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Abstract. Typical approaches for minimizing the round complexity of
multiparty computation (MPC) come at the cost of increased communi-
cation complexity (CC) or the reliance on setup assumptions. A notable
exception is the recent work of Ananth et al. [TCC 2019], which used
Functional Encryption (FE) combiners to obtain a round optimal (two-
round) semi-honest MPC in the plain model with a CC proportional to
the depth and input-output length of the circuit being computed—we
refer to such protocols as circuit scalable. This leaves open the question
of obtaining communication efficient protocols that are secure against
malicious adversaries in the plain model, which we present in this work.
Concretely, our two main contributions are:

1) We provide a round-preserving black-box compiler that compiles a
wide class of MPC protocols into circuit-scalable maliciously secure MPC
protocols in the plain model, assuming (succinct) FE combiners.

2) We provide a round-preserving black-box compiler that compiles
a wide class of MPC protocols into circuit-independent—i.e., with a CC
that depends only on the input-output length of the circuit—maliciously
secure MPC protocols in the plain model, assuming Multi-Key Fully-
Homomorphic Encryption (MFHE). Our constructions are based on a
new compiler that turns a wide class of MPC protocols into k-delayed-
input function MPC protocols (a notion we introduce), where the func-
tion that is being computed is specified only in the k-th round of the
protocol.

As immediate corollaries of our two compilers, we derive (1) the
first round-optimal and circuit-scalable maliciously secure MPC, and
(2) the first round-optimal and circuit-independent maliciously secure
MPC in the plain model. The latter MPC achieves the best to-date
CC for a round-optimal malicious MPC protocol. In fact, it is even
communication-optimal when the output size of the function being eval-
uated is smaller than its input size (e.g., for boolean functions). All of
our results are based on standard polynomial time assumptions.
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1 Introduction

Secure multiparty computation (MPC) [23,42] allows different parties to jointly
evaluate any circuit over private inputs in such a way that each party learns
the output of the computation and nothing else. Many improvements in this
area have led to better protocols in terms of complexity assumptions and round
complexity in the case of malicious adversaries® [5,12,13,23,24,27-30,37,38,41].

Recently, the design of round-optimal MPC has attracted a lot of atten-
tion. Concretely, for semi-honest adversaries, two rounds are necessary for secure
MPC in the plain model (as any one-round protocol is trivially broken). A lower
bound was matched by [6,21], where the authors present a two-round MPC pro-
tocol in the semi-honest model from standard assumptions. Note that the above
lower bound holds even when a correlated-randomness setup is assumed. The
works [6,9,16,21,34] show that the same bound holds even for maliciously secure
MPC, assuming a trusted correlated-randomness setup. However, Garg et al. [18]
proved that in the plain model four rounds are necessary for maliciously secure
MPC with a black-box simulator. This four-round lower-bound was matched by
several constructions for a range of common (polynomial) complexity assump-
tions [4,11,25]. Notwithstanding, a common drawback in all the above construc-
tions is that their communication complexity is proportional to the size (of the
description) of the circuit being evaluated. For malicious adversaries, under the
assumption that parties have access to correlated randomness, Quach et al. [39]
proved that it is possible to design a two-round circuit-scalable MPC proto-
col that is secure against malicious adversaries under the learning with errors
assumption (LWE). Also in the correlated randomness model, Morgan et al. [33]
showed that it is possible to construct a two-round circuit-independent? two-
party computation protocol in which only one party gets the output, by relying
only on LWE.?

In the case of semi-honest adversaries (without a setup) the works of Ananth
et al. [1] and Quach et al. [39] proposed a round-optimal (two-round) circuit-
scalable MPC protocol under standard assumptions. Interesting, and most
related to our results, Ananth et al. [1] obtained their result by leveraging a
connection between round-optimal semi-honest MPC and functional encryp-
tion combiners. However, their construction does not achieve security against

! A malicious adversary attacks the protocol following an arbitrary probabilistic
polynomial-time strategy. Unless stated differently, when we talk about the secu-
rity of an MPC protocol against semi-honest or malicious adversaries we assume
that up to n — 1 parties can be corrupted, where n is the number of parties.

We stress that in our work the size of the circuit is always related to the security
parameter via a polynomial p. We use the term circuit-independent for MPC pro-
tocols whose communication complexity depend on the security parameter, the size
of the input and output, and does not depend on p. The same argument holds for
circuit-scalable MPC protocols.

In the communication model used in [33] in each round only one party can speak.
Hence they obtain the best possible security guarantees in such a communication
model.
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malicious adversaries. The mentioned results raise the following important open
question:

Is there a round-optimal maliciously MPC protocol secure against dishonest
magority® in the plain model based on standard complexity assumptions
that achieves circuit-scalability, i.e. has a communication complexity that
depends only on the depth of the circuit being evaluated and its input and
output length?

As the first of our two main contributions, we answer the above question
in the affirmative by extending the investigation of the relation between FE
combiners and MPC to the malicious setting. This completes the landscape of
circuit-scalable and round-optimal maliciously secure MPC in the plain model.
More concretely, we provide a round-preserving black-box compiler that com-
piles a wide class of MPC protocols into circuit-scalable protocols assuming any
succinct FE combiner (see below). Such FE combiners are known to exist based
on the learning with errors assumption. We next investigate whether our result
can be strengthened to achieve circuit-independent MPC:

Is there a round-optimal and circuit-independent maliciously secure MPC
protocol in the plain model from standard (polynomial) complezity assump-
tions?

Although the connection between MPC and FE does not seem to help here,
we still answer the above question in the affirmative. Concretely, we propose a
round-preserving black-box compiler that compiles a wide class of MPC proto-
cols® into a circuit-independent protocol assuming the existence of any compact
Multi-Key Fully-Homomorphic Encryption (MFHE) scheme that enjoys perfect
correctness. Informally, the compactness property, here, requires that the size of
the ciphertexts and the size of the description of the encryption and decryption
algorithms depend only on the input-output size of the function being computed.

For the special case of constant parties, the MFHE scheme required for
our compiler exists based on perfect correct FHE [32], which, in turn, can
be instantiated from the LWE assumption [10]. Hence our result yields the
first circuit-independent round-optimal malicious MPC in the plain model for a
constant number of parties—and therefore specifically to the first two-party-
computation protocol—based on standard polynomial-time assumptions. For
the case of arbitrary many parties, to our knowledge, compact MFHE is only
known to exist based on the Ring-LWE and the Decisional Small Polynomial
Ratio (DSPR) assumption [32]. Hence, under these assumptions, we obtain a
circuit-independent round-optimal MPC protocol for arbitrary many parties.
Deriving compact MFHE for arbitrary many parties—and hence also a circuit-
independent round-optimal MPC—from standard polynomial-time assumptions
(e.g., LWE) is an interesting open problem.

4 Unless otherwise specified, all our results are proved secure in the dishonest majority
setting.
5 We require the first 2 rounds of the MPC protocol to be independent from the inputs.
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We highlight that all our constructions require the input protocol to achieve
a special notion called k-delayed-input function, which we introduce in this work.
Informally, in a k-delayed-input function protocol each party has two inputs: 1) a
private input (known at the beginning of the protocol) and 2) the function to be
computed whose description is needed only to compute the rounds k, k+1,.... A
k-delayed-input function protocol guarantees that the adversary does not learn
more than what it can infer from the evaluation of the function f on the honest
parties’ input, where f can be adversarially (and adaptively) chosen.

We further show how to turn any MPC protocol that does not require the
input to compute the first k£ — 1 rounds into a k-delayed-input function protocol.

1.1 Related Work

Functional encryption (FE) [8,35,40] is a primitive that enables fine-grained
access control over encrypted data. In more detail, a FE scheme is equipped
with a key generation algorithm that allows the owner of a master secret key to
generate a secret key sky associated with a circuit f. Using such a secret key sk
for the decryption of a ciphertext ct « Enc(msk,z) yields only f(z). In other
terms, the security of a functional encryption scheme guarantees that no other
information except for f(z) is leaked.

A functional encryption combiner allows for the combination of many FE
candidates in such a way that the resulting FE protocol is secure as long as any
of the initial FE candidates is secure. Ananth et al. [1] show how to construct an
FE combiner, based on the learning with errors (LWE) assumption, that enjoys
the property of succinctness and decomposability (we elaborate more on the
latter property in the next section). The property of succinctness states that 1)
the length of each secret key is related to the depth and the length of the output
of the circuit being evaluated and 2) the encryption complexity is proportional
to the depth of the circuit being evaluated and to the length of the message
being encrypted.

