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We characterize self-stabilizing functions in population protocols for complete interaction 
graphs. In particular, we investigate self-stabilization in systems of N finite state agents 
in which a malicious scheduler selects an arbitrary sequence of pairwise interactions 
under a global fairness condition. We show a necessary and sufficient condition for self-
stabilization. Specifically we show that functions without certain set-theoretic conditions 
are impossible to compute in a self-stabilizing manner. Our main contribution is in the 
converse, where we construct a self-stabilizing protocol for all other functions that meet 
this characterization. Our positive construction uses Dickson’s Lemma to develop the notion 
of the root set, a concept that turns out to fundamentally characterize self-stabilization 
in this model. We believe it may lend to characterizing self-stabilization in more general 
models as well.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The population protocol computational model assumes a system of N identical finite state transducers (which we call 
agents) in which pairwise interactions between agents induce their respective state transitions. Each agent is provided a 
starting input and starting state, and an adversarial scheduler decides at each time step which two agents are to interact. In 
order to make the behavior of the scheduler precise, the scheduler is allowed to act arbitrarily so long as the global fairness 
condition (defined by Angluin, Aspnes, Diamadi, Fischer, and Peralta [1]) is satisfied: if a configuration of agent states appears 
infinitely often, then any configuration that can follow (say, after an interaction) must also appear infinitely often. We stress 
that agents individually do not have unique identifiers and a bound on N is not known. We call all N agents jointly a 
population. When an agent interacts with another agent, both agents change states as a function of each agent’s input and 
state tuple. Each agent outputs some symbol at every time step as a function of their current state, and once every agent 
agrees on some common output for all subsequent time steps, we say the protocol has converged to that symbol. We say a 
protocol computes (or decides) some function f if distributing the input symbols of input x and running the protocol causes 
the population (i.e. all agents) to converge to f (x). In the general model an accompanying interaction graph restricting which 
agents can ever interact may be provided as a constraint on the scheduler. In this paper, we will be considering the original, 
basic model introduced in [1], where we deal with complete interaction graphs and inputs that do not change with time. 
For the population protocol model on complete graphs, the characterization of computable predicates (not necessarily with 
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self-stabilization) has been studied by Angluin, Aspnes, Eisenstat, and Ruppert, who proved it to be equivalent to the set of 
semilinear predicates [2].

It is desirable to have population protocols that can handle transient faults: specifically, we would like it to be the case 
that no matter what multiset of states the agents are initialized with, the protocol will eventually converge to the correct 
output. For this reason, such a protocol is called self-stabilizing, being able to converge after experiencing any adversarial 
fault that erroneously changes an agent state. Since fault-tolerance is a desirable property of any distributed system, we aim 
to determine exactly what computable functions in this model admit self-stabilizing solutions, and which do not. We prove 
the following main theorem for population protocols on complete interaction graphs.

Theorem (Main). Let f :X → Y be a function where X is any set of finite multisets on a finite alphabet. Then f has a self-stabilizing 
protocol ⇐⇒ (For any A, B ∈X , A ⊆ B =⇒ f (A) = f (B)).

We remark on the definition of X : Firstly, it is a set of multisets; thus A ⊆ B refers to multiset inclusion, not set 
inclusion (e.g. {a, a, b} ⊆ {a, a, b, b} but {a, a, b} � {a, b}). Moreover, the domain X can be any set of multisets; that is, the 
domain does not necessarily contain all possible nonempty finite multisets on a finite alphabet, but could be a subset of 
it. If X is all possible nonempty finite multisets on a finite alphabet, then the theorem states f is a constant function: the 
output of f on the singleton multisets is the output of f on the union of all singletons; since f agrees on all singletons, 
it agrees on all larger multisets. Thus self-stabilizing decision problems, where all possible inputs are included, will be a 
constant function. In contrast, self-stabilizing promise problems, where only a subset of all possible inputs are included, 
may be non-constant.
Our Techniques: The technique that we use to show when self-stabilization is not possible follows from the work of Angluin, 
Aspnes, Fischer, and Jiang in [3]. Informally, self-stabilizing functions must not allow subpopulations to “re-converge” to a 
different answer; so if A ⊆ B but f (A) �= f (B), running a protocol with input B from any configuration could lead to the 
subpopulation with input A converging on erroneous output f (A). The converse, that functions where subsets lead to the 
same output are self-stabilizing, is an unstudied problem that involves a technically intricate construction. Tools from partial 
order theory (Dickson’s Lemma) are used to observe that the domain X will have a finite set of minimal elements under 
the ⊆ partial order; these minimal elements completely determine the output of f , and so our protocol computes f by 
identifying which of these minimal elements is present in the population. A function is self-stabilizing if it admits a self-
stabilizing protocol under the basic model. A nontrivial corollary of our main theorem is that for a fixed (possibly infinite) 
domain X and a finite output alphabet Y , there are only finitely many self-stabilizing functions f :X → Y .

Corollary 1. Fix some set, X , of finite multisets on a finite alphabet. Fix a finite output alphabet Y . There are only finitely many self-
stabilizing functions of the form f :X → Y .

This follows from the fact that the outputs of finitely many minimal elements in the domain fully characterize a self-
stabilizing function. This validates the intuition that the set of all self-stabilizing functions is very limited in comparison 
to the set of computable functions. We note that our general self-stabilizing protocol is not efficient, and often specific 
problems have much faster self-stabilizing protocols. Unsurprisingly the functions we list in Section 1.3 admit faster solutions 
than our protocol. The proceedings version of this work appears in SSS 2020 [17].

1.1. Related work

The population protocol model was first introduced by Angluin, Aspnes, Diamadi, Fischer, and Peralta in [1] to represent a 
system of mobile finite-state sensors. Dijkstra was the first to formalize the notion of self-stabilization within a distributed 
system, although the models and problems he discussed imposed different constraints than that of population protocols, 
such as distinguishing agents with unique identifiers [13]. Self-stabilizing population protocols were first formalized in the 
work of Angluin, Aspnes, Fischer, and Jiang [3]. Their work generated self-stabilizing, constant-space protocols for problems 
including round-robin token circulation, leader election in rings, and 2-hop coloring in degree-bounded graphs. Moreover 
their work established a crucial method of impossibility result. Call a class of graphs simple, as defined in [3], if there does 
not exist a graph in the class which contains two disjoint subgraphs that are also in the class. Example of this includes the
class of all rings or the class of all connected degree-d regular graphs. Angluin et al.’s work demonstrated that leader election 
in non-simple classes of graphs are impossible. Our paper’s impossibility result follows from Angluin et al.’s technique, as 
the class of complete graphs that we work with is non-simple. Other impossibility results come from Cai, Izumi, and Wada 
[10] using closed sets, which are sets of states such that a transition on any two of the states results in a state within the 
set; impossibility in leader election is demonstrated by identifying a closed set excluding the leader state.

