
 

Machine Learning Based Sound Speed Prediction for 

Underwater Networking Applications   

Ambrin B. Riaz Ahmed, Mohamed Younis and Miguel Hernandez De Leon 

Department of Computer Science and Electrical Engineering  

University of Maryland, Baltimore County,  

Baltimore, Maryland, USA,  

ambrinr1@umbc.edu 

 
Abstract— Underwater acoustic networks operate in an 

inhomogeneous and dynamic environment, which makes it 

difficult to model the propagation path of signals. In essence 

acoustic signals experience reflection and refraction due to sound 

speed variation, based on many parameters such as salinity, 

temperature, and depth. To enable modeling of signal 

propagation, the sound speed profile (SSP) has to be accurately 

estimated. The most famous SSP equation has been proposed by 

Mackenzie and has been widely used among others like the 

Coppens’ and UNESCO equations. The drawback of these 

equations is that they yield different accuracy levels for various 

setups. They are also valid only for certain limits of salinity, 

depth and temperature. Moreover, the SSP estimation method 

should suit both deep and shallow water environments. In this 

paper, we use machine learning algorithms to predict sound 

speed in both deep and shallow waters and compare our results 

with data collected from acoustic tomography measurements. For 

training we have considered sound speed measurements across 

various oceans like Pacific Ocean, Arctic Ocean, Indian Ocean, 

etc. Our results show that our model achieves 99.99% accuracy 

and outperforms Leroy and Mackenzie equations.        

Keywords— Sound speed, acoustic communication, Underwater 

networks, Machine learning. 

I. INTRODUCTION 

Despite the popularity of radios in terrestrial based wireless 

systems, RF signals get absorbed in water and acoustics are 

deemed the most viable means for establishing underwater 

communication links. The underwater environment is quite 

challenging and is characterized by its inhomogeneous and 

dynamically changing properties; these characteristics affect 

the propagation of acoustic signals and complicates the 

operation of underwater networking applications. For 

example, in an acoustic underwater network (AUN), omni-

directional transmissions complicate medium access control 

and increase power consumption, and hence directional 

transmissions are favored. For directional transmissions to be 

effective, the propagation path of signals should be accurately 

predicted [1]-[3].  However, as illustrated in Fig. 1, an acoustic 

signal is subject to refraction due to changes in the sound 

speed experienced along its propagation path. Thus, to 

establish robust acoustic communication links in underwater 

setup, it is necessary to employ an accurate sound speed 

profile (SSP) to predict the signal propagation path and 

appropriately steer the transmitter antenna to reach the 

targeted receiver. Although in short range communications, 

the sound speed may be assumed to be constant, for long range 

communications, the sound speed variations have significant 

impact on the propagation path of acoustic signals and could 

degrade the link quality [3][4]. Furthermore, when there is a 

variation of sound speed with respect to depth, acoustic signals 

suffer from refraction and in extreme cases shadow zones 

could be created where little or no signal propagation could 

take place. This could result in communication failure.  

For applications like navigation systems for underwater 

robotic vehicles and for underwater acoustic positioning 

systems (UAPS), highly accurate estimation of sound speed is 

necessary; otherwise it could lead to position errors. The 

results of [5][6] reveal that the acceptable position error to 

operate floats, gliders and unmanned underwater vehicles is 

0.01% to 0.04% of the reachable range of surface-based 

beacon sources. In [7], the authors present a method to 

determine sound speed using signal propagation characteristics 

and show that their method, combined with multi-lateration, 

enhances localization accuracy. Nonetheless, for underwater 

tracking applications, which rely on range measurements, even 

a significantly smaller percentage error in effective sound 

velocity estimates could lead to serious errors in range 

measurements [8]. Furthermore, for applications like Internet 

of Underwater Things (IoUT), it is crucial for connectivity to 

be robust and for the bit error rate to be minimal in order to 

avoid intermittent reachability issues [9]. Hence, there is a 

need for highly accurate sound speed measurement for the 

aforementioned applications. 

