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Abstract. Garbled Circuits (GCs) represent fundamental and powerful
tools in cryptography, and many variants of GCs have been considered
since their introduction. An important property of the garbled circuits is
that they can be evaluated securely if and only if exactly 1 key for each
input wire is obtained: no less and no more. In this work we study the
case when: 1) some of the wire-keys are missing, but we are still interested
in computing the output of the garbled circuit and 2) the evaluator of
the GC might have both keys for a constant number of wires. We start to
study this question in terms of non-interactive multi-party computation
(NIMPC) which is strongly connected with GCs. In this notion there is
a fixed number of parties (n) that can get correlated information from a
trusted setup. Then these parties can send an encoding of their input to
an evaluator, which can compute the output of the function. Similarly
to the notion of ad hoc secure computation proposed by Beimel et al.
[ITCS 2016], we consider the case when less than n parties participate
in the online phase, and in addition we let these parties colluding with
the evaluator. We refer to this notion as Threshold NIMPC.

In addition, we show that when the number of parties participating
in the online phase is a fixed threshold | < n then it is possible to
securely evaluate any [-input function. We build our result on top of a
new secret-sharing scheme (which can be of independent interest) and
on the results proposed by Benhamouda, Krawczyk and Rabin [Crypto
2017]. Our protocol can be used to compute any function in NC* in the
information-theoretic setting and any function in P assuming one-way
functions.

As a second (and main) contribution, we consider a slightly different
notion of security in which the number of parties that can participate
in the online phase is not specified, and can be any number ¢ above the
threshold [ (in this case the evaluator cannot collude with the other par-
ties). We solve an open question left open by Beimel, Ishai and Kushile-
vitz [Eurocrypt 2017] showing how to build a secure protocol for the case
when c is constant, under the Learning with Errors assumption.
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1 Introduction

Garbled Circuits (GCs) have played a central role in cryptography. The basic
version of GCs has been shown to be useful for secure computation as well as
various other areas in cryptography because of its non-interactive nature [4,13,
19,25-27]. Various GC variants with additional properties have also played an
important role: e.g. GC with free-XOR [24], adaptive GC [18,20,21], information-
theoretic GCs [23], covert-garbled circuit [11], and arithmetic GC [2]. Moreover,
in general, a garbled circuit can be viewed as a randomized encoding which
in turn has played an important role even beyond cryptography in complexity
theory [1]. A key property of a garbled circuit is its “decomposability”, i.e.,
different input wire keys can be computed independently based on the value
on that wire (also referred to as decomposable randomized encodings). This for
example allows to use a separate 1-out-of-2 Oblivious Transfer (OT) for each
input wire. In various applications, this property has played an important role,
like in building functional encryption from attribute based encryption [14], and in
building Non-Interactive Multi-Party Computation (NIMPC) [6] where different
parties hold input values corresponding to different input wires. An important
property of the garbled circuits is that they can be evaluated securely if and only
if exactly 1 key for each input wire is obtained: no less and no more. Moreover,
if the evaluator of the garbled circuit has more than one keys (even for a single
wire) the security of the garbled circuit is (in general) compromised.

In this work, we ask the following natural question: what if 1) the keys cor-
responding to some of the input wires are missing and 2) more than one key for
a subset of wires is leaked to the adversary?

In particular, suppose that a function is well defined even if only a subset of
the inputs are present (e.g., the function simply computes the majority, some
aggregate statistics like the median or the sorting on the inputs). Furthermore,
suppose we only have the wire keys exactly for say | wires (less than the total
number of wires n) and that more than one key for a constant number of wires
can be leaked to the adversary. Can we obtain a garbled circuit construction that
still allows one to securely compute the function output in this case?

Here [ can be seen as a parameter for the GC construction. This notion,
besides being intriguing and interesting in its own right, can also be seen as
having natural applications to NIMPC. In NIMPC we can distinguish three main
phases: setup, online and evaluation. In this, various parties with inputs and
auxiliary information obtained during the setup phase, can encode their inputs
and send this encoding to an evaluator during an online phase. The evaluator
can then compute the output of the function without further interaction with
the other parties. Basic constructions of NIMPC readily follows from GC. That
is, the setup generates a garbled circuit with n input wires for the function
that needs to be computed. Each party p; receives two wire keys (one for the
input 0 and one for the input 1) for the i-th wire. During the online phase
each party sends the wire key which corresponds to its input to the evaluator.
The evaluator, which now has n wire keys, can evaluate the garbled circuit
and obtain the output. Frequently cited example applications of NIMPC are
voting and auctions [6,9]. However, in the case of voting, it is conceivable that
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several voters might never show up. Can we obtain a system where if a threshold
number of voter votes, the result can be obtained? One could also even consider
“attribute-based voting” where your attributes determine whether or not you
are eligible to vote. For example, in deciding a tenure case, only voters having
the attributes of “full professor” and “computer science department” might be
eligible. The number and identity of such voters may not necessarily be known
at the time of the NIMPC setup (and only an upper-bound on the number of
voters is known). Let n be total number of parties, the question we study in this
paper is the following:

“Is it possible to obtain a construction of garbled circuits for a function having

n input wires s.t. if the wire keys corresponding of | < n wires are available,

then the output can be securely computed even if both the keys for a constant
number of wires are leaked to the adversary?”

A partial answer to the above question has been given in [7], where the
authors show how to obtain such a NIMPC protocol under the assumption that
the evaluator does not collude with any of the other parties. Another partial
answer has been given in [9], where the authors show how to obtain a NIMPC
protocol that tolerates a constant number of corruption only for the case where
l = n, where n is the total number of parties involved in the protocol. However,
to the best of our knowledge, we are the first to study the combination of the
two problems. In [7] the authors consider another interesting notion called (I, k)-
secure ad hoc private simultaneous messages (PSM). This notion is similar to the
notion of NIMPC, with the difference that 1) the parties cannot collude with
the evaluator and 2) any number k of parties might participate in the online
phase of the protocol, with k& > I. Beimel et al. [7] proved that such a notion (for
generic values of [ and k) would imply obfuscation®, and left open the following
question:

“Is it possible to obtain (1,1 + c)-secure ad hoc PSM protocol for a constant ¢?”.

1.1 Owur Contributions

Our contribution lies in studying of the above questions, providing a formal
definition, and obtaining various constructions. Our most basic result is the
following:

Theorem 1 (informal). If there exists an l-party NIMPC protocol for the [-
input function f which tolerates up to t corruptions, then there exists an n-party
Threshold NIMPC' protocol that tolerates up to t corruptions that can securely
evaluate f when only | of the n parties participate in the online phase.

This can also naturally be seen as a threshold garbled circuit where the mes-
sage received by the evaluator during the setup phase corresponds to the garbled
circuit, whereas the two messages corresponding to two different possibilities of

! The authors of [7] propose inefficient constructions for general functions.
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the input (i.e., either 0 or 1) for party p; can be seen as the two possible wire-
keys for the i-th input wire. Our construction also relies on a conceptual tool
which we call positional secret sharing (PoSS), which we instantiate information
theoretically. Please see the technical overview for more details. We note that
our construction, additionally, has the feature that it can handle up to a con-
stant number of corruptions (assuming the input of each player is a single bit).
We build upon the construction of Benhamouda et al. [9] with tolerates up to a
constant number of corruptions. Informally, this means that the evaluator may
be able to compute multiple outputs of the function by flipping the input of the
corrupted parties (since the corrupted parties can generate an encoding of both
the inputs 0 and 1). However, the evaluator learns no more than having access
to an ideal functionality which allows for computing such multiple outputs. As
noted in [9], a construction tolerating an arbitrary number of corruptions in this
setting implies indistinguishability obfuscation (iO) [3]. Our second (and main)
technical construction is a protocol that retains its security even if more than [
input wire keys are given to an evaluator. Going back to the example of voting,
while one may have an estimate on how the voter turnout will be (e.g., based on
historical data), it might be hard to know the exact number of voters in advance.
If the actual number of voters turns out to be even [ + 1 (as opposed to 1), all
security guarantees cease to exist and our previous construction may become
entirely insecure. Towards that end, we ask the following question:

“Is it possible to design construction of garbled circuits where if anywhere
between | and | + ¢ inputs wire keys are obtained, the function output can be
securely computed?

In other words: can we have an (I,l + ¢)-secure ad hoc PSM protocol? Note
that in this setting, the evaluator can compute multiple outputs by selecting
any [-sized subset of the received inputs. While ideally, we would like to have
I+ ¢ = n (for a generic ¢), such a construction necessarily implies iO and indeed,
using i0, a construction where [ + ¢ = n can be readily obtained (we recall
that n is the total number of parties). However, since our focus is on using
standard falsifiable assumptions, we restrict our attention to the case where c is
a constant. In addition, our construction allows the input of each party to be a
string of arbitrary size. Our main theorem is the following:

Theorem 2 (informal). If the LWEs assumption holds, then there exists an n-
party (1,1 + c)-secure ad hoc PSM protocol that can securely evaluate an l-input
function f when N parties participate in the online phase with N < l+c<n
for a constant c.

