝑑𝐵 for noise levels up to 

~0.37. Notably, the discussion above cannot be generalized for 

∆𝑆𝑁𝑅𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑, which is calculated using the 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑, some 

of which are FPs. 

It should be noted that, the essence of the proposed algorithm 

is QRS detection following QRS enhancement. Therefore, the 

SNR improvement is compared with the state-of-the-art QRS 

detection algorithms that perform QRS enhancement prior to 

detection, namely Pan-Tompkins (PT) [45] and Elgendi [46]. 

These algorithms are implemented using the MATLAB codes 

provided in [47] and [48], respectively. The comparison is 

performed for all noise types and presented in Fig. 7, where 

∆𝑆𝑁𝑅 difference between the proposed algorithm and the other 

two ranges from 21.6 dB for the 𝑏𝑤 noise to 82.91 dB for the 

combined 𝑒𝑚 + 𝑚𝑎 + 𝑏𝑤 noise. Notably, for all noise types, 

the proposed algorithm offers significantly better ∆𝑆𝑁𝑅 than 

the PT and Elgendi methods. 

 Following the investigation of the effect of noise on QRS 

enhancement and detection, the detection performance of the 

algorithm is assessed on a wide range of ECG morphologies 

using publicly available benchmarking databases, namely MIT-

BIH Arrhythmia, QT, and EDB: 

 QRS-wave detection performance of the proposed algorithm  

on the MIT-BIH Arrhythmia database is presented in Table II.   

In Table II, the recordings with non-zero 𝐷𝐸𝑅 are presented 

individually, while the remaining recordings are grouped at the 

last row. The average Se and +P values for the database are 

99.95% and 99.96%, respectively. A further investigation on 

FPs and FNs on recordings with high 𝐷𝐸𝑅 (𝐷𝐸𝑅 > 0.2) 

reveals that, right bundle branch block (RBBB) beats are 

responsible from 95% of all FPs (36 FPs), whereas left bundle 

branch block (LBBB) beats are responsible from 53.3% of all  

 
Fig. 7.  QRS enhancement (∆𝑆𝑁𝑅) for the proposed algorithm, PT, 
and Elgendi algorithms when all noise types (𝑒𝑚, 𝑚𝑎, 𝑏𝑤, and 𝑒𝑚 +
𝑚𝑎 + 𝑏𝑤) are added to ECG signal as in (9). 

TABLE II 
QRS DETECTION PERFORMANCE EVALUATION OF THE PROPOSED 

ALGORITHM ON THE MIT-BIH ARRHYTHMIA DATABASE 

ECG 

record # 

Total # 

of beats 
Se (%) +P (%) DER Acc (%) 

105 2572 99.96 100 0.039 99.96 

107 2137 99.96 100 0.046 99.96 
108 1774 99.95 100 0.056 99.95 

109 2532 99.96 100 0.039 99.96 

111 2124 99.95 100 0.047 99.9 
116 2412 99.42 100 0.58 99.42 

121 1863 99.89 100 0.1 99.89 

201 1963 99.95 100 0.05 99.95 
203 2980 99.83 100 0.168 99.83 

205 2657 99.93 100 0.075 99.93 

207 1860 99.25 98.2 2.6 97.47 
208 2955 99.66 100 0.34 99.66 

217 2208 99.9 100 0.09 99.9 

228 2053 99.86 100 0.14 99.86 
233 3079 99.97 100 0.03 99.97 

Remaining 74349 100 100 0 100 

Overall 109518 99.95 99.96 0.09 99.91 

 
  

TABLE III 
QRS DETECTION COMPARISON ON MIT-BIH ARRHYTHMIA DATABASE 

 QRS detection method Se (%) +P (%) 

This work Stochastic Resonance 99.95 99.96 

Martinez, 2004 [50] Wavelet Transform (WT) 99.80 99.86 

Martinez, 2010 [11] Phasor Transform 99.69 99.96 
Ghaffari, 2009 [51] Discrete WT (DWT) 99.91 99.88 

Nayak, 2019 [10] DFOD + SE + HT 99.95 99.94 

Burguera, 2019 [60] Smoothing and PVD 99.57 99.37 
Chen, 2020 [63] HC and DWT 99.89 99.94 

Merah, 2015 [14] Stationary WT (SWT) 99.84 99.88 

Modak, 2021 [64] MAF + TAT 99.82 99.88 
Rahul, 2021 [52] Third power + AT 99.81 99.85 

