
Threshold Garbled Circuits and Ad Hoc
Secure Computation

Michele Ciampi1(B), Vipul Goyal2, and Rafail Ostrovsky3

1 The University of Edinburgh, Edinburgh, UK
michele.ciampi@ed.ac.uk

2 NTT Research and CMU, Pittsburgh, PA, USA
goyal@cs.cmu.edu

3 UCLA Department of Computer Science and Department of Mathematics,
Los Angeles, CA, USA
rafail@cs.ucla.edu

Abstract. Garbled Circuits (GCs) represent fundamental and powerful
tools in cryptography, and many variants of GCs have been considered
since their introduction. An important property of the garbled circuits is
that they can be evaluated securely if and only if exactly 1 key for each
input wire is obtained: no less and no more. In this work we study the
case when: 1) some of the wire-keys are missing, but we are still interested
in computing the output of the garbled circuit and 2) the evaluator of
the GC might have both keys for a constant number of wires. We start to
study this question in terms of non-interactive multi-party computation
(NIMPC) which is strongly connected with GCs. In this notion there is
a fixed number of parties (n) that can get correlated information from a
trusted setup. Then these parties can send an encoding of their input to
an evaluator, which can compute the output of the function. Similarly
to the notion of ad hoc secure computation proposed by Beimel et al.
[ITCS 2016], we consider the case when less than n parties participate
in the online phase, and in addition we let these parties colluding with
the evaluator. We refer to this notion as Threshold NIMPC .

In addition, we show that when the number of parties participating
in the online phase is a fixed threshold l ≤ n then it is possible to
securely evaluate any l-input function. We build our result on top of a
new secret-sharing scheme (which can be of independent interest) and
on the results proposed by Benhamouda, Krawczyk and Rabin [Crypto
2017]. Our protocol can be used to compute any function in NC1 in the
information-theoretic setting and any function in P assuming one-way
functions.

As a second (and main) contribution, we consider a slightly different
notion of security in which the number of parties that can participate
in the online phase is not specified, and can be any number c above the
threshold l (in this case the evaluator cannot collude with the other par-
ties). We solve an open question left open by Beimel, Ishai and Kushile-
vitz [Eurocrypt 2017] showing how to build a secure protocol for the case
when c is constant, under the Learning with Errors assumption.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 64–93, 2021.
https://doi.org/10.1007/978-3-030-77883-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_3

Threshold Garbled Circuits and Ad Hoc Secure Computation 65

1 Introduction

Garbled Circuits (GCs) have played a central role in cryptography. The basic
version of GCs has been shown to be useful for secure computation as well as
various other areas in cryptography because of its non-interactive nature [4,13,
19,25–27]. Various GC variants with additional properties have also played an
important role: e.g. GC with free-XOR [24], adaptive GC [18,20,21], information-
theoretic GCs [23], covert-garbled circuit [11], and arithmetic GC [2]. Moreover,
in general, a garbled circuit can be viewed as a randomized encoding which
in turn has played an important role even beyond cryptography in complexity
theory [1]. A key property of a garbled circuit is its “decomposability”, i.e.,
different input wire keys can be computed independently based on the value
on that wire (also referred to as decomposable randomized encodings). This for
example allows to use a separate 1-out-of-2 Oblivious Transfer (OT) for each
input wire. In various applications, this property has played an important role,
like in building functional encryption from attribute based encryption [14], and in
building Non-Interactive Multi-Party Computation (NIMPC) [6] where different
parties hold input values corresponding to different input wires. An important
property of the garbled circuits is that they can be evaluated securely if and only
if exactly 1 key for each input wire is obtained: no less and no more. Moreover,
if the evaluator of the garbled circuit has more than one keys (even for a single
wire) the security of the garbled circuit is (in general) compromised.

In this work, we ask the following natural question: what if 1) the keys cor-
responding to some of the input wires are missing and 2) more than one key for
a subset of wires is leaked to the adversary?

In particular, suppose that a function is well defined even if only a subset of
the inputs are present (e.g., the function simply computes the majority, some
aggregate statistics like the median or the sorting on the inputs). Furthermore,
suppose we only have the wire keys exactly for say l wires (less than the total
number of wires n) and that more than one key for a constant number of wires
can be leaked to the adversary. Can we obtain a garbled circuit construction that
still allows one to securely compute the function output in this case?

Here l can be seen as a parameter for the GC construction. This notion,
besides being intriguing and interesting in its own right, can also be seen as
having natural applications to NIMPC. In NIMPC we can distinguish three main
phases: setup, online and evaluation. In this, various parties with inputs and
auxiliary information obtained during the setup phase, can encode their inputs
and send this encoding to an evaluator during an online phase. The evaluator
can then compute the output of the function without further interaction with
the other parties. Basic constructions of NIMPC readily follows from GC. That
is, the setup generates a garbled circuit with n input wires for the function
that needs to be computed. Each party pi receives two wire keys (one for the
input 0 and one for the input 1) for the i-th wire. During the online phase
each party sends the wire key which corresponds to its input to the evaluator.
The evaluator, which now has n wire keys, can evaluate the garbled circuit
and obtain the output. Frequently cited example applications of NIMPC are
voting and auctions [6,9]. However, in the case of voting, it is conceivable that

66 M. Ciampi et al.

several voters might never show up. Can we obtain a system where if a threshold
number of voter votes, the result can be obtained? One could also even consider
“attribute-based voting” where your attributes determine whether or not you
are eligible to vote. For example, in deciding a tenure case, only voters having
the attributes of “full professor” and “computer science department” might be
eligible. The number and identity of such voters may not necessarily be known
at the time of the NIMPC setup (and only an upper-bound on the number of
voters is known). Let n be total number of parties, the question we study in this
paper is the following:

“Is it possible to obtain a construction of garbled circuits for a function having
n input wires s.t. if the wire keys corresponding of l ≤ n wires are available,
then the output can be securely computed even if both the keys for a constant

number of wires are leaked to the adversary?”

A partial answer to the above question has been given in [7], where the
authors show how to obtain such a NIMPC protocol under the assumption that
the evaluator does not collude with any of the other parties. Another partial
answer has been given in [9], where the authors show how to obtain a NIMPC
protocol that tolerates a constant number of corruption only for the case where
l = n, where n is the total number of parties involved in the protocol. However,
to the best of our knowledge, we are the first to study the combination of the
two problems. In [7] the authors consider another interesting notion called (l, k)-
secure ad hoc private simultaneous messages (PSM). This notion is similar to the
notion of NIMPC, with the difference that 1) the parties cannot collude with
the evaluator and 2) any number k of parties might participate in the online
phase of the protocol, with k ≥ l. Beimel et al. [7] proved that such a notion (for
generic values of l and k) would imply obfuscation1, and left open the following
question:

“Is it possible to obtain (l, l + c)-secure ad hoc PSM protocol for a constant c?”.

1.1 Our Contributions

Our contribution lies in studying of the above questions, providing a formal
definition, and obtaining various constructions. Our most basic result is the
following:

Theorem 1 (informal). If there exists an l-party NIMPC protocol for the l-
input function f which tolerates up to t corruptions, then there exists an n-party
Threshold NIMPC protocol that tolerates up to t corruptions that can securely
evaluate f when only l of the n parties participate in the online phase.

This can also naturally be seen as a threshold garbled circuit where the mes-
sage received by the evaluator during the setup phase corresponds to the garbled
circuit, whereas the two messages corresponding to two different possibilities of

1 The authors of [7] propose inefficient constructions for general functions.

Threshold Garbled Circuits and Ad Hoc Secure Computation 67

the input (i.e., either 0 or 1) for party pi can be seen as the two possible wire-
keys for the i-th input wire. Our construction also relies on a conceptual tool
which we call positional secret sharing (PoSS), which we instantiate information
theoretically. Please see the technical overview for more details. We note that
our construction, additionally, has the feature that it can handle up to a con-
stant number of corruptions (assuming the input of each player is a single bit).
We build upon the construction of Benhamouda et al. [9] with tolerates up to a
constant number of corruptions. Informally, this means that the evaluator may
be able to compute multiple outputs of the function by flipping the input of the
corrupted parties (since the corrupted parties can generate an encoding of both
the inputs 0 and 1). However, the evaluator learns no more than having access
to an ideal functionality which allows for computing such multiple outputs. As
noted in [9], a construction tolerating an arbitrary number of corruptions in this
setting implies indistinguishability obfuscation (iO) [3]. Our second (and main)
technical construction is a protocol that retains its security even if more than l
input wire keys are given to an evaluator. Going back to the example of voting,
while one may have an estimate on how the voter turnout will be (e.g., based on
historical data), it might be hard to know the exact number of voters in advance.
If the actual number of voters turns out to be even l + 1 (as opposed to l), all
security guarantees cease to exist and our previous construction may become
entirely insecure. Towards that end, we ask the following question:

“Is it possible to design construction of garbled circuits where if anywhere
between l and l + c inputs wire keys are obtained, the function output can be

securely computed?

In other words: can we have an (l, l + c)-secure ad hoc PSM protocol? Note
that in this setting, the evaluator can compute multiple outputs by selecting
any l-sized subset of the received inputs. While ideally, we would like to have
l+c = n (for a generic c), such a construction necessarily implies iO and indeed,
using iO, a construction where l + c = n can be readily obtained (we recall
that n is the total number of parties). However, since our focus is on using
standard falsifiable assumptions, we restrict our attention to the case where c is
a constant. In addition, our construction allows the input of each party to be a
string of arbitrary size. Our main theorem is the following:

Theorem 2 (informal). If the LWEs assumption holds, then there exists an n-
party (l, l + c)-secure ad hoc PSM protocol that can securely evaluate an l-input
function f when N parties participate in the online phase with N ≤ l + c ≤ n
for a constant c.

We stress that N does not need to be known in the setup phase. The last
notion that we consider in this paper is adaptive-ad-hoc PSM. This notion, in
addition to the notion of ad hoc PSM, gives to the evaluator the possibility
to evaluate an N -input function fN , where N is the number of parties that
participate in the online phase, with N ≤ l + c ≤ n. This notion gives the same
security guarantees as to the notion of (l, l+ c)-secure ad hoc PSM, but it allows
an honest evaluator to evaluate a function even if more than l parties participate

68 M. Ciampi et al.

in the online phase. It should be easy to see that such a notion can be easily
realized using multiple instantiations of an ad hoc PSM scheme. Even in this
case, the input of each party can be a string of arbitrary (bounded) length.

2 Technical Overview

We start illustrating a new secret sharing scheme which is instrumental for our
constructions. Then we show how to use such a secret sharing scheme to construct
a threshold NIMPC and an (l, k)-Ad Hoc PSM protocol.