We stress that N does not need to be known in the setup phase. The last
notion that we consider in this paper is adaptive-ad-hoc PSM. This notion, in
addition to the notion of ad hoc PSM, gives to the evaluator the possibility
to evaluate an N-input function fxn, where N is the number of parties that
participate in the online phase, with N <[+ ¢ < n. This notion gives the same
security guarantees as to the notion of (1,14 ¢)-secure ad hoc PSM, but it allows
an honest evaluator to evaluate a function even if more than [ parties participate
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in the online phase. It should be easy to see that such a notion can be easily
realized using multiple instantiations of an ad hoc PSM scheme. Even in this
case, the input of each party can be a string of arbitrary (bounded) length.

2 Technical Overview

We start illustrating a new secret sharing scheme which is instrumental for our
constructions. Then we show how to use such a secret sharing scheme to construct
a threshold NIMPC and an (I, k)-Ad Hoc PSM protocol.

2.1 Positional Secret Sharing (PoSS)

We consider the setting where there is a dealer, n non-colluding parties
{p1,....pn} and an evaluator. A PoSS scheme allows a dealer to compute a
secret sharing of [ secrets x1,...,x; with respect to a party index j and dis-
tribute these shares among the n parties. Let S = (s1,...,8,) be the output
shares computed by the dealer. Any subset of parties of size [ can send their
shares to an evaluator, and if the j-th party has the a-th greatest index among
these [ parties, then the evaluator can reconstruct the a-th secret. If the party
p; does not send its share then none of the secrets can be reconstructed (the j-th
share goes always to the party p;). To construct such a scheme we use a standard
t-out-of-m secret sharing scheme. In more detail, the dealer computes 3-out-of-3
secret sharing of z; obtaining z?, #; and z}. Then computes 1) an (i — 1)-out-
of-(j — 1) secret sharing of @} thus obtaining the shares s;1,...,8;;-1, 2) an
(I —1i)-out-of-(n — j) secret sharing of 2? obtaining s; j+1,- .., S, and 3) defines
;i := Z;. The output of the sharing algorithm corresponds to (si,...,s,) with
si == (S1,4y.-.,81,) for each ¢ € [n]. Intuitively, if the evaluator receives the
shares S" = (si;,...,8;) with 0 < iy < -+ < i < n where j = i, for some «,
then she can reconstruct z¥ using the shares s;,,...,s;, ,, z. using the shares
Sipi1s-+ -5 5; and Zo, which corresponds to the share s;,. Note that all the other
secrets x; are protected since there are not enough shares to either reconstruct
x? or z for each k € [I] — {a}. In the case where there is no i, with o = j, then
none of the secrets can be reconstructed since one share of the 3-out-of-3 secret
sharing will be missing for each of the secrets.

2.2 Threshold NIMPC

Let f be an I-input function. To obtain a Threshold NIMPC for f that tolerates
t corruptions we use a PoSS scheme in combination with a standard NIMPC
protocol that supports t corruptions and that can be used to evaluate [-input
functions. Let p1,...,p, be the parties that could participate an execution of
the protocol (we recall that a threshold NIMPC is parametrized by [, which
represents the maximum number of parties that can participate in the online
phase). The idea is to pre-compute an encoding of the input 0 (that we denote

with mf) and of the input 1 (that we denote with m}) for each input slot
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J € [I] of the NIMPC scheme. Then we run two instantiations of a PoSS for each
party p;. The first instantiation of the PoSS scheme is run on input the secrets
md, ... ,m? (and the index i of the party) whereas the second is run using the
secrets mf,...,m; (and the index i of the party). Let (sf,,...,s?,) be the
output shares of the first instantiation of the PoSS scheme, and (s ,...,s;,)
be the output of the second instantiation for the party p;. All these shares are
then distributed among the n parties. During the online phase each party p; acts
as follows. If the input of p; is b; = 0 then p; sends all the shares but the one
related to the second instantiation of the PoSS scheme for the index i (i.e., p;
does not send s;;), if b; = 1 then p; sends all the shares but the one related
to the first instantiation of the PoSS scheme for the index ¢ (i.e., p; does not
send 3?,i)~ The security of the PoSS scheme guarantees that if a party p; does
not send the share for one instantiation of PoSS that is run with respect to 4,
then nothing can be learned about the secrets encoded in that instantiation. In
addition, for the case when p;, sends the share s? , (with b € {0,1}), the PoSS
security guarantees that only the secret in position ¢, can be learned. Hence, the

evaluator can compute mli“ e ,m?i’ by running the reconstruction algorithms
for the [ instantiations of the PoSS scheme for which at least [ shares have been
provided.? These messages then can be used to run the evaluation algorithm of
NIMPC protocol to obtain the output of f. In addition, if the NIMPC protocol
used in the above construction supports up to t-corruption, so does our scheme.
We allow only the corruption of the parties that are participating in the protocol.
That is, if [ parties provide an input then the corrupted parties belong to this
set of parties. We give no security guarantees in any other case (which would
give to the colluding evaluator an additional share for the PoSS scheme reaching
the total of [ 4+ 1 shares, compromising the security of the PoSS scheme, and in
turn, the security of the underling NIMPC protocol). Given the implication of
NIMPC with iO, for our construction we consider only the case when the input
of each party is a bit, exactly as in [9] (our other constructions do not have this
limitation).

2.3 (l,k)-Secure Ad Hoc PSM

The notion of (I, k)-secure ad hoc PSM is similar to the notion of threshold
NIMPC with the following two differences: 1) provides the best possible security
guarantees in the case when N parties participate in the online phase for an
unknown N with [ < N < k and 2) the security holds only if the evaluator does
not collude with the other parties. In this work we want to construct a (I,1+ c)-
secure ad hoc PSM for a constant ¢. Moreover, we want to construct a scheme
that allows the input of each party being a bit-string (instead of one bit like
in the previous construction). One might think that a threshold NIMPC pro-
tocol already satisfies this security notion. We start by describing what are the

2 The shares of the PoSS scheme need to be opportunely permuted to not give a trivial
advantage to the adversary. We refer the reader to the technical part of the paper
for more detail.
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problems in trying to prove that our threshold NIMPC is an ad hoc PSM, even
considering the case when the input of each party is a bit, and then show how our
construction works in an incremental fashion. In the threshold NIMPC showed
above, if more than [ parties are participating to the online phase then more than
one secret from each instantiation of the PoSS scheme would be leaked (by the
definition of PoSS). Hence, it might be possible for a corrupt evaluator to learn
an encoding of different messages for the same input-slots of the NIMPC proto-
col. Note that this problem could be mitigated if the underlying NIMPC protocol
was secure against an arbitrary number of corruptions, but any such a scheme
would imply i0. Luckily, we do not really need a NIMPC protocol that sup-
ports an arbitrary number of corruptions, but we need a protocol that remains
secure in the case when an evaluator, given a set of input X := (x;,,..., %),
could run the NIMPC protocol on any subset of size [ of X. This property is
clearly not enjoyed by a NIMPC protocol that supports a constant number of
corruptions. Moreover, even if the problem of corruption and the problem that
we are describing here seem related, it looks like a completely different tech-
nique is required. To see the problem from a different perspective, the issue of
obtaining a secure NIMPC protocol in the case of corruption is related to the
fact that an adversary could evaluate the function on strings that have hamming
distance at most ¢ from each other. That is, an adversary can flip up to t-bits,
obtaining up to 2! different inputs. In our case, even for ¢ = 1, an adversary
obtains inputs that have hamming distance ! (where { is a polynomial). This is
because the adversary, for example, could remove one input in the first position
and add a new input in the last position thus causing the shift of the inputs that
have not been replaced. Therefore, if the strings are close in terms of editing
distance, they could have more than [ hamming distance. For this reason, it is
not clear how the techniques used to achieve security against corrupted parties
(for example those used in [9]) would be helpful in our case.

Quasi-secure Ad Hoc PSM. We now describe how, at a very high level, our
protocol works. We provide an incremental description, starting from a protocol
that is not secure, and gradually modifying it until we reach our final result. Let
us consider the simplified scenario where we have only four parties pi, p2, p3
and ps and we want to construct a (3,4)-Ad Hoc PSM protocol for the 3-input
function f. As a main tool, we consider two simple two-party NIMPC protocols
(that tolerate no corruption): I7; that realizes the function g, ITs that realizes the
function goyt. The function g, on input two values (z1, z2) concatenates them
and creates an encoding of zq ||z for the first input slot of IT5. The function gouyt
takes the two inputs (z1||22, 23) and outputs f(z1, 22, 23).