Given such a succinct FE combiner and an ¢-round semi-honest MPC (not
necessarily communication efficient), Ananth et al. show how to obtain an (-
round circuit-scalable MPC protocol that is secure against semi-honest adver-
saries. Given that such a combiner —as well as a round optimal semi-honest
MPC—can be constructed from LWE, this result can be instantiated from the
LWE assumption. In [2] the authors also explore the relation between MFHE
and MPC and, among other results, the authors also show how to obtain a
circuit-independent MPC protocol that is secure against semi-malicious adver-
sary assuming Ring LWE, DSPR and 2-round OT.% Cohen et al. [15] proposed a
round-optimal circuit-scalable MPC protocol which tolerates adaptive corruption
(i.e., the identities of the corrupted parties can be decided during the protocol
execution). The security of this protocol is proven in the correlated-randomness

6 We recall that a semi-malicious adversary behaves like a semi-honest adversary with
the exception that it decides the randomness and the input used to run the protocol.
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model under the adaptive LWE assumption and secure erasures (alternatively,
sub-exponential indistinguishability obfuscation).

We recall that it is not possible to achieve security with adaptive corrup-
tion (with black-box simulation) in the plain model with a constant number of
rounds [19]. For this reason, our work focuses on static corruption only.

1.2 Overview of Our Results

In this work we provide two main results which close the gap between
communication-efficient and round-optimal maliciously secure MPC. We present
two compilers that amplify existing protocols in terms of their communication
complexity while preserving their round complexity, which results in the first
class of maliciously secure MPC protocols that are communication-efficient and
round-optimal.

From FE Combiners to Circuit-Scalable MPC. The first is a round
optimal MPC protocol that 1) is secure against malicious adversaries, 2) tolerates
arbitrary many parties, 3) is secure under standard polynomial time assumptions
and 4) is circuit-scalable, i.e., has a communication complexity proportional to
the depth of the circuit and the length of the input and output of the circuit
being evaluated.” In summary, we prove the following theorem.

Theorem 1 (informal). If there exists a 3-delayed-input function €-round MPC
protocol II that is secure against malicious adversaries and a succinct FE com-
biner, then there exists an {-round MPC protocol II' that is secure against mali-
cious adversaries whose communication complexity depends only on the security
parameter, the depth, the input length and the output length of the circuit being
evaluated, and that makes black-box use of II.

We argue that the four-round protocols proposed in [4,11] can be turned into
3-delayed-input function protocols, which in turn implies that we can obtain a
circuit-scalable round optimal MPC protocol from the LWE assumption, since
the maliciously-secure four-round OT that the protocol of [11] relies on can also
be instantiated using LWE [17]. This allows us to prove the following corollary.

Corollary 1 (informal). If the LWE assumption holds, then there exists a round
optimal MPC protocol that is secure against malicious adversaries whose com-
munication complexity depends only on the security parameter, the depth, the
input length and the output length of the circuit being evaluated.

7 All our result are with respect to black-box simulation.
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From Circuit-Independent MPC. For the second contribution we show how
to combine an MPC protocol with a perfectly correct, compact MFHE scheme
to obtain a circuit-independent MPC protocol. The notion of MFHE extends
the notion of Fully-Homomorphic Encryption (FHE) to the multi-party setting
by allowing each party to generate a public-secret key pair. All the ciphertexts
generated using the public keys of the MFHE scheme can be homomorphically
combined to obtain a single ciphertext, which can be decrypted only using all the
secret keys. The output of our compiler is a circuit-independent round-optimal
MPC protocol that supports min{ng,n;} parties where ng and ny is the num-
ber of parties supported by the input MPC protocol and the MFHE scheme
respectively. Our second contribution can be summarized as follows.

Theorem 2 (informal). If there exists a 2-delayed-input function £-round MPC
protocol IT that is secure against malicious adversaries which supports ng num-
ber of parties and a perfectly correct, compact MFHE scheme that supports n,
number of parties, then there exists an £-round MPC protocol II' that is secure
against malicious adversaries whose communication complezity depends (poly-
nomially) only on the security parameter, the input length and the output length
of the circuit being evaluated, and that makes black-box use of II and supports
min{ng,n1} number of parties.

Additionally, it is possible to improve the above result and to obtain a pro-
tocol whose communication complexity is only linear in the length of the inputs
(and polynomially in the length of the output and the security parameter), by
relying on pseudorandom generators (PRGs). Hence, we obtain an MPC pro-
tocol that is optimal in terms of round and communication complexity for all
the functions whose input-size is bigger than the output-size (e.g., boolean func-
tions).

Given that a MFHE scheme for a constant number of parties can be instanti-
ated from LWE and that a scheme for arbitrary many parties can be instantiated
from Ring-LWE and DSPR [32] we obtain the following additional corollary.

Corollary 2 (informal). If the LWE assumption holds (resp. Ring LWE and
DSPR hold and any of the assumptions DDH, QR, N** Residuosity, LWE
hold, or malicious-secure OT exists), then there exists a round optimal circuit-
independent MPC' protocol for a constant (resp. arbitrarily) number of parties
that is secure against malicious adversaries.

For completeness we have included a comprehensive comparison of our results

with existing round-optimal MPC protocols proven secure in the plain model,
under standard polynomial-time complexity assumptions in Table 1.

2 Technical Overview

Our treatment advances the state of the art in communication-efficient and
round-optimal MPC. Toward this goal, we combine and substantially extend
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Table 1. Communication complexity of two-round semi-honest secure and four-round
maliciously secure m-party protocols in the plain- and all-but-one corruption model,
with black-box simulation, based on polynomial-time assumptions. We denote by |f]|
and d the size and depth of the circuit representing the MPC functionality f, respec-
tively. Lin and Loy denote, respectively, the input and output lengths of the circuit
and piO stands for probabilistic indistinguishability obfuscation. We recall that we can
replace 4-round maliciously secure OT with either DDH, QR, N Residuosity, or LWE.

Communication complexity | Assumptions Adversarial model | Rounds
[1,39] poly(A, n, d, Lin, Lout) LWE Semi-honest 2
[6,21] poly(A\, n, | f]) Semi-honest OT Semi-honest 2
[16] poly(A, n, d, Lin, Lout) piO and lossy Semi-honest 2
encryption
[20] poly (A, n, | f]) Bilinear Maps Semi-honest 2
[25] poly(A, n, | f]) QR Malicious 4
[4] poly(A, n, | f]) DDH/QR/ Nt Malicious 4
Residuosity
[11] poly(A, n, | f]) Malicious 4-round Malicious 4
oT
[2] poly (A, n, Lin, Loyt) Ring LWE and Semi-malicious 2
DSPR and 2-round
oT
This work | poly(X\,n,d, Lin, Lout) LWE Malicious 4
This work™ | poly(X\, n, Lin, Lout) LWE Malicious 4
This work | poly(\, n, Lin, Lout) Ring LWE and Malicious 4
DSPR and malicious
4-round OT

*Constant number of parties only.

several recent techniques in the literature of FE and MFHE as well as delayed-
input MPC. In this section, to assist the reader better navigate through the
many technical challenges and details of our result and evaluate its novelty, we
review the main technical challenges and our approach to tackling them.

From FE Combiners to Circuit-Scalable MPC. Towards our construction
of circuit-scalable MPC, we rely on the recent work of Ananth et al. [1]. In order
to build a better intuition for our final solution, we briefly recap their compiler
here.

The main building blocks of that compiler are an ¢-round semi-honest secure
MPC protocol and a succinct decomposable FE combiner. The property of
decomposability requires the functional key for f to be of the form (sk{ - 7sk£),
and the master secret key needs to be (msky, ..., msk, ), where sk; and msk; are
the secret key and master secret key produced by the i-th FE candidate.

Compiler of Ananth et al. [1]. The construction of Ananth et al. [1] is very
intuitive, and roughly works as follows. The MPC protocol computes the function
g which takes n inputs, one for each party P; with ¢ € [n]. The input of each
party consists of a master secret key msk;, a value z; and a randomness r;. The
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function g uses the n master secret keys to compute an encryption of x1,...,x,
using the randomness r1,...,7r,.

Let x; be the input of the party P; with ¢ € [n]. Each party P; samples a
master secret key msk; for the FE combiner, a random string r; and runs the
MPC protocol IT using (msk;,z;,r;) as an input. In parallel, P; computes the
secret key sk{ and sends it to all the parties (we recall that ssz can be computed
by party P; due to the decomposability property of the FE combiner). Let ct
be the output of IT received by P;, and let (sk{7 ... ,sklf_17 ski‘:_17 . 7skﬁ) be the
keys received from all the other parties, then P; runs the decryption algorithm
of the FE combiner on input (sk{, e ,skfl) and ct thus obtaining f(z1,...,z,).