2.1 Positional Secret Sharing (PoSS)

We consider the setting where there is a dealer, n non-colluding parties
{p1,pn} and an evaluator. A PoSS scheme allows a dealer to compute a
secret sharing of l secrets x1, . . . , xl with respect to a party index j and dis-
tribute these shares among the n parties. Let S = (s1, . . . , sn) be the output
shares computed by the dealer. Any subset of parties of size l can send their
shares to an evaluator, and if the j-th party has the α-th greatest index among
these l parties, then the evaluator can reconstruct the α-th secret. If the party
pj does not send its share then none of the secrets can be reconstructed (the j-th
share goes always to the party pj). To construct such a scheme we use a standard
t-out-of-m secret sharing scheme. In more detail, the dealer computes 3-out-of-3
secret sharing of xi obtaining x0

i , x̃i and x1
i . Then computes 1) an (i − 1)-out-

of-(j − 1) secret sharing of x1
i thus obtaining the shares si,1, . . . , si,j−1, 2) an

(l − i)-out-of-(n− j) secret sharing of x0
i obtaining si,j+1, . . . , si,n and 3) defines

si,i := x̃i. The output of the sharing algorithm corresponds to (s1, . . . , sn) with
si := (s1,i, . . . , sl,i) for each i ∈ [n]. Intuitively, if the evaluator receives the
shares S′ = (si1 , . . . , sil

) with 0 ≤ i1 < · · · < il ≤ n where j = iα for some α,
then she can reconstruct x0

α using the shares si1 , . . . , siα−1 , x1
α using the shares

siα+1 , . . . , sil
and x̃α, which corresponds to the share siα

. Note that all the other
secrets xj are protected since there are not enough shares to either reconstruct
x0

k or x1
k for each k ∈ [l]−{α}. In the case where there is no iα with α = j, then

none of the secrets can be reconstructed since one share of the 3-out-of-3 secret
sharing will be missing for each of the secrets.

2.2 Threshold NIMPC

Let f be an l-input function. To obtain a Threshold NIMPC for f that tolerates
t corruptions we use a PoSS scheme in combination with a standard NIMPC
protocol that supports t corruptions and that can be used to evaluate l-input
functions. Let p1, . . . , pn be the parties that could participate an execution of
the protocol (we recall that a threshold NIMPC is parametrized by l, which
represents the maximum number of parties that can participate in the online
phase). The idea is to pre-compute an encoding of the input 0 (that we denote
with m0

j) and of the input 1 (that we denote with m1
j) for each input slot

Threshold Garbled Circuits and Ad Hoc Secure Computation 69

j ∈ [l] of the NIMPC scheme. Then we run two instantiations of a PoSS for each
party pi. The first instantiation of the PoSS scheme is run on input the secrets
m0

1, . . . ,m
0
l (and the index i of the party) whereas the second is run using the

secrets m1
1, . . . ,m

1
l (and the index i of the party). Let (s0i,1, . . . , s

0
i,n) be the

output shares of the first instantiation of the PoSS scheme, and (s1i,1, . . . , s
1
i,n)

be the output of the second instantiation for the party pi. All these shares are
then distributed among the n parties. During the online phase each party pi acts
as follows. If the input of pi is bi = 0 then pi sends all the shares but the one
related to the second instantiation of the PoSS scheme for the index i (i.e., pi

does not send s1i,i), if bi = 1 then pi sends all the shares but the one related
to the first instantiation of the PoSS scheme for the index i (i.e., pi does not
send s0i,i). The security of the PoSS scheme guarantees that if a party pi does
not send the share for one instantiation of PoSS that is run with respect to i,
then nothing can be learned about the secrets encoded in that instantiation. In
addition, for the case when piα

sends the share sb
iα,iα

(with b ∈ {0, 1}), the PoSS
security guarantees that only the secret in position iα can be learned. Hence, the
evaluator can compute m

bi1
1 , . . . ,m

bil

l by running the reconstruction algorithms
for the l instantiations of the PoSS scheme for which at least l shares have been
provided.2 These messages then can be used to run the evaluation algorithm of
NIMPC protocol to obtain the output of f . In addition, if the NIMPC protocol
used in the above construction supports up to t-corruption, so does our scheme.
We allow only the corruption of the parties that are participating in the protocol.
That is, if l parties provide an input then the corrupted parties belong to this
set of parties. We give no security guarantees in any other case (which would
give to the colluding evaluator an additional share for the PoSS scheme reaching
the total of l + 1 shares, compromising the security of the PoSS scheme, and in
turn, the security of the underling NIMPC protocol). Given the implication of
NIMPC with iO, for our construction we consider only the case when the input
of each party is a bit, exactly as in [9] (our other constructions do not have this
limitation).

2.3 (l, k)-Secure Ad Hoc PSM

The notion of (l, k)-secure ad hoc PSM is similar to the notion of threshold
NIMPC with the following two differences: 1) provides the best possible security
guarantees in the case when N parties participate in the online phase for an
unknown N with l ≤ N ≤ k and 2) the security holds only if the evaluator does
not collude with the other parties. In this work we want to construct a (l, l + c)-
secure ad hoc PSM for a constant c. Moreover, we want to construct a scheme
that allows the input of each party being a bit-string (instead of one bit like
in the previous construction). One might think that a threshold NIMPC pro-
tocol already satisfies this security notion. We start by describing what are the

2 The shares of the PoSS scheme need to be opportunely permuted to not give a trivial
advantage to the adversary. We refer the reader to the technical part of the paper
for more detail.

70 M. Ciampi et al.

problems in trying to prove that our threshold NIMPC is an ad hoc PSM, even
considering the case when the input of each party is a bit, and then show how our
construction works in an incremental fashion. In the threshold NIMPC showed
above, if more than l parties are participating to the online phase then more than
one secret from each instantiation of the PoSS scheme would be leaked (by the
definition of PoSS). Hence, it might be possible for a corrupt evaluator to learn
an encoding of different messages for the same input-slots of the NIMPC proto-
col. Note that this problem could be mitigated if the underlying NIMPC protocol
was secure against an arbitrary number of corruptions, but any such a scheme
would imply iO. Luckily, we do not really need a NIMPC protocol that sup-
ports an arbitrary number of corruptions, but we need a protocol that remains
secure in the case when an evaluator, given a set of input X := (xi1 , . . . , xil+c

),
could run the NIMPC protocol on any subset of size l of X. This property is
clearly not enjoyed by a NIMPC protocol that supports a constant number of
corruptions. Moreover, even if the problem of corruption and the problem that
we are describing here seem related, it looks like a completely different tech-
nique is required. To see the problem from a different perspective, the issue of
obtaining a secure NIMPC protocol in the case of corruption is related to the
fact that an adversary could evaluate the function on strings that have hamming
distance at most t from each other. That is, an adversary can flip up to t-bits,
obtaining up to 2t different inputs. In our case, even for c = 1, an adversary
obtains inputs that have hamming distance l (where l is a polynomial). This is
because the adversary, for example, could remove one input in the first position
and add a new input in the last position thus causing the shift of the inputs that
have not been replaced. Therefore, if the strings are close in terms of editing
distance, they could have more than l hamming distance. For this reason, it is
not clear how the techniques used to achieve security against corrupted parties
(for example those used in [9]) would be helpful in our case.

Quasi-secure Ad Hoc PSM. We now describe how, at a very high level, our
protocol works. We provide an incremental description, starting from a protocol
that is not secure, and gradually modifying it until we reach our final result. Let
us consider the simplified scenario where we have only four parties p1, p2, p3
and p4 and we want to construct a (3, 4)-Ad Hoc PSM protocol for the 3-input
function f . As a main tool, we consider two simple two-party NIMPC protocols
(that tolerate no corruption): Π1 that realizes the function g, Π2 that realizes the
function gOUT. The function g, on input two values (z1, z2) concatenates them
and creates an encoding of z1||z2 for the first input slot of Π2. The function gOUT

takes the two inputs (z1||z2, z3) and outputs f(z1, z2, z3).
Given Π1 and Π2, each party pi now prepares an encoding of its input xi

for the first and the second input slot of Π1 (let us call these encodings Msg0i
and Msg1i). In addition, each party pi computes an encoding of xi for the sec-
ond input slot of Π2 (let us call this Msg2i). For each party pi then we run an
instantiations of a PoSS scheme with input (Msg1i ,Msg2i ,Msg3i , i). The security
of the PoSS schemes guarantees that if the parties that are participating in the
online phase are, for example, p1 p2 and p4, then the evaluator will be able to

Threshold Garbled Circuits and Ad Hoc Secure Computation 71

get (Msg11,Msg22,Msg34) only. The evaluator, at this point can evaluate the func-
tion g with the inputs of p1 and p2 by running the evaluation algorithm for Π1

on input Msg11 and Msg22. The output of Π1 can then be used in combination
with Msg34 to run the evaluation algorithm of Π2 to compute the final output.
It should be easy to see that this scheme is a threshold-NIMPC protocol that
tolerates no corruption. But we are now interested in the security of the proto-
col in the case when four parties participate in the online phase. In this case,
the PoSS scheme allows the evaluator to get, for example, (Msg11,Msg22,Msg34)
and (Msg12,Msg23,Msg34) at the same time. This means that the evaluator can
run the evaluation algorithm of Π1 using (Msg11,Msg22) and (Msg12,Msg23) thus
obtaining two different encodings for different values for the first input slot of
Π2 (assuming that the x1||x2 �= x2||x3). This corresponds to the case in which
the evaluator can collude with a party to generate encodings of multiple inputs
for the first input slot of Π2. Since we do not want to assume that Π2 is resilient
against such an attack3, we modify the protocol as follows:

– Instead of considering one protocol Π2 that realizes the function gOUT, we
consider λ protocols4: Π1

2 , . . . , Πλ
2 .

– Each input of g now comes with two random values v1 and v2 that each party
samples. Hence, the inputs of g now can be seen as (z1||v1, z2||v2).

– The function g, on input z1||v1 and z2||v2 computes y = z1||z2 and the hash
H(v1 ⊕ v2) thus obtaining sel ∈ [λ]. Then g encodes y accordingly to the
protocol Πsel

2 .
– The party p3 and p4 now compute an encoding of their input for the second

input slot for all the protocols Π1
2 , . . . , Πλ

2 .

This mechanism now partially solves the problem of the previous protocol.
This is because a different combination of inputs for Π1 yields to an encoding
for a different protocol Πsel

2 , with sel ∈ [λ]. Indeed, if the Π1 is run using the
input contributed by p1 and p2 then the output of Π1 corresponds to an encod-
ing of the concatenation of x1||x2 for the protocol Πsel

2 with sel = H(v1 ⊕ v2).
If instead Π1 is run using the input contributed by p1 and p3, then we have
that H(v1 ⊕ v2) �= H(v1 ⊕ v3) = sel′ with some probability 1/p (that depends on
the choice of λ and on the random coins of the parties). Hence, the output
of Π1 corresponds to an encoding for the protocol Πsel′

2 . Clearly, λ needs to
be polynomially related to the security parameter. This means that the prob-
ability of founding a collision for H is non-negligible (and if there is a collision
then the security of this protocol collapses back to the security of the previ-
ous protocol). Later in this section we show how to solve this problem using
the LWE assumption. Before discussing that, we note that this protocol has yet
another issue. As we said, the evaluator can get the values (Msg11,Msg22,Msg34)
and (Msg12,Msg23,Msg34) when all the parties participate in the online phase.
Given that Msg11 and Msg12 represent the encoding of different values for the
3 We recall that we do not know any NIMPC protocol that is secure in this setting

when the inputs of Π2 are bit strings unless from assuming iO.
4 We discuss the size of λ later in the paper.