Sound speed is traditionally calculated using various 

 
Fig. 1. Sound speed variations in underwater environment affects the 

propagation path of acoustic signals where the direct link between two nodes 

does not follow a straight line. A node often ought to pursue transmission 

angles in order to reach another node at different depth. In fact, the acoustic 

signal may refract due to sound variations.  



 

equations like the Mackenzie, Coppens, UNESCO and Del 

Grosso’s or NRL II equation [10]-[12]. However, these 

equations have limitations with respect to depth, temperature 

and salinity as shown below in Tables 1 and 2. The Mackenzie 

and Coppens equations (proposed in 1981) use depth, 

temperature and salinity values to compute sound speeds. The 

UNESCO and Del Grosso equations use pressure (instead of 

depth), temperature and salinity to measure sound speed [12]. 

However, these equations do not cover all oceans (deep water, 

shallow water or high salinity oceans) and based on the 

boundary conditions of applications, one need to choose 

suitable equations for calculating sound speed [13]. 

Leroy et al. proposed a different equation to calculate 

sound speed across all seas [14]. However, such an equation 

only factors in salinities from pure water up to 42% and fails 

to address other salinities. Hence, the applicability of Leroy’s 

equation is restricted to certain seas. To better capture the 

effect of environment dynamics, in-situ measurements are 

aggregated to infer the sound speed within the deployment 

area. For example, sound speed is first measured by a few 

randomly deployed nodes and such information is then used to 

estimate the sound speed profile of a larger area [13]. 

However, such distributed in-situ methodology imposes a 

major computational burden on the underwater nodes and does 

not yield the level of accuracy expected for UAPS 

applications. Another method has been proposed in [15] to 

determine sound speed using surface measurements and 

satellite measurements. Obtaining these measurements would 

be cost intensive and this method has been tested only for the 

Central Arabian Sea. 

Table 1: Validity ranges of sound speed for various depths [10][12]. 

Equation Depth (m) Temperature (°C) Salinity 

(%) 

Mackenzie 0 to 8000  -2 to 30 30 to 40 

Coppens 0 to 4000 0 to 35 0 to 45 

  
Table 2: Validity ranges of sound speed based on pressure [14]. 

Equation Pressure (bar) Temperature (°C) Salinity (%) 

UNESCO 0 to 1000 0 to 40 0 to 40 

Del Grosso 0 to 980.66 0 to 30 30 to 40 

Hence, there is a need for a technique to predict accurate 

sound speed across all seas, including salinity ranges of over 

200% [14], and it should also be applicable to all underwater 

applications. To the best of our knowledge, there are no 

equations or methods to accurately predict sound speed for all 

salinities, depth, temperature or pressure ranges without 

limitations. This paper promotes a novel approach that 

employs machine learning to accurately model the sound 

speed and overcome the limited data availability. We exploit 

regression algorithms which could work efficiently with 

limited datasets and measure their performance. We use sound 

speed values obtained from XBT and Sonar measurements as 

training dataset. The predicted SSP values in our model have 

been found to lie within 0.05−
+  m/s of the in-situ measured 

SSP values. Machine learning algorithms learn better with 

more training data. In practice, as more XBT and Sonar 

measurements become available, they could be integrated and 

the regression algorithms would be able to yield even better 

SSP estimates. 

The paper is organized as follows. Section II reviews 

related work. Section III explains the machine learning 

approach used and briefly explains how regression algorithms 

work. Section IV analyzes data and results of sound speed 

predicted using regression algorithms with traditional 

equations and reports the performance and accuracy of our 

technique. Finally, Section V concludes the paper.   

II. BACKGROUND AND RELATED WORK 

Given the contribution of the paper, we discuss related work 

under two categories: (i) adopting machine learning 

techniques for AUN and underwater target localization, and 

(ii) models for predicting sound speed based on various 

underwater conditions. 

Use of machine learning in underwater environments: 

Machine learning could be considered as a “black-box” since 

it can work without any prior knowledge of the environment, 

yet it can provide instantaneous results that improve over time. 

This feature is particularly promising for underwater acoustics 

as the environment conditions are fluctuating and the use of 

machine learning would avoid costly measurements using 

ocean acoustic tomography methods [16]-[18].  Lefort et al. 