Given that the MPC protocol computes a function g whose complexity is
poly(A,d, Li,) and the size of each one of the secret keys sent on the chan-
nel is poly(A, d, Loyt) the final protocol has a communication complexity of
poly(A,n,d, Lin, Lout), where X is the security parameter, d is the depth of f,
Li, is the length of the input of f and Loy is the output length of f (we recall
that this is due to the succinctness of the FE combiner).

Achieving Malicious Security. Starting from the above approach, we now show
how to obtain a circuit-scalable MPC protocol in the case of malicious adversaries
(instead of semi-honest) in the plain model.

As a first approach one can try to simply replace the semi-honest MPC
protocol with a maliciously secure one. Unfortunately, this does not work as a
corrupted party P’ might create an ill formed master secret key msk; (i.e., msk;
is not generated accordingly to the setup procedure of the j-th FE candidate)
and sample r; according to an arbitrary strategy. However, we note that the
second problem is straightforward to solve as we can modify the function g,
evaluated by the MPC protocol I1, in such a way that it uses the randomness
r1@® - D71y, to compute the encryption ct (we note that in this case each party
needs to sample a longer r; compared to the semi-honest protocol described
earlier).

To solve the first problem, we follow a similar approach. Each party P; inputs
an additional random value r3°™" to the MPC protocol and the function g is
modified such that it generates the master secret keys using the randomness R =
rfet”p @ - --@r>eP and outputs to the party P; the ciphertext ct.® Unfortunately,
this approach is not round preserving, as the knowledge of the master secret key
msk;, which becomes available only in the end of the execution of II, is required
to generate the secret key sk{ . Hence, if IT requires ¢-rounds, our final protocol
would consist of £+ 1 rounds as each party P; needs to send its functional secret
key sklj‘c in the (¢ + 1)-th round.

Besides this, the described protocol is also still not secure, since a corrupted
party P7 might generate an ill formed secret key skf , that could decrypt ct
incorrectly, yielding an incorrect output for the honest parties. However, we
can prove that this protocol protects the inputs of the honest parties. That

8 R is parsed as n strings and each of the strings is used to generate a different master
secret key.
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is, it achieves privacy with knowledge of outputs (PKO) [26,36]. This notion
guarantees that the input of the honest parties are protected as in the standard
definition of secure MPC, but the output of the honest parties might not be the
correct one (e.g., the adversary can force the honest party to output a string of
its choice).

Round Preserving Construction: Privacy with Knowledge of Outputs. The first
step towards our final construction is to adapt the above idea in such a way that
the round complexity of the resulting protocol is kept down to £, while achieving
a somewhat reduced security, namely privacy with knowledge of outputs [26].
Looking ahead, in the following paragraph, we discuss how to elevate this to full
security. For simplicity, we describe our protocol considering only two parties Py
and P; and consider as a building block an MPC protocol II which consists of
(¢ = 4)-rounds (which is optimal). The protocol then can be trivially extended
to the case of n-parties and an arbitrary ¢ > 4 as we show in the technical part
of the paper.

For our construction we need the first two rounds of I to be independent of
the inputs (i.e., the input is required only to compute the last two rounds in our
simplified example). Assuming that the parties have access to a simultaneous
broadcast channel where every party can simultaneously broadcast a message to
all other parties, our compiler works, at a high level, as follows (we refer to Fig. 1
for a pictorial representation).

In the first step, the parties run two instances of Blum’s coin tossing pro-
tocol [7]. In the first instance the party Py acts as the sender and in the other
instance the party P; acts as the sender. In more detail, each party P; commits
to two random strings in the first round ¢ := com(r; p?) and ¢} := com(r}; p})
and sends, in the second round, ri_i to P;_;.2 Then P; uses the randomness
R; :=r{ ®ri to generate a master secret key msk;, and uses it to compute the
secret key skif which it sends in the fourth round.

In parallel, Py and P; execute the MPC protocol II that evaluates
the function ¢’. The function ¢’ takes the inputs of each party, where
the input corresponding to party P; (for each i € {0,1}) is of the form
(2, (15 0, v ks phori_iriy), (), ef, €3, ¢)). In more detail, the input of each
party P; corresponds to its actual input z;, all the commitments generated (by
Py and Pp) in the first round, the message ri_, received in the second round
from P;_; and the randomness used to generate the commitments c?, c}. The
function ¢’ checks that 1) the commitments (¢}, ci, 3, cl) (that are part of the
inputs of the two parties) are the same, 2) the value r; ~* sent in the second
round by the party P; is committed in c}_i for each i € {0,1} and 3) the ran-
domness used to generate the commitments is correct. If all these checks are
successful then ¢’ outputs a ciphertext ct = Enc((msk;);c(0,1}, (zo,%1);70 © 71)
for the FE combiner computed using the randomness ro @ 1. We highlight that
the check that the commitments generated outside of the MPC protocol are gen-
erated correctly is not possible in the standard security definition of MPC. To

i

9 Note that only the committed message is sent, not the randomness p}f .
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perform these checks we require the underlying MPC to achieve our new notion
of k-delayed-input function, which we explain in the end of this section.

Upon receiving the output of ¢’ (evaluated by IT), P; computes the output
running the decryption algorithm of the FE combiner. Using this approach we
guarantee that: 1) the ciphertext ct is honestly computed using honestly gener-
ated master secret keys and randomnesses, 2) each party can compute its own
master secret key already in the third round so that a functional key can be
generated and output in the last round and 3) the value 7{_; that P; receives in
the second round corresponds to the value used in the commitment ¢f_, (hence,
the master secret key that P; obtains as part of the output of II is consistent
with the master secret key it has created outside of IT).

Unfortunately, we can only prove that the above protocol preserves the pri-
vacy of the inputs of the honest parties, but the output computed by the honest
parties might still be incorrect. This is due to the fact that a corrupted party
can generate an ill formed secret key sklf and send it to the honest parties. We
finally note that it might look like our approach yields to malleability attacks
(i.e., the adversary might bias its commitments using honest-parties commit-
ments). Intuitively, such attacks are prevented since we require the adversary to
provide the correct opening as part of the input to the MPC protocol. Hence,
we delegate to the MPC the prevention of any such malleability attacks.

From PKO to Full Security. The next step is to elevate PKO security to full
security. To achieve this, we utilize the PKO-secure to fully-secure compiler of
Ishai et al. [26] to turn the above described protocol into a protocol that achieves
standard security in a black-box way.

Besides achieving privacy with knowledge of outputs, our protocol also only
realizes single-output functionalities instead of multi-output functionalities. In
this case, we can also rely on existing compilers to make our protocol supporting
multi-output functionalities [3,31].

We note that we can apply those compilers only if they are 1) round-
preserving and 2) do not increase the communication complexity by more than
a factor of poly(\). For the sake of completeness we formally argue that this is
indeed the case and refer the interested reader to the full version [14].

From to Circuit-Independent MPC. To obtain a circuit-independent MPC
protocol, we combine a multi-key fully-homomorphic encryption scheme (MFHE)
with a (non-necessarily communication-efficient) MPC protocol ITI.

Let us first briefly recall MFHE: A MFHE scheme consists of four algorithms:
(1) a setup algorithm Setup that allows for the generation of public-secret key
pairs; (2) an encryption algorithm Enc that takes as input a public key and a
message and outputs a ciphertext; (3) an evaluation algorithm Eval that takes
as input a list of public keys PK, a set of ciphertexts CT (generated using the
list of public keys PK) and a function f, and outputs a ciphertexts ct that
contains the evaluation of f on input the messages encrypted in the list CT;
(4) a decryption algorithm Dec that on input all the secret keys, associated
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Fig. 1. FE;, with ¢ € {0,1}, denotes a functional encryption candidate. The master
secret key for the combiner corresponds to the master secret keys of FEo and FE;.
A secret key for the combiner required to evaluate the function f is generated by
combining a secret key for FEq (ski) and a secret key for FE; (skf). Dec denotes the
decryption algorithm of the combiner which takes as input a combined secret key for
the function f and a ciphertext ct generated accordingly to a combined master secret
key represented by (msko, msk). mpc¥, with i € {0,1} and k € [4], represents the k-th
message of the MPC protocol 1T computed by P;. The protocol II evaluates a function
g’ (xh, zt) where x} = {zi, (r{, p¥, 78, pt i im0, (c5, ¢b, 2, e1)} with @ € {0,1}. The
function g checks if the commitments that are part of the two inputs xz(,z} are the
same and if ¢? has been computed accordingly to the message r? and the randomness p?
for each i,b € {0,1}. If the check is successful, then g computes two master secret keys
msko and msk; using respectively the randomnesses r¢ @ 1 and rJ @ 9, and computes
an encryption ct of xg||z1 for the FE combiner using those master secret keys and the

randomness ro & r1. The output of II for P; consists of mpc,,, = ct.

with the public keys of PK, and the ciphertext ct outputs the decryption of ct.
Additionally, we require the MFHE scheme to be compact, i.e. we require the
size of the keys, the ciphertexts and the description of the algorithms Enc and
Dec to dependent only on the input-output size of f.