72 M. Ciampi et al.

first input slot of Π1, then we have an issue similar to the one that we have
just discussed. This time, we can solve this problem easily. We simply consider
an instantiation of a NIMPC protocol that realizes the function g which we
denote with Πi,j

1 , which can be used only by the party i, j, with i ∈ {1, 2} and
j ∈ {2, 3, 4}. Then, for example, the party p1 will compute an encoding for the
first input slot of Π1,2

1 , Π1,3
1 and Π1,4

1 , and use all of them as the input of the first
instantiation of the PoSS scheme. For the protocol that we have just described,
we can prove that for a suitable choice of λ (given that c is a constant value)
the probability that there are no collisions in H is 1/p where p is a polynomial.
Hence, we can prove that the execution of our protocol is secure with probability
1/p. We note that in this discussion we have assumed that the security of the
PoSS scheme is not compromised even when more than l parties provide their
shares. In the technical part of the paper we show that our construction of PoSS
enjoys a stronger notion, that is indeed sufficient to construct the protocol that
we have just described. To extend the above construction to the case when the
number of party is more than 4, and the threshold l is an arbitrary value, we
just need to consider a longer chain of 2-party NIMPC protocols. However, this
generalization has to be done carefully to avoid an exponential blowup in the
size of the messages. For more details on that, we refer the reader to Sect. 5.

Fully Secure Ad Hoc PSM. We denote the protocol that we have just
described with ΠPSM and show how to use it to obtain an ad hoc PSM that
is (l, l + c)-secure. To amplify the security of ΠPSM we make use of a homo-
morphic secret sharing (HSS) scheme for the function f (we recall that f is
the l-input function that we want to evaluate). At a high level, a HSS allows
each party i to compute m shares of its input xi and distribute them among
m servers using the algorithm ShareHSS so that xi is hidden from any m − 1
colluding servers. Each server j can apply a local evaluation algorithm EvalHSS

to its share of the l inputs, and obtain an output share yj . By combining all
the output shares it is possible to obtain the output of the function, that is
y1 ⊕ · · · ⊕ ym = f(x1, . . . , xl).5 At a very high level, our protocol consists of m
instantiations of ΠPSM where the e-th instantiation evaluates the function Ge

with e ∈ [m]. The Function Ge takes as input l shares of the HSS scheme, and
uses them as input of EvalHSS together with the server index e (see the bottom
of Fig. 6 for a formal specification of Ge). Each party pi that wants to participate
in the protocol computes a secret sharing of its input thus obtaining m shares
(s1, . . . , sm). Then pi uses the e-th share as input of the e-th instantiation of
ΠPSM. The evaluator runs the evaluation algorithm of the e-th instantiation of
ΠPSM thus obtaining ye (which corresponds to the output of EvalHSS on input
the e-th shares of all the parties) for each e ∈ [m]. The output of the evaluation
phase then corresponds to y1 ⊕ · · · ⊕ ym. We show that this protocol is secure as
long as there is at least one execution of ΠPSM that is secure (i.e., simulatable).
Moreover, by choosing m opportunely we can prove that at least one execution
of ΠPSM is secure with overwhelming probability. Hence, at least one share of
5 In our work we assume that the HSS is additive.

Threshold Garbled Circuits and Ad Hoc Secure Computation 73

each of the inputs of the honest parties will be protected. Therefore, because of
the security offered by the HSS, also the input of the parties will be protected.

Adaptive-Ad-Hoc PSM. It is straightforward to construct an adaptive-ad-
hoc PSM having a (l, l + c) ad hoc PSM ΠAPSM. Indeed, we just need to run c
instantiation of ΠAPSM, where each instantiation computes a function fα with
arity α for each α ∈ {l, . . . , l + c}.

2.4 Related Work

The study of MPC protocols with restricted interaction was initiated by Halevi,
Lindell, and Pinkas [16,17]. We have mentioned the work of Benhamouda et
al. [9] which provides the first NIMPC protocol that tolerates up to a constant
number of corruptions for all functions in P under OWFs. In addition, the
authors show how to obtain a more efficient NIMPC protocol for symmetric
functions. The work [5] introduces the notion of ad hoc PSM and in [7] the
authors propose many instantiations of such a primitive in the information-
theoretic and computational setting. A result of [7] that is very related to our
first contribution, is the construction of an ad hoc PSM protocol for a k-argument
function f : Xk → Y from a NIMPC protocol for a related n-argument function
g : (X ∪ {⊥})n → Y . More precisely, the function g outputs ⊥ if there are more
than n − k inputs that are ⊥, it outputs the output of f if there are exactly
n − k inputs that are ⊥, in any other cases the output of g is undefined. The
compiler that we propose is more generic and it preserves its security against
colluding parties (if any). Always in [7] the authors propose an (l, l + c)-secure
ad hoc PSM protocol for symmetric functions whose complexity is exponential
in l, and prove that an (l, k)-ad hoc PSM protocols for simple functions with
generic (l, k) already implies obfuscation for interesting functions. In [8] the
authors improve the efficiency of the protocols proposed in [7]. The work [16] try
to make reusable the setup assuming more interactions between the parties, or
assuming specific graphs of interaction patterns. In [15] the authors successfully
remove the need of the parties to obtain correlated randomness from the setup
phase via a PKI supplemented with a common random string under the iO
assumption. In addition, the construction proposed in [15] tolerates arbitrary
many corruptions.

3 Background

Preliminaries. We denote the security parameter by λ and use “||” as con-
catenation operator (i.e., if a and b are two strings then by a||b we denote the

concatenation of a and b). For a finite set Q, x
$←− Q denotes a sampling of x

from Q with uniform distribution. We use “=” to check equality of two different
elements (i.e. a = b then...), “←” as the assigning operator (e.g. to assign to
a the value of b we write a ← b). and := to define two elements as equal. We
use the abbreviation PPT that stands for probabilistic polynomial time. We use

74 M. Ciampi et al.

poly(·) to indicate a generic polynomial function. We assume familiarity with
the notion of negligible function. We denote with [n] the set {1, . . . , n}, N0 the
set of non-negative integers and with N the set of positive integer.

3.1 Secret Sharing

A secret sharing scheme allows a dealer to share a secret m among n parties
P = {p1, . . . , pm} such that any authorized subset (if any) of P can reconstruct
the secret m, while the other parties learn nothing about m. We now give the
definition of l-out-of-n secret sharing.

Definition 1 (l-out-of-n secret sharing). A l-out-of-n secret sharing scheme
over a message space M is a pair of PPT algorithms (Share, Reconstruct) where:

– Share on input x ∈ M outputs n shares (s1, . . . , sn);
– Reconstruct on input l values (shares) outputs a message in M;

satisfying the following requirements.

– Correctness. ∀x ∈ M, ∀S = {i1, . . . , il} ⊆ {1, . . . , n} of size l,
Prob [x ← Reconstruct(si1 , . . . , sil

) : (s1, . . . , sn) ← Share(x)] = 1.
– Security. ∀x, x′ ∈ M, ∀S ⊆ {1, . . . , n} s.t. |S| < l, the following distributions

are identical: {(si)i∈S : (s1, . . . , sn) ← Share(x)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) ← Share(x′)}.

3.2 Homomorphic Secret Sharing (HSS)

We consider HSS scheme that supports the evaluation of a function f on shares
of inputs x1, . . . xn that are originated from different clients. In this notion each
client i can compute m shares of its input xi and distribute them between m
servers using the algorithm ShareHSS so that xi is hidden from any m−1 colluding
servers. Each server j can apply a local evaluation algorithm EvalHSS to its share
of the n inputs, and obtains an output share yj . The output f(x1, . . . , xn) is
reconstructed by applying a decoding algorithm DecHSS to the output shares
y1, . . . , ym.

Definition 2 (HSS [10]). An n-client, m-server, t-secure homomorphic secret
sharing scheme for a function f : ({0, 1}�)n+1 → {0, 1}�, or (n,m, t)-HHS for
short, is a triple of PPT algorithms (ShareHSS,EvalHSS,DecHSS) where:

– ShareHSS(1λ, i, x): On input 1λ (security parameter), i ∈ [n] (client index)
and x ∈ {0, 1}� (client input), the sharing algorithm ShareHSS outputs m
input shares (x1, . . . , xm).

– EvalHSS(j, x0, (x
j
1, . . . , x

j
n)): On input j ∈ [m] (server index), x0 ∈ {0, 1}�

(common server input), and xj
1, . . . , x

j
n (j-th share of each client input), the

evaluation algorithm EvalHSS outputs yj ∈ {0, 1}�, corresponding to the server
j’s share of f(x0;x1, . . . , xn).

Threshold Garbled Circuits and Ad Hoc Secure Computation 75

– DecHSS(y1, . . . , ym): On input (y1, . . . , ym) (list of output shares), the decoding
algorithm DecHSS computes a final output y ∈ {0, 1}�.

The algorithm (ShareHSS,EvalHSS,DecHSS) should satisfy the following cor-
rectness and security requirements:

– Correctness: For any n + 1 inputs x0, . . . , xn ∈ {0, 1}�,

Prob[∀i ∈ [n](x1
i , . . . x

m
i) $←− ShareHSS(1λ, i, xi), ∀j ∈ [m] yj $←− EvalHSS(j, x0,

(xj
1, . . . , x

j
n)) : DecHSS(y1, . . . , ym) = f(x0;x1, . . . , xn)] = 1 − ν(λ).

– Security: Consider the following semantic security challenge experiment for
corrupted set of server T ⊂ [m]:
1. The stateful adversary gives challenge index and inputs (i, x0, x1) ←

A(1λ), with i ∈ [n] and |x0| = |x1|.
2. The challenger samples b

$←− {0, 1} and (x1, . . . , xm) $←− ShareHSS(1λ,
i, xb).

3. The adversary outputs b′ ← A((xj)j∈T) given the shares for corrupted T .
Denote by a := Prob [b = b′] − 1/2 the advantage of A in guessing b in
the above experiment, where probability is taken over the randomness of the
challenger and of A. For circuit size bound S = S(λ) and advantage bound
α = α(λ), we say that an (n,m, t)-HSS scheme Π is (S, α)-secure if for all
T ⊂ [m] of size |T | ≤ t, and all non-uniform adversaries A of size S(λ), we
have a ≤ α(λ). We say that Π is computationally secure if it is (S, 1/S)-
secure for all polynomials S.