Given II; and Il,, each party p; now prepares an encoding of its input z;
for the first and the second input slot of II; (let us call these encodings Msg?
and Msg%). In addition, each party p; computes an encoding of x; for the sec-
ond input slot of ITy (let us call this Msg?). For each party p; then we run an
instantiations of a PoSS scheme with input (Msg;, Msg?, Msg?, 7). The security
of the PoSS schemes guarantees that if the parties that are participating in the
online phase are, for example, p; p2 and p4, then the evaluator will be able to
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get (Msg1, Msgg, Msg3) only. The evaluator, at this point can evaluate the func-
tion ¢g with the inputs of p; and py by running the evaluation algorithm for I7;
on input Msg% and Msgg. The output of II; can then be used in combination
with Msgi to run the evaluation algorithm of IIs to compute the final output.
It should be easy to see that this scheme is a threshold-NIMPC protocol that
tolerates no corruption. But we are now interested in the security of the proto-
col in the case when four parties participate in the online phase. In this case,
the PoSS scheme allows the evaluator to get, for example, (Msg}, Msg%, I\/Isgi)
and (Msg3, Msgg7 Msg?) at the same time. This means that the evaluator can
run the evaluation algorithm of IT; using (Msg], Msg3) and (Msg), Msg3) thus
obtaining two different encodings for different values for the first input slot of
II, (assuming that the xq||xg # 22||z3). This corresponds to the case in which
the evaluator can collude with a party to generate encodings of multiple inputs
for the first input slot of IT5. Since we do not want to assume that ITs is resilient
against such an attack®, we modify the protocol as follows:

— Instead of considering one protocol I1s that realizes the function goyt, we
consider A protocols*: 113, ..., I13.

— Each input of g now comes with two random values v; and vy that each party
samples. Hence, the inputs of g now can be seen as (z1||v1, z2||v2).

— The function g, on input z1||v; and z3||vy computes y = 21|22 and the hash
H(vi @ v2) thus obtaining sel € [A]. Then ¢g encodes y accordingly to the
protocol IT5¢.

— The party p3 and ps now compute an encoding of their input for the second
input slot for all the protocols 113, ..., IT3.

This mechanism now partially solves the problem of the previous protocol.
This is because a different combination of inputs for IT; yields to an encoding
for a different protocol IT5¥, with sel € [A]. Indeed, if the IT; is run using the
input contributed by p; and ps then the output of IT; corresponds to an encod-
ing of the concatenation of x||zo for the protocol T3 with sel = H(v; @ vy).
If instead IT; is run using the input contributed by p; and ps, then we have
that H(vy @ va) # H(v; @ v3) = sel’ with some probability 1/p (that depends on
the choice of A and on the random coins of the parties). Hence, the output
of II; corresponds to an encoding for the protocol H;e'/. Clearly, A\ needs to
be polynomially related to the security parameter. This means that the prob-
ability of founding a collision for H is non-negligible (and if there is a collision
then the security of this protocol collapses back to the security of the previ-
ous protocol). Later in this section we show how to solve this problem using
the LWE assumption. Before discussing that, we note that this protocol has yet
another issue. As we said, the evaluator can get the values (Msg%, Msgg7 I\/Isgi)
and (Msg%7 I\/Isg§7 Msgi) when all the parties participate in the online phase.
Given that Msg; and Msg) represent the encoding of different values for the

3 We recall that we do not know any NIMPC protocol that is secure in this setting
when the inputs of Il are bit strings unless from assuming iO.
4 We discuss the size of X later in the paper.
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first input slot of II;, then we have an issue similar to the one that we have
just discussed. This time, we can solve this problem easily. We simply consider
an instantiation of a NIMPC protocol that realizes the function g which we
denote with IT77, which can be used only by the party 7,7, with ¢ € {1,2} and
J € {2,3,4}. Then, for example, the party p; will compute an encoding for the
first input slot of I7}°%, IT}** and IT{"*, and use all of them as the input of the first
instantiation of the PoSS scheme. For the protocol that we have just described,
we can prove that for a suitable choice of A (given that c¢ is a constant value)
the probability that there are no collisions in H is 1/p where p is a polynomial.
Hence, we can prove that the execution of our protocol is secure with probability
1/p. We note that in this discussion we have assumed that the security of the
PoSS scheme is not compromised even when more than [ parties provide their
shares. In the technical part of the paper we show that our construction of PoSS
enjoys a stronger notion, that is indeed sufficient to construct the protocol that
we have just described. To extend the above construction to the case when the
number of party is more than 4, and the threshold [ is an arbitrary value, we
just need to consider a longer chain of 2-party NIMPC protocols. However, this
generalization has to be done carefully to avoid an exponential blowup in the
size of the messages. For more details on that, we refer the reader to Sect. 5.

Fully Secure Ad Hoc PSM. We denote the protocol that we have just
described with ITPSM and show how to use it to obtain an ad hoc PSM that
is (1,1 + c)-secure. To amplify the security of ITP>M we make use of a homo-
morphic secret sharing (HSS) scheme for the function f (we recall that f is
the [-input function that we want to evaluate). At a high level, a HSS allows
each party 7 to compute m shares of its input z; and distribute them among
m servers using the algorithm Share™SS so that z; is hidden from any m — 1
colluding servers. Each server j can apply a local evaluation algorithm Eval™SS
to its share of the [ inputs, and obtain an output share y;. By combining all
the output shares it is possible to obtain the output of the function, that is
Y1 D DYm = f(x1,...,27).5 At a very high level, our protocol consists of m
instantiations of ITP°M where the e-th instantiation evaluates the function G,
with e € [m]. The Function G, takes as input [ shares of the HSS scheme, and
uses them as input of Eval"'SS together with the server index e (see the bottom
of Fig. 6 for a formal specification of G.). Each party p; that wants to participate
in the protocol computes a secret sharing of its input thus obtaining m shares
($1,---,8m)- Then p; uses the e-th share as input of the e-th instantiation of
ITPSM | The evaluator runs the evaluation algorithm of the e-th instantiation of
ITPSM thus obtaining y. (which corresponds to the output of Evalt’SS on input
the e-th shares of all the parties) for each e € [m]. The output of the evaluation
phase then corresponds to y; @ - - - ® ym. We show that this protocol is secure as
long as there is at least one execution of IT”°M that is secure (i.e., simulatable).
Moreover, by choosing m opportunely we can prove that at least one execution
of ITPSM is secure with overwhelming probability. Hence, at least one share of

5 In our work we assume that the HSS is additive.
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each of the inputs of the honest parties will be protected. Therefore, because of
the security offered by the HSS, also the input of the parties will be protected.

Adaptive-Ad-Hoc PSM. It is straightforward to construct an adaptive-ad-
hoc PSM having a (1,1 + ¢) ad hoc PSM ITAPM. Indeed, we just need to run ¢
instantiation of ITAPSM | where each instantiation computes a function f, with
arity « for each av € {l,...,l 4 c}.

2.4 Related Work

The study of MPC protocols with restricted interaction was initiated by Halevi,
Lindell, and Pinkas [16,17]. We have mentioned the work of Benhamouda et
al. [9] which provides the first NIMPC protocol that tolerates up to a constant
number of corruptions for all functions in P under OWFs. In addition, the
authors show how to obtain a more efficient NIMPC protocol for symmetric
functions. The work [5] introduces the notion of ad hoc PSM and in [7] the
authors propose many instantiations of such a primitive in the information-
theoretic and computational setting. A result of [7] that is very related to our
first contribution, is the construction of an ad hoc PSM protocol for a k-argument
function f : X* — Y from a NIMPC protocol for a related n-argument function
g: (XU{L})™ — Y. More precisely, the function g outputs L if there are more
than n — k inputs that are 1, it outputs the output of f if there are exactly
n — k inputs that are L, in any other cases the output of g is undefined. The
compiler that we propose is more generic and it preserves its security against
colluding parties (if any). Always in [7] the authors propose an (I, + ¢)-secure
ad hoc PSM protocol for symmetric functions whose complexity is exponential
in /, and prove that an (I, k)-ad hoc PSM protocols for simple functions with
generic (I, k) already implies obfuscation for interesting functions. In [8] the
authors improve the efficiency of the protocols proposed in [7]. The work [16] try
to make reusable the setup assuming more interactions between the parties, or
assuming specific graphs of interaction patterns. In [15] the authors successfully
remove the need of the parties to obtain correlated randomness from the setup
phase via a PKI supplemented with a common random string under the iO
assumption. In addition, the construction proposed in [15] tolerates arbitrary
many corruptions.

3 Background
Preliminaries. We denote the security parameter by A and use “||” as con-
catenation operator (i.e., if @ and b are two strings then by a||b we denote the

concatenation of a and b). For a finite set Q, = S Q@ denotes a sampling of x
from @ with uniform distribution. We use “=" to check equality of two different
elements (i.e. @ = b then...), “~” as the assigning operator (e.g. to assign to
a the value of b we write a < b). and := to define two elements as equal. We
use the abbreviation PPT that stands for probabilistic polynomial time. We use
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poly(-) to indicate a generic polynomial function. We assume familiarity with
the notion of negligible function. We denote with [n] the set {1,...,n}, Ny the
set of non-negative integers and with N the set of positive integer.

3.1 Secret Sharing

A secret sharing scheme allows a dealer to share a secret m among n parties
P ={p1,...,pm} such that any authorized subset (if any) of P can reconstruct
the secret m, while the other parties learn nothing about m. We now give the
definition of [-out-of-n secret sharing.

Definition 1 (l-out-of-n secret sharing). A l-out-of-n secret sharing scheme
over a message space M is a pair of PPT algorithms (Share, Reconstruct) where:

— Share on input x € M outputs n shares (s1,...,8n);
— Reconstruct on input | values (shares) outputs a message in M;

satisfying the following requirements.