Jia, 2020 [15] CNN 99.89 99.90 
Xiang, 2018 [62] 1 CNN 99.77 99.91 

Chandra, 2019 [39] CNN 99.84 99.95 

Zahid, 2022 [58] CNN 99.85 99.82 
Cai, 2020 [40] CNN 99.95 99.94 

Hossain, 2019 [59] CEEMD 99.96 99.89 

Tueche, 2021 [53] PT-based 99.65 99.69 

Peimankar, 2021 [54] CNN-LSTM 99.61 99.52 

Xiong, 2021 [55] Energy Segmentation 99.36 99.78 

Rahul, 2021b [56] Third power + AT 99.82 99.85 
Pander, 2022 [41] FCMC 99.82 99.88 

Lee, 2022 [57] EMD 99.83 99.92 

Yakut, 2018 [69] PT-based 99.83 99.83 
1 Excludes recordings 102 & 104. DFOD: Digital Fractional Order 

Differentiator, SE: Shannon Energy, HT: Hilbert Transform, PVD: 
Peak-Valley Detector, HC: Hierarchical Clustering, MAF: Moving 
Average Filter, TAT: Time/Amplitude Threshold, AT: Adaptive 
Thresholding, CEEMD: Complete Ensemble Empirical Mode 
Decomposition, LSTM: Long short-term memory, FCMC:  Fuzzy c-
median Clustering, EMD: Empirical Mode Decomposition. 
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FNs (32 FNs). Of the remaining FNs, 30% originate from 

normal beats, whereas premature ventricular contractions 

(PVCs) and the RBBB are responsible from the remaining 

16.7%. Notably, the wide S-features of the RBBB merge with 

the T-waves, which are erroneously enhanced and detected as 

QRS-waves by the algorithm. In LBBB, the wide QRS-wave 

with faint Q and S features merge with the T-wave that is in the 

opposite direction, and thus decreasing the QRS-wave height 

[49] and preventing the algorithm to properly enhance the QRS-

wave amplitudes before detection. A comparison of the QRS-  
wave detection performance with the most cited [13], [14], [45], 

[46], [50], [51] and recent [41], [52]–[58] QRS detectors 

reporting MIT-BIH Arrhythmia database results is given in 

Table III. The achieved +P and F1 is better than all algorithms 

and Se is better than all algorithms except [59] (underlined).  

 QRS-wave detection performance and the comparison with 

the state-of-the-art QRS detectors reporting results from the QT 

database are given in Table IV. The proposed algorithm 

achieves 99.99% average Se and 99.99% average +P on 105 15-

minute ECG recordings and outperforms all of the algorithms. 

 The QRS-wave detection performance and the comparison 

with the state-of-the-art QRS detectors on the EDB database are 

given in Table V. The proposed algorithm achieves an average 

Se of 99.93% and an average +P of 99.97% on 90 120-minute 

ECG recordings. Compared with the prior art, the achieved Se 

value is better than all and +P is better than all except [60] 

(underlined). 

 Additionally, the QRS detection performance of the 

algorithm is evaluated in noisy ECG recordings of the MIT-BIH 

NST database. For recordings with SNR values of 12 dB 

(recording 118e12) and 0 dB (recording 118e00) in the MIT-

TABLE IV 
QRS DETECTION COMPARISON ON THE QT DATABASE 

 QRS detection method Se (%) +P (%) 

This work Stochastic Resonance 99.99 99.99 

Martinez, 2004 [50] Wavelet Transform (WT) 99.92 99.88 

Martinez, 2010 [11] Phasor Transform 99.95 99.93 
Ghaffari, 2009 [51] Discrete WT (DWT) 99.94 99.91 

Nayak, 2019 [10] DFOD + SE + HT 99.95 99.98 

Burguera, 2019 [60] Smoothing and PVD 99.89 99.99 
Chen, 2020 [63] HC and DWT 99.92 99.96 

Merah, 2015 [14] Stationary WT 99.94 99.89 

Cai, 2020 [40] CNN 99.97 99.99 
Hossain, 2019 [59] CEEMD 99.97 99.93 

Rahul, 2021 [52] Third power + AT 99.9 99.94 
Peimankar, 2021 [54] CNN-LSTM 99.7 99.19 

Pander, 2022 [41] FCMC 99.91 99.93 

Lee, 2022 [57] EMD 99.99 99.98 

DFOD: Digital Fractional Order Differentiator, SE: Shannon 
Energy, HT: Hilbert Transform, PVD: Peak-Valley Detector, HC: 
Hierarchical Clustering, CEEMD: Complete Ensemble Empirical 
Mode Decomposition, AT: Adaptive Thresholding, LSTM: Long 
short-term memory, FCMC:  Fuzzy c-median Clustering, EMD: 
Empirical Mode Decomposition. 