In this work we consider only additive HSS schemes. An HHS scheme is
additive if DecHSS outputs the exclusive or of the m output shares. For our
construction we make use of an additive (n,m,m−1)-HSS scheme. Such a scheme
can be constructed from the LWEs assumption [10,12].

4 Our Model

In this section we propose the formal definition of NIMPC. We give a more
general definition that captures the case when up to t parties can collude with
the evaluator, and following [9,16,17], we refer to this notion as t-robust NIMPC.
Then we give our new definition of threshold NIMPC which can be seen as a
combination of the notion of NIMPC with the notion of ad hoc PSM proposed
in [6]. Let X be a non-empty set and let X n denote the Cartesian product
X n := X × · · · × X .

Definition 3 (NIMPC Protocol. [9]). Let F = (Fn)n∈N be an ensemble of
sets Fn of functions f : X → Y, where Y is a finite set. A non-interactive secure
multiparty computation (NIMPC) protocol for F is a tuple of three algorithms
Π := (Setup,Msg,Eval), where:

– Setup takes as input unary representations of n and of the security param-
eter λ, and a representation of function f ∈ Fn and outputs a tuple
(ρ0, ρ1, . . . , ρn);

76 M. Ciampi et al.

– Msg takes as input a value ρi, and an input xi ∈ X , and deterministically
outputs a message mi;

– Eval takes as input a value ρ0 and a tuple of n messages (m1, . . . ,mn) and
outputs an element in Y satisfying the following property:
Correctness. For any n ∈ N, security parameter λ ∈ N0, f ∈ Fn, x :=
(x1, . . . , xn) ∈ X , and (ρ0, . . . , ρn) $←− Setup(1n, 1λ, f),
Eval(ρ0,Msg(ρ1, x1), . . . ,Msg(ρn, xn)) = f(x).

While the previous definition is abstract, in the sequel, we will often see
NIMPC protocols as protocols with n parties p1, . . . , pn with respective inputs
x1, . . . , xn and an evaluator p0. A polynomial-time NIMPC protocol for F is an
NIMPC protocol (Setup,Msg,Eval) where Setup, Msg, and Eval run in polynomial
time in n and λ. In particular, functions f ∈ F should be representable by
polynomial-size bit strings.

Robustness. For a subset T = {i1, . . . , it} ⊆ [n] and x = (x1, . . . , xn), we
denote by xT the t-coordinate projection vector (xi1 , . . . , xit

). For a function
f : X n → Y, we denote by f |T ,xT

the function f with the inputs corresponding
to positions T fixed to the entries of the vector x. We now recall the notions of
robustness for NIMPC protocols. Informally, T -robustness T ⊆ {1, . . . , n} for a
set T of colluding parties means that if xT represents the inputs of the honest
parties, then an evaluator colluding with the parties in set T can compute the
residual function f |T ,xT

on any input xT but cannot learn anything else about the
input of the honest parties. This describes the best privacy guarantee attainable
in this adversarial setting. The formal definition is stated in terms of a simulator
that can generate the view of the adversary (evaluator plus the colluding parties
in set T) with sole oracle access to the residual function f |T ,xT

.

Definition 4 (NIMPC Robustness [9]). Let n ∈ N and T ⊆ {1, . . . , n}. A
NIMPC protocol Π is perfectly (resp., statistically, computationally) T -robust if
there exists a PPT algorithm Sim (called simulator) such that for any f ∈ Fn

and xT ∈ XT , the following distributions are perfectly (resp., statistically, com-

putationally) indistinguishable: {Simf |T ,x
T (1n, 1λ, T)}, {View(1n, 1λ, f, T, xT)},

where {View(1n, 1λ, f, T, xT)} is the view of the evaluator p0 and of the col-
luding parties pi (for i ∈ T) from running Π := (Setup,Msg,Eval) on input

xT for the honest parties: that is, ((mi)i∈T , ρ0, (ρi)i∈T) where (ρ0, . . . , ρn) $←−
Setup(1n, 1λ, f) and mi ← Msg(ρi, xi) for all i ∈ T where xT := (xi)i∈T . Let
t ∈ N0 be a function of n, then a NIMPC protocol Π is perfectly (resp., statisti-
cally, computationally) t-robust if for any n ∈ N and any T ⊆ {1, . . . , n} of size
at most t = t(n), Π is perfectly (resp., statistically, computationally) T -robust.

Robustness does not necessarily imply that the simulator Sim is the same for any
n and T . In this and in the following notions we consider only PPT simulators
since in this paper we focus only on efficiently simulatable protocols.

Threshold Garbled Circuits and Ad Hoc Secure Computation 77

4.1 Threshold NIMPC

We introduce the new notion of Threshold NIMPC. A Threshold NIMPC is
parametrized by n and l with 0 ≤ l ≤ n, where n denotes the number of parties
and l represents a threshold. Given a set of n parties P, any subset of P ′ ⊆ P
of size l can evaluate the function f : X l → Y, where Y is a finite set and X =
{{0, 1}λ, {1, . . . n}}. In more details, we assume that any party in P is univocally
identified by an index i ∈ [n]. The setup algorithm and the algorithm used by
the parties to generate an encoding of their inputs have the same interface as the
algorithms of a NIMPC protocol. The difference is in the evaluation algorithm.
In this notion we do not require all the n parties to participate in the protocol
in order to evaluate a function. That is, any subsets of P of size l would allow
the evaluator to compute the function f . Without loss of generality, we consider
only functionalities whose output depends on the inputs of the parties, and on
the indexes of the parties that contributed with these inputs. Formally, the class
of function supported by our protocol is described in Fig. 1 (where g can be any
function).

Input: (xi1 , i1), . . . (xil , il) where {i1, . . . , il} ⊆ [n], xi1 , . . . , xil ∈ X , l ≤ n
and n ∈ N.
Output: Let (j1, . . . , jl) be a permutation of the values (i1, . . . , il) such that
1 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n and output ⊥ if such a permutation does not
exist, else, output g xj1 , . . . , xjl

Fig. 1. Class of functionalities supported by our threshold NIMPC protocol.

Definition 5 (Threshold NIMPC Protocol). Let F = (Fl)l∈N be an ensem-
ble of sets Fl of functions f : X → Y, a Threshold NIMPC protocol for F is a
tuple of three algorithms (Setupth,Msgth,Evalth), where:

– Setupth takes as input unary representations of n, l and of the security param-
eter λ with 1 ≤ l ≤ n, and a representation of function f ∈ Fl and outputs a
tuple (ρ0, ρ1, . . . , ρn);

– Msgth takes as input a value ρi, and an input xi ∈ X , and deterministically
outputs a message mi;

– Evalth takes as input a value ρ0 and a tuple of n messages (mj1 , . . . ,mjl
) with

1 ≤ j1 < · · · < jl ≤ n and outputs an element in Y;

satisfying the following property:

Correctness. For any n ∈ N, security parameter λ ∈ N0, f ∈ Fl, x :=
(
(xj1 , j1), . . . , (xjl

, jl)
) ∈ X , with 1 ≤ j1 < · · · < jl ≤ n and (ρ0, . . . , ρn) $←−

Setupth(1n, 1l, 1λ, f),

Evalth(ρ0,Msgth(ρj1 , xj1), . . . ,Msgth(ρjl
, xjl

)) = f
(
(xj1 , j1), . . . , (xjl

, jl)
)
.

78 M. Ciampi et al.

Definition 6 (Threshold NIMPC Security). Let n ∈ N, K := {j1, . . . , jl}
with 1 ≤ j1 < · · · < jl ≤ n, T ⊆ K and T := K − T . A Threshold NIMPC
protocol Π is perfectly (resp., statistically, computationally) T -secure if there
exists a PPT algorithm Sim (called simulator) such that for any f ∈ Fl and xT ∈
XT , the following distributions are perfectly (resp., statistically, computationally)
indistinguishable:

{Simf |T ,x
T (1n, 1l, 1λ, T,K)}, {View(1n, 1l, 1λ, f, T,K, xT)}

where {View(1n, 1l, 1λ, f, T,K, xT)} is the view of the evaluator p0 and of the
colluding parties pi (for i ∈ T) from running Π on input xT for the honest

parties: that is, ((mi)i∈T , ρ0, (ρi)i∈T) where (ρ0, . . . , ρn) $←− Setup(1n, 1l, 1λ, f)
and mi ← Msg(ρi, xi) for all i ∈ T .6 Let t, l, n ∈ N0 be such that 0 ≤ t ≤ l ≤ n,
a Threshold NIMPC protocol Π is perfectly (resp., statistically, computationally)
t-secure if for any K ⊆ [n] with |K| ≤ l, and any T ⊆ K such that K = T ∪ T
with |T | ≤ t, Π is perfectly (resp., statistically, computationally) T -secure.

4.2 Ad Hoc PSM

An (l, t)-secure ad hoc PSM protocol Π is a 0-secure threshold NIMPC that
remains secure even if more than l (and less than t) parties participate in the
online phase. In other words, the evaluator cannot collude with any of the other
parties, but the protocol remains secure for any number N of parties participat-
ing in the protocol with N ≤ t. Moreover, the evaluator can compute the output
if N ≥ l. By secure here we mean that the adversary can evaluate the function
f on any combination of size l of the inputs provided by the honest parties and
learns nothing more than that. More formally, if x := ((xi1 , i1), . . . , (xi' , iN))
represents the inputs of the N parties participating in the online phase, then a
malicious party can compute f on any input xK where K := {j1, . . . , jl} with
1 ≤ j1 < · · · < jl ≤ n, K ⊆ {i1, . . . , iN} but cannot learn anything else. This
describes the best privacy guarantee attainable in this setting. The formal defini-
tion is stated in terms of a simulator that can generate the view of the adversary
with sole oracle access to Of , where Of takes as input a set K := {j1, . . . , jl} with
1 ≤ j1 < · · · < jl ≤ n, K ⊆ {i1, . . . , iN} and returns f

(
(xj1 , j1), . . . , (xjl

, jl)
)
7.

The definition that we provide is essentially the same as the one provided in [7],
we just use a different terminology to be consistent with our other definitions.

Definition 7 (Ad Hoc PSM). Let n, l, t, λ ∈ N0 and K := {j1, . . . , jN} with
0 ≤ j1 < · · · < jN ≤ n such that 0 ≤ N ≤ t. An ad hoc PSM protocol is perfectly
(resp., statistically, computationally) K-secure if there exists a PPT algorithm
Sim (called simulator) such that for any f ∈ Fl, x :=

(
xj1 , j1), . . . , (xjN

, jN

)
, the

6 f |T,x
T

works as before, with the difference that it outputs ⊥ in the case where less

than |K| < l.
7 The oracle outputs ⊥ if N < l.