Many self-stabilizing population protocol constructions besides those from [3] tend to give the model additional prop-
erties to achieve self-stabilization. Beauquier, Burman, Clement, and Kutten introduce intercommunication speeds amongst 
agents, captured by the cover time; they also add a distinguished, non-mobile agent with unlimited resources called a base 
station [7]. Under this model, Beauquier, Burman, and Kutten design an automatic tranformer that takes a population pro-
tocol algorithm solving some static problem and transforms it into a self-stabilizing algorithm [8]. Izumi, Kinpara, Izumi, 
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and Wada also use this model to create efficient protocols for performing a self-stabilizing count of the number of agents 
in the network, where there is a known upper bound P on the number of agents. Their protocol converges under global 
fairness with 3 · 	 P

2 
 agent states [16]. Fischer and Jiang introduce an eventual leader detector oracle into the model that 
allows self-stabilizing leader election in complete graphs and rings. The complete graph protocol works with local and 
global fairness conditions, while the ring protocol requires global fairness [14]. Beauquier, Blanchard, and Burman extend 
this work by presenting self-stabilizing leader election in arbitrary graphs when a composition of eventual leader detectors 
is introduced into the model [6]. Knowledge of the number of agents allows Burman, Doty, Nowak, Severson, and Xu to 
develop several efficient self-stabilizing protocols for leader election; with no silence or space constraints they achieve op-
timal expected parallel time of O(logN) [9]. Loosely-stabilizing protocols relax the self-stabilization definition to allow the 
protocol to meet its specification for a long time, but not forever [19]; this can allow more tractable solutions, such as leader 
election protocols with polylogarithmic convergence time by Sudo, Ooshita, Kakugawa, Masuzawa, Datta, and Larmore [20]. 
Self-Stabilizing leader election (under additional symmetry-breaking assumptions) is possible without unique identifiers, as 
discussed in [5,18], but the communication happens over a fixed graph - unlike population protocols where interaction of 
agents is arbitrary and interaction pattern is controlled by an adversarial scheduler. Population self-stabilizing protocols are 
also related to biological systems self-stabilization, see [15] for further discussion.

In this work, we do not extend the basic model with any extra abilities. We demonstrate a universal self-stabilizing 
population protocol for any function f : X → Y where for any A, B ∈ X , A ⊆ B implies that f (A) = f (B). We do this by 
using a result from partial order theory by Dickson [12] that states that any set of finite dimensional vectors of natural 
numbers have finitely many minimal elements under the pointwise partial order.

1.2. The number of self-stabilizing functions depends on the number of minimal elements

In Definition 7 we define the root set. Formally, let X be a (possibly infinite) set of finite multisets over a finite alphabet 
(e.g. X = {{a}, {a, a}, . . .} over alphabet � = {a}). The root set is some subset R ⊆ X with the following property: for any 
element of the domain A ∈ X , there is some element R ∈ R such that R ⊆ A. We call R a root. Section 2.1 uses Dickson’s 
Lemma to prove that there exists a unique, finite, and minimally sized root set R. We note the following corollary to the 
main theorem: to determine the output of any A ∈ X for a self-stabilizing function f : X → Y , it suffices to identify some 
root R ⊆ A since f (R) = f (A). In fact the entire output of f is determined by f (R) for each R ∈R. The number of possible 
outputs is then upper bounded by the size of the smallest root set, which is an interesting fact in of its own right.

Corollary 2. Let X be a set of finite multisets over a finite alphabet, let Y be a finite output alphabet, let f :X → Y be a self-stabilizing 
function, and let R be the minimally sized root set of X . Then the total number of possible outputs for f is upper bounded by |R|.

Fix some domain X and finite output alphabet Y , and let R be the minimally sized root set of X . The number of 
self-stabilizing functions f :X → Y are precisely the number of valid ways to assign an output to each root in R, of which 
there are at most n = |Y ||R| ways. It could be fewer than n, though, if there exists a A ∈ X has two roots R ⊆ A and R ′ ⊆ A. 
In this case, they must be assigned the same output f (R) = f (R ′) = f (A). In fact this can chain with other roots as well: 
if there is another root R ′′ such that R ′ ⊆ B and R ′′ ⊆ B , then we also have that f (R) = f (R ′) = f (R ′′) = f (A) = f (B). 
Otherwise, if every A has a unique root, then there is no overlap and each root has |Y | choices for its output.

Call two roots R0 and Rk dependent if there is a sequence of roots starting with R0 and ending with Rk , k � 1, that 
chain as described above. That is, a sequence R0R1 . . . Rk−1Rk , such that for each 0 � i < k, there is a Ai+1

i ∈ X such that 
Ri ⊆ Ai+1

i and Ri+1 ⊆ Ai+1
i . Notice that this makes every root in the chain map to the same output f (R0) = . . . = f (Rk) for 

self-stabilizing f . In fact, this is an equivalence relation that partitions the root set into r equivalence classes, where every 
root in a single equivalence class must have the same output under f . This makes the number of self-stabilizing functions 
exactly |Y |r .

Corollary 3. Let X be a set of finite multisets over a finite alphabet, let Y be a finite output alphabet, and let R be the minimally sized 
root set of X . The number of self-stabilizing functions f :X → Y is finite. Specifically there are |Y |r self-stabilizing functions, where r
is the number of equivalence classes of R under the dependence relation.

1.3. Nontrivial examples of self-stabilizing functions

If we can restrict the domain X to exclude some inputs, then it can become easier to generate problems that admit 
self-stabilizing solutions.

– In Chemical Reaction Networks (CRN), it can be desirable to compute boolean circuits. In CRNs one prevalent technique 
to compute some boolean function g : {0, 1}k → {0, 1}m is to have k different species, each with 2 sub-species [11]. That 
is, we have molecules s01, s11, s02, s12, . . ., s0k , s1k , where molecule s ji signifies that the ith bit has value j ∈ {0, 1}. All species 
will appear in the input, but only one sub-species per species will appear (i.e. s0i and s1i will not both appear, but one 
of them will). This way of formulating the input allows for self-stabilizing computation of boolean functions! This is 
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because if A ⊆ B for some input multisets, A and B , of molecules, they will include the same sub-species and hence 
have the same output g(A) = g(B).

– Generalizing the former example, suppose we have an input alphabet of k symbols, but only k̃ < k of these symbols 
will ever show up in the population (though a given symbol could occur multiple times). Then we can compute any
self-stabilizing function of the k̃ present members.
For instance, suppose we have k̃ different classes of finite-state mobile agents, a1, . . . , ak̃ . There are a nonzero number 
of agents in each class ai , and agents within the same class are running a (possibly not self-stabilizing) population 
protocol. Eventually every agent in class ai will converge and be outputting the same common value oi . These outputs 
o1, . . . , ok̃ will then be the input to our self-stabilizing population protocol. The agents might perform some sort of 
protocol composition where a tuple of states (q, s) are used for each agent; q would correspond to the agent state in 
the first protocol, and then s would correspond to the agent state in the self-stabilizing protocol. If the first protocol 
was also self-stabilizing (it doesn’t have to be), then the entire protocol composition would be self-stabilizing as well.
As an example, we could have each class of agents ai compute some boolean circuit Ci in a self-stabilizing way. Even-
tually each agent of class ai will be outputting some m character string over the set {0i, 1i}. Notice that even both 
agents in class a1 and in class a2 intend to output 0110, the former agents will output 01111101 and the latter agents 
will output 02121202. Once all of these boolean circuit computations are done, all the agents across classes will calcu-
late the majority output in a self-stabilizing way (and they would be able to do so since the outputs o1, . . . , ok̃ are all 
distinguishable).