 
  

TABLE V 
QRS DETECTION COMPARISON ON THE EDB  

 QRS detection method Se (%) +P (%) 

This work Stochastic Resonance 99.93 99.97 

Martinez, 2004 [50] Wavelet Transform (WT) 99.61 99.48 

Martinez, 2010 [11] Phasor Transform 99.67 99.73 
Ghaffari, 2009 [51] Discrete WT (DWT) 99.63 99.55 

Nayak, 2019 [10] DFOD + SE + HT 99.87 99.86 

Burguera, 2019 [60] Smoothing and PVD 99.88 99.98 
Xiong, 2021 [55] Energy Segmentation 99.77 99.65 

Rahul, 2021b [56] Third power + AT 99.71 99.8 

Pander, 2022 [41] FCMC 99.67 99.86 

DFOD: Digital Fractional Order Differentiator, SE: Shannon 
Energy, HT: Hilbert Transform, PVD: Peak-Valley Detector, AT: 
Adaptive Thresholding, FCMC:  Fuzzy c-median Clustering. 
  

TABLE VI 
QRS DETECTION COMPARISON ON THE RECORDINGS 118E12 AND 

118E00 OF THE MIT-BIH NST DATABASE 

 
QRS detection 

method 

Se 

(%) 

+P 

(%) 

F1 Score 

(%) 

This work 
Stochastic 

Resonance 

99.61/

99.78 

100/ 

99.83 

99.81/ 

99.8 

Physionet [65] 1 GQRS 
96.58/

82.77 

84.36/

62.7 

90.05/ 

71.35 

Pan, 1985 [45] 1 PT 
83.05/ 
20.48  

94.92/
59.81 

88.44/ 
30.49 

Martinez, 2004 [50] 1 WT 
91.72/

82.01  

77.65/

65.36 

84.09/ 

72.74 

Xiang, 2018 [62] 1 CNN 
94.19/ 

77.32  

94.44/ 

72.12 

94.18/ 

70.36 

Chandra, 2019 [39] 1 CNN 
98.68/ 

88.22  

90.89/ 

71.37 

94.6/ 

78.9 

Merah, 2015 [14] Stationary WT 
99.56/ 
92.41 

98.82/ 
90.27 

99.18/ 
91.23 

Rahul, 2021b [56] Third power + AT 
97.49/

91 

98.27/

93.54 

97.87/ 

92.25 
1 Implemented in [17]. AT: Adaptive Thresholding. In each row 

the first result is for the recording 118e12 and the second is for the 
118e00. 
  

TABLE VII 
QRS DETECTION PERFORMANCE EVALUATION OF THE PROPOSED 

ALGORITHM ON THE MIT-BIH NST DATABASE 

ECG 
record # 

Total # 
of beats 

Se 
(%) 

+P 
(%) 

F1 Score 
(%) 

118e24 2278 99.65 100 99.83 

118e18 2278 99.61 100 99.81 

118e12 2278 99.61 100 99.81 
118e06 2278 99.56 99.92 99.74 

118e00 2278 99.78 99.83 99.8 

118e_6 2278 99.48 99.69 99.58 
119e24 1987 100 100 100 

119e18 1987 100 100 100 

119e12 1987 99.1 99.85 99.47 

119e06 1987 98.49 98.39 98.44 

119e00 1987 99.5 96.44 97.95 
119e_6 1987 89.02 95.21 92.01 

Overall 25590 98.65 99.11 98.87 

 
  TABLE VIII 

QRS DETECTION COMPARISON ON THE MIT-BIH NST DATABASE  

 
QRS detection 

method 

Se 

(%) 

+P 

(%) 

F1 Score 

(%) 

This work 
Stochastic 

Resonance 
98.65 99.11 98.87 

Benitez, 2000 [66] Hilbert Transform 93.48 90.6 92.02 

Khamis, 2016 [13] UNSW 93.14 86.23 89.55 

Pan, 1985 [45] 1 PT 93.15 81.83 87.12 
GR, 2015 [67] 1 GR 91.6 86.36 88.9 

Merah, 2015 [14] Stationary WT 95.3 93.98 94.63 

Jia, 2020 [15] CNN 99.25 96.31 97.76 
Elgendi, 2013 [46] Squaring + MA 95.39 90.25 92.74 