Threshold Garbled Circuits and Ad Hoc Secure Computation 79

following distributions are perfectly (resp., statistically, computationally) indis-
tinguishable:

{SimOf (1n, 1l, 1λ,K)}, {View(1n, 1l, 1λ, f,K, x)}
where {View(1n, 1l, 1λ, f,K, x)} is the view of the evaluator p0 from run-

ning Π on input x for the honest parties: that is, ((mi)i∈K , ρ0) where mi ←
Msg(ρi, xi) for all i ∈ K and (ρ0, . . . , ρn) $←− Setup(1n, 1l, 1λ, f). We say that an
ad hoc PSM protocol Π is perfectly (resp., statistically, computationally) (l, t)-
secure if for any N ≤ t, any K := {j1, . . . , jN}, Π is perfectly (resp., statistically,
computationally) K-secure.

4.3 Adaptive-Ad-Hoc PSM

An adaptive-ad-hoc PSM protocol is parametrized by the number of parties n,
the threshold l, an integer t with 0 ≤ t ≤ n and a set of functions fl, . . . , fβ ,
and allows an honest evaluator to obtain the evaluation of a function fN if the
number of parties that are participating in the protocol is l ≤ N ≤ β, for any
N ∈ {l, . . . , β}. Informally, an adaptive-ad-hoc PSM protocol can be seen as
a protocol that allows evaluating a function that accepts a variable number of
inputs. We refer to the full version for the formal definition.

5 Positional Secret Sharing (PoSS)

In this section we propose new notions of secret sharing schemes, and provide an
information theoretical instantiation of them. These new definitions represent
one of the main building block of our NIMPC protocols. We now introduce the
first notion that we call Positional Secret Sharing (PoSS). Let P := {p1, . . . , pn}
be a set of parties and X := (x1, . . . , xl) be a sequence of secrets. A PoSS
scheme is defined with respect to a party pj ∈ P. In a PoSS scheme a dealer
can compute a secret sharing of X thus obtaining s1, . . . , sn and distribute si to
pi for all i ∈ {1, . . . , n}. Let P ′ := {pj1 , . . . , pjl

} be an arbitrary chosen set of
l parties with 0 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n. On input (sj1 , . . . , sjl

) with
jα = j for some α ∈ {1, . . . , l} an evaluator can compute xα and nothing more.
If there is no jα = j or less than l shares are available then all the secrets remain
protected. We now propose a formal definition of PoSS.

Definition 8 (Positional Secret Sharing). A PoSS scheme over a message
space M is a pair of PPT algorithms (SharePoSS, ReconstructPoSS) where:

– SharePoSS takes as input X := (x1, . . . , xl), the number of parties n and an
index j ∈ [n], and outputs n shares (s1, . . . , sn);

– ReconstructPoSS takes as input l values (shares), the index j and outputs a
message in M (where M denotes the message space);

satisfying the following requirements.

80 M. Ciampi et al.

Correctness. ∀x1, . . . , xl ∈ Ml, ∀S = {j1, . . . , jl} ⊆ {1, . . . , n} with j1 <
j2 < · · · < jl−1 < jl, if there exists α ∈ {1, . . . , l} such that jα = j then

Prob[xα ← ReconstructPoSS(sj1 , . . . , sjl
, j) : (s1, . . . , sn) $←− SharePoSS((x1,

. . . , xl), j)] = 1.
Standard security. ∀(x1, . . . , xl), (x′

1, . . . , x
′
l) ∈ Ml, ∀S ⊆ {1, . . . , n} s.t.

|S| < l, the following distributions are identical:

{(si)i∈S : (s1, . . . , sn) $←− SharePoSS((x1, . . . , xl), j)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) $←− SharePoSS((x′

1, . . . , x
′
l), j)}

Positional security. ∀(x1, . . . , xl), (x′
1, . . . , x

′
l) ∈ Ml, ∀S = {j1, . . . , jl} ⊆

{1, . . . , n} with j1 < j2 < · · · < jl−1 < jl:
1. if there exists α ∈ {1, . . . , l} such that jα = j, the following distributions

are identical:
{(si)i∈S : (s1, . . . , sn) $←− SharePoSS((x1, . . . , xα−1, xα, xα+1 . . . , xl), j)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) $←− SharePoSS((x′

1, . . . , x
′
α−1, xα, x′

α+1, . . . , x
′
l), j)}.

2. if �α ∈{1, . . . , l} such that jα = j, the following distributions are identical:

{(si)i∈S : (s1, . . . , sn) $←− SharePoSS((x1, . . . , xl), j)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) $←− SharePoSS((x′

1, . . . , x
′
l), j)}

5.1 PoSS: Our Construction

We denote our scheme with (SharePoSS�
,ReconstructPoSS

�). SharePoSS� takes as
input X := (x1, . . . , xl) and the index j and executes the following steps.

– For i = 1, . . . , l

1. Pick x0
i , x

1
i

$←− {0, 1}λ and compute x̃i ← x0
i ⊕ x1

i ⊕ xi.
2. Construct an (i − 1)-out-of-(j − 1) secret sharing for x0

i thus obtaining
si,1, . . . , si,j−1.

3. Construct a (l − i)-out-of-(n − j) secret sharing for x1
i thus obtaining

si,j+1, . . . , si,n.
4. Define si,j := x̃i.

– For i = 1, . . . , n set si = (s1,i, . . . , sl,i).
– Output (s1, . . . , sn).

The algorithm ReconstructPoSS
� takes as input (sj1 , . . . , sjl

) and the index j,
and executes the following steps.

1. If there does not exist α such that jα = j then output ⊥ else continue as
follows.

2. For i = 1, . . . , l parses sji
as (s1,ji

, . . . , sl,ji
).

3. Use the shares sα,j1 , . . . , sα,jα−1 to reconstruct x0
α.

4. Use the shares sα,jα+1 , . . . , sα,jl
to reconstruct x1

α.
5. Output xα ← x0

α ⊕ x1
α ⊕ sα,jα

.

Threshold Garbled Circuits and Ad Hoc Secure Computation 81

We note passing that a PoSS scheme could be constructed from monotone
span programs [22]. However, for some of our applications we need a PoSS scheme
that is also secure under a stronger notion (enhanced PoSS). For this reason
we have provided one ad-hoc scheme that relies on standard k-out-of-m secret
sharing and that can be proven secure under the notion of PoSS and its stronger
variant.

Theorem 1. (SharePoSS�
,ReconstructPoSS

�) is a PoSS scheme.

For this and the proofs of all the subsequent theorems, we refer the reader to
the full version of the paper. We now present the notion of Enhanced Positional
Secret Sharing (ePoSS). An ePoSS scheme is a PoSS scheme with an additional
security property that guarantees the protection of some of the secret inputs
even when an adversary obtains more than l shares. In more detail, the notion
of PoSS guarantees that when l shares are available one of the l secret can be
reconstructed, and nothing about the other l − 1 secrets is leaked. The notion
of ePoSS guarantees that even if an adversary has l + c shares, then at least
l− c−1 secrets remain protected. In the same spirit as in the definition of PoSS,
the notion of ePoSS specifies also which secrets remain protected depending
on the indexes of the dealer (the second input of the sharing algorithm). We
show that the construction provided in the previous section already satisfies this
additional security property. The formal definition follows.

Definition 9 (Enhanced Positional Secret Sharing). An Enhanced Posi-
tional Secret Sharing scheme over a message space M is a PoSS scheme
described by the PPT algorithms (ShareePoSS,ReconstructePoSS) which satisfies the
following additional property.

Enhanced Positional Security. ∀(x1, . . . , xl), (x′
1, . . . , x

′
l) ∈ Ml, ∀S =

{j1, . . . , jl+c} ⊆ {1, . . . , n} with j1 < j2 < · · · < jl−1 < jl < · · · < jl+c:

1. If there exists α ∈ {1, . . . , l + c} such that jα = j, and c ≤ l then
1.1 If α ≤ l then the following distributions are identical (where γ =

min{c, α − 1}):
{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x1, . . . , xα−γ−1, xα−γ , . . . , xα−1, xα, . . . , xl), j)}

{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x′

1, . . . , x
′
α−γ−1, xα−γ , . . . , xα, x′

α+1, . . . , x
′
l), j)}.

1.2 If α > l the following distributions are identical:
{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x1, . . . , xα−c−1, xα−c, . . . , xl−1, xl), j)}

{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x′

1, . . . , x
′
α−c−1, xα−c, . . . , xl−1, xl), j)}

2. if �α ∈ {1, . . . , l + c} such that jα = j, the following are identical:

{(si)i∈S : (s1, . . . , sn) $←− ShareePoSS((x1, . . . , xl), j)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) $←− ShareePoSS((x′

1, . . . , x
′
l), j)}

82 M. Ciampi et al.

It is easy to see that for c = 0 the properties of enhanced positional and
positional security are equivalent and that for c ≥ l − 1 none of the secrets is
protected.

Theorem 2. (SharePoSS�
,ReconstructPoSS

�) is an Enhanced Positional Secret
Sharing scheme

6 Threshold NIMPC

In this section we show how to construct a t-secure NIMPC NIMPCth :=
(Setupth,Msgth,Evalth). That is, a threshold NIMPC protocol for n parties, with
threshold l that supports up to t corruptions. For our construction we make use
of the following tools.

– A t-robust NIMPC protocol NIMPC := (Setup,Msg,Eval).
– A PoSS scheme PSS := (SharePoSS,ReconstructPoSS).

At a high level our protocol NIMPCth works as follows.

Setup: The algorithm Setupth runs the setup algorithm of the t-robust NIMPC
protocol on input the unary representation of l (the number of parties that
will participate in the computation) thus obtaining ρ̃0, . . . , ρ̃l. Then, for each
i ∈ {1, . . . , l}, Setupth computes an encoding of the input 0 and of the input
1 using NIMPC: m̃0

i ← Msg(ρ̃i, 0), m̃1
i ← Msg(ρ̃i, 1). As a final step, for

all i ∈ {1, . . . , l}, Setupth computes a positional secret sharing of the mes-
sages (m̃0

1, . . . , m̃
0
k) using index i thus obtaining (s0i,1, . . . , s

0
i,n), and a positional

secret sharing of the messages (m̃1
1, . . . , m̃

1
k), always for the index i, obtain-

ing (s1i,1, . . . , s
1
i,n). The output of Setupth corresponds to (ρ̃0, ρ1, . . . , ρn) where

ρi := (s0j,i, s
1
j,i)j∈{1,...,n} for all i ∈ {1, . . . , n}.