— Correctness. Vo € M, VS = {i1,...,4} C{1,...,n} of sizel,

Prob [ # < Reconstruct(s;,,...,s;,) : ($1,...,8n) < Share(z) | = 1.
— Security. Ve, 2’ € M, VS C{1,...,n} s.t. |S| <, the following distributions
are identical: {(s;)ics : (S1,...,Sn) < Share(z)}

{(s})ies : (sh,...,58),) < Share(z’)}.

3.2 Homomorphic Secret Sharing (HSS)

We consider HSS scheme that supports the evaluation of a function f on shares
of inputs z1,...x, that are originated from different clients. In this notion each
client ¢ can compute m shares of its input z; and distribute them between m
servers using the algorithm ShareHSS so that x; is hidden from any m—1 colluding
servers. Each server j can apply a local evaluation algorithm EvaltS® to its share
of the n inputs, and obtains an output share y;. The output f(z1,...,z,) is
reconstructed by applying a decoding algorithm DecHSS to the output shares

Y15y Ym-

Definition 2 (HSS [10]). An n-client, m-server, t-secure homomorphic secret
sharing scheme for a function f : ({0,1}*)"*1 — {0,1}*, or (n,m,t)-HHS for
short, is a triple of PPT algorithms (ShareHSS, Eval™SS DecHSS) where:

— ShareMSS(1*,4,2): On input 1 (security parameter), i € [n] (client index)
and x € {0,1}* (client input), the sharing algorithm Share™S outputs m

input shares (z*,... 2™
- EvalSS(4, zo, (2], ..,2)): On input j € [m] (server index), o € {0,1}*
(common server input), and x7,...,xJ, (j-th share of each client input), the

evaluation algorithm Eval"SS outputs y? € {0,1}*, corresponding to the server
j’s share of f(xo;x1,...,Tn).
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~ Dec™SS(yt, .. y™): Oninput (y', ..., y™) (list of output shares), the decoding
algorithm DecHSS computes a final output y € {0, 1}*.

The algorithm (ShareHSS EvaltSS DecHSS) should satisfy the following cor-
rectness and security requirements:

- Correctness: For any n+ 1 inputs xo,...,x, € {0,1}*,
Prob[Vi € [n](z},...2™M) & ShareSS(12 i, 2;), Vj € [m] o & EvalsS(j, z,

(x9,...,22)) : DectSS(yl, ... y™) = f(wo; @1, . 2n)] = 1 —v(N).

— Security: Consider the following semantic security challenge experiment for

corrupted set of server T C [m]:

1. The stateful adversary gives challenge index and inputs (i,x9,21) «—

A1), with i € [n] and |xo| = |21].
2. The challenger samples b & {0,1} and (z',...,2™) & ShareSS (1%,
i, {Iib).

3. The adversary outputs b’ «— A((z7)jer) given the shares for corrupted T.
Denote by a := Prob[b=1b"] — 1/2 the advantage of A in guessing b in
the above experiment, where probability is taken over the randomness of the
challenger and of A. For circuit size bound S = S(\) and advantage bound
a = a(N), we say that an (n,m,t)-HSS scheme II is (S, a)-secure if for all
T C [m] of size |T| < t, and all non-uniform adversaries A of size S(\), we
have a < a(X). We say that II is computationally secure if it is (5,1/5)-
secure for all polynomials S.

In this work we consider only additive HSS schemes. An HHS scheme is
additive if DecSS outputs the exclusive or of the m output shares. For our
construction we make use of an additive (n, m, m—1)-HSS scheme. Such a scheme
can be constructed from the LWEs assumption [10,12].

4 Our Model

In this section we propose the formal definition of NIMPC. We give a more
general definition that captures the case when up to ¢ parties can collude with
the evaluator, and following [9,16,17], we refer to this notion as t-robust NIMPC.
Then we give our new definition of threshold NIMPC which can be seen as a
combination of the notion of NIMPC with the notion of ad hoc PSM proposed
in [6]. Let X be a non-empty set and let X" denote the Cartesian product
X" =X x - xXAX.

Definition 3 (NIMPC Protocol. [9]). Let F = (F,)nen be an ensemble of
sets Fy, of functions f : X — Y, where Y is a finite set. A non-interactive secure
multiparty computation (NIMPC) protocol for F is a tuple of three algorithms
IT := (Setup, Msg, Eval), where:

— Setup takes as input unary representations of n and of the security param-
eter A, and a representation of function f € F, and outputs a tuple

(p07p15 .. apn);
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— Msg takes as input a value p;, and an input v; € X, and deterministically
outputs a message m;;

— Eval takes as input a value py and a tuple of n messages (my, ..., my,) and
outputs an element in Y satisfying the following property:
Correctness. For any n € N, security parameter \ € Ny, f € Fp, © :=

(1,...,2n) € X, and (po, - .-, pn) & Setup(1™, 1%, f),
Eval(po, Msg(p17x1)7 DR} Msg(pTHIH)) = f(I)

While the previous definition is abstract, in the sequel, we will often see
NIMPC protocols as protocols with n parties p1, ..., p, with respective inputs
Z1,...,T, and an evaluator py. A polynomial-time NIMPC protocol for F is an
NIMPC protocol (Setup, Msg, Eval) where Setup, Msg, and Eval run in polynomial
time in n and A. In particular, functions f € F should be representable by
polynomial-size bit strings.

Robustness. For a subset T = {i1,...,4:} C [n] and =z = (21,...,2,), We
denote by Zr the t-coordinate projection vector (z;,...,z;, ). For a function
f: X" =Y, we denote by fl|z o the function f with the inputs corresponding

to positions T fixed to the entries of the vector . We now recall the notions of
robustness for NIMPC protocols. Informally, T-robustness T C {1,...,n} for a
set T' of colluding parties means that if x7 represents the inputs of the honest
parties, then an evaluator colluding with the parties in set T' can compute the
residual function f |T,zf on any input z= but cannot learn anything else about the
input of the honest parties. This describes the best privacy guarantee attainable
in this adversarial setting. The formal definition is stated in terms of a simulator
that can generate the view of the adversary (evaluator plus the colluding parties
in set T') with sole oracle access to the residual function f |T»$T'

Definition 4 (NIMPC Robustness [9]). Let n € N and T C {1,...,n}. 4
NIMPC protocol II is perfectly (resp., statistically, computationally) T-robust if
there exists a PPT algorithm Sim (called simulator) such that for any f € F,
and 3 € X, the following distributions are perfectly (resp., statistically, com-
putationally) indistinguishable: {Simflf””?(ln, 12, 7))}, {View(1",1*, f, T, z7)},
where {View(1™,1*, f, T, x7)} is the view of the evaluator py and of the col-
luding parties p; (for i € T) from running II := (Setup,Msg, Eval) on input

a7 for the honest parties: that is, ((m;);cr, po, (pi)ier) where (po, ..., pn) &
Setup(1™, 1%, f) and m; «— Msg(p;,x;) for all i € T where xg := (x;);c7. Let
t € Ny be a function of n, then a NIMPC protocol II is perfectly (resp., statisti-
cally, computationally) t-robust if for any n € N and any T C {1,...,n} of size
at most t = t(n), IT is perfectly (resp., statistically, computationally) T-robust.

Robustness does not necessarily imply that the simulator Sim is the same for any
n and 7. In this and in the following notions we consider only PPT simulators
since in this paper we focus only on efficiently simulatable protocols.
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4.1 Threshold NIMPC

We introduce the new notion of Threshold NIMPC. A Threshold NIMPC is
parametrized by n and [ with 0 <1 < n, where n denotes the number of parties
and [ represents a threshold. Given a set of n parties P, any subset of P’ C P
of size | can evaluate the function f : X ' - Y, where Y is a finite set and X =
{{0,1}*,{1,...n}}. In more details, we assume that any party in P is univocally
identified by an index i € [n]. The setup algorithm and the algorithm used by
the parties to generate an encoding of their inputs have the same interface as the
algorithms of a NIMPC protocol. The difference is in the evaluation algorithm.
In this notion we do not require all the n parties to participate in the protocol
in order to evaluate a function. That is, any subsets of P of size | would allow
the evaluator to compute the function f. Without loss of generality, we consider
only functionalities whose output depends on the inputs of the parties, and on
the indexes of the parties that contributed with these inputs. Formally, the class
of function supported by our protocol is described in Fig. 1 (where g can be any
function).

Input: ((zi,,1),... (i, 1)) where {i1,..., it} C [n], iy,..., 2y € X, 1 <n
and n € N.

Output: Let (j1,...,) be a permutation of the values (i1,...,4) such that
1<j1<j2<-<jiz1 <ji <n and output L if such a permutation does not
exist, else, output g(mjl, . ,ZC]'L)

Fig. 1. Class of functionalities supported by our threshold NIMPC protocol.