Once again, to keep the description simple and to focus on the core ideas, we
stick to the two-party case and refer to Sect. 6 for the description of the protocol
that supports arbitrary many parties. We provide a pictorial description of our
protocol in Fig. 2.

At a high level, our compiler works as follows. Let x; be the secret input of
the party P; with ¢ € {0,1}. Each party P; runs the setup algorithm using the
randomness r; thus obtaining a private-secret key pair (pk;,sk;) and encrypts
its input using Enc with some randomness r;, obtaining ct;. Then P; sends the
public key together with its encrypted input and the first message of the MPC
protocol II to party P;_;. Upon receiving pk;_, and ct;_; from FP;_;, P; runs
the evaluation algorithm on input pkg, pky, f, cto, ct1, obtaining ct}. At this point
P; keeps executing the protocol IT on input x; which consists of the randomness
used to generate the MFHE keys, the randomness used to generate ct;, the list
of all the ciphertexts (received and generated) CT = (ctg, ct1) and the evaluated
ciphertext ct,. The function g computed by the MPC protocol II does the fol-
lowing: 1) checks that both Py and P; have input the same list of ciphertexts CT,
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Py(zo) Pi(1)
(Pko. sko) = Setup(ro) mpch (1Y) (pko, cto) (pky,cti) mpct (1Y) (pky,sky) = Setup(ryi)
cto = Enc(pkg, x0; 7)) cty = Enc(pky, x1;77)
ct(, == Eval(pkg, pky, f,cto, ct1)) ct} = Eval(pky, pky, f, cto, ct1))
xgy = {0, (sko, Pk, Pky, Cto, Ct1, mpcg(p) mpci (z}) 2y = {1, (ski, pkg, pky, cto, cty,
o ) - s
cto,70,70) } mpc3(a)) mpc3(a}) cty, ri, )}
output y = f(zo, 1) mpc () mpci () output y = f(x0,21)

Fig. 2. (Setup, Enc, Dec, Eval) represents a MFHE scheme. The MPC protocol checks
that the cipthertexes ctyp and ct; are in the domain of Enc and that both parties have
input the same list of cipthertexes cto,ct;. Then the MPC protocol decrypts ctj and
cty and if the decrypted values corresponds to the same value y then the protocol
outputs y.

2) for each i € {0,1} it uses the randomness r; and r} to check that pk; and ct;
are in the domain of the setup and of the encryption algorithm. If these checks
are successful, then the function g decrypts ct, and ct] using the secret keys
(sko, skq) (which can be generated using the randomnesses rg, 1) thus obtaining
yo and yi. If yo = y1 then g outputs y, otherwise it outputs L.

In a nutshell, we use II to check that all ciphertexts and public keys have
been generated correctly and that all the parties have obtained an encryption
of the same value when running the MFHE evaluation algorithm. As in the
circuit-scalable compiler described before, the check that the public keys and
ciphertexts outside of the MPC protocol are generated correctly is not possible in
the standard security definition of MPC. To perform these checks we require the
underlying MPC protocol to achieve our new notion of k-delayed-input function.
The protocol that we have just described is circuit-independent since the size of
the public keys and the ciphertexts depends only on the input-output size of f
and the protocol II evaluates a function g whose description size depends only
on the input-output size of f and the description of the circuits for Enc and Dec.

The communication complexity of this protocol is poly(\, n, Lin, Lout), where
L;, is the input-size and Lo, is the output size of the function being evaluated.

We can slightly modify the protocol above to achieve a communication com-
plexity of O(Li,) + poly(X,n, Loywt). To do that, we rely on a folklore technique
to reduce the size of the ciphertexts of the MFHE scheme using pseudoran-
dom generators (PRGs). In more detail, instead of providing an encryption of
the input z; under the MFHE scheme, each party P; encrypts a short seed
s; of a PRG PRG using the FHE scheme, i.e. Enc(pk,,s;;77), and sends this
encryption along with the value w; = PRG(s;) @ z; to the other party. The size
of the resulting message is then O(L;,) + poly(A). The party P;, upon receiv-
ing (Enc(pky_;,s1—4;75_;), w1—;) computes Enc(pk,_,, PRG(s1_;)), using homo-
morphic operations, Enc(pk;_;, w;—1) by encrypting wy_; using pk;_;, and then
homomorphically XORs the resulting ciphertexts to receive Enc(pkq_;,z1—;).
This ciphertext can now be used to run the evaluation algorithm and compute
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Enc(pkg, pky, f(z0,x1)). The parties now check that the ciphertexts (wp,w;) are
well formed by running the MPC protocol, exactly as in the previous protocol.

k-Delayed-Input Function MPC. As already mentioned in the description of
the compilers, we need to rely on an MPC protocol IT that needs the input of the
parties only to compute the last two rounds (three in the case of the construction
of Fig. 2). Indeed, for the protocol of Fig. 1 for example, the input of each party
consists of its actual input, the randomness used to generate its commitments,
and all the commitments that it has seen (even those generated by the adver-
sary). We note that many existing MPC protocols (e.g., [4,6,11]) indeed do not
require the input to compute the first two rounds. However, the fact that the
input of the honest parties might be adversarially influenced (e.g., in our pro-
tocol some commitments are generated from the adversary) makes it impossible
to rely on the standard security notion achieved by such MPC protocols. This is
because the standard security notion of MPC requires the inputs of the honest
parties to be specified before the real (ideal) world experiment starts. Therefore,
the honest parties cannot choose an input that depends on (for example) the
first two messages of the protocol, and is, therefore, adversarially influenced.

However, we observe that even if P; needs to provide all the commitments
it has received as part of its input to II, we do not care about protecting the
privacy of this part of P;’s input, we just want to achieve a correct evaluation of
II. That is, these commitments could be thought of as being hardwired in the
function evaluated by the MPC protocol I1.

To capture this aspect, we consider a more general notion called k-delayed-
input function, where the input of each party consists of two parts, a private
input x and a function f. The private part x is known at the beginning of the
protocol, whereas the function f does not need to be known before the protocol
starts and it is needed only to compute the rounds k,k + 1,... of the protocol.
We want to guarantee that in the real-world experiment the adversary does not
learn more than what it could infer from the output of f, even in the case where
it chooses the function f. Equipped with an MPC protocol that satisfies such
a definition, we can modify our constructions by letting the parties specify the
function that needs to be computed. For example, in the case of the protocol of
Fig. 1, the function will contain, in its description, the set of commitments sent
in the first round and the messages r}, 7 and uses these values to check that the
opening of the commitments are valid with respect to (rl,7%) and only in this
case returns a ciphertext for the FE protocol.

To construct a k-delayed-input function protocol, we use a standard 2n-party
{-round MPC protocol I, where the first kK — 1 rounds can be computed without
requiring any input, and a one-time MAC. We refer to the technical part of the
paper for more details on how this construction works.
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3 Preliminaries

We denote the security parameter with A € N. A randomized algorithm A is
running in probabilistic polynomial time (PPT) if there exists a polynomial p(-)
such that for every input x the running time of A(x) is bounded by p(|z|). We
use “=" to check equality of two different elements (i.e. @ = b then...) and “="
as the assigning operator (e.g. to assign to a the value of b we write a := b).
A randomized assignment is denoted with a « A, where A is a randomized
algorithm and the randomness used by A is not explicit. If the randomness is
explicit we write a := A(x;r) where x is the input and r is the randomness.
When it is clear from the context, to not overburden the notation, we do not

specify the randomness used in the algorithms unless needed for other purposes.

3.1 Functional Encryption

Definition 3.1 (Functional Encryption [8,35,40]). Let C = {Cx}ren be a
collection of circuit families (indexed by \), where every C € Cy is a polynomial
time circuit C': Xx — Yx. A (secret-key) functional encryption scheme (FE) for
the circuit family Cy is a tuple of four algorithms FE = (Setup, KeyGen, Enc, Dec):

Setup(1*): Takes as input a unary representation of the security parameter
and generates a master secret key msk. It also outputs the randomness r that
has been used to generate the master secret key.

KeyGen(msk, C'): Takes as input the master secret key msk and a circuit C € Cy,
and outputs a functional key skc.

Enc(msk,x): Takes as input the master secret key msk, a message © € Xy to
encrypt, and outputs a ciphertext ct.

Dec(ske, ct): Is a deterministic algorithm that takes as input a functional key
skc and a ciphertext ct and outputs a value y € Y.