Online Messages. The party pi with input ρi := (s0j,i, s
1
j,i)j∈{1,...,n} and the

input xi ∈ {0, 1} sends mi := (s01,i, s
1
1,i), . . . , s

xi
i,i, . . . , (s

0
n,i, s

1
n,i)

Evaluation. The evaluator p0, on input ρ̃0,mj1 , . . . ,mjl
with 0 ≤ j1 < · · · <

jl ≤ n, performs the following steps. For all i ∈ {1, . . . , l}, let bi ∈ {0, 1} be such

that m̃i
$←− ReconstructPoSS(sbi

ji,j1
, . . . , sbi

ji,ji
, . . . , sbi

ji,jl
, ji) and m̃i �= ⊥.8 Then p0

computes and outputs Eval(ρ̃0, m̃1, . . . , m̃l).
It is easy to see that in the above construction a malicious evaluator can learn

the input of the honest party pi by only inspecting the bit bi. To avoid this trivial
attack we just need to permute the shares sent by the parties to the evaluator.
We decided to not include this additional step into the informal description of
the protocol to make it easier to read. We show how the complete scheme works
in the formal description of the protocol proposed Fig. 2. Intuitively, the scheme
is secure because of the following reasons:
8 In this informal description of the protocol we assume that the algorithm
ReconstructPoSS outputs ⊥ in the case that some of the input shares are ill formed
(e.g., the input shares are the combination of different execution of the algorithm
SharePoSS).

Threshold Garbled Circuits and Ad Hoc Secure Computation 83

Setup

1. Run Setup(1l, 1λ, f) obtaining ρ̃0, . . . , ρ̃l.
2. For i = 1, . . . , l compute m̃0

i ← Msg(ρ̃i, 0), m̃1
i ← Msg(ρ̃i, 1)

3. For i = 1, . . . , n pick the permutation bit bi
$←− {0, 1}, run

3.1. PSS(m̃0
1, . . . , m̃

0
l , i) thus obtaining (sbi

i,1, . . . , s
bi
i,n) and run

3.2. PSS(m̃1
1, . . . , m̃

1
l , i) obtaining (s1−bi

i,1 , . . . , s1−bi
i,n).

4. Output (ρ0, ρ1, . . . , ρn) where ρ0 := ρ̃0 and for i = 1, . . . , n, ρi :=
(bi, (s0j,i, s

1
j,i)j∈{1,...,n}).

Online messages. On input xi ∈ {0, 1} and ρi the party pi does the following.

1. If bi = 0 then set si,i ← sxi
i,i and di ← xi else set si,i ← s1−xi

i,i and
di ← 1 − xi.

2. Sends mi := ((s01,i, s
1
1,i), . . . , si,i, . . . , (s0n,i, s

1
n,i), di).

Evaluation

1. On input ρ0, mj1 , . . . , mjl with 0 ≤ j1 < · · · < jl ≤ n, for i = 1, . . . , l
compute m̃i ← ReconstructPoSS(s

dji
ji,j1

, . . . , sji,ji , . . . , s
dji
ji,jl

, ji).
2. Compute and output Eval(ρ0, m̃1, . . . , m̃l).

Fig. 2. Our t-secure NIMPC

1. The standard security property of the PoSS scheme exposes only one between
Msg(ρ̃j , 0) and Msg(ρ̃j , 1) for all j ∈ [l] when ij ∈ [n] is the index of an honest
party pij

. Indeed, an honest party pij
will not send the share s1−xi

ij ,ij
where xij

denotes the input bit of pij
. Hence, there would not be enough shares to

reconstruct Msg(ρ̃i, 1 − xij
).

2. The positional security guarantees that the adversary, with respect to a cor-
rupted party pik

, can obtain only the two messages Msg(ρ̃k, 0) and Msg(ρ̃k, 1)
(where ik ∈ [n] and k ∈ [l]).

3. The security of the t-robust NIMPC guarantees that even if for the corrupted
parties pc1 , . . . , pct

the adversary obtains Msg(ρ̃i, 0) and Msg(ρ̃i, 1) for each
i ∈ [t] this does not represent a problem.

Theorem 3. If NIMPC is a t-robust NIMPC protocol, then NIMPCth is a t-
secure Threshold NIMPC protocol.

7 Ad Hoc PSM

We start by showing how to construct an (l, l + c)-secure ad hoc PSM protocol,
for an arbitrary non-negative integer c, for a very simple functionality that we
call message selector and denote with fmsg sel. fmsg sel takes l inputs, and each

84 M. Ciampi et al.

input i ∈ [l] consists of 1) a list of size l of λ-bit strings and 2) and integer io with
io ∈ [n] (this will represent the index of the party that is contributing to the
input). The output of fmsg sel corresponds to the concatenation of l messages,
where the message in position j corresponds to the j−th message in the input
list of the party with the j-th greatest index that is participating in the online
phase. We propose a formal description of the function in Fig. 3. We denote
our protocol with Πmsg sel := (Setupmsg sel,Msgmsg sel,Evalmsg sel) and provide an
informal description of it for the simplified case in which the input of each party
is a list of bits (instead of list of λ-bit strings). In the formal description we
consider the generic case where the input of each party is a list of λ-bit strings.
At a very high level, the protocol Πmsg sel works as follows.

Input: (xi1
k)k∈[l], i1 , . . . (xil

k)k∈[l], il where {i1, . . . , il} ⊆ [n], xi1
k , . . . , xil

k ∈
{0, 1}λ, l ≤ n and n, λ ∈ N.
Output: Let (j1, . . . , jl) be a permutation of the values (i1, . . . , il) such that
0 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n, output xj1

1 || . . . ||xjl
l

Fig. 3. fmsg sel

Setup: For each party indexed by i ∈ {1, . . . , n}, Setupmsg sel generates l
random bits b1, . . . , bl that we call permutation bits. Then Setupmsg sel com-
putes an enhanced PoSS of (b1, . . . , bl) for the index i, and an enhanced
PoSS of (1 − b1, . . . , 1 − bl) for the index i thus obtaining (s0i,1, . . . , s

0
i,n) and

(s1i,1, . . . , s
1
i,n) respectively. Intuitively, the party i will receive as a part of ρi the

permutation bits, and depending on his inputs he will send the corresponding
permutation bits. For example, if the first input in the list of pi is 0 then pi: 1)
takes the permutation bit b1 (if the input of pi is 1 then p1 picks as the permu-
tation bit 1 − bi) 2) and sends the permutation bit together with other pieces
of information (more details will follow). The output of Setupmsg sel corresponds
to (ρ0, ρ1, . . . , ρn) where ρi := (s0j,i, s

1
j,i, bj)j∈{1,...,n} for all i ∈ {1, . . . , n} and

ρ0 := ⊥.

Online Messages. The party pi on input ρi := (s0j,i, s
1
j,i, bj)j∈{1,...,n} and

the input bits x1, . . . xl computes d1 ← b1 if x1 = b1 and d1 ← 1 − b1 oth-
erwise. Repeat the same for x2 . . . xl and sends mi :=

(
(s01,i, s

1
1,i), . . . , (s

0
n,i,

s1n,i), (d1, . . . , dl)
)
.

Evaluation. The evaluator p0, on input ρ̃0,mj1 , . . . ,mjl
with 0 ≤ j1 <

· · · < jl ≤ n, does the following steps. For all i ∈ {1, . . . , l} compute y0
i ←

ReconstructPoSS(s0ji,j1
, . . . , s0ji,jl

, ji), y1
i ← ReconstructPoSS(s0ji,j1

, . . . , s0ji,jl
, ji)

and x̃i ← y
dji
i . The output of the evaluator then corresponds to (x̃1, . . . , x̃l).

The security of our protocol relies on the security of the enhanced PoSS scheme.
Informally, let X := ((xi1 , i1), . . . , (xiN

, iN)) with N ≤ l + c be the inputs of

Threshold Garbled Circuits and Ad Hoc Secure Computation 85

the parties participating in the protocol (recall that each input represents a
list of l bits). The notion of ad hoc PSM guarantees that a malicious evalu-
ator can learn only the output of fmsg sel on input any possible set S where
S := ((xj1 , j1), . . . , (xjl

, jl)) ⊆ X. Hence, the adversary can evaluate fmsg sel on
up to

(
l+c

l

)
possible sets of inputs. Consider now the input of the party piα

be
xiα

and let c < l, then we have the two possible cases (when c ≥ l then the
evaluator can obtain all the inputs).

– If α ≤ l then xiα
can be placed in the α-th input slot of fmsg sel, or in any

other position iα−1, . . . , iα−γ with γ = min{c, α − 1}.
– If α > l then xiα

can be place in l-th input slot of fmsg sel, or in any other
position il−1, . . . , iα−c given that N = l + c.

Any other value in the input list xiα
of piα

has to be protected. We note that
this is exactly the security that an ePoSS scheme can guarantee (Fig. 4).

Common input: Input length: λ, number of parties n, threshold l and c.
Setup:

1. For i = 1, . . . , n

1.1. For each k = 1, . . . l, For each j = 1, . . . , λ Pick bk
j

$←− {0, 1}.
1.2. Run PSS(b11|| . . . ||b1λ, b21|| . . . ||b2λ, . . . , bl

1|| . . . ||bl
λ, i) thus obtaining

(s0i,1, . . . , s0i,n).
1.3. Run PSS(1 − b11|| . . . ||1 − b1λ, 1 − b21|| . . . ||1 − b2λ, . . . , 1 − bl

1|| . . . ||1 − bl
λ, i)

thus obtaining (s1i,1, . . . , s1i,n).
1.4. Set Bi = (bk

1 , . . . , bk
λ)k∈[l].

2. Output (ρ0, ρ1, . . . , ρn) where ρ0 := ⊥ and for i = 1, . . . , n, ρi :=
(Bi, (s0j,i, s

1
j,i)j∈{1,...,n}).

Online messages

1. On input xi
1, . . . , x

i
l ∈ {0, 1}λ and ρi the party pi acts as follows.

1.1. For each k ∈ [l] parse xi
k as a λ bit string xk,1, . . . , xk,λ.

1.2. For each k ∈ [l], j ∈ [λ] if xk,j = bk
j then set dk

j = bk
j else set dk

j = 1−bk
j .

1.3. Set Di ← (dk
1 , . . . , dk

λ)k∈[l].
1.4. Send mi := (Di, (s01,i, s

1
1,i), . . . , (s0n,i, s

1
n,i)).

Evaluation

1. On input ρ0, mk1 , . . . , mkl
with 0 ≤ k1 < · · · < kl ≤ n, for i = 1, . . . , l do

the following
1.1. Compute y1,0|| . . . ||yλ,0 ← ReconstructPoSS(s0ki,k1 , . . . , s

0
ki,kl

, ki),
1.2. Compute y1,1|| . . . ||yλ,1 ← ReconstructPoSS(s1ki,k1 , . . . , s

1
ki,kl

, ki)
1.3. For j = 1, . . . , λ set c ← di

j , xi,j ← yj,c

2. Compute and output x1,1|| . . . ||x1,λ, . . . , xl,1|| . . . ||xl,λ.

Fig. 4. Our (l, l + c)-secure ad hoc PSM for the message selector function fmsg sel.