– Any computable function in which the number of agents is a fixed constant k admits a self-stabilizing solution (there 
can’t be any subsets, so the condition is vacuously true). For instance, distribute bits amongst exactly k agents; we can 
create a self-stabilizing protocol to output 1 if any permutation of those k bits represents a prime number in binary.

1.4. The basic model

There are different formalizations of the basic population protocol model. We adopt the basic one first introduced by 
Angluin et al. [1], except where we impose that any two agents are allowed to interact.

A population protocol is a tuple P = (Q , �, Y , I, O , δ) where Q is the finite set of agent states; � is a finite set of 
input symbols; Y is a finite set of output symbols; I : � → Q is an input function; O  : Q → Y is the output function; and 
δ : (Q × �) × (Q × �) → (Q × Q ) is the transition function.

Note that population protocols have no know prior knowledge of the number of agents; rather, first a population protocol 
is specified and then it is run on some set of agents V . At the beginning of execution, an input assignment α : V → � is 
provided, providing each agent an input symbol (we will observe that in complete graphs, we can view input assignments 
as merely a multiset of inputs). Since our model focuses on the computation of functions, we will enforce that the input 
does not change (i.e. the input is hardwired into every agent). If an agent is assigned input symbol σ ∈ �, it will determine 
its starting state via the input function as I(σ ) (note that in the basic model the input determines the starting states, but 
in self-stabilization we do not consider starting states). At each time step, a scheduler selects (subject to a global fairness 
condition) an agent pair (u, v) for interaction; semantically the scheduler is selecting agents u and v to interact, where u is 
called the initiator and v is called the responder. Agents u and v will then state transition: letting qu, qv ∈ Q and σu, σv ∈ �

be the states and inputs for u and v respectively, the new respective states will be the output of δ((qu, σu), (qv , σv)).
We use the notion of a configuration to describe the collective agent states. We define it as a mapping below. In complete 

graphs, however, we can also view a configuration as a multiset of states due to symmetry.

Definition 1. Configuration. Let V be the set of agents and Q be a set of states. A configuration of a system is a function 
C : V → Q mapping every agent to its current state.

When running the protocol we will go through a sequence of configurations. If C and C ′ are configurations under 
some population protocol such that C ′ can follow from an interaction by two agents in C , we write C → C ′ . If a series of 
interactions takes us from C to C ′ , we write C ∗−→ C ′ .

Definition 2. Execution. An execution of a population protocol is a sequence of configurations C = C1C2 . . . where for all i, 
Ci → Ci+1.

The scheduler is subject to a global fairness condition, which states that if a configuration can follow from an infinitely 
occurring configuration, then it must also occur infinitely often.

Definition 3. Global Fairness Condition [1]. Let C and C ′ be configurations such that C → C ′ . If C appears infinitely often 
during an execution, then C ′ appears infinitely often during that execution.

At each time step every agent outputs some symbol from Y via output function O . If all agents output the same symbol 
and continue to do so for each time step afterwards, we say the protocol’s output is that symbol (interactions may continue, 
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but the output of the agents remains that symbol). Note that when computing functions, the protocol should output the 
same symbol when the same inputs are provided, irrespective of the globally fair scheduler’s behavior. When the population 
has determined the final output, we say it has converged.

Definition 4. Convergence [1]. A population is said to have converged to an output y ∈ Y during a population protocol’s 
execution if the current configuration C is such that each agent’s output is y and C → C ′ implies that C ′ has each agent 
with the same output y.

When agents u and v interact, their state transition is a function of both agent’s current state and respective inputs; 
since this is all the information they receive, an agent does not learn the identity of the agent it interacts with, but merely 
the state and input of that agent. In this sense, agents with the same input that are in the same state are indistinguishable
from one another. Furthermore, population protocols are independent of the number of agents, making it impossible to 
design the state set to give every agent a unique identifier, so agents are truly anonymous.

As noted earlier, our model accepts input via an input assignment α : V → �, where V is the set of agents and � is our 
finite input alphabet. It is useful to note, though, that we can actually view our input instead as some finite multiset A over 
alphabet �, with |A| = |V | [4]. Though we omit the proof, the idea follows from the fact that any two agents can interact, 
so which agent gets what input symbol is less important than what input symbols are provided to the system in the first 
place. We use the notation mA(σ ) to denote the multiplicity, the number of occurrences, of element σ in multiset A.

Definition 5. Population Protocol Functions. Let f :X → Y be a function where X is a set of multisets over the finite alphabet 
�. A population protocol P computes f if and only if for any A ∈ X , all executions of P with input A converge to f (A).

In this paper when we say P is a population protocol (or simply protocol), we mean that it computes some function f . 
When we don’t care about whether a population protocol computes some function, we will refer to it as a sub-protocol. This 
will be useful jargon in our protocol composition in Section 2.3.

We say that a population protocol computing a function is self-stabilizing when it can begin in any configuration and 
eventually converge (to the same output). Such a function is called a self-stabilizing function.

Definition 6. Self-Stabilizing Protocol. Let P = (Q , �, Y , I, O , δ) be a population protocol computing some function f :X → Y . 
P is called self-stabilizing if and only if for any input multiset A ∈ X , any set of agents V of cardinality |A|, and any starting 
configuration C : V → Q , we have that any execution of P converges to f (A).

2. Constructing a self-stabilizing protocol for the basic model

We aim to show that not only does Theorem 1 specify necessary conditions for computing self-stabilizing functions 
(shown in Appendix A), but they are also sufficient for self-stabilization. We do this by generating a self-stabilizing protocol 
for computing all functions of the form f : X → Y where for all A, B ∈ X , A ⊆ B =⇒ f (A) = f (B). To do this, we must 
introduce a new notion known as the root set of a set of multisets.

2.1. The root set

The inputs for our agents are represented by a multiset of inputs, an element of domain X . We are interested in a kind 
of subset R ⊆ X such that all multisets in X are a superset of some multiset in R. This section aims to show that all sets 
of multisets X actually have a finite R.

Definition 7. Root Set and its Roots. Let X be a set of finite multisets. A subset R ⊆ X is called a root set of X if and only if 
for all A ∈X , there exists R ∈R such that R ⊆ A. We call a multiset R ∈ R a root of A.

For instance, take X over alphabet � = {a, b, c, d, e, f } as

X = {{a,a,b}, {a,a,b,b, c}, {e, e, e, f , f , f ,b,d}, {d}}.
A root set R ⊆X could be

R = {{a,a,b}, {d}},
where {a, a, b} and {d} are the roots.