A scheme FE is (approzimate) correct, if for all A € N, msk «
Setup(1), C € C\, = € X\, when sk¢ « KeyGen(msk,C), we have
Pr [Dec(sk¢, Enc(msk, z)) = C(x)] > 1 — negl(\).

In this work, we define the setup algorithm in such a way that it also outputs
the randomness r that has been used to generate the master secret key. This has
no effects on the security definition of the scheme since the master secret key
msk and the randomness r both remain in the control of the challenger.

Definition 3.2 (Single Key Simulation Security of FE [1]). Let FE be
a functional encryption scheme, C = {Cx}ren a collection of circuit families
indexed by \. We define the experiments Real® B¢ and Ideal® B¢ in Fig. 3.
A functional encryption scheme FE is single key simulation secure, if for
any polynomial-time adversary A = (Aj, As, As), there exists a PPT simu-
lator 8 and a negligible function negl such that: |Pr[Real ® (1%, A) = 1] —
Prldeal™ (1%, A4, S) = 1]| < negl()).
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Real™ (1%, A) Ideal ™5 (1}, A4, S)
msk < Setup(1?) msk < Setup(1*)
(C,st1) « A (1Y) (C,st1) Ay (1Y)

ske < KeyGen(msk, C') | skg < KeyGen(msk, C')
(z,sty) + As(ske,sty) | (x,sty) < As(ske, sty)
ct < Enc(msk, z) ct <+ S(msk, C, C(x))
a < As(ct, ske, sta) a < As(ct,ske, sta)

Output: « Output: «

Fig. 3. Single Key Simulation Security of FE

The succinctness definition provided in [1] requires some restrictions on the
circuit size of the encryption algorithm, as well as on the size of the functional
key. In our work, we also require a bounded circuit size for the setup algorithm
and we refer to this notion as strong succinctness.

Definition 3.3 (Strong Succinctness). A functional encryption scheme
FE = (Setup, KeyGen, Enc, Dec) for a circuit class C containing circuits C' that
take inputs of length 0, bits, outputs strings of length Lo bits and are of depth
at most d is succinct if the following holds:

~ The size of the circuit for Setup(1*) is upper bounded by poly(\,d,ty) for
some polynomial poly.

~ Let msk « Setup(1*), then the size of the circuit for Enc(msk,-) is upper
bounded by poly(\, d, lin, bout) for some polynomial poly.

— The functional key skc «— KeyGen(msk,C) is of the form (C,aux) where
|aux| < poly (A, d, bout, n) for some polynomial poly.

3.2 Decomposable Functional Encryption Combiner

In this section, we recap the notion of a decomposable functional encryption
combiner (DFEC) as introduced by Ananth et al. [1]. In this definition, we rely
on the definition of a functional encryption scheme, introduced before (Sect. 3.1).

Definition 3.4 (Decomposable Functional Encryption Combiner). Let
C = {Ca}ren be a collection of circuit families (indexed by \), where every
C € Cx is a polynomial time circuit C: Xy — Yx and let {FE;};cp,) be the
description of n FE candidates. A decomposable functional encryption com-
biner (DFEC) for the circuit family Cy is a tuple of five algorithms DFEC =
(Setup, Partition, KeyGen, Enc, Dec):

Setup(1*, {FE;}icn)): Takes as input a unary representation of the security
parameter A and the description of n FE candidates {FE;};c[n) and gener-
ates a master key msk; for each FE candidate msk; « FE.Setup,(1*) and
outputs msk := {msk; }icn]-
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Real® (1", {FE; }ic(n), C, A) Ideal®™ (1", {FE;}ic(n, C, A, S)

msk < Setup(1*, {FE;};c(n)) msk < Setup(1*, {FE;};c(n))

(Cy,...,C,) = Partition(n, C) (Cy,...,C,) = Partition(n, C)

skc < KeyGen(msk, {FE;}ic[n skc < KeyGen(msk, {FE;}icn]

(Cy,...,Ch)) (Cy,...,Ch))

(I,st1) < A1 (1% {FE;}ign), C), where | (I,st1) + A1 (1% {FE;}ic(n), C), where
I C[n] with [I| =n—1. I C[n] with [I| =n—1.

(2,st2) = Az ({mski}icr, ske, st1) (2,st2) = Az ({msk;}icr, ske, st1)

ct < Enc(msk, {FE; }ic[n), ) ct + S(msk, C,C(x))

a + As(ct,ske, sto) a + As(ct,ske, sta)

Output: « Output: «

Fig. 4. Single Key Simulation Security of DFEC

Partition(n, C'): Takes as input the number of parties n and a circuit C and
outputs (C1,...,Cy), where each C; is a circuit of depth polynomial in the
depth of C.

KeyGen(msk, {FE;}icn, (C1, ..., Cn)): Takes as input the master secret key
msk, the description of n FE candidates {FE;};cn) and a partitioned cir-
cuit (C1,...,Ch), and generates a functional key skc, for each FE candidate
skc, < FE.KeyGen,(msk;, C;) and outputs skc := {skc, }icqn)-

Enc(msk, {FE;}ic[n), 7): Takes as input the master secret key msk, the description
of n FE candidates {FE;}ic[n), a message x € X to encrypt, and outputs a
ciphertext ct.

Dec(skc, {FEi}icin), ct): Is a deterministic algorithm that takes as input a func-
tional key skc, the description of n FE candidates {FE; }ic[n) and a ciphertext
ct and outputs a value y € Y.

A scheme DFEC is (approzimate) correct, if for all A € N, msk «
Setup(1*, {FE;}icn)), C € Cx, @ € X, when sk¢ «— KeyGen(msk, C'), we have

Pr [Dec(ske, Enc(msk, z)) = C(z)] > 1 — negl()).

To ensure that all the algorithms of the functional encryption combiner are
still polynomial in the security parameter A and the number of parties n, we
introduce the notion of polynomial slowdown.

Definition 3.5 (Polynomial Slowdown [1]). A decomposable functional
encryption combiner DFEC = (Setup, Partition, KeyGen, Enc, Dec) satisfies poly-
nomial slowdown, if the running time of all its algorithms are at most poly (A, n),
where n is the number of FE candidates that are being combined.

The definition of single key simulation security of a functional encryption
combiner should capture the case that if at least one of the FE candidates is
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secure, then the combiner is also secure. In the case of decomposability we give
the adversary even more power by letting it choose a set I of all the corrupted
candidates, which contains all but one party.

Definition 3.6 (Single Key Simulation Security of DFEC [1]). Let DFEC
be a decomposable functional encryption combiner, C = {Cx}ren a collection of
circuit families indexed by A and {FE;};c[n) n FE candidates of which at least one
s guaranteed to be secure. We define the experiments Real® ¢ and IdealPTEC
in Fig. 4. A decomposable functional encryption combiner DFEC is single key
simulation secure, if for any polynomial-time adversary A = (A1, As, A3) there
exists a PPT simulator S and a negligible function negl such that:

| Pr[Real® (1%, {FEi}sc(n), C; A) = 1] — Pr{ldeal”™ (1%, {FE; }icin), C, A, §) = 1]| < negl(A) -

Definition 3.7 (Strong Succinctness). A decomposable FE combiner
DFEC = (Setup, Partition, KeyGen, Enc, Dec) for a circuit class C containing cir-
cuits C' that take inputs of length 0, bits, outputs strings of length oy bits and
are of depth at most d is succinct if for every set of succinct FE candidates
{FEi}ien), the following holds:

— For the circuit of Setup(lA,{FEi}ie[n]) 1t holds that Setup(lA,{FEi}ie[n]) <
poly(\,n, d, bin).

~ Let msk « Setup(1*,{FE;};c[n)). For the circuit of Enc(msk, {FE;}icpn),-) it
holds that Enc(msk, {FE;}ic[n], ) < poly(A,d, bin, Lout, 1) for some polynomial
poly.

~ The functional key skc <« KeyGen(msk,{FE;}ic[n), (C1,...,Cn)), with
(C1,...,Cyn) = Partition(n,C), is of the form (C,aux) where |aux| <
poly(A, d, lout, n) for some polynomial poly.

3.3 Multi Key Fully Homomorphic Encryption

Definition 3.8 (Multi-Key Fully Homomorphic Encryption [32]). Let
C = {Cx}xen be a collection of circuit families (indexed by \), where every C' € Cy
s a polynomial time circuit C: X\ — Y and n the number of participating
parties. A multi-key fully homomorphic encryption (MFHE) for the circuit family
Cy is a tuple of four algorithms MFHE = (Setup, Enc, Eval, Dec):

Setup(1>‘): Takes as input a unary representation of the security parameter A
and generates a public key pk and a secret key sk.