86 M. Ciampi et al.

Theorem 4. Πmsg sel is a (l, l + c)-secure ad hoc PSM protocol.

7.1 Ad Hoc PSM for All Functions

In this section we show how to construct a (l, l + c)-secure ad hoc PSM for any
function f and any constant c, which has a simulator that is successful with
probability at least p = e−1 (where e is the Euler number). We denote this
scheme with ΠPSM := (SetupPSM,MsgPSM,EvalPSM) and to construct it we make
use of the following tools.

– An (l, l+c)-secure ad hoc PSM Πmsg sel := (Setupmsg sel,Msgmsg sel,Evalmsg sel)
for the message selector function described in the previous section.

– A hash function H with range size λ′ = λ2c+2.9

– A 2-party 0-robust NIMPC scheme Π2PC := (Setup,Msg,Eval) for the func-
tion gk (which will be specified later) with the following additional properties:
1. It accepts inputs of size δ = 2λn + nλλ′, where n represents the number

of parties and λ is the input size allowed by ΠPSM (it also represents the
security parameter);10 and λ′ is the range size of H.

2. The size of the output of Msg depends only on poly(λ, δ) and it is inde-
pendent from the function that Π2PC is computing (whereas the output
of Setup can grow with the size of the function being computed;

3. The randomness required to run Setup is κ := poly(λ).
– A PRG PRG : {0, 1}λ → {0, 1}κ.

We start by giving a high level idea of how our construction works starting
from a scheme that does not provide security but contains most of intuitions;
then we gradually modify it until we get our final scheme.

First attempt. Let ρ be the output of the setup phase of Πmsg sel and consider
(l − 1) instantiations of Π2PC which we denote with Π2PC

2 , . . . ,Π2PC
l . We denote

with Ri, ρ
0
i , ρ

1
i the output of the setup phase of Π2PC

i for each i ∈ {2, . . . , l}.
For each i ∈ {2, . . . , l − 1}, an instantiation Π2PC

i will be used to evaluate
the function gi. The function gi takes two inputs x0 ∈ {0, 1}λ, x1 ∈ {0, 1}λ and
outputs Msg(ρ0i+1, x

0||x1). That is, gi outputs an encoding of the message x0||x1

for Π2PC
i+1 . The instantiation Π2PC

l is used to evaluate the function gl, which takes
as input x1||x2|| . . . ||xl−1 and xl and outputs f(x1, x2, . . . , xl−1, xl).

Each party pi on input x ∈ {0, 1}λ, ρ, ρ12, . . . ρ
1
l and ρ02 does the following.

1. Encode the input x for Π2PC
2 by running Msg(ρ02, x) thus obtaining m0

1.
2. For each j ∈ {2, . . . , l}

2.1 Encode the input x for Π2PC
j by running Msg(ρ1j , x) thus obtaining m1

j

3. Run Msgmsg sel(ρ,m0
2||m1

2||m1
3||m1

4|| . . . ||m1
l) thus obtaining m̃i and output

mi.

9 This function is defined as the hash function that on input x outputs x mod λ′.
10 Our construction would work for inputs of size poly(λ), but to not overburden the

notation we consider only inputs of size λ only.

Threshold Garbled Circuits and Ad Hoc Secure Computation 87

The evaluation algorithm works as follows

1. Run Evalmsg sel on input (m̃k1 , . . . , m̃kl
) thus obtaining m0

1,m
1
2, . . . ,m

1
l (we

denote with k1, . . . , kl the indexes of the parties that are participating in the
online phase).

2. Run Eval(R2,m
0
1,m

1
2) thus obtaining m0

3.
3. For each j ∈ {3, . . . , l − 1} run Eval(Rj ,m

0
j ,m

1
j) thus obtaining m0

j+1.
4. Output Eval(Rl,m

0
l ,m

1
l)

Despite being correct, the above protocol suffers of a security issue. If more
than l parties participate to the protocol, then a corrupted evaluator could be
able to obtain the encoding of two different messages with respect to the same
ρ1j for some j ∈ {2, . . . , l}, and this could harm the security of Π2PC

j .

Second Attempt. To solve this problem we give a different ρ1j to each party. In
this way, even if two different parties encode different messages we can still rely
on the security of Π2PC. This approach requires a more sophisticated function
gj , since now the output of gj should contain an encoding of the previous inputs
under Π2PC which can be combined the with the next party’s encoded message,
whoever she is. Hence, we modify gj (for any j) to output multiple encodings, one
for each party with index greater than j. Even if this approach never causes the
same ρ1j to be used twice on different inputs, now multiple encodings of different
inputs under ρ0j might be computed by a malicious evaluator. For example, an
evaluator could construct the first input for gj using two different sequences on
inputs (this is possible only if the evaluator has access to more than l messages
sent from the honest parties).

Our Approach. To mitigate (but not completely solve) the above problem, we
modify the above protocol as follows.

1. From the setup phase each party pi receives ρsel,0j,i for each sel ∈ [λ′] and each
j ∈ [l] (note that we need to run the setup of Π2PC λ′ times more in this
protocol).

2. Each party pi picks a random value vi, and encodes this value together with
its input by running Msg(ρsel,0j,i , xi||vi) for each sel ∈ λ′ and j ∈ {2, . . . , l}.

3. The function gj now takes as input v0||x0 and v1||x1, computes
sel′ ← H(v0 ⊕ v1) and outputs Msg(ρsel

′,0
j+1,i, x

0||x1||v0 ⊕ v1) for each i where
H is an hash function with range size λ′.

This protocol remains secure as long the adversary is not able to find a
combination of the messages that yields to a collision in the hash function.
We can prove that with probability at least e−1 the adversary does not find a
collision. Intuitively, this holds because each hash function can be evaluated at
most on

(
l+c

l

)
different random values. Give that c is a constant value we obtain

that the number of possible inputs of H is at most nc. Hence, for a suitable
choice of λ′ we can show that our protocol is simulatable with probability e−1.
In the next section we show how to amplify the security to obtain a secure ad
hoc PSM. For the formal description of ΠPSM and of gk we refer to Fig. 5.

88 M. Ciampi et al.

Common parameters: Security parameter λ, H λ = λ2c+1, n, l, and c.
Setup:

- For each i, j ∈ [n] with i = j do the following.
- Run Setup(12, g2, 1λ) thus obtaining (Rj

2,i, ρ
j,0
2,i , ρ

j,1
2,i).

- For each k ∈ {3, . . . , l − 1}, i ∈ [n], sel ∈ [λ] do the following.

- Pick rselk,i
$←− {0, 1}λ and compute PRG(rselk,i) thus obtaining r.

- Run Setup(12, gk, 1λ; r) thus obtaining (Rsel
k,i, ρ

sel,0
k,i , ρsel,1

k,i).
- For each sel ∈ [λ] i ∈ [n] run Setup(12, gl, 1λ) thus obtaining
(Rsel

l,i, ρ
sel,0
l,i , ρsel,1

l,i)
- Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth

0 , ρth
1 , . . . , ρth

n).

- For i ← 1, . . . , n pick vi
$←− {0, 1}λ and set

ρi := (vi, (rselk,j>i)j∈[n]sel∈[λ],k∈{3,...,l}, (ρsel,1
k,i)sel∈[λ],k∈{3,...,l},

(ρi,0
2,j , ρ

j,1
2,i)j∈[n]−{i}, ρ

th
i) and ρ0 := ρth

0 , {Rsel
k,i}sel∈[λ],i∈[n],k∈[l]

Online messages.On input xi ∈ {0, 1}λ and ρi the party pi does the following.

- For each j ∈ [n] − {i} compute mi,0
1,j ← Msg(ρi,0

2,j , (xi, vi)).
- For each j ∈ [n] − {i} compute mj,1

2,i ← Msg(ρj,1
2,i , i||xi||vi||{rsel,03,c>i}c∈[n]).

- For each k ∈ {3, . . . , l − 2}, sel ∈ [λ] compute
msel,1

k,i ← Msg(ρsel,1
k,i , i||xi||vi||{rsel,0k+1,j>i}j∈[n],sel∈[λ])

- For each sel ∈ [λ] compute msel,1
l,i ← Msg(ρsel,1

l,i , xi)
- Compute and send

mi ← Msgmsg sel(ρth
i , ({mi,0

1,j}j∈[n]−{i}, {mj,1
2,i}j∈[n]−{i}, . . . , {msel,1

l,i }sel∈[λ], i))

Evaluation On input ρ0, mk1 , . . . , mkl
with 0 ≤ k1 < · · · < kl ≤ n:

- Run Eval(ρth
0 , mk1 , . . . , mkl

) thus obtaining
{mk1,0

1,sel }sel∈[n]−{k1}, {msel,1
2,k2

}sel∈[n]−{k2}, . . . , {msel,1
l−1,kl−1

}sel∈[λ], {msel,1
l,kl

}sel∈[λ].

- Run Eval(Rk1
2,k2

, mk1,0
1,k2

, mk1,1
2,k2

) thus obtaining {μsel ,0
3,i }i∈[n].

- For j ← 3, . . . , l − 1: Run Eval(Rsel
j,kj

, μsel ,0
j,kj

, msel ,1
j,kj

) thus obtaining

{μsel ,0
j+1,i}i∈[n], set sel ← sel .

- Compute y ← Eval(Rsel
l,kl

, μsel ,0
l,kl

, msel ,1
l,kl

) and output y.

gk(x||v1, j||y||v2||{rselk+1,i>j}j∈[n],sel∈[λ]) :
v ← v1 ⊕ v2, sel ← H(v)
For each i ∈ {j + 1, . . . , n} compute

r ← PRG(rselk+1,i), (R
sel
k+1,i, ρ

sel ,0
k+1,i, ρ

sel ,1
k+1,i) ← Setup(1n, 1λ, gk+1; r).

μsel ,0
k+1,i ← Msg(ρsel ,0

k+1,i, x||y||v).
Return {μsel ,0

k+1,i}i∈{j+1,...,n}
gl(x, y) : Parse x as l bit-strings of λ bits x1, . . . , xl−1 and compute and
output f(x1, . . . , xl−1, y).

Fig. 5. Our ad hoc PSM for all functions that is secure with probability e−1.

Threshold Garbled Circuits and Ad Hoc Secure Computation 89

Theorem 5. There exists a simulator that successfully satisfies the definition
of (l, l + c)-secure ad hoc PSM with probability at least e−1, for any constant c.