Definition 5 (Threshold NIMPC Protocol). Let F = (F})ien be an ensem-
ble of sets F; of functions f : X — Y, a Threshold NIMPC protocol for F is a
tuple of three algorithms (Setupth, Msg™", Evalth), where:

— Setu pth takes as input unary representations of n, l and of the security param-
eter A with 1 <1 <n, and a representation of function f € F; and outputs a

tuple (1007 Ply--- apn);
— Msg™ takes as input a value p;, and an input x; € X, and deterministically

outputs a message m;;
— Eval™ takes as input a value py and a tuple of n messages (M, .. ,my,) with
1< <---<j; <n and outputs an element in Y;
satisfying the following property:
Correctness. For any n € N, security parameter A\ € Ny, f € F, © =
. . . . . $
((a:jl,yl),...,(le,jl)) € X, withl <j < - <gi <n and (po,...,pn) —
Setup™(17,14,1%, f),

Evalth(po, MSgth(pjl’le)v sy MSgth(pjl’sz)) = f((xjujl)v cee (xjmjl))'
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Definition 6 (Threshold NIMPC Security). Let n € N, K := {j1,...,j}
with1 < j3 < - <j;<n, TCK andT := K —T. A Threshold NIMPC
protocol II is perfectly (resp., statistically, computationally) T-secure if there
exists a PPT algorithm Sim (called simulator) such that for any f € F; and a7 €
X, the following distributions are perfectly (resp., statistically, computationally)
indistinguishable:

{Sim’' T (17,11, T K, (View(17, 1,12, £, T, K, 7))}

where {View(1", 11,17, f,T, K, x5)} is the view of the evaluator py and of the
colluding parties p; (for i € T) from running II on input x5 for the honest

parties: that is, ((mi);c7, po, (pi)ier) where (po, ..., pn) & Setup(1™, 11,17, f)
and m; «— Msg(p;,x;) for all i € T.S Let t,1,n € Ny be such that 0 <t <1< n,
a Threshold NIMPC protocol IT is perfectly (resp., statistically, computationally)
t-secure if for any K C [n] with |K| <1, and any T C K such that K = TUT
with |T'| < t, IT is perfectly (resp., statistically, computationally) T-secure.

4.2 Ad Hoc PSM

An (I,t)-secure ad hoc PSM protocol IT is a O-secure threshold NIMPC that
remains secure even if more than [ (and less than ¢) parties participate in the
online phase. In other words, the evaluator cannot collude with any of the other
parties, but the protocol remains secure for any number N of parties participat-
ing in the protocol with N < t. Moreover, the evaluator can compute the output
if N > [. By secure here we mean that the adversary can evaluate the function
f on any combination of size [ of the inputs provided by the honest parties and

learns nothing more than that. More formally, if T := ((z4,%1),--., (%, in))
represents the inputs of the N parties participating in the online phase, then a
malicious party can compute f on any input Tx where K := {j1,..., 5} with

1<j1<--<j <n, K C{i,...,in} but cannot learn anything else. This
describes the best privacy guarantee attainable in this setting. The formal defini-
tion is stated in terms of a simulator that can generate the view of the adversary
with sole oracle access to Oy, where Oy takes as input aset K := {j1,...,j;} with
1<ji<-<ji<n, KC{i,...,in} and returns f((zj,,51),..-, (z;,5))"
The definition that we provide is essentially the same as the one provided in [7],
we just use a different terminology to be consistent with our other definitions.

Definition 7 (Ad Hoc PSM). Let n,l,t,A € Ng and K := {ji1,...,jn} with
0<j1 <--<jn <nsuchthat0 < N <t. An ad hoc PSM protocol is perfectly
(resp., statistically, computationally) K-secure if there exists a PPT algorithm
Sim (called simulator) such that for any f € Fy, T := (le,jl), R (asz,jN), the

6 f|7@? works as before, with the difference that it outputs L in the case where less

than |K| < L.
" The oracle outputs L if N < [.
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following distributions are perfectly (resp., statistically, computationally) indis-
tinguishable:

{Sim?r (17,1, 1%, K)}, {View(1", 1, 1*, f, K, %)}

where {View(17, 11,17, f, K, %)} is the view of the evaluator py from run-
ning II on input T for the honest parties: that is, ((m;)ick,po) where m; «—

Msg(pi, x;) for alli € K and (po, - ., pn) & Setup(17,14,1*, f). We say that an
ad hoc PSM protocol II is perfectly (resp., statistically, computationally) (I,t)-
secure if for any N < t, any K := {j1,...,jn}, II is perfectly (resp., statistically,
computationally) K-secure.

4.3 Adaptive-Ad-Hoc PSM

An adaptive-ad-hoc PSM protocol is parametrized by the number of parties n,
the threshold [/, an integer ¢ with 0 < ¢ < n and a set of functions fi,..., f3,
and allows an honest evaluator to obtain the evaluation of a function fy if the
number of parties that are participating in the protocol is I < N < (3, for any
N € {I,...,3}. Informally, an adaptive-ad-hoc PSM protocol can be seen as
a protocol that allows evaluating a function that accepts a variable number of
inputs. We refer to the full version for the formal definition.

5 Positional Secret Sharing (PoSS)

In this section we propose new notions of secret sharing schemes, and provide an
information theoretical instantiation of them. These new definitions represent
one of the main building block of our NIMPC protocols. We now introduce the
first notion that we call Positional Secret Sharing (PoSS). Let P := {p1,...,pn}
be a set of parties and X := (x1,...,2;) be a sequence of secrets. A PoSS
scheme is defined with respect to a party p; € P. In a PoSS scheme a dealer
can compute a secret sharing of X thus obtaining s1, ..., s, and distribute s; to
p; for all i € {1,...,n}. Let P’ := {pj;,,...,pj,} be an arbitrary chosen set of
[ parties with 0 < j1 < jo < -+ < ji—1 < ji < n. On input (sj,,...,s;) with
Ja = j for some «a € {1,...,1} an evaluator can compute x, and nothing more.
If there is no j, = j or less than [ shares are available then all the secrets remain
protected. We now propose a formal definition of PoSS.

Definition 8 (Positional Secret Sharing). A PoSS scheme over a message
space M is a pair of PPT algorithms (ShareP>>  Reconstruct™3° ) where:

~ Share™SS takes as input X := (x1,...,2;), the number of parties n and an
index j € [n], and outputs n shares (s1,...,8n);

~ Reconstruct™>S takes as input | values (shares), the index j and outputs a
message in M (where M denotes the message space);

satisfying the following requirements.



80 M. Ciampi et al.

Correctness. Vzy,...,7; € MY, VS = {j1,...,5} C {1,...,n} with j; <
Jo < -0 < Jim1 < Ji, if there exists « € {1,...,1} such that jo, = j then
Problz, S Reconstruct™SS(s;,, ..., 55,,7) ¢ (S15---,5n) & SharePoSS((x,
cee 7xl)7])] =1
Standard security. V(z1,...,2;), (2},...,7)) € M, VS C {1,...,n} st
|S] <1, the following distributions are identical:

$ .
{(si)ies : (51,...,80) < SharePOSS«xh ), )}

$ .
{(s})ies : ($hs---,sh) < SharePSS((2,....2)),5)}
Positional security. V(z1,...,2), (2},...,2]) € M, VS = {j1,...,5} C
{1,...,n} with j1 < ja < -+ < ji—1 < Ji:

1. if there exists a € {1,...,1} such that jo, = j, the following distributions
are identical:

{(8i)ies : (815, 8n) & SharePoSS (@1, ..., Ta 1, o, Tar---,T1), )}

{(sD)ics t (sh ... 8,) < SharePoSS((a),. .. 2 1, Tasasrs- - 2)),5)}-
2. if pae{1,...,1} such that jo = j, the following distributions are identical:

{(8i)ies : (S15-- -, 5n) & ShareSS((xq,...,21),7)}

{(sh)ies : (s, s) <= Share™SS((a,..., ). )}

5.1 PoSS: Our Construction

We denote our scheme with (ShareP°SS*7 Reconstructmss*). SharePoSS™ takes as
input X := (z1,...,2;) and the index j and executes the following steps.

—Fori=1,...,1
e 0 1 3 A = 0 m ol _
1. Pick z;),z; < {0,1}* and compute Z; < z; ® z; & x;.
2. Construct an (i — 1)-out-of-(j — 1) secret sharing for 2 thus obtaining

Silse vy Sij—1-
3. Construct a (I — i)-out-of-(n — j) secret sharing for z} thus obtaining
Si,j4+1s---3Sin-
4. Define s; j := ;.
— Fori=1,...,nset s; = (S14,..-,504)

— Output (81,...,5n)-

The algorithm Reconstruct?SS™ takes as input (sj,,...,s;,) and the index j,
and executes the following steps.

1. If there does not exist a such that j, = j then output L else continue as
follows.

Fori=1,...,l parses sj, as (81,j,,---,51,5,)-

Use the shares s j,, .- Sa,j._, t0 reconstruct z?.

Use the shares sq,j, ., Sa,; to reconstruct 7.

Output z, < 29 @zl & 50,0+

CU



Threshold Garbled Circuits and Ad Hoc Secure Computation 81

We note passing that a PoSS scheme could be constructed from monotone
span programs [22]. However, for some of our applications we need a PoSS scheme
that is also secure under a stronger notion (enhanced PoSS). For this reason
we have provided one ad-hoc scheme that relies on standard k-out-of-m secret
sharing and that can be proven secure under the notion of PoSS and its stronger
variant.