Enc(pk, z): Takes as input a public key pk and a message © € X to encrypt,
and outputs a ciphertext ct.

Eval(C, (pk;, cti)ice): Takes as input a circuit C, £ different public keys pk; and
ciphertexts ct; and outputs a ciphertext ct.

Dec({ski}icn, ct): Is a deterministic algorithm that takes as input n secret keys
{ski}iem) and a ciphertext ct and outputs a value y.
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A scheme MFHE is perfectly correct, if for all A € N, i € [n], £ < n, r?ewp —
{0, 1}>‘,1"iE"c —{0,1}*, (pk;, sk;) — Setup(lA;rfet”p), C € Cy, x; € Xy, we have

Pr [Dec({ski}ic[n), Eval(C, (pk;, Enc(pk;, 2 75"))icp)) = Cla1, ..., 2¢)] = 1.

For n = 1 multi-key FHE is equivalent to FHE. In the introductory paper of
Lépez-Alt, Tromer, and Vaikuntanathan [32], the setup algorithm also outputs
an evaluation key together with the public and secret key. In our work we assume
that the information of the evaluation key is contained in the public key.

Definition 3.9 (IND-CPA security of MFHE). A multi-key fully homo-
morphic encryption scheme MFHE = (Setup, Enc, Eval, Dec) is secure, if for any
PPT adversary A, it holds that

’Pr [A(pk, Enc(pk,zo)) =1

(pk, sk) Setup(l’\)]
(0, 21) — A(pk)
(pk, sk) « Setup(1?*)

—Pr [.A(pk, Enc(pk,z1)) =1 (z0.71) — A(pk) } ’ < negl(N).

Besides the security of a multi-key FHE scheme, we also need to define what
it means for a multi-key FHE scheme to be compact.

Definition 3.10 (Compactness). A multi-key FHE scheme MFHE =
(Setup, Enc, Eval, Enc, Dec) for a circuit class C and n participating parties is
called compact, if |ct| < poly(A,n), where ct := Eval(C, (pk;, ct;)icfg) with £ <n
and with the description of the circuits Setup, Enc and Dec being polynomial in
the security parameter .

We note that this definition implies that public- and secret-key pairs are also
independent from the size of the circuit. We assume familiarity with the notion of
negligible functions, symmetric encryption, digital signatures and commitments
and refer to the full version [14] for the formal definitions.

3.4 Secure Multiparty Computation

The security of a protocol (with respect to a functionality f) is defined by
comparing the real-world execution of the protocol with an ideal-world eval-
uation of f by a trusted party. More concretely, it is required that for every
adversary A, which attacks the real execution of the protocol, there exist
an adversary S, also referred to as a simulator, which can achieve the same
effect in the ideal-world. In this work, we denote an ¢-round MPC protocol as

m = (m.Nexty, ..., m.Nexty, 7.0Out), where 7.Next;, with j € [¢] denotes the next-
message function that takes as input all the messages generated by = in the
rounds 1,...,j —1 (that we denote with 7;_;) the randomness and the input of

the party P; and outputs the message msg, ;. Additionally, we assume that all
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the parties run the same next message function algorithms (the only difference
is the randomness and the input provided by each party). w.Out denotes the
algorithm used to compute the final output of the protocol. We assume that
readers are familiar with standard simulation-based definitions of secure multi-
party computation in the standalone setting. For self-containment we provide the
definition in the full version [14] and refer to [22] for a more detailed treatment.

In this work we also consider a relaxed notion of security known as privacy
with knowledge of outputs [26,36]. In this the input of the honest parties is
protected in the standard simulation based sense, but the output of these parties
might be incorrect. To formalize this notion we need to slightly modify the ideal
execution as follows.

1. Send inputs to the trusted party: The parties send their inputs to the
trusted party, and we let z; denote the value sent by P;.

2. Ideal functionality sends output to the adversary: The ideal func-
tionality computes (y1,...,yn) := f(z1,...,2,) and sends {y;}icr to the
adversary A.

3. Output of the honest parties: The adversary S sends either a continue
or abort message or arbitrary values {y;};c[n)\s to the ideal functionality. In
the case of a continue message the ideal functionality sends y; to the party
P;, in the case of an abort message every uncorrupted party receives 1 and
in the case that the ideal functionality receives arbitrary values {y; }iepn)\7 it
forwards them to the honest parties.

4. Outputs: S outputs an arbitrary function of its view, and the honest parties
output the values obtained from the trusted party.

The interaction of & with the trusted party defines a random variable
Ideal?fg(%z)(k, x) as above.

Having defined the real and the ideal world, we now proceed to define our
notion of security.

Definition 3.11 Let A be the security parameter. Let f be an n-party random-
ized functionality, and ™ be an n-party protocol for n € N.

We say that w securely realizes f with knowledge of outputs in the presence of
malicious adversaries if for every PPT adversary A there exists a PPT adver-
sary S such that for any I C [n] the following ensembles are computational
indistinguishable:

{Realr (2,1 (K, @) bren, (o,5)e 0,13+ {1deal sl (k. ) been, (@,2)ef0,1}+-

4 k-Delayed-Input Function MPC

In this section, we introduce the new notion of k-Delayed-Input Function. The
classical simulation-based definition of secure MPC requires that the function to
be computed is known at the beginning of the real (and ideal) world experiment,
before the protocol starts. In our construction we are not in this setting, as we
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need an MPC protocol in which the parties can influence the function to be
computed by giving an extra input mid-protocol. Concretely, in our protocols,
the function computed by the MPC protocol becomes fully defined in the third
round (i.e., for the circuit-scalable construction the function incorporates the
commitments and the random values sent in the second round).

To capture this, we devise a variant of secure MPC where each party P; has
two inputs z; and f, where 1) the input z; is known at the beginning of the
real (ideal) world experiment (as in the standard definition of MPC) but 2) the
input f can be any function and it becomes known only in the k-th round. In
this setting we want to guarantee that if all the honest parties input the same
function f, then the adversary either learns the output of f or nothing at all.
More formally, we require the input of the honest parties to be protected in the
standard simulation based manner for the case where the ideal world evaluates
the function f.

A strawman’s approach for such a protocol would be to rely on an ¢-round
MPC protocol that does not require the input of the parties to compute the first
k—1 rounds with £ < ¢—1. We call such protocols delayed-input protocols. More
precisely, one could consider a delayed-input MPC protocol II for the universal
function g where g takes a pair of inputs from each party P; denoted with (z, f)
and returns f(z1,...,x,).

Unfortunately, it is not guaranteed that this approach works since the stan-
dard security definition of MPC does not capture the scenario in which an input
f for an honest party is chosen adaptively based on the first £ — 1 rounds of the
protocol. Therefore, even if all the honest parties follow the naive approach we
have just described and use the function f as their input, the adversary might
be able compute the output of a function f # f. It should be noted that the
description of the computed function can be part of the output as well, hence,
the honest parties will notice that the wrong function has been computed and
will reject the output. However, the adversary might have gained much more
information from the evaluation of f than it would have gotten by evaluating f.

Syntaz & Correctness. Before defining the real and ideal execution, we need to
define the syntax of an /-Round k-Delayed-Input Function MPC protocol and its
correctness. An ¢-Round k-Delayed-Input Function MPC protocol is defined as
IT = (Nexty, ..., Nextys, Out). The next message function Next; takes as an input
the security parameter in unary form, the input of the party, its randomness and
a parameter m that represents the size of the function that will be computed, and
returns the first message of the protocol. The next-message function Next;, with
J € [k—1] takes as input all the messages generated by IT in the rounds 1,...,j—1
(that we denote with 7;_1) the input and the randomness of P; and outputs the
message msg; ;. The next message function Next; with j € {k,...,¢} takes the
input of the party P;, a function f (together with 7,_1) and the randomness of
P;, and returns the message msg; ;. To compute the final output, each party P;
runs Out on input 7y, its input and randomness. We now define the correctness
and the security property that a k-delayed-input function protocol must satisfy.



Round-Optimal and Communication-Efficient Multiparty Computation 85

Definition 4.1 (Perfect Correctness for ¢-Round #k-Delayed-Input
Function MPC Protocols). For any \,m € N, for any inputs (x1,...,x,) €
({0,13M)™ and for any set of functions {fy} e with |fy| =m for all v € [n],
it must hold for all i € [n] that

- if fi =+ = fn then Pr[(Out(re, zi, 1) # f(z1,...,2,)] =0,
— if there exists o, 8 € [n] s.t. fo # fg then Pr[(Out(ry, x;, ;) # L] =0,

where msg; ; Nexty (12, z;, m;7;), msg,.; « Next.(7e—1,2i;7:) and msg;,; —
Next;(7;_1, s, fi;7:) where r; — {0, 1}’\, ce{l,....k—=1} and j € [k, ... ,{].