Pander, 2022 [41] FCMC 95.27 94.7 94.98 

Rahul, 2021b [56] Third power + AT 97.58 96.04 96.8 
1 Implemented in [13]. GR: Gutierrez Rivas algorithm, MA: 

Moving Average, FCMC: Fuzzy c-median Clustering, EMD: 
Empirical Mode Decomposition, AT: Adaptive Thresholding.  
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BIH NST database, detection performances of the algorithm are 

presented in Table VI, which also presents the performances of 

other algorithms for the corresponding recordings. The results 

for all recordings in the database and a comparison of the 

performance with other QRS detectors are presented in Tables 

VII and VIII. In all twelve 30-minute noisy ECG recordings of 

the database, the proposed algorithm achieves an average Se of 

98.65% and +P of 99.11%, and thus a better F1 than all other 

algorithms. 

 Finally, the computational complexity of the proposed 

algorithm is investigated since the complexity is one of the 

metrics affecting the applicability of the algorithm in real-time 

heart rate monitoring applications (e.g., wearables) using ECG. 

Overall, the complexity increases linearly with the data length. 

More specifically, referring to the pseudocode in Algorithm 1, 

calling the 𝑃𝑆 function and assignment of the optimized 

parameters in line 2 add 3420𝑛 + 47134 units of operation. 

Calling the 𝑆𝑅 with optimized parameters and assignment of 

𝑥(𝑡) in line 3 add 71𝑛 − 69 units of operation. Applying 

constant threshold by calling the 𝑇𝐻 function on 𝑠𝑜𝑢𝑡,𝐻𝑃𝐹(𝑡) 

and assignment of the 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  in line 5 add 50𝑛 + 2 units 

of operation. Obtaining performance metrics and detection 

performance by calling 𝑃𝑀 and 𝐷𝑃 functions and assignment 

of metrics in lines 6 and 7 add 33841 units of operation. The 

complexity of band pass and high pass filters are 6𝑛 + 65 units 

of operation each. In total, the complete QRS-wave detection 

algorithm consists of 3553𝑛 + 81038 units of operation where 

𝑛 is the total number of samples of a signal, and thus achieving 

𝑂(𝑛) complexity in 𝐵𝑖𝑔 𝑂ℎ notation. Accordingly, in terms of 

computation time, the proposed algorithm achieves a low 

average computation time of 0.3435±0.0026 s per recording of 

the MIT-BIH Arrhythmia database using a PC with Intel(R) 

Core(TM) i7-8750H CPU @ 2.20 GHz and 16.0 GB of RAM 

with 1 TB SSD. In another system with a slightly different 

configuration of Intel(R) Core(TM) i5-7500 CPU @ 3.4 GHz 

and 16.0 GB of RAM with 1 TB HDD, the average computation 

time per the same recording is similar (0.3992±0.0084 s). 

IV. DISCUSSION 

The analyses using individual noise types and a combined 

version of different noise types in Fig. 6 reveal that the proposed 

algorithm improves the SNR of QRS features as high as 89 dB 

(em+ma+bw noise). Furthermore, even for high noise  

intensities, an SNR improvement (∆𝑆𝑁𝑅𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑) of 32 dB can 

be obtained (em+ma+bw noise).  

Additionally, the algorithm facilitates the existing noise in 

the recordings to improve the SNR, a result that holds for all 

three noise types as well as their combination. However, there 

is an optimum noise level, where the SNR improvement is 

maximized, and thus verifying the SR facilitation. As the noise 

intensity is increased past the optimum level, the noise starts 

swamping the ECG signal. For the em, the SNR improvement 

peaks when the standard deviation is 0.146, whereas for the 

other noise types the optimum noise standard deviations are 

0.096 for ma, 0.233 for bw, and 0.447 for the noise types 

combined.  

When compared with common QRS enhancement 

algorithms of Pan-Tompkins [45] and Elgendi [46] in Fig. 7, the 

proposed algorithm achieves better SNR improvement by 

amounts varying between 82.9 dB (𝑒𝑚 + 𝑚𝑎 + 𝑏𝑤) and 73.8 

dB (𝑒𝑚). The better SNR improvement is observed not only for 

the optimum 𝑒𝑚 noise standard deviation of 0.146, but also 

even for the noise-free signal, where ∆𝑆𝑁𝑅 peaks for the Pan-

Tompkins and the Elgendi algorithms. Finally, for the largest 

noise intensity tested (noise standard deviation = 0.9), the SR 

algorithm achieves ~28 dB greater ∆𝑆𝑁𝑅 than the Elgendi 

algorithm. It should be noted that, the significantly better SNR 

improvement of the proposed algorithm for small noise 

intensities does not translate into equally better QRS detection 

performance. In fact, for an 𝑒𝑚 noise standard deviation of 

0.219, the SR algorithm achieves an F1 score of 96.32% for the 

recording 100 of MIT-BIH Arrhythmia database; whereas the 

Pan-Tompkins and the Elgendi algorithms achieve F1 scores of 

98.95% and 97.4%, respectively.  
The distinguishing feature of the proposed algorithm is its 