Theorem 1. (Share”55” Reconstruct®SS") is a PoSS scheme.

For this and the proofs of all the subsequent theorems, we refer the reader to
the full version of the paper. We now present the notion of Enhanced Positional
Secret Sharing (ePoSS). An ePoSS scheme is a PoSS scheme with an additional
security property that guarantees the protection of some of the secret inputs
even when an adversary obtains more than [ shares. In more detail, the notion
of PoSS guarantees that when [ shares are available one of the [ secret can be
reconstructed, and nothing about the other [ — 1 secrets is leaked. The notion
of ePoSS guarantees that even if an adversary has [ + ¢ shares, then at least
I —c—1 secrets remain protected. In the same spirit as in the definition of PoSS,
the notion of ePoSS specifies also which secrets remain protected depending
on the indexes of the dealer (the second input of the sharing algorithm). We
show that the construction provided in the previous section already satisfies this
additional security property. The formal definition follows.

Definition 9 (Enhanced Positional Secret Sharing). An Enhanced Posi-
tional Secret Sharing scheme over a message space M is a PoSS scheme
described by the PPT algorithms (SharesPoSS Reconstruct®™°SS) which satisfies the
following additional property.

Enhanced Positional Security. V(zi,...,7),(z},...,2]) € M!, VS =
{J1,- - Jire CH{L,.. . n} with j1 < jo < -+ < Jim1 < Ji <+ < Jite:

1. If there exists « € {1,...,l + ¢} such that j, = j, and ¢ <1 then
1.1 If o < 1 then the following distributions are identical (where v =

min{c, @ — 1}):

{(8i)ies : (S15-- -, 5n)

S SharePoSS (21, ..., Ta—y1s Tamms -+ s Tam1y Tay - T1)5 §)

{(8i)ies : (S15-- -, 5n)

& Share oSS (2, @y Tayse s T Ty s )) )}
1.2 If a > 1 the following distributions are identical:

{(8i)ies : (S15---,5n)

S Share®oSS (21, ..., Tac 1, Ta—cs - T1—1,%1), )}

{(si)ies (15, 8n)

& SharesPoSS((2, ... 2! |\ Taer . T1-1,21),5)}

2. if ba € {1,...,1+ ¢} such that j,, = j, the following are identical:
$ .
{(si)ies : (81,1 8n) <« Shareeposs((xl, ez, N}
$ .
{(s)ies : (84,...,8),) < Shareeposs((x’l, ez, i)}
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It is easy to see that for ¢ = 0 the properties of enhanced positional and
positional security are equivalent and that for ¢ > I — 1 none of the secrets is
protected.

Theorem 2. (Share”S”" Reconstruct™SS") is an Enhanced Positional Secret
Sharing scheme

6 Threshold NIMPC

In this section we show how to construct a t-secure NIMPC NIMPCH
(Setu p™", Msg™, Evalth). That is, a threshold NIMPC protocol for n parties, with
threshold [ that supports up to ¢ corruptions. For our construction we make use
of the following tools.

— A t-robust NIMPC protocol NIMPC := (Setup, Msg, Eval).
— A PoSS scheme PSS := (Share55 ReconstructPo53).

At a high level our protocol NIMPC™ works as follows.

Setup: The algorithm Setup™ runs the setup algorithm of the ¢-robust NIMPC
protocol on input the unary representation of I (the number of parties that
will participate in the computation) thus obtaining po, ..., p;. Then, for each
1€ {1,...,1}, Setupth computes an encoding of the input 0 and of the input
1 using NIMPC: m? «— Msg(p;,0), m} « Msg(p;,1). As a final step, for

all + € {1,...,1}, Setupth computes a positional secret sharing of the mes-
sages (Y, ...,m}) using index i thus obtaining (s{,,...,s?,), and a positional
secret sharing of the messages (mq,...,m}), always for the index i, obtain-
ing (5}71, ey szln) The output of Setup™ corresponds to (jo, p1,. .., pn) Where
pi = (89,85 )jeq1,..my foralli e {1,...,n}.

Online Messages. The party p; with input p; := (s9,,57,)je1,..ny and the
input x; € {0,1} sends m; := (95,57 ;),- -, 875, (Spis5h 4

Evaluation. The evaluator pg, on input pg,m;,,...,m; with 0 < j; <--- <
Ji < n, performs the following steps. For all i € {1,...,1}, let b; € {0,1} be such
that 1m; < ReconstructP°SS(s§:7j£, el S?:in’ . '78‘?;7jlﬂji) and m; # L. Then pg
computes and outputs Eval(pg, 1, ..., m;).

It is easy to see that in the above construction a malicious evaluator can learn
the input of the honest party p; by only inspecting the bit b;. To avoid this trivial
attack we just need to permute the shares sent by the parties to the evaluator.
We decided to not include this additional step into the informal description of
the protocol to make it easier to read. We show how the complete scheme works
in the formal description of the protocol proposed Fig. 2. Intuitively, the scheme
is secure because of the following reasons:

8 In this informal description of the protocol we assume that the algorithm
Reconstruct™5® outputs L in the case that some of the input shares are ill formed
(e.g., the input shares are the combination of different execution of the algorithm
Share™s%).
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Setup

1. Run Setup(1',1%*, f) obtaining jo, ..., .
2. Fori=1,...,1 compute m{ «— Msg(p;,0), Th} — Msg(pi, 1)

3. Fori=1,...,n pick the permutation bit b; & {0,1}, run

3.1. PSS(mY,...,m?,4) thus obtaining (sbl, .. ,sfln) and run
3.2. PSS(1a1,...,m},1) obtaining (51,1bi, .. .,s;;bi).
4. Output (po,p1,...,pn) where po := po and for i = 1,...,n, p; =

(bz"(sg,i»S;,i)jeu ..... n})-
Online messages. On input z; € {0,1} and p; the party p; does the following.

111

1. If b; = O then set s;; «— sf and d; < x; else set s;; «— s; and
di — 1 - Tq.

2. Sends m; := ((s%i,s%,i), R T (s%yi,shyi),di).

Evaluation
1. On input po,mj,,...,my; with 0 < j1 < --- < 5 < n, for i =1,...,1
~ d d;. .

compute 1m; «— Recons‘cruc‘c%ss(sj:j'j1 U A TR ,sj:fjl ,Ji)-

2. Compute and output Eval(po, m1,...,m;).

Fig. 2. Our t-secure NIMPC

1. The standard security property of the PoSS scheme exposes only one between
Msg(p;,0) and Msg(p;, 1) for all j € [I] when i; € [n] is the index of an honest
party p;;. Indeed, an honest party p;; will not send the share sz1 f ¢ where z,
denotes the input bit of p;;. Hence there would not be enough shares to
reconstruct Msg(ps, 1 — ;).

2. The positional security guarantees that the adversary, with respect to a cor-
rupted party p;, , can obtain only the two messages Msg(p,0) and Msg(px, 1)
(where iy, € [n] and k € [I]).

3. The security of the t-robust NIMPC guarantees that even if for the corrupted
parties pe,,...,pe, the adversary obtains Msg(p;,0) and Msg(p;, 1) for each
i € [t] this does not represent a problem.

Theorem 3. If NIMPC is a t-robust NIMPC' protocol, then NIMPC™ is a t-
secure Threshold NIMPC protocol.

7 Ad Hoc PSM

We start by showing how to construct an (1,1 + ¢)-secure ad hoc PSM protocol,
for an arbitrary non-negative integer ¢, for a very simple functionality that we
call message selector and denote with fms&-sel. fmsgsel takes [ inputs, and each
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input ¢ € [I] consists of 1) a list of size I of A-bit strings and 2) and integer ¢, with
io € [n] (this will represent the index of the party that is contributing to the
input). The output of f™e=¢ corresponds to the concatenation of [ messages,
where the message in position j corresponds to the j—th message in the input
list of the party with the j-th greatest index that is participating in the online
phase. We propose a formal description of the function in Fig.3. We denote
our protocol with IT™&=¢ .= (Setup™e~=e Msg™e=¢ Eval™&=¢) and provide an
informal description of it for the simplified case in which the input of each party
is a list of bits (instead of list of A-bit strings). In the formal description we
consider the generic case where the input of each party is a list of A-bit strings.
At a very high level, the protocol IT™#-¢' works as follows.

Input: ((z)))kep,i1),--- (€ rep, i) where {ir,...,a} C [n], z)},... 2}l €
{0,1}*, 1 < n and n, A\ € N.