Notice that X is always trivially its own root set. However, X can be infinitely large; for example the set of all nonempty 
finite multisets on alphabet � = {a} is X = {{a}, {a, a}, . . .}. However, we are primarily interested in the existence of a finite
root set over our function f ’s domain. Dickson’s Lemma [12] provides us what we need.
5
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First, consider a finite multiset over an alphabet, �, of n elements. An equivalent representation of a multiset is as a 
vector of multiplicities in Nn . For instance, the multiset {a, a, b} on ordered alphabet � = {a, b, c} would be represented 
by (2, 1, 0). Hence a set of finite multisets on an alphabet of size n could be considered a subset S ⊆ Nn . Consider two 
vectors n, m ∈ Nn , and denote ni and mi as the ith component in the corresponding vectors. Define the pointwise partial 
order n�m ⇐⇒ ni �mi for all i. A minimal element of a subset S ⊆ Nn is an element that has no smaller element with 
respect to this partial order. Now we can state Dickson’s Lemma.

Lemma 1. Dickson’s Lemma. In every subset S �= ∅ of Nn, there is at least one but no more than a finite number of elements that are 
minimal elements of S for the pointwise partial order.

This is equivalent to the existence of a finite root set.

Corollary 4. Let X be a set of finite multisets over a finite alphabet. X has a finite root set. In other words, there exists a finite subset 
R ⊆X such that for any A ∈X , there exists R ∈R such that R ⊆ A.

A interesting corollary is that the root set of minimal size is unique, making it legitimate to speak of the minimally-sized 
root set.

Corollary 5. Let X be a set of finite multisets over a finite alphabet. The minimal length root set R of X is unique.

Proof. Suppose there exists two root sets of minimal size, R and R′ . Then there is some root Ri ∈ R such that Ri /∈ R′ . 
Since Ri ∈ X , it must have a root R ′ ∈ R′ such that R ′ ⊆ Ri . Since R ′ ∈ X , it must have a root R j ∈ R such that R j ⊆
R ′ . Therefore we have that R j ⊆ R ′ ⊆ Ri , for some Ri, R j ∈ R. If Ri = R j then we have that Ri ⊆ R ′ ⊆ Ri , which is a 
contradiction since this means R ′ = Ri ∈R′ . If Ri �= R j then R is not of minimal size since R − {Ri} is also a root set of X . 
Thus any root in R is also in R′; since |R| = |R′| by assumption, the sets must be equal. �

It will also be convenient for us to refer to the maximum multiplicity, M , of all symbols in the root set. This will be 
useful later when designing counters that will increment modulo M .

Now suppose we have a function f : X → Y over multisets such that for A, B ∈ X , A ⊆ B =⇒ f (A) = f (B). We have 
that there exists a finite, minimal length root set R ⊆ X . If the input to the population is A, it suffices to identify the root 
R ∈R such that R ⊆ A, since the output would be f (R) = f (A).

2.2. Self-stabilizing population protocol construction

Before we formally specify a universal self-stabilizing population protocol, it is much more helpful to first understand 
how it works at a high level. As a reminder, we will be working with functions of the form f : X → Y , where X is some 
set of finite multisets on a finite alphabet and Y is the finite output alphabet. The function f is also assumed to satisfy the 
following property:

∀A, B ∈ X , A ⊆ B =⇒ f (A) = f (B).

We need to determine how to design our protocol to compute f in a self-stabilizing manner. Since X is a set of finite 
multisets, it has a finite root set; let R ⊆ X be the minimally sized, finite root set. R will be given some arbitrary fixed 
ordering so that we can index into it. Loosely speaking, we can compute f by having each agent iterate through every 
root in the finite root set to see if a given root is a subset of the population’s input A. If we were not dealing with self-
stabilization, one could imagine a solution where every agent counts the inputs they see to try and directly determine which 
root is present. However the issue in the self-stabilizing setting is that these counters might be initialized in an unfavorable 
way that tricks the agents into predicting the wrong root. Thus we need a way for an agent to identify that the wrong root 
has been selected so it can reset its counter and start over.

As an agent iterates through the root set, how can it tell if the current root Ri is not a subset of the population’s input 
multiset, A? It turns out that the agents’ counters will grow sufficiently large enough to show that another root R j with 
different output f (Ri) �= f (R j) could also be present in the population, which will be a signal to reset counters and iterate 
through the root set. More concretely, suppose an agent has guessed that root Ri ⊆ A. Consider some other root R j where 
f (Ri) �= f (R j). Naturally there are some symbols that occur more often in R j than in Ri , and vice versa. Consider a symbol 
σ that occurs mj times in R j and mi times in Ri , where mj > mi . Suppose agents start counting how many other agents 
with input σ they see, and manage to identify there are at least mj of them. Now further suppose that this is the case 
for all such σ occurring more often in R j , implying that there is a unique agent with input σ for each occurrence of σ in 
R j . Then we now know that f (Ri) �= f (A) by contradiction. For any symbol σ occurring mj times in R j and mi times in 
Ri , we have two cases. If mj > mi , then we know that input multiset A has at least mj instances of σ . If mj �mi , since 
Ri ⊆ A by our hypothesis then we also know that there are at least mj instances of σ . Therefore we simultaneously have 
6
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that R j ⊆ A and Ri ⊆ A, which is a contradiction since f (A) = f (R j) �= f (Ri)! Therefore our initial assumption was wrong 
and Ri is not a subset of the input multiset A, and so we should increment our index i to guess root Ri+1. Note that we 
could also change our index i to become j, and the authors believe this would be a faster protocol; however since this is a 
paper about computability, we leave this optimization as an observation.

On the other hand if Ri really is a subset of A, then the existence of such a R j would be impossible. If our counters 
are all initialized to 0, then no agent counter would ever increment high enough to identify such a R j . However since the 
protocol may start in an arbitrary configuration, we have to make sure to reset counters whenever an agent increments 
and guesses a new root. Notice that agents try to compute the correct root by exchanging information about input counts, 
and that each agent is using that information independently to select a root. Agents with conflicting roots do not try 
and agree upon them after an interaction, but will eventually select the same root after both use this counting argument 
independently.

To formalize this idea, we need convenient notation. We define MOREi, j to be the set of symbols occurring more often 
in R j than in Ri when f (Ri) �= f (R j).

MOREi, j =
{

{σ |mRi (σ ) <mR j (σ )} f (Ri) �= f (R j)

∅ otherwise
.

Each agent will have a table indexed by i and j, where each entry is a binary string of length |MO REi, j |. The kth bit of 
this string is set to 1 when the agent counts that the kth symbol of MO REi, j occurs in the population as often as it does 
in R j ; otherwise it is 0. Once any entry in this table becomes a (nonempty) bit string of all 1’s, then the agent tries a new 
root. To keep track of these counts, each agent will also maintain a nonnegative integer count; when two agents with the 
same count and same input symbol σ meet, the responder will increment its value. To keep the states finite, the count is 
bounded above by the maximum multiplicity that occurs in the root set. It’s important to note that the fact that the root 
set is finite is crucial to keep the number of states here finite.