better detection performance for high noise intensities. For  

instance, for an 𝑒𝑚 noise standard deviation of 0.73, the 

proposed algorithm achieves 99.92% of detection sensitivity, 

whereas Se drops to 90.33% and 88.51% for the Pan-Tompkins 

and the Elgendi algorithms, respectively. High added noise 

intensities are more realistic in real life applications since ECG 

recording from the active subject is distorted with noise caused 

by activity of subject, movement of the electrodes, or muscle 

artifacts [10], [13], [60]. Thus, performance improvement of the 

proposed algorithm at high noise intensities indicates that the 

proposed algorithm can be used for QRS-wave detection from 

noisy ECG recordings. 

The analysis of QRS detection performance of the proposed 

algorithm for varying noise intensities in Fig. 6 reveals that, 

unlike ∆𝑆𝑁𝑅, the detection performance metrics of Se and +P 

do not display the characteristic bell curve shape of the SR. 

Both metrics reduce with increasing noise intensity with the 

decrease being more substantial for +P because of the increase 

in FP count. In fact, for all noise types, Se remains greater than 

99.92%; whereas the +P drops from 100% to 60.85% as noise 

standard deviation is increased from 0 to 0.9. Notably, the 

severity of detection performance degradation is different for 

different noise types. Despite the large drop in +P for em; the 

+P remains greater than 99.87% for all noise intensities for the 

bw noise. The poor performance for the em and the combination 

noise can be explained by the existence of features similar to 

characteristic QRS features in those noise types. Therefore, the 

number of FP is greater for these noise types as in Fig. 8(a) and 

Fig. 8 (d), compared to the ma (Fig. 8(b)) and bw (Fig. 8(c)).  

Based on the QRS detection performance results evaluated 

on the MIT-BIH Arrhythmia, QT, EDB, and the NST databases, 

which are summarized in Tables III, IV, V, and VIII; the 

proposed SR algorithm outperforms all algorithms in terms of 

𝐹1 score, which provides a balance between 𝑆𝑒 and +𝑃. 

The computation time and algorithm complexity of the 

proposed algorithm are compared with algorithms that report 

their complexities in Table IX. It is worth noting that 

computation time is dependent also on the available 

computation resources: Two faster algorithms use more 

powerful computation environments [53], [55]. However, the 

proposed algorithm runs faster than integrated energy [61] 

implementation despite being implemented on a less powerful 

computer. 
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Based on the QRS-wave detection accuracy comparisons on 

four benchmarking databases (total of 14,175 minutes of 

recordings and over a million QRS-waves to detect) with 

varying difficulty levels, only three studies report slightly better 

performances in either 𝑆𝑒 or +𝑃, but not simultaneously in 

both: For the MIT-BIH arrhythmia database, [59] reports better 

𝑆𝑒 (+0.01%) and for the EDB database, [60]  reports better +𝑃 

(+0.01%); while for the QT database, there are not any better 

algorithms than the proposed algorithm. In the NST database, 

[15] reports better 𝑆𝑒 (+0.6%). Compared with those methods 

reporting better 𝑆𝑒 or +𝑃 performances, the proposed algorithm 

has two distinctive properties: 

 First, the proposed algorithm detects QRS-waves as the data 

streams through without running a reverse search step. 

Therefore, unlike [59], [60], the proposed method offers real-

time QRS-detection, thereby making it more appropriate for 

real-time monitoring of ECG in wearable/injectable systems 

with limited computational resources. Second, the proposed 

algorithm does not need any training data for parameter 

optimization. On the contrary, as the authors point out in [15], 

the highly-complex (6-layers) convolutional neural network 

(CNN) is highly dependent on the training data. In fact, for the 

recordings 118e12 and 118e00, the proposed algorithm 

achieves better detection performance than all other methods 

including two other CNN methods [39], [62] (Table VI). 