Output: Let (j1,...,Ji) be a permutation of the values (i1,...,%) such that
0<j1<ja<--<ji1 <ji <n,output z7|... ||z}

Fig. 3. fme-e

msg_sel

Setup: For each party indexed by i € {1,...,n}, Setup generates [
random bits by, ...,b that we call permutation bits. Then Setup™&® com-
putes an enhanced PoSS of (by,...,b;) for the index 4, and an enhanced
PoSS of (1 —bi,...,1—1b;) for the index i thus obtaining (s7,,...,s},) and
(sty,..., Slln) respectively. Intuitively, the party ¢ will receive as a part of p; the
permutation bits, and depending on his inputs he will send the corresponding
permutation bits. For example, if the first input in the list of p; is 0 then p;: 1)
takes the permutation bit by (if the input of p; is 1 then p; picks as the permu-
tation bit 1 — b;) 2) and sends the permutation bit together with other pieces
of information (more details will follow). The output of Setup™&=' corresponds
to (po, p1,---,pn) Where p; = (59'71‘7Sjl‘,iabj)je{l,...,n} for all i € {1,...,n} and
po = L.

Online Messages. The party p; on input p; := (s?ﬂv,sjl-’i,bj)je{lw’n} and
the input bits z1,...z; computes d; <« by if xt;1 = by and dy «— 1 — by oth-
erwise. Repeat the same for xy...x; and sends m; = ((s9;,51,),...,(s9
s}m),(dl,...,dl)).
Evaluation. The evaluator py, on input pg,mj,,...,m; with 0 < j; <
- < j1 < n, does the following steps. For all i € {1,...,l} compute 3
Reconstructh"SS(sghjl,...,S?iyjl,ji), y; «— Reconstruct”™S(s) . ... s0 . i)
and #; + y,;’*. The output of the evaluator then corresponds to (Z1,...,%;).

The security of our protocol relies on the security of the enhanced PoSS scheme.
Informally, let X := ((z4,,%1),..., (Ziyn,in)) with N < [+ ¢ be the inputs of
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the parties participating in the protocol (recall that each input represents a
list of { bits). The notion of ad hoc PSM guarantees that a malicious evalu-
ator can learn only the output of ™% on input any possible set S where
S = ((xj,j1),---»(w5,51)) € X. Hence, the adversary can evaluate f™e=¢ on
up to (lJlrc) possible sets of inputs. Consider now the input of the party p;, be
x;, and let ¢ < I, then we have the two possible cases (when ¢ > [ then the

evaluator can obtain all the inputs).

~ If @ <1 then x;_ can be placed in the a-th input slot of fM&-=¢ or in any
other position iq_1,...,iq—y with ¥ = min{c,a — 1}.

~ If @ > [ then x;_ can be place in I-th input slot of f™€=¢ or in any other
position 4;_1,...,%q— given that N =1+ c.

Any other value in the input list z;, of p;_ has to be protected. We note that
this is exactly the security that an ePoSS scheme can guarantee (Fig. 4).

Common input: Input length: A, number of parties n, threshold [ and c.
Setup:

1. Fori=1,...,n

1.1. For each k =1,...1, For each j = 1,..., X Pick bf & {0,1}.

1.2. Run  PSS(i||...[|bY, 03| ... [|b3,..., B4 .. ||b),7) thus obtaining
(s(i),la"'7si,n)'
1.3. RunPSS(1 —b1|...|[1 = b3, 1 =3||...|[1 = B3,..., 1 = B4||...|[1 — B4, %)
thus obtaining (s1,...,8{,)-
1.4. Set B; = (bf,...,05)rep-
2. Output (po,p1,...,pn) where po := L and for ¢ = 1,...,n, p; =

(B, (S?,i, S}J)J'G{l,.“,n})
Online messages

1. Oninput 2%,...,z} € {0,1}* and p; the party p; acts as follows.
1.1. For each k € [I] parse x}, as a A bit string 2.1,..., 2k A
1.2. Foreach k € [I], j € [\ if zx,; = b¥ then set d} = b} else set df = 1—b.
1.3. Set D; « (df,...,d5)kep-
1.4. Send m; == (Di, (89,81 4), .-+, (804, 80.))-

Evaluation
1. On input po,mg,,...,mg, with 0 < ks <--- <k <n,fori=1,...,l do
the following
1.1. Compute y1,0||---||yr,0 — Reconstructp"ss(s(,;,’,,Cl7 cel, sgi’kl ki),
1.2. Compute y1,1]|...|lyr,1 — Reconstructp"ss(5,1%,617 e, s,lwkl ki)
1.3. Forj=1,..., A set c — d;, Tij < Yj.c
2. Compute and output 11| ...[|z1x, ..., zi1]] ... ||zi,x

Fig. 4. Our (1,1 + c)-secure ad hoc PSM for the message selector function f™e&-¢
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Theorem 4. I1™€-=¢ js q (1,1 + c)-secure ad hoc PSM protocol.

7.1 Ad Hoc PSM for All Functions

In this section we show how to construct a (I,1 + ¢)-secure ad hoc PSM for any
function f and any constant ¢, which has a simulator that is successful with
probability at least p = e~! (where e is the Euler number). We denote this
scheme with I775M .= (SetupPSM, Msg">M, EvaIPSM) and to construct it we make
use of the following tools.

— An (I,1+¢)-secure ad hoc PSM IT™s&-=¢! :— (Setup™E-=¢ MsgME-=¢l Eya|me-sel)
for the message selector function described in the previous section.

— A hash function H with range size \' = \2¢2.9

— A 2-party O-robust NIMPC scheme I72°¢ := (Setup, Msg, Eval) for the func-
tion gx (which will be specified later) with the following additional properties:

1. It accepts inputs of size § = 2An + nAN, where n represents the number
of parties and A is the input size allowed by ITPSM (it also represents the
security parameter);' and X is the range size of H.

2. The size of the output of Msg depends only on poly(), d) and it is inde-
pendent from the function that I72PC is computing (whereas the output
of Setup can grow with the size of the function being computed;

3. The randomness required to run Setup is % := poly(}\).

—~ A PRG PRG: {0,1}* — {0, 1}".

We start by giving a high level idea of how our construction works starting
from a scheme that does not provide security but contains most of intuitions;
then we gradually modify it until we get our final scheme.

First attempt. Let p be the output of the setup phase of I1™%€-=¢ and consider
(I— 1) instantiations of I7?P¢ which we denote with I12°C, ... IT?P¢. We denote
with R;, p¥, p} the output of the setup phase of HEPC for each i € {2,...,1}.

For each i € {2,...,1 — 1}, an instantiation IT?°¢ will be used to evaluate
the function g;. The function g; takes two inputs z° € {0,1}*, 2 € {0,1}* and
outputs Msg(pgﬂ, 20||z1). That is, g; outputs an encoding of the message x°||z?
for IT2P¢. The instantiation II77C is used to evaluate the function g;, which takes
as input x1]|z2]| ... ||zi—1 and x; and outputs f(x1,za,...,21-1, 7).

Each party p; on input = € {0,1}*, p, p3,...pt and p does the following.

1. Encode the input z for I73°¢ by running Msg(pJ, 2) thus obtaining m?.
2. For each j € {2,...,1}
2.1 Encode the input z for HfPC by running Msg(p}, =) thus obtaining m;}
3. Run Msg™e=(p, m9||md||mi||ml]|...||m}) thus obtaining /m; and output
myg.

9 This function is defined as the hash function that on input z outputs £ mod \'.
10 Qur construction would work for inputs of size poly(A), but to not overburden the
notation we consider only inputs of size A only.
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The evaluation algorithm works as follows

1. Run Eval™&* on input (vitg,, ..., 7y,) thus obtaining m9,m3,...,m} (we
denote with k1, ..., k; the indexes of the parties that are participating in the
online phase).

2. Run Eval(Rz,m?, md) thus obtaining m$.

For each j € {3,...,0l — 1} run EvaI(Rj,m?, mjl) thus obtaining m?H.

4. Output Eval(R;, my, m})

©w

Despite being correct, the above protocol suffers of a security issue. If more
than [ parties participate to the protocol, then a corrupted evaluator could be
able to obtain the encoding of two different messages with respect to the same
p; for some j € {2,...,1}, and this could harm the security of H?PC.

Second Attempt. To solve this problem we give a different p; to each party. In
this way, even if two different parties encode different messages we can still rely
on the security of I7?P€. This approach requires a more sophisticated function
g;, since now the output of g; should contain an encoding of the previous inputs
under I7T?P¢ which can be combined the with the next party’s encoded message,
whoever she is. Hence, we modify g; (for any j) to output multiple encodings, one
for each party with index greater than j. Even if this approach never causes the
same p} to be used twice on different inputs, now multiple encodings of different
inputs under p? might be computed by a malicious evaluator. For example, an
evaluator could construct the first input for g; using two different sequences on
inputs (this is possible only if the evaluator has access to more than | messages
sent from the honest parties).

Our Approach. To mitigate (but not completely solve) the above problem, we
modify the above protocol as follows.

1. From the setup phase each party p; receives p;-i»’o for each sel € [\'] and each

j € [l] (note that we need to run the setup of I7?°¢ )\’ times more in this
protocol).

2. Each party p; picks a random value v;, and encodes this value together with
its input by running Msg(pﬁ’o,xiHvi) for each sel € X and j € {2,...,1}.

3. The function g; now takes as input ¢°[|z° and v'||z!, computes
sel' — H(v? & v') and outputs Msg(pj-i'li?i,xo||a:1\|v0 @ o) for each i where
H is an hash function with range size \'.