How to instantiate the 2-party 0-robust NIMPC scheme Π2PC. Our com-
piler requires non-standard requirement on the size of the messages of the
protocol Π2PC. As also noted in [9], 0-robust NIMPC protocol can be con-
structed from garbled circuits. And this construction would have all the prop-
erties that we need. At a high level the construction works as follows. Let
g be a two-input function where each input is of size M . In the setup
phase a garbled circuit C̃ for the function g and the corresponding wire keys
L0,1, L1,1, . . . L0,M , L1,M , R0,1, R1,1, . . . R0,M , R1,M are computed. Then ρ = C̃
is given to the evaluator, the keys ρ0 = L0,1, L1,1, . . . L0,M , L1,M are given to to
the party p0 and the keys ρ1 = R0,1, R1,1, . . . R0,M , R1,M are given to the party
p1. For the evaluation, the party p0 on input x ∈ {0, 1}M parses it as a bit string
x1, . . . , xM and sends to the evaluator Lx1,1, . . . LxM ,M . The party p1 does the
same for its input y but using the keys ρ1 = R0,1, R1,1, . . . R0,M , R1,M . The eval-
uator then uses the received keys and C̃ to compute g(x, y). This construction
is provided in [13], the only difference is that in their protocol the C̃ is sent
by one of the parties instead in our case we assume that C̃ is already given to
the evaluator from the setup phase. This construction has the property that we
need since the size of the keys of the garbled circuit depends only on the security
parameter and on the size of the inputs and does not depend on the size of the
function g [2]. Then can instantiate our protocol from one-way functions.

7.2 Fully Secure Ad Hoc PSM

We are now ready to provide a fully-secure ad hoc PSM ΠAPSM :=
(SetupAPSM,MsgAPSM,EvalAPSM) that realizes any function f . We use the fol-
lowing tools.

– An (l, l + c)-secure ad hoc PSM protocol ΠPSM := (SetupPSM,MsgPSM,
EvalPSM) that supports up to a n parties and that is simulatable with proba-
bility 1

p with p ≤ e (where e is the Euler number).
– An additive (l,m,m − 1)-HSS Scheme for the function f HSS := (ShareHSS,

EvalHSS,DecHSS) where m := pλ.

At a very high level our protocol consists of m instantiations of the ΠPSM

where the j-th instantiation evaluates the function Gj with j ∈ [m]. The Func-
tion Gj takes as input l shares of the HSS scheme, and uses them as input of
EvalHSS together with the server index j (see bottom of Fig. 6 for a formal speci-
fication of Gj). Each party pi that wants to participate in the protocol computes
a secret sharing of his input thus obtaining m shares. Then pi encodes each share
by running MsgPSM (one execution of MsgPSM per share). The evaluator runs the
evaluation algorithm of the j-th instantiation of ΠPSM thus obtaining yj (which
corresponds to the output of EvalHSS) for each j ∈ [m]. The output of the evalua-
tion phase then corresponds to y1⊕· · ·⊕ym. We show that this protocol is secure

90 M. Ciampi et al.

as long as there is at least one execution of ΠPSM that simulatable. Moreover,
by choosing m opportunely we can prove that at least for one instantiation of
ΠPSM the simulator is successful with overwhelming probability. Hence, at least
one share of each of the inputs of the honest parties will be protected. Therefore,
because of the security offered by the HSS, also the entire input of the parties
will be protected. We refer to Fig. 6 for the formal description of ΠAPSM.

Common parameters: λ, n, l, c where l + c denotes the maximum number
of active parties supported by the protocol and m = pλ.
Setup:

1. For each j ∈ m run SetupPSM(1n, 1l, 1λ, Gj) thus obtaining ρj
0, ρ

j
1, . . . , ρ

j
n.

2. Output ρ0, ρ1, . . . , ρn with ρ0 := (ρj
0)j∈[m], ρ1 := (ρj

1)j∈[m], . . . ρn :=
(ρj

n)j∈[m]

Online messages. On input xi ∈ {0, 1}λ and ρi the party pi does the follow-
ing.

1. For each k ∈ [l] run ShareHSS(1λ, k, x) thus obtaining x1,k
i , . . . xm,k

i .
2. For each j ∈ m run MsgPSM(ρj

i , ((x
j,k
i)k∈[l], i)) thus obtaining mj

i .
3. Send mi := (mj

i)j∈[m]

Evaluation

1. On input ρ0, mk1 := (mj
k1
)j∈[m], . . . , mkl

:= (mj
kl
)j∈[m] with 0 ≤ k1 < · · · <

kl ≤ n the evaluator does the following.
2. For each j ∈ m run EvalPSM(ρj

0, m
j
k1

, . . . , mj
kl
) thus obtaining yj .

3. Output y1 ⊕ · · · ⊕ ym

The function Gj with j ∈ [m] takes as input (xk
i1)k∈[l], i1 , . . . (xk

il
)k∈[l], il

where {i1, . . . , il} ⊆ [n], xk
i1 , . . . , x

k
il

∈ {0, 1}λ, l ≤ n and n, λ ∈ N, and
outputs EvalHSS(j, x1

j1 , . . . , xl
jl
) where (j1, . . . , jl) is a permutation of the values

(i1, . . . , il) such that 0 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n.

Fig. 6. Our fully secure ad hoc PSM for all functions

Theorem 6. ΠAPSM is a (l, l+c)-secure ad hoc PSM protocol for any constant c.

Since ΠPSM can be constructed from OWFs and since the HSS scheme can
be instantiated from the LWEs assumption [10,12] then our protocol can be
instantiated assuming LWEs.

Threshold Garbled Circuits and Ad Hoc Secure Computation 91

Adaptive-ad-hoc PSM. As we have anticipated in the introduction, it is straight-
forward to construct a (l, t)-secure adaptive-ad-hoc PSM from a (l, t)-secure Ad
Hoc PSM protocol. We refer to the full version for more detail.

Acknowledgments. Vipul Goyal is supported in part by the NSF award 1916939,
DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Fac-
ulty Fellowship, a PNC center for financial services innovation award, and a Cylab
seed funding award. Rafail Ostrovsky is supported in part by DARPA under Coopera-
tive Agreement No: HR0011-20-2-0025, NSF Grant CNS-2001096, US-Israel BSF grant
2015782, Google Faculty Award, JP Morgan Faculty Award, IBM Faculty Research
Award, Xerox Faculty Research Award, OKAWA Foundation Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corpo-
ration Research Award. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of DARPA, the Department of Defense, or the U.S. Gov-
ernment. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes not withstanding any copyright annotation therein. Michele
Ciampi is supported by H2020 project PRIVILEDGE #780477 and the work is done
in part while consulting for Stealth Software Technologies, Inc.

References

1. Applebaum, B.: Garbled circuits as randomized encodings of functions: a primer.
In: Electronic Colloquium on Computational Complexity (ECCC), vol. 24, p. 67
(2017). https://eccc.weizmann.ac.il/report/2017/067

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd Annual Symposium on Foundations of Computer Science,
Palm Springs, CA, USA, 22–25 October 2011, pp. 120–129. IEEE Computer Society
Press (2011). https://doi.org/10.1109/FOCS.2011.40

3. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, 14–16 May 1990, pp. 503–513. ACM Press (1990). https://
doi.org/10.1145/100216.100287

5. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E.: Distribution design. In: Sudan,
M. (ed.) ITCS 2016: 7th Conference on Innovations in Theoretical Computer Sci-
ence, Cambridge, MA, USA, 14–16 January 2016, pp. 81–92. Association for Com-
puting Machinery (2016). https://doi.org/10.1145/2840728.2840759

6. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1 22

7. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: secure computation
without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 580–608. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56617-7 20

https://eccc.weizmann.ac.il/report/2017/067
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/2840728.2840759
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-56617-7_20

92 M. Ciampi et al.

8. Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM proto-
cols and related models. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 287–318. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78375-8 10

9. Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-interactive multiparty com-
putation against constant-size collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 391–419. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 13

10. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Karlin, A.R. (ed.) ITCS 2018: 9th Innovations in Theoretical
Computer Science Conference, Cambridge, MA, USA, 11–14 January 2018, vol.
94, pp. 21:1–21:21. LIPIcs (2018). https://doi.org/10.4230/LIPIcs.ITCS.2018.21

11. Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party computa-
tion. In: 48th Annual Symposium on Foundations of Computer Science, Provi-
dence, RI, USA, 20–23 October 2007, pp. 238–248. IEEE Computer Society Press
(2007). https://doi.org/10.1109/FOCS.2007.21

12. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky Encryption and Its
Applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS,
vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 4

13. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th Annual ACM Symposium on Theory of Computing, Montréal,
Québec, Canada, 23–25 May 1994, pp. 554–563. ACM Press (1994). https://doi.
org/10.1145/195058.195408

14. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of
Computing, Palo Alto, CA, USA, 1–4 June 2013, pp. 555–564. ACM Press (2013).
https://doi.org/10.1145/2488608.2488678

15. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-
interactive multiparty computation without correlated randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 181–211.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 7

16. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: Sudan, M. (ed.) Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cam-
bridge, MA, USA, 14–16 January 2016, pp. 157–168. ACM (2016). https://doi.
org/10.1145/2840728.2840760

17. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

18. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
Secure Garbled Circuits from One-Way Functions. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 6

19. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium
on Foundations of Computer Science, Redondo Beach, CA, USA, 12–14 November
2000, pp. 294–304. IEEE Computer Society Press (2000). https://doi.org/10.1109/
SFCS.2000.892118

https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1109/FOCS.2007.21
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1145/195058.195408
https://doi.org/10.1145/195058.195408
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1109/SFCS.2000.892118

Threshold Garbled Circuits and Ad Hoc Secure Computation 93

20. Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled circuits.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 40–71.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 2

21. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt,
M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 433–458. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 17

22. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in
Complexity Theory, pp. 102–111 (1993)

23. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 8

24. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applica-
tions. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

25. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161–188 (2008). https://doi.org/10.1007/s00145-008-
9036-8

26. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Feldman, S.I., Wellman, M.P. (eds.) Proceedings of the First ACM
Conference on Electronic Commerce (EC-99), Denver, CO, USA, 3–5 November
1999, pp. 129–139. ACM (1999). https://doi.org/10.1145/336992.337028

27. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In:
27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario,
Canada, 27–29, October 1986, pp. 162–167. IEEE Computer Society Press (1986).
https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/11593447_8
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1145/336992.337028
https://doi.org/10.1109/SFCS.1986.25

	Threshold Garbled Circuits and Ad Hoc Secure Computation
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Positional Secret Sharing (PoSS)
	2.2 Threshold NIMPC
	2.3 (l, k)-Secure Ad Hoc PSM
	2.4 Related Work

	3 Background
	3.1 Secret Sharing
	3.2 Homomorphic Secret Sharing (HSS)

	4 Our Model
	4.1 Threshold NIMPC
	4.2 Ad Hoc PSM
	4.3 Adaptive-Ad-Hoc PSM

	5 Positional Secret Sharing (PoSS)
	5.1 PoSS: Our Construction

	6 Threshold NIMPC
	7 Ad Hoc PSM
	7.1 Ad Hoc PSM for All Functions
	7.2 Fully Secure Ad Hoc PSM

	References