2.3. Sub-protocols for protocol composition

The self-stabilizing population protocol we construct will be a protocol composition A × B × C , where the input is given 
to A, the input to B is the output of A, the input to C is the output of B , and the composition output is the output of C . 
With the previous discussion as our design motivation, we decompose our protocol into three distinct sub-protocols:

1. SymbolCount . This sub-protocol implements a simple modular counting mechanism, where agents with the same input 
symbol σ compare their counts. The counts are 0-indexed since they are meant to represent how many other agents 
they’ve met with the same input symbol σ . If two agents with the same count meet, then the responder increments its 
count (modulo the maximum multiplicity of any symbol in the root set, M , to keep things finite). If there are at least 
k < M agents with the same symbol, then some agent must eventually have their count at least k − 1 by the Pigeonhole 
Principle, irrespective of initial configuration. The converse is only true if all the counts are initialized to 0, which is 
problematic if we are designing a self-stabilizing protocol that can initialize in any configuration. We will circumvent 
this by having the larger protocol composition reset this counter whenever moving on to the next root.

2. WrongOutput?. This sub-protocol maintains a table indexed by i, j ∈ {0, 1, . . . , |R| − 1}, where R is the minimally 
sized root set. Each entry will be a binary string of length |MOREi, j |, where MOREi, j is the set of all input symbols 
occurring more often in R j than in Ri . If the kth symbol of MO REi, j occurs in the population at least as often as it 
does in R j , then the corresponding bit in the binary string is set to 1. Notice that this table is only useful when it 
is initialized with all entries as binary strings of all 0’s. Again, we will circumvent this by having the larger protocol 
composition reset the table whenever moving on to the next root.

3. RootOutput . This sub-protocol uses an index root ∈ {0, 1, . . . , |R| − 1}. Adopting the notation from the previous bullet 
and letting root = i, this protocol increments root if there is a j such that the (i, j) entry in the table has a binary 
string of all 1’s. The protocol composition will use the incrementing of root to signal that the other sub-protocol states 
should reset.

We now list the three sub-protocols below.

Definition 8. SymbolCount . Let f : X → Y be a function over finite multisets on a finite alphabet �, and let R be a finite 
and minimally sized root set of X . Each agent has a state called count, where count ∈ {0, 1, . . . , M − 1} and M is the 
maximum multiplicity of any symbol in the root set. Let M = maxR∈R,σ∈�mR(σ ). Each agent takes as input some σ from 
some input multiset A ∈ X . When an agent meets another agent with the same σ and same count, one of them will 
increment their count modulo M . This guarantees that if there are n agents with symbol σ , then eventually one agent will 
have count � n − 1.

(count,σ ), (count,σ ) → (count, count + 1 mod M)
7
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An agent in state count with input σ outputs (count, σ).

Note that even though output is a function of just the state, we can formally allow SymbolCount agents to output 
their input symbol as well, since we could take our current states Q and define a new set of states via the cross product 
Q ′ = Q ×�. Then transitions on this could be defined in a similar way, where we would also have to make agents transition 
into a state that reflects their own input symbol (which can happen after every agent interacts once).

For WrongOutput?, our transitions need to satisfy two properties.

1. First, it is natural to have agents share their tables with each other to share their collected information about the counts 
of the inputs. Whenever an agent meets another agent, they bitwise OR their tables.

2. Fix some ordering on MOREi, j and denote the kth symbol by σk . Consider the bitstring entry at index i and j. By our 
previous discussion we want the kth bit to be 1 if the number of occurrences of σk in the population is at least its 
multiplicity in R j ∈R.
This can be enforced by setting this bit to 1 when the count of some agent with input σk is sufficiently high enough; 
then the first property will ensure this bit is set for the other agents by bitwise OR’ing tables. This can formally be 
accomplished by bitwise OR’ing the agent’s table with an indicator table of the same dimension. Let i and j be the 
indices into the table, k be the index into the bitstring entry, σk be the kth symbol of MO REi, j , and count and σ be 
the agent’s inputs. Define

IND IC AT O Ri, j,k =
{
1 if σ = σk and count �mR j (σ ) − 1

0 otherwise
.

We will denote this table as IND IC AT O R(count, σ) to be explicit about the agent’s inputs count and σ . Note that the 
count is 0-indexed, which is why we subtract by 1. Also, since agents can start in arbitrary states, the tables will only 
be updated with IND IC AT O R after an agent makes its first transition.

Definition 9. WrongOutput? Let f : X → Y be a function over finite multisets on a finite alphabet, and let R be a finite 
and minimally sized root set of X . Each agent has a state called HAS-MORE, a table indexed by i and j where each entry is 
a binary string of length |MO REi, j | (as described in previous discussion).

HAS-MOREi, j ∈ {0,1}|MO REi, j |.

Each agent takes as input (from SymbolCount) some count ∈ {0, 1, . . . , M}, where M is the maximum multiplicity of any 
symbol in the root set, and some σ from the input multiset A ∈X .

Denote bitwise OR with symbol ∨. Our transition rule is

(HAS-MORE1, (count,σ )), (HAS-MORE2, (count′,σ ′))
↓

(HAS-MORE3 ∨ IND IC AT O R(count,σ ),

HAS-MORE3 ∨ IND IC AT O R(count′,σ ′))
where HAS-MORE3 = HAS-MORE1 ∨ HAS-MORE2.

An agent outputs their HAS-MORE table.

RootOutput will have an integer root that is an index into the root set. An agent with input HAS-MORE increments its 
root modulo |R| if there is a j such that HAS-MOREroot, j is all 1’s. Of course, this would mean that the state root keeps 
cycling every time an agent with such an input interacts. When we define the overall protocol composition after, this will 
be resolved by resetting the previous two sub-protocols’ states when root increments. Notice that agents don’t care about 
the states of the other agents in an interaction; instead the behavior depends on how sub-protocol WrongOutput? changes 
its output over time. Notice that we don’t allow protocols to have changing inputs, but our 3 protocol composition allows 
two of the sub-protocols to have a changing input as the states of the other sub-protocols change.

Definition 10. RootOutput . Let f :X → Y be a function over finite multisets on a finite alphabet, and let R be a finite and 
minimally sized root set of X . Each agent has a state called root, where root ∈ {0, 1, . . . , |R| − 1}. Each agent takes as input 
HAS-MORE, a table indexed by i and j where each entry is a binary string of length |MOREi, j | (as described in previous 
discussion).

HAS-MOREi, j ∈ {0,1}|MO REi, j |.

Our transition rules are:
8
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((root1,HAS-MORE1), (root2,HAS-MORE2)) → (root′1, root′2)

where i′ =
{
i + 1 mod |R| if ∃ j s.t. HAS-MOREi, j = 1|MO REi, j |

i otherwise
.

An agent outputs f (Rroot).

Putting these three sub-protocols together, we get the SS-Protocol, a self-stabilizing population protocol for f .

Definition 11. SS-Protocol. Let f : X → Y be a function over finite multisets on a finite alphabet, and let R be a finite and 
minimally sized root set of X . Define SS-Protocol as protocol composition

SymbolCount × WrongOutput? × RootOutput,

where we define protocol composition in the beginning of Section 2.3. We additionally modify this composition’s transition 
function so that whenever an agent’s RootOutput state root gets incremented, then

• The count state from SymbolCount becomes 0.
• The HAS-MORE state from WrongOutput? becomes a table of all 0’s.