This protocol remains secure as long the adversary is not able to find a
combination of the messages that yields to a collision in the hash function.
We can prove that with probability at least e~! the adversary does not find a
collision. Intuitively, this holds because each hash function can be evaluated at
most on (Hl'c) different random values. Give that c is a constant value we obtain
that the number of possible inputs of H is at most n¢. Hence, for a suitable
choice of X' we can show that our protocol is simulatable with probability e~!.
In the next section we show how to amplify the security to obtain a secure ad

hoc PSM. For the formal description of IT”M and of g we refer to Fig. 5.
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)\2c+1

Common parameters: Security parameter A, H \' = ,n, l, and c.

Setup:

- For each 4, j € [n] with i # j do the following. '
- Run Setup(1?, g2, 1) thus obtaining (R;“pég,péi)
For each k € {3,...,1 — 1}, i € [n], sel € [\'] do the following.
- Pick i & {0,1}* and compute PRG(r;;) thus obtaining 7.
- Run Setup(12, g, 1*;7) thus obtaining (Rf'l,pze'lo,pflzl).
- For each sel € [N] i € [n] run Setup(1?,g;,1*) thus obtaining
Rsel sel,0  sel,1
( lmpl i ’pl,i )

- Run Setupmsg‘se'(ln7 1',1*, f™&=!) thus obtaining (pff, p¥, ..., pi).
- For i« 1,...,n pick v; & {0,1}* and set

pi = (’Uiv(fZe,'m)je[n]seleM ke frnits (P sele N ke fB,eoni}
(PE’,?’:P%’,%)je[n]f{i},Pgh) and po := pi, {RE bsele v icinl kel

Online messages. On input z; € {0, 1}* and p; the party p; does the following.

- For each j € [n] — {i} compute mzl(; — Msg(pé’(;, (zi,v3)).
- For each j € [n] — {i} compute mg — M‘sg(p2 Z,z|\x1||vl||{r§ecgz}ce[n]).
- For each k € {3,...,1 — 2},sel € [\] compute
mz:elzl - Msg(p?ce|117Z||xi|‘vi||{r7:-lﬁi?,]>z}J€[n seIE[)\/])
- For each sel € [\'] compute mi%" «— Msg(p;"", z;)
- Compute and send

msg- iy I, .
mi — Msg™5* (o, ({m{5}jepm)— iy Am3i Fiem— iy - - {miey  Yeete () 1))

Evaluation On input po, mg,,...,mk, with 0 <k <. <k <n:

1

- Run Eval(pl, mi,, - .., mk,) thus obtaining
k1,0 sel,1 sel,1 sel,1
{m1,5e| }sele[n]—{kl} {mg ko }sele —{ka}s- - {ml 1 kl 1 }sele[)\’]y {ml,kl }sele[)\’]~
k1,0 k17 )

- Run Eval(R’;}k MY, ™M thus obtaining {,uS Y ictn)-

- For j « 3,...,1 — 1: Run EvaI(RselC ,,ujelko,mjfl,;;l) thus obtaining
{ujil’,?}ie[n], set sel’ « sel”.

sel sel’,0 sel’ )1

- Compute y < Eval(R{%,, 1, myy,") and output y.

gk(xHUl,J"|y||v2|‘{rze-la—1,¢>j}je[n],sele[k/]) :
v vy D v, sel’ — H(v)
For eachi € {j+1,... ,n} compute
T PRG("?CeJFl ’L) (Rk+1 3] P;eLLIOmPZe|+111) - Setup(1n7 1>\>gk+1;r)'

sel’,0 sel’,0

Pry1 < MSg(Pk+1 i mHZ’JHU)

1,0
Return {437, 1), bie (j41....n}
gi(z,y) : Parse = as [ bit-strings of A bits z1,...,7;—1 and compute and

output f(z1,...,Ti—1,9).

Fig. 5. Our ad hoc PSM for all functions that is secure with probability e~*.
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Theorem 5. There exists a simulator that successfully satisfies the definition
of (1,1 + c)-secure ad hoc PSM with probability at least e=1, for any constant c.

How to instantiate the 2-party O-robust NIMPC scheme IT?°¢. Our com-
piler requires non-standard requirement on the size of the messages of the
protocol IT?P€. As also noted in [9], O-robust NIMPC protocol can be con-
structed from garbled circuits. And this construction would have all the prop-
erties that we need. At a high level the construction works as follows. Let
g be a two-input function where each input is of size M. In the setup
phase a garbled circuit C for the function g and the corresponding wire keys
L071, L1,17 ce LOA,Ma LLM? RQJ, R171, N RO,M: Rl,]\/j are Computed. Then p = é
is given to the evaluator, the keys po = L1, L1,1, .. Lo,m, L1, are given to to
the party pg and the keys p1 = Ro 1, R1,1, ... Ro,am, R1,p are given to the party
p1. For the evaluation, the party py on input x € {0, 1} parses it as a bit string
Z1,...,xp and sends to the evaluator Ly, 1,...Ls,, a. The party p; does the
same for its input y but using the keys p1 = Ro 1, R1,1, ... Ro,am, Ri,am. The eval-
uator then uses the received keys and C to compute g(z,y). This construction
is provided in [13], the only difference is that in their protocol the C is sent
by one of the parties instead in our case we assume that C' is already given to
the evaluator from the setup phase. This construction has the property that we
need since the size of the keys of the garbled circuit depends only on the security
parameter and on the size of the inputs and does not depend on the size of the
function g [2]. Then can instantiate our protocol from one-way functions.

7.2 Fully Secure Ad Hoc PSM

We are now ready to provide a fully-secure ad hoc PSM ITAPSM
(SetupAPSM, MsgAPM. EvaIAPSM) that realizes any function f. We use the fol-
lowing tools.

— An (1,1 4+ ¢)-secure ad hoc PSM protocol ITPM := (Setup”>™, MsgM,
EvaIPSM) that supports up to a n parties and that is simulatable with proba-
bility % with p < e (where e is the Euler number).

— An additive (I,m,m — 1)-HSS Scheme for the function f HSS := (Share"sS
Evalf>S DecH%) where m := pA.

At a very high level our protocol consists of m instantiations of the IT°°M

where the j-th instantiation evaluates the function G; with j € [m]. The Func-
tion G; takes as input [ shares of the HSS scheme, and uses them as input of
EvaltSS together with the server index j (see bottom of Fig. 6 for a formal speci-
fication of G;). Each party p; that wants to participate in the protocol computes
a secret sharing of his input thus obtaining m shares. Then p; encodes each share
by running MsgPSM (one execution of MsgPSM per share). The evaluator runs the
evaluation algorithm of the j-th instantiation of ITP°M thus obtaining y; (which
corresponds to the output of Eval>%) for each j € [m]. The output of the evalua-
tion phase then corresponds to y; & - - B ym. We show that this protocol is secure
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as long as there is at least one execution of IT7M that simulatable. Moreover,
by choosing m opportunely we can prove that at least for one instantiation of
ITPSM the simulator is successful with overwhelming probability. Hence, at least
one share of each of the inputs of the honest parties will be protected. Therefore,
because of the security offered by the HSS, also the entire input of the parties
will be protected. We refer to Fig. 6 for the formal description of ITAPSM,

Common parameters: A\, n, [, ¢ where [ + ¢ denotes the maximum number
of active parties supported by the protocol and m = pA.

Setup:
1. For each j € m run Setup™M (1™, 1!, 1)\7Gj) thus obtaining pé,p{, P
2. Output po,p1,...,pn With po = (p})jempp1 = (P1)jem),---pPn =
(Ph)jeim)
Online messages. On input z; € {0, 1}A and p; the party p; does the follow-
ing.
1. For each k € [I] run Share"5(1*, k, ) thus obtaining xR

2. For each j € m run Msg™M (o7, ((mg’k)ke[l],i)) thus obtaining m?.
3. Send m; := (M) cim

Evaluation
1. On input po, my, := (mil)je[m]v C My, = (mi,)je[m] with0 <k <--- <
ki <n the evaluator does the following. _
2. For each 7 € m run EvaIPSM(pé,mil,...,mil) thus obtaining 7.

3. Output ' @ --- @ y™

The function G; with j € [m] takes as input ((:rfl)ke[l],h), . ((mfl)ke[l],il)
where {i1,...,i1} C [n], xfl,...,xfl € {0,1}*, 1 < n and n,\ € N, and
outputs Eval™®S(j, :1:}1 e ,xél) where (j1,...,7;) is a permutation of the values

(i1,...,%4) such that 0 < j; < jo < -+ < ji-1 <ji <n.

Fig. 6. Our fully secure ad hoc PSM for all functions

Theorem 6. ITAPSM s o (1,1+c)-secure ad hoc PSM protocol for any constant c.

Since ITPSM can be constructed from OWFs and since the HSS scheme can

be instantiated from the LWEs assumption [10,12] then our protocol can be
instantiated assuming LWEs.
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Adaptive-ad-hoc PSM. As we have anticipated in the introduction, it is straight-
forward to construct a (I, t)-secure adaptive-ad-hoc PSM from a (I,¢)-secure Ad
Hoc PSM protocol. We refer to the full version for more detail.
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