Despite achieving high SNR improvement and QRS 

detection performances, there are some limitations of the 

proposed algorithm. First, the algorithm contains several 

variables that need to be manually optimized before fed with a 

recording. On the other hand, the parameter optimization is 

performed based on maximization of SNR of the ECG 

recording calculated using only the detected QRS waves, 

without the need for apriori knowledge on the true QRS 

locations [32]. 

Second, the algorithm complexity is dominated by the 

parametric search step. It is important to note that, for a given 

dataset, optimization of all parameters is performed only once 

for the first recording. For each of the other recordings, the only 

parameter that needs to be optimized individually is h: All other 

parameters are held constant. The search for h introduces a 

 
Fig. 8. Detection results of the proposed algorithm for a 30 s portion of the recording 100 of the MIT-BIH Arrhythmia database, 𝐸𝐶𝐺, and noise 

added versions of it, 𝐸𝐶𝐺𝑛𝑜𝑖𝑠𝑦; when (a) 𝑒𝑚 (b) 𝑚𝑎 (c) 𝑏𝑤, and (d) 𝑒𝑚 + 𝑚𝑎 + 𝑏𝑤 are individually added as in (9) with 𝑔 = 1. The output of the 

QRS-Enhancement stage, 𝑆𝑅𝑜𝑢𝑡,𝐻𝑃𝐹 , the constant threshold level, 𝑄𝑅𝑆𝑡𝑟𝑢𝑒 (black dots) and 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  (red dots) are shown for each noise type. 

The signals are separated by an offset for visualization purposes. The results demonstrate the greater numbers of FPs for the 𝑒𝑚 and 𝑒𝑚 +
𝑚𝑎 + 𝑏𝑤 cases compared to the 𝑚𝑎 and 𝑏𝑤. 

TABLE IX 
COMPLEXITY COMPARISON ON THE MIT-BIH ARRHYTHMIA DATABASE 

 
QRS detection 

method 

Computation 

time (s) 

Complexity 

(𝑩𝒊𝒈 𝑶𝒉) 

This work 
Stochastic 

Resonance 

0.3435± 

0.0026 
𝑶(𝒏) 

Tueche, 2021 [53] PT-based 0.31 N/A 
Pan, 1985 [45] 1 PT 0.576 𝑂(𝑛) 

Liu, 2019 [61] Integrated energy 0.414 N/A 

Physionet  [65] 1 JQRS 0.558 N/A 
Elgendi, 2013 [46] Squaring + MA 0.3 N/A 

Xiong, 2021 [55] 
Energy 

Segmentation 
0.22 N/A 

Xiang, 2018  [62] CNN 14.53   ~𝑂(𝑛) 2 

Yuen, 2019 [17] CNN-LSTM N/A ~𝑂(𝑛) 
1 Implemented in [61], 2 𝐵𝑖𝑔𝑂ℎ complexity is given in [68]. MA: 

Moving Average, LSTM: Long short-term memory 
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constant factor to Big Oh notation complexity and the 

complexity of the algorithm remains 𝑂(𝑛). The parametric 

search of h parameter increases the run time by ~5%. 

Additionally, the study has one major limitation. The three 

noise recordings (i.e., em, ma, bw) used to investigate the effect 

of noise intensity on SNR improvement and QRS detection are 

static noise recordings from the MIT-BIH NST database. 

Although the recordings well reflect the time and frequency 

characteristics of three major noise sources in an actual ECG 

recording, further analyses could be performed on multiple 

noise recordings, which is left as a future study. 

V. CONCLUSION 

The study investigates a new QRS detection algorithm that 

enhances QRS in a nonlinear system modeling the movement 

of a particle inside a monostable potential-well with the x-

position of the particle in the potential-well being the output. 

The SNR improvement with noise intensity displays the 

characteristic bell curve shape of stochastic resonance, which 

peaks at a non-zero noise intensity. Accordingly, in four 

benchmarking databases, the proposed algorithm outperforms 

all existing QRS-detection algorithms in terms of 𝐹1 score. 

Notably, the algorithm offers real-time QRS-detection and does 

not rely on training datasets. In a realistic ECG-based HR 

monitoring scenario, the proposed algorithm can detect the 

QRS features of a noisy recording after the algorithm 

parameters are optimized once and solely based on maximizing 

the output SNR for that recording. The future steps will be 

towards fully automating the parameter search step in a 

computationally efficient way and implementing the algorithm 

in a wearable ECG system to evaluate the algorithm in ECG 

recordings with varying noise conditions.  
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