When this modified transition occurs, we say the agent has been reset and is in a reset state (note there are multiple reset 
states as we allow root to be arbitrary).

2.4. Proof of correctness

We now prove that SS-Protocol is a self-stabilizing population protocol for f :X → Y where for any A, B ∈X , A ⊆ B =⇒
f (A) = f (B). The proof, at a high level, will argue the following. Say the input to the population is A with root Ri . If the 
protocol ever incorrectly outputs f (R j) �= f (Ri), it will recognize this because the protocol would count enough symbols in 
MOREi, j to make HAS-MOREi,j a bitstring of all 1’s. If the protocol outputs f (Ri) and begins in a reset state, then there will 
never be a bitstring entry with all 1’s. This protocol composition is a self-stabilizing protocol for f .

To begin, we want to argue that if there are n agents with the same input, then the counting sub-protocol will achieve a 
count of at least n −1 (where we subtract 1 due to 0-indexing). This will be useful because we need count to be sufficiently 
high enough so that we can identify when to increment root . This lemma is almost immediate, but there is some subtle 
nuance since the counting mechanism may reset before becoming sufficiently large enough.

Lemma 2. Let f : X → Y be a function over finite multisets on a finite alphabet, and let R = {R0, R1, . . . , R |R|−1} be a finite and 
minimally sized root set of X . Let A ∈X be the multiset whose elements are dispersed amongst the agents. Let n �M, where M is the 
maximum multiplicity of any symbol in the root set. Let C be a configuration in SS-Protocol where there are at least n agents with input 
σ . There is some configuration C ′, with C ∗−→ C ′ , where one of these agents has SymbolCount state count� n − 1.

Proof. Consider n of these agents with input σ in some configuration C , and suppose all of these agents have 0 � count <

n −1. By the Pigeonhole Principle there will be at least two agents with the same count , and so it is valid to keep scheduling 
interactions between agents with the same count while no agent has count � n − 1. If none of these agents reset when 
interacting with each other, then it follows that interactions between agents with duplicate values of count will eventually 
raise some agent’s count to be at least n − 1 (the subtraction by 1 due to 0-indexing). If an agent does reset when only 
interacting with agents with the same input, it can only do so finitely many times. Suppose some agent with root = i
resets during these interactions; it must be because the input σ has a corresponding bit in some HAS-MOREi, j entry, and 
hence σ ∈ MOREi, j . Either the agent stops resetting, or it keeps resetting until root increments to root = j; then since 
MOREi, j is the complement of MORE j,i , σ won’t have a corresponding bit in HAS-MORE j,i . Thus continued interactions 
with agents with input σ could not lead to another reset. Consequently all agents with input σ must eventually stop 
resetting, and so the agents with duplicate values of count will eventually drive some agent’s count to be at least n − 1. 
This final configuration C ′ , where some agent with input σ has count � n − 1, follows from C . �

The next lemma allows us to argue that any agent that is outputting the wrong answer (due to an incorrect choice of 
root) will eventually identify this, ultimately leading to root being incremented. The proof idea is that the input multiset A
must have a root R j ⊆ A, and the agents with symbols from R j will have count sufficiently high enough to make the agent 
increment root and reset. A corollary to this is that eventually such an agent will start outputting the right answer as it 
keeps iterating through the root set. It’s also crucial to note that every time root increments, the agent enters a reset state.

Lemma 3. Let f : X → Y be a function over finite multisets on a finite alphabet, and let R = {R0, R1, . . . , R |R|−1} be a finite and 
minimally sized root set of X . Let A ∈X be the multiset whose elements are dispersed amongst the agents. Consider some execution of 
9
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SS-Protocol. Suppose there is an infinitely occurring configuration in which an agent has RootCount state root = i such that f (Ri) �=
f (A). Then there is an infinitely occurring configuration where this agent has root= i + 1 mod |R| and is in a reset state.

Proof. For sake of notational convenience, we will let root = i throughout this proof. Suppose there is some infinitely 
occurring configuration with an agent with RootOutput state i such that f (Ri) �= f (A); that is, the agent is outputting the 
wrong answer. As f (Ri) is not the right output, it must be that Ri � A. By definition of the root set there exists some 
different root R j such that R j ⊆ A, which in turn implies f (R j) = f (A). Therefore f (Ri) �= f (R j), so MOREi, j is the set 
of symbols occurring more often in R j than in Ri . Note that MOREi, j must be nonempty since otherwise R j ⊆ Ri , which 
contradicts the minimality of the root set since the root set would be smaller if we excluded Ri . For each σ ∈ MOREi, j , 
there will be at least as many agents with input σ as there are occurrences in R j , since R j ⊆ A. In particular there will be 
at least mR j (σ ) agents with input σ . By Lemma 2 and global fairness, there is an infinitely occurring configuration where 
one of these agents has count �mR j (σ ) − 1. This agent will hence have the component corresponding to σ in HAS-MOREi, j
set to 1. There will be an agent like this for each σ ∈ MOREi, j ; after our original agent interacts with each of them and 
bitwise OR’s her HAS-MORE table with them, it would set her HAS-MOREi, j bitstring entry to 1|MOREi, j | . The original agent 
would increment her RootCount state to root = i + 1 mod |R|, which would reset the agent. This resultant configuration 
follows from an infinite configuration, and so by global fairness it also must be infinitely occurring. �

Once an agent with input σ resets, we want their count to reflect a lower bound of the number of agents with input σ . 
Specifically, suppose all agents have reset at least once. Then if an agent with input σ has count = n, we want it to be the 
case that there are at least n + 1 agents with input σ in the population. Though this fact is intuitive, it turns out to be a 
little cumbersome to prove. We leave the details to Appendix B.

Lemma 4. Let f : X → Y be a function over finite multisets on a finite alphabet. Let A ∈ X be the multiset whose elements are 
dispersed amongst the agents. Suppose that there is an infinitely occurring configuration where all agents have reset at least once. If an 
agent with input σ has count = n, then there must be at least n + 1 agents with input σ in the population.

One of the challenges of demonstrating protocol correctness is that the population can begin in any arbitrary configura-
tion of states. For instance, it may be the case that root corresponds to the correct root, but the count and HAS-MORE table 
are so poorly initialized that we end up erroneously incrementing root! The following lemma captures what happens when 
we have a favorable initialization: when all agents have reset at least once, then no count for input σ can ever overestimate 
the actual number of agents with input σ in the population. When we know that all agents have reset at least once, we 
can guarantee convergence.

Lemma 5. Let f : X → Y be a function over finite multisets on a finite alphabet, and let R = {R0, R1, . . . , R |R|−1} be a finite and 
minimally sized root set of X . Let A ∈ X be the multiset whose elements are dispersed amongst the agents. Suppose that there is an 
infinitely occurring configuration where all agents have reset at least once. Then the protocol will converge with output f (A).