We now proceed to defining the security of k-delayed-input function proto-
cols, by describing how the real and the ideal world look like.

The Real Ezxecution. Let us denote © = (z1,...,x,) where z; denotes the input
of the party P;. In the real execution the n-party protocol IT is executed in the
presence of an adversary A. The honest parties follow the instructions of II. The
adversary A takes as input the security parameter ), the size of the function m,
the set I C [n] of corrupted parties, the inputs of the corrupted parties, and
an auxiliary input z. A sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy. At round k — 1, A picks a
function f and sends it to the honest parties. Then each honest party P; uses f to
compute the rounds k, k+1, ..., ¢ of II. The adversary A continues its interaction
with the honest parties following an arbitrary polynomial-time strategy. The
interaction of A with a protocol II defines a random variable Real?}i’}l@%(k, x)
whose value is determined by the coin tosses of the adversary and the honest
players. This random variable contains the output of the adversary (which may
be an arbitrary function of its view), the outputs of the uncorrupted parties as

well as the function f chosen by the adversary. We let Real?}i‘}@% denote the

distribution ensemble {Real%’il\(ﬂz';’cl (k, ) e, (z,2)e{0,1}* -

The Ideal Execution

— Send inputs to the trusted party: Each honest party P; sends x; to the
ideal functionality. The simulator sends {z,},;er and f to the ideal function-
ality.

— Ideal functionality sends output to the adversary: The ideal func-
tionality computes (y1,...,¥n) := f(21,...,2,) and sends {y;}icr to the
simulator § and f to P; for each i € [n] \ I.

— Output of the honest parties: The simulator S sends either a continue or
abort message to the ideal functionality. In the case of a continue message the
ideal functionality sends y; to the party P;, in the case of an abort message
every uncorrupted party receives L.

— Outputs: S outputs an arbitrary function of its view, and the honest parties
output the values obtained from the trusted party.
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The interaction of & with the trusted party defines a random variable
IdealBI(Fz')'\,/'IPC(k,m) as above. Having defined the real and the ideal world, we
now proceed to define our notion of security.

Definition 4.2 (k-Delayed-Input Function MPC). Let A be the secu-
rity parameter. We say that a protocol II satisfying Definition 4.1 is k-
delayed-input function in the presence of malicious adversaries if for every PPT
adversary A attacking in the real world (as defined above) there exists an expected
PPT ideal-world adversary S restricted to query the ideal functionality with the
same function f that will appear in the real world experiment output such that
for any I C [n] the following ensembles are computational indistinguishable

{Realy 105 (k, @) bren, (o) e 0,13+ {1dealg() T < (k, T) bren, (w,20e (0,1} -

Remark 4.3. We note that Definition 4.2 is very similar to the standard notion
of MPC. Indeed, our ideal world can be thought of as the ideal world of the
standard definition of MPC for the case where the parties want to evaluate the
universal function. We also note that in the ideal world there is no notion of
rounds, hence it is not immediately clear how to translate what happens in the
real world (where the function f is adaptively chosen in the k-th round by the
adversary) into the ideal world (where the ideal world adversary has all the
information it needs from the beginning of the experiment). The way we break
this asymmetry between the ideal and the real world is exactly by restricting the
power of the simulator (i.e., the power of the ideal-world adversary) depending
on an event that happens in the real world. In our specific case, we require
the admissible simulators (i.e., the admissible ideal world adversaries) to be
those that query the ideal world functionality using the same function that will
appear in the output of the real world experiment. We note that without this
requirement this definition becomes useless since the simulator might query the
ideal functionality using a function f that is different from the function f used in
the real world, which would allow the simulator to learn more about the honest
parties’ inputs then it would have by querying the ideal functionality with the
function f.

Input: ((z;, ki), (fi; 7i))ien)-
If Verify(k;, fi, ) = 0 or f; # f; for any 4, j € [n], then output L.
Compute y1,...,yn = f'(x1,...,2,) with f/ = f; for any ¢ € [n] and
set y; :=y? :=y} for all i € [n].

Output: (39, y}) to the party P; for each i € [n].

Fig. 5. Description of the function g.

From MPC Protocols to k-Delayed-Input Function MPC Protocols.
To construct an n party f-round k-Delayed-Input Function MPC protocol
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ITP¥ . we rely on a 2n party f-round MPC protocol IT that does not require
the input to compute the first & — 1 rounds and a one-time MAC scheme
MAC = (Setup, Auth, Verify). In our protocol IT°'F, each party P; controls two
parties of IT. One party uses the private input and a MAC key (which is known
from the beginning) as its input and the other party uses the function f (received
at the end of round k — 1) authenticated with the MAC key as its input. The
MPC protocol II then checks that the functions are authenticated accordingly
to the MAC key and that they are all equal. If this check is successful, IT evalu-
ates the function f over the secret inputs of the parties. Finally, the individual
outputs of the function evaluation are returned to one of the two parties of IT
controlled by the party P;. To show that the described protocol ITP'F is indeed
k-delayed-input function, we rely on the security of the MPC protocol II and
the unforgeability of the MAC. The security of the MPC protocol II ensures
that the private inputs of the parties are protected and the unforgeability of the
MAC is used to enforce that the correct function is used in the protocol exe-
cution. Intuitively, if, by contradiction, there exists an adversary that manages
to evaluate the function f instead of f then we would be able to construct a
reduction to the security of the MAC since the only condition in which IT does
not output L is the one in which all the parties input the same authenticated
function f. If there exists an adversarial strategy that makes IT parse f as f,
then it must be that f has been authenticated using the MAC key of an honest
party. We can extract such a forgery using the simulator of IT (that extracts the
input from the parties declared as corrupted).

Now, we describe the construction more formally. Let II be a 2n-party
MPC protocol that realizes the 2n-input function g described in Fig.5 with
the property that it needs the input of the parties only to compute the rounds
k,k+1,..., 0 with 0 < k </—1 where £ € N represents the round complexity of
II. In our k-Delayed-Input Function MPC protocol ITP'F, each party P; emulates
two parties P? and P} of I1. Let x; be the private input of P;, then P; performs
the following steps.

1. Run Setup to sample a MAC key k;.

2. Run the party P? using the input (z;,k;) and P} until the round k — 1.°

3. Upon receiving the function f; compute 7; < Auth(k;, f;) and run P! using
the input (f;, 7).

4. When the protocol IT is finished, P; outputs the output obtained by P?.

Theorem 4.4. Let II be a 2n-party £-round MPC protocol that securely realizes
the function f of Fig. 5 and that requires the input only to compute the rounds
kik+1,....0 with0 <k <{¢—1 and let MAC = (Setup, Auth, Verify) be a one-
time secure MAC scheme, then the protocol ITP'F described above is an n-party
{-round k-Delayed-Input Function MPC protocol.

The proof for this theorem can be found in the full version [14].

10 We recall that P¢ and P{ do not need to use the input to compute the first k — 1
rounds, nonetheless we can specify the input of P} at the very beginning of the
protocol.
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5 Our Compiler: Circuit-Scalable MPC

In this section we prove our main theorems on how to construct a circuit-scalable
MPC protocol that realizes any functionality f with privacy with knowledge of
outputs. We refer to Sect.2 for a simplified description of the protocol for the
two-party case and to Fig.6 for the formal description of our compiler. Our
construction makes use of the following cryptographic tools:

— An /f-round k-delayed-input function MPC protocol [IM = (IIM.Next, ...,
I Next,, IT™.Out) (not necessarily communication efficient) with k& > 3. In
the description of our compiler we assume, without loss of generality, that
I™ is 3-delayed-input function.'!

— A strong succinct single-key simulation secure decomposable FE combiner
DFEC = (DFEC.Setup, DFEC.Enc, DFEC.KeyGen, DFEC.Dec, DFEC.Partition)
for n FE candidates.

— A non-interactive computationally hiding commitment scheme Com.

Theorem 5.1. Let DFEC be a single-key simulation secure decomposable FE
combiner with circuit size cSsewp for the setup algorithm DFEC.Setup, circuit
size cSe for the encryption algorithm DFEC.Enc and functional key size ss,
let Com be a commitment scheme and let IIM be the (-round MPC protocol

k-delayed-input function protocol described in Sect.  that realizes CCSt i
sSetup,i s lSeryp

(Fig. 7), then IIFE is an f-round MPC protocol that realizes the single-output
Sfunctionality C with knowledge of outputs which has communication complexity

pOIY()‘v T, CSSetup, CSEnc; Ssk)-

We refer to the full version [14] for the formal proof of the theorem.
The following theorem follows immediately from Theorem 5.1 and the defi-
nition of strong succinct FE combiners.