Proof. Suppose we are in an infinitely occurring configuration C where all agents have reset at least once. This means that 
all agents have had their counters reset to count = 0 at some point. By Lemma 4 this means that an agent with count = n
and input σ implies that there must be at least n + 1 agents with input σ in the population.

Fix an arbitrary agent, where we aim to show that this agent will output f (A) forever. To do this, we will find it useful 
to:

• Reset the agent (again) so that its WrongOutput? table HAS-MORE has all 0’s as its entries. This gets rid of any new 
bits that might’ve been set since the agent’s last reset.

• Make the agent’s RootCount state root = i, where Ri ⊆ A.

If the agent currently has the wrong output, then repeated use of Lemma 3 will increment the root until the agent has 
the correct output, f (Rroot) = f (A). Now we can assume the agent has the correct output in some infinitely occurring 
configuration. From this configuration, it either eventually outputs correctly for all time (in which case we are done) or 
it keeps changing output by repeatedly incrementing root and resetting. Therefore we can now assume that there is an 
infinitely occurring configuration where the agent has root = i with table HAS-MORE having all 0 bitstrings. Since root = i, 
the agent correctly outputs f (Ri) = f (A).

To show that this agent will eventually converge on this answer, consider the case where the agent changes its output 
again. For this to happen, it must be the case that its RootCount state root = i was incremented yet again. This means that 
for some j, the WrongOutput? state entry HAS-MOREi, j becomes all 1’s. Note that the definition states that MO REi, j , the 
set of symbols occurring more often in R j than in Ri , must be nonempty for this to happen. Since the agent was just reset 
with 0’s in every component of HAS-MORE, this can only happen if for each σ ∈ MOREi, j there is some agent with a count
sufficiently high enough: specifically, count �mR j (σ ) − 1. By Lemma 4, it must be that there are at least mR j (σ ) agents 
with input symbol σ in the population.
10
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We claim that now we have that R j ⊆ A, which we show by considering two cases. If σ ∈ MOREi, j , then we already 
know there are at least mR j (σ ) agents with input symbol σ , so the count of σ in R j is at most the count in A. If σ /∈
MOREi, j , then the number of occurrences of σ in R j is at most the number in Ri , which is at most the number in A since 
Ri ⊆ A. Thus the multiplicity of each element in R j is at most the respective multiplicity in A. Therefore R j ⊆ A and hence 
f (Ri) = f (A) = f (R j). This is a contradiction because this would make MO REi, j the empty set. �

Finally, we can extend convergence to unfavorable initializations. Essentially, Lemma 3 tells us that agents that output 
the wrong answer will eventually reset. If agents outputting the right answer eventually reset as well, we would be done 
due to Lemma 5. We accomplish this by contradiction, where the protocol not converging would lead to at least one agent 
iterating through the root set. If this iterating agent is always able to set a bitstring entry to all 1’s for any choice of root , 
then any other agent that hasn’t reset yet should be able to as well.

Theorem (Self-Stabilizing Population Protocol Theorem). Let f : X → Y be a function computable with population protocols on a 
complete interaction graph, where X is a set of multisets. Then

f has a self-stabilizing protocol ⇐⇒ (∀A, B ∈ X , A ⊆ B =⇒ f (A) = f (B)).

Proof. The forward direction is shown in Appendix A. We claim that SS-Protocol is a self-stabilizing protocol for f . Consider 
some infinitely occurring configuration C in an execution of SS-Protocol with input multiset A ∈ X ; we will argue that all 
agents will eventually output f (A) forever.

By Lemma 3, all agents that currently output the wrong answer will eventually be reset. If all agents that currently 
output the correct answer eventually reset, then Lemma 5 proves that the protocol converges. Otherwise, there is an agent 
with root = j currently outputting the correct answer that will never reset; call this agent NoReset . If the protocol converges 
anyway, we are done. If not, then there is some other agent that eventually outputs the wrong answer an infinite number 
of times; call this agent Root Incrementor. By Lemma 3 Root Incrementor will have to output correctly eventually, and 
so this agent oscillates between correct and wrong outputs. This can only happen if the Root Incrementor’s root keeps 
getting incremented for all time, resetting the agent each time. This means after cycling through values, Root Incrementor
will eventually also have its root = j, just like NoReset . Since Root Incrementor will increment and reset yet again after 
interacting with some agents, it must be the case that NoReset could also interact with these same agents to satisfy the 
conditions for an increment and reset (both Root Incrementor and NoReset will have an entry in their table HAS-MORE with 
all 1’s). Therefore by global fairness NoReset does eventually reset, a contradiction. Thus the protocol must converge. �
3. Conclusions and generalizations

A function f : X → Y in the basic computational model of population protocols is self-stabilizing if and only if for any 
multisets A and B in the domain, A ⊆ B =⇒ f (A) = f (B). The principle insight yielding the forward implication is that we 
cannot have the scheduler isolate a subpopulation and have that subpopulation restabilize to another output. The converse 
holds because we only need to parse the root set of the domain and find a root that is a subset of the population to 
determine what the output is, as our protocol does.

The notion of a root set should be applicable to arbitrary interaction graphs as well. Angluin et al. [3] demonstrated that 
leader election in non-simple classes of graphs are impossible, which is effectively applying the idea that different subgraphs 
may converge on different answers. We can view input assignments as interaction graphs where the nodes are the input 
symbols; if there exists a subgraph of an input assignment that maps to a different output under f , then f could not 
admit a self-stabilizing protocol. We believe that the converse should hold as well. If we consider the class of all graphs of 
input assignments, we can use the subgraph relation ⊆ as our partial order and find its corresponding minimal elements. 
Unfortunately there are infinite minimal elements in the class of rings, leading to an infinite root set. Perhaps taking a 
quotient on the domain of possible input assignments (e.g. calling all rings equivalent) may lead to a finite root set, though 
this is a subject for future research, as well as on characterizing self-stabilization in general population protocols and other 
distributed models.
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Appendix A. Self-stabilization impossibility from Angluin

Angluin et al.’s [3] impossibility result for self-stabilization informally asserts that if a self-stabilizing protocol converges 
in a population, any subgraph of the population should converge to the same answer had it run under the same protocol. 
If not, the scheduler could isolate that subgraph after the convergence of the population, causing agents in the subgraph to 
self-stabilize and change their output, thereby contradicting convergence.

This proof technique is known, but we include it below for sake of completeness.

Theorem 1. Let P = (Q , �, Y , I, O , δ) be a self-stabilizing population protocol computing some function f : X → Y , where X is a 
set of multisets over finite alphabet �. Then

∀A, B ∈ X , A ⊆ B =⇒ f (A) = f (B)

Proof. Suppose f (A) �= f (B) for some A, B ∈X where A ⊆ B . We run protocol P on an arbitrary configuration of |B| agents 
where each agent is given an input symbol from B . Since P is self-stabilizing and computes f , it will eventually converge 
to the output f (B).