Theorem 5.2. Let DFEC be a succinct single-key simulation secure decompos-
able FE combiner, then II'E is a circuit-scalable secure MPC protocol that real-
1zes any single-output functionality with knowledge of outputs.

In the full version [14], we give more details on how our compiler can be
instantiated, which leads to the following theorem.

Theorem 5.3. If the LWE assumption holds, then there exists a round optimal
(4-round) circuit-scalable MPC protocol that realizes any single-output function-
ality with knowledge of outputs.

By relying on the compilers proposed in [3,26,31] we can turn our proto-
col into one that computes any function under the standard simulation based
definition of MPC.

' Any k'-delayed-input function MPC with k' > 3 can be turned into a 3-delayed-
input function MPC protocol since the function received in round 2 can be ignored
up to round k' — 1.
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TFE
Each i € [n] party P; has input z; € {0,1}" as its secret input.

Round 1.
1. Sample TSetup? il pEre 10, 1})‘ for all k € [n] and set Rl :=
(rcom )k‘E o
2. Set x} == (xi,rézlfp, RYom, 7E™) and compute msg, ; I Next; (12, z7).
3. Sample rigk « {0,1}" for all k € [n] \ {i}, compute comigk :=
Com(rée‘t’uﬁ,rcom") and set coméetup = {comée‘t}u’;}ke[n]
4. Send (msg, ;,cOMEeyp)-
Round 2.
1. Let 71 denote the transcript of the protocol II™ up to round 1.
2. Compute msg, ; + IT™.Nexty(71).
3. Send (Msgy i, (Tserap)ielm\ {i})-
Round 3.
1. Let 7 denote the transcript of the protocol IT™ up to round 2.
2. Compute msgs; < mM Nextg(Cccngemw Rl ,T2), With comsetup,i :=
{coméeup teen) and Rée, == () jernl kemn (/-
3. Send msg; ;.
For each round k € {4,...,¢—1}.
1. Let 7x_1 denote the transcript of the protocol IT™ up to round k — 1.
2. Compute the second round message msgy, ; < ITV .Nexty, (Th—1)-
3. Send msg, ;.
Round /. '
1. Let 7y—1 denote the transcript of the protocol II™ up to round ¢ — 1.

Setup __ k—1
2. Compute T @ke[n TSetup-

3. Generate msk; < FE;.Setup(1*;7°""), compute the partition of C,
ie. (Ci...,C,) 4 DFEC.Partition(1*,C) and generate sk; <
FEi,KeyGen(mski7 C’i;r'i(eyce") with r;(eyce" + Ao, 1})‘.

4. Compute the fourth round message msg, ; < HM.NeXt[(Tzfl).

5. Send (msg, ;,ski).

Output Computation.

1. Let 7¢ denote the transcript of the protocol II™ up to round ¢.

2. Compute the output of IT as (ct, (F’gﬁ,é)ie[n],ke[n]\{i}) — IT™.Out(7).

3. Output DFEC.Dec(skc, ct) with ske = (sku, ..., skn).

Fig. 6. Description of the protocol II'E that securely realizes any functionality with
knowledge of outputs.

6 Our Compiler: Circuit-Independent MPC

We now show how to construct a communication efficient MPC protocol that
realizes any single-output functionality f. We refer to Sect.2 for a simplified
description of the protocol for the two-party case and to Fig.8 for the formal
description of our compiler We make use of the following tools:
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InI)Ut: (Ii7 Tézuipa Rzomv Tfnc)iG[n]

e Parse coMsetyp,; as {com’scetup}ke[n] and

) oL

comgetup as {Com%;up}ke[n]~
- ik

o Parse Rseuup a5 (Terp) jcin] keln]\ (5}
e Parse R, as (réoﬁk)ke[n] for all i € [n].
e For all i,j € [n] check that comg. 7 = Com(rg risad)
If one of the above checks fails then output L, continue
as follows otherwise.
For each i € [n], compute r>*"“P = Drcim e, and generate
msk; « FE;.Setup(1;77°"P)
Let msk := (msky,...,msky),z = (z1,...,2,), 7" == @ie[n] rEne,

Output: ct := DFEC.Enc(msk, z; 7E™) and {T]sce:i}je[n],ke[n]\{j) to P;.

Fig. 7. Circuit C

€OMSetup, i ’Rgetup ’

— An f-round k-delayed-input function MPC protocol [TM = (IT™M.Next, ...,
I Next,, IT™.Out) (not necessarily communication efficient) with k > 2.

— A multi-key fully homomorphic encryption scheme MFHE = (Setup,
Enc, Eval, Dec) for n keys.

Theorem 6.1. Let MFHE be a multi-key fully homomorphic encryption scheme
with circuit size csserup for the setup algorithm MFHE.Setup, circuit size cSgnc for
the encryption algorithm MFHE.Enc, circuit size cspec for the decryption algo-
rithm MFHE.Dec and cipherteat size s, let ITM be the ¢-round MPC protocol

k-delayed-input function protocol that realizes the circuit C?t?cKi (Fig. 9), then

IITHE s an (-round MPC protocol that securely realizes the single-output func-
tionality C with communication complexity poly(X, n, €Ssetup; CSEnc; CSDec; Sct ) -

We refer to the full version [14] for the formal proof.
Due to Theorem 6.1 and the definition of a compact multi-key FHE scheme
we have the following.

Theorem 6.2. Let MFHE be a compact multi-key FHE scheme, then ITFHE s
a circuit-independent secure MPC' protocol that realizes any single-output func-
tionality.

We can easily modify ITTHE to obtain a protocol IT™HE" which has a com-
munication complexity of O(Lin) + poly(A, n, Loyt). The protocol ITFHE" works
exactly as ITFHE with the following differences. Every party P; encrypts a short
seed s; of a PRG PRG using the FHE scheme, i.e. Enc(pk;, s;;7f), and sends
it together with the value w; = PRG(s;) @ z; to all the other parties P; with
j € [n]\{i}. The party P;, upon receiving (Enc(pk;, s;77), w;) from all the other
parties P; with j € [n] \ {i}, computes Enc(pk;, PRG(s;)), using homomorphic
operations, Enc(pk;, wj) by encrypting w; using pk;, and then homomorphically
XORs the resulting ciphertexts to receive Enc(pkj, x;). This ciphertext can now
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FHE
Initialization: Each i € [n] party P; has input z; € {0,1}" as its secret input.
Round 1.
1. Sample 2 and £« 0,1}
2. Set x} (xz,rzsewpﬂ'f”c) and compute msg, ; IT™ Next; (1%, z}).

3. Compute (pk;, ski) := Setup(1*;77°P).
4. Compute ct; := Enc(pk,, z;; rf™).
5. Send (msg, ;, pk;,cti).
Round 2.
1. Let 71 denote the transcript of the protocol II™ up to round 1.
2. Compute ct’ := Eval(C, (pky,ct1), ..., (pk,,ctn)).
3. Compute msg, ; < HM.Nexm(C’ijKi,7'1)7 where K* := (pk;, ct;) je[n)-
4. Send msg, ;.
For each round k € {3,...,¢}.
1. Let 741 denote the transcript of the protocol IT™ up to round k — 1.
2. Compute the k-th round message msg,, ; < II" Nextx (7 _1).
3. Send msg, ;.
Output Computation.
1. Let 7; denote the transcript of the protocol IT™ up to round .
2. Compute the output of II™ as y < II™.Out(r).
3. Output y.

Fig. 8. The protocol IT™E that securely realizes f.

Input: (z;,7; Setup rf"c)ze[n].

° Parse K" as (pk;, cti)icn]-
e For all ¢ € [n], check that (pk;, ) = Setup(1>‘ 72¥P) and
ct; = Enc(pk,, z:; 7E™) and compute (-, sk;) = Setup(1*; r><"P).
e Compute y = Dec(sky, . .., sky, ct?).
If one of the above checks fails then output L else return y to P;.

Fig. 9. Circuit Ct, “Ki

be used to run the evaluation algorithm and compute Enc({pk;}, f(z1,...,2n)).
The parties now check that the ciphertexts {w;} ;e[ are well formed by running
the MPC protocol as described in Fig. 9.

Theorem 6.3. Let MFHE be a compact multi-key FHE scheme, then ITFHE g
a secure MPC' protocol with communication complexity O(Liy) + poly (A, n, Loyt)
that realizes any single-output functionality.

Due to [3,31,32] we can claim the following.

Corollary 6.4. If the LWE and DSPR assumptions hold and any of the DDH,
QR, N Residuosity or LWE assumption hold, or there exists a malicious-secure
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OT, then there exists a round optimal (4-round) circuit-independent MPC' pro-
tocol that realizes any functionality.
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