Since the scheduler can act arbitrarily for a finite amount of time (by global fairness), after convergence the scheduler can 
isolate members1 of the population whose input symbols together form multiset A. Since this protocol is self-stabilizing and 
A ∈X , the protocol will eventually have this population self-stabilize and converge to f (A). However this is a contradiction, 
since by the definition of convergence, all agents must continue to output f (B) for all time after converging and yet this 
subpopulation is now outputting f (A) �= f (B). Thus by contradiction, it must be that f (A) = f (B). �

The principle notion is that we must disallow the possibility of a subpopulation converging to a different answer than 
what the entire population converged to. In a setting where only certain ordered pairs of agents can interact, which interac-
tions are allowed could be described by an interaction graph on the agents. In this setting we still cannot have a subgraph 
converge in isolation to a different answer. See Conclusion and Generalizations for more discussion.

Appendix B. Reset agents and count lower bound

Suppose all agents during some execution of our protocol have reset (i.e. at some point had count = 0). Then if an agent 
with input σ has count = n, then there must be at least n + 1 agents with input σ in the population. Though this feels 
intuitive, the proof takes some care.

Suppose an agent a with input σ starts off with count = 0. It might interact with another agent b with input σ and 
count = 0, which will lead to a incrementing to count = 1. Subsequently it may interact with an agent c with input σ and 
count = 1, leading a to increment to count = 2. However it could be that b = c. So we need to actually not double count b, 
but count the latent agent d that allowed b to increment its count . We do this by maintaining a set of agents UNI Q U E , 
which will keep track of all count + 1 unique agents with input σ . As the count of a increments, we will design specific 
rules for how UNI Q U E will grow. For instance:

1. In the beginning, UNI Q U E = {a}.
2. When a increments to 1 after interacting with b, UNI Q U E = {a, b}.
3. When b increments to 1 after interacting with d, UNI Q U E = {a, d}.
4. When a increments to 2 after interacting with b, UNI Q U E = {a, b, d}.

However, another wrinkle is that agents might reset their count at any point due to the other subprotocols at play. 
Moreover, we need to guarantee that every time a interacts with another agent, it can’t be any agent from UNI Q U E . For 
this last fact, we must argue that it is always the case that a has the strictly largest count = k in UNI Q U E; doing this 
requires characterizing the distribution of count amongst the agents of UNI Q U E . In particular there is always no other 
agent with count = k, at most 1 other agent with count � k − 1, at most 2 other agents with count � k − 2, and so on. This 
characterization of the distribution excludes a from ever interacting with another agent in UNIQ U E , so the incrementing 
of count always corresponds to meeting a new agent.

1 A globally fair scheduler can isolate any subset of the population. If C is an infinitely occurring configuration, let C ′ be the configuration that follows 
in which finitely many interactions occur only within that subpopulation. Then C → C ′ and so C ′ occurs infinitely often.
12
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Lemma 6. Let f : X → Y be a function over finite multisets on a finite alphabet. Let A ∈ X be the multiset whose elements are 
dispersed amongst the agents. Suppose that there is an infinitely occurring configuration where all agents have reset at least once. If an 
agent with input σ has count = n, then there must be at least n + 1 agents with input σ in the population.

Proof. First we show that if a single agent has been reset, then count = n for this agent means n + 1 agents have the same 
input symbol. If all agents are reset once, then this must be the case for every agent, and we are done.

Suppose an agent a with input σ has been reset so that count = 0. Using a set UNI Q U E , we will add new agents with 
input σ as this agent’s count increments. So when a resets, set UNI Q U E ← {a}. For the rest of this proof, we will refer to 
a as the main agent, any agent in UNI Q U E − {a} as a inside agent, and all other agents as outside agents. As interactions 
continue to occur, we will maintain the following two rules. First, say an interaction occurs between an inside agent b and 
an outside agent c; if b increments its count , then replace b with c in UNI Q U E (i.e. UNI Q U E ← UNI Q U E − {b} ∪ {c}). 
Notice that this operation keeps the number of agents in UNI Q U E with b’s old count the same, since b and c had the 
same count before the interaction. Second, say an interaction occurs between our main agent a and some outside agent 
b /∈ UNIQ U E . If a increments its count , then add b to UNI Q U E (i.e. UNI Q U E ← UNI Q U E ∪ {b}).

To do our proof, we first prove the following invariant on the distribution of count on the inside agents: there are 0 
inside agents with the same count as a, at most 1 inside agent with count at least one less than a, at most 2 inside agents 
with count at least two less than a, and so on. Formally, suppose main agent a has count = k. Then there are at most m
inside agents with count � k −m, where 0 �m � k. We see how this invariant is maintained in all possible interactions that 
change the count of agents in UNI Q U E:

• When main agent a resets, this is trivial since UNI Q U E = {a}. This is UNI Q U E ’s initial state.
• Suppose an inside agent with count = j resets. The number of inside agents with count � 0 trivially stays the same. In 

all other cases, the number of inside agents either decreases by 1 (if another inside agent reset after the interaction) or 
stays the same.

• Suppose the main agent increments its count by meeting another agent. Notice that since there are 0 inside agents 
with count � k, this interaction must be with an outside agent. If the main agent increments its count to k + 1, the 
outside agent is added to UNI Q U E with count = k. Now we need to show that there are at most m inside agents with 
count � (k + 1) −m for 0 �m � k + 1. Before the interaction we had that there were at most m − 1 inside agents with 
count � k − (m − 1) = (k + 1) −m for 1 �m � k + 1, so making this outside agent an inside agent would now make it 
at most m − 1 + 1 =m inside agents. The only unconsidered case is m = 0, but this is straightforward: if there was an 
agent with count � k + 1 after the interaction then it must have been there before the interaction, which is impossible 
given our invariant.

• Suppose an inside agent increments its count by meeting another agent. As noted earlier, the other agent cannot be 
the main agent due to our invariant. If it is an outside agent, then our rule states that UNI Q U E replaces the inside 
agent with the outside agent; as noted earlier, this maintains the count distribution of UNI Q U E and hence maintains 
the invariant. Now suppose an inside agent meets an inside agent with the same count = k − m, resulting in one 
incrementing to count = k − m + 1, where 2 � m � k. Notice we exclude m = 0, 1 since there are never two inside 
agents both with count = k or count = k −1. Since this only changes the number of inside agents with count = k −m and 
count = k −m +1, this does not change the number of inside agents with count at least 0, 1, . . . , k −m −1, k −m +2, k −
m + 3, . . . , k. If the invariant is violated, it can only be because there are now too many agents with count = k −m + 1. 
Specifically a violation means there must be at least m agents with count = k − m + 1; this means that before the 
interaction there were at least m − 1 agents with count = k −m + 1 and 2 agents with count = k −m. This gives a total 
of at least m + 1 agents with count � k −m before the interaction, a contradiction. Thus the invariant is not violated.

Therefore at all points this invariant on the inside agents holds. A corollary is that when a’s count = k, then |UNI Q U E| =
k + 1 and hence there are k + 1 agents with input σ . When count = 0, then UNIQ U E is the singleton {a}. Suppose agent a
just incremented to count = k + 1, having met some other agent b with count = k. By the invariant, no inside agent could 
have that count , so b /∈ UNI Q U E . Therefore b gets added to UNI Q U E , making |UNIQ U E| = k + 1. �
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