[16] have proposed using machine learning for source 

localization in underwater environments, e.g., determining the 

position of an acoustic transmitter in a network, or the source 

of the sound detected by a sensor. In [16], direct regressions 

have been employed for underwater source localization. Two 

regression models, namely, kernel regression and linear 

piecewise regression have been explored. Regression models 

only need a sample training dataset of the fluctuating 

environment, which is obtained from software simulations. 

Their experiments show that the source localization error is 

reduced by using machine learning algorithms. H. Niu et al. 

[19] have analyzed the performance of feed-forward neural 

network (FNN), support vector machine (SVM) and random 

forest (RF) for source localization and range estimation. The 

localization is studied as a supervised learning problem and 

the classification algorithms (FNN, SVM and RF) are found to 

perform well with a mean absolute percentage error of 2-3%. 

Better results have achieved by A. Horri [20] using 

convolutional neural networks. 

A new data-driven technique has been proposed in [15] to 

determine SSP from surface parameters that are obtained using 

remote sensing measurements. Artificial neural networks 

(ANN) have been employed to determine SSP from hourly 

surface observations. Surface observations from mooring as 

well as satellites have been used for the analysis. The 

employed ANN algorithm is based on the multilayer 

perceptron model with two hidden layers utilizing the 

backpropagation algorithm. Comparing the SSP values 

calculated using ANN with in-situ measurements have 

revealed that 76% of the predicted values lie within 1−
+  m/s, 

and 93% of predicted values lie within 2−
+  m/s of the SSP 



 

values obtained from mooring. Such a data-driven method is 

based on the assumption that it is difficult to obtain in-situ 

measurements of temperature, depth and salinity profiles of 

the seawaters and has been tested only for the central part of 

the Arabian Sea. Unlike our approach, this work further 

involves obtaining surface and satellite measurements which 

are costly and time-intensive. 

Underwater sound speed estimation: Conventionally, a 

number of approximate models are used for estimating sound 

speed in an underwater environment like the Mackenzie’s, 

Coppens’, UNESCO and Del Grosso’s and NRL II equations. 

These models use field measurements to devise a polynomial 

that captures the effect of the various environment parameters, 

such as temperature and depth.  However, these equations are 

not universal for all oceans and hence, based on application 

requirements the best candidate is chosen. 

Although the UNESCO equation covers wider salinity 

ranges than the NRL II equation, its measurements are derived 

by comparison with pure water. Furthermore, the UNESCO 

equation gives incorrect results of sound speed under high 

pressure conditions and in regions where the acoustic signal 

propagates through greater depth, while the NRL II equation 

performs better in these conditions [14]. Due to the absence of 

precise measurements under pressure, there was no universal 

equation for sound speed calculation in low-saline oceans and 

pure water. Belogol’skii et al. [21] proposed an equation for 

measurement of sound speed in pure water under pressure 

with pressure estimation of up to 60 MPa and temperature 

ranges of 0.4 to 40°C. However, this equation requires 

complex computations and could be impractical for 

underwater nodes. Meanwhile, Leroy et al. [14] covers salinity 

ranges from pure water to salinities up to 42%, calculates 

sound speed by using depth, temperature, salinity and ocean 

latitude across all seas and oceans. The only exception is 

regions like the Mediterranean Sea, Red sea or Gulf of Mexico 

where salinities could exceed 200%. These regions have not 

been considered by Leroy et al. or others while calculating 

sound speed. 

Popular sound speed equations use parameters like depth, 

temperature and salinity and hence are closely related to our 

machine learning model.  Mackenzie’s equation [10] for sound 

speed factors in depth, temperature and salinity is as follows:  

𝐶 = 1448.96 + 4.591𝑇 − 5.304 𝑥 10−2𝑇2 + 2.374 𝑥 10−4𝑇3 

      +1.340(𝑆 − 35)  + 1.630 𝑥 10−2 𝐷 + 1.675 𝑥 10−7𝐷2  
     − 1.025 𝑥 10−2 𝑇(𝑆 − 35)  −   7.139 𝑥 10−13 𝑇𝐷3         (1) 

where T is temperature in Celsius, D is depth in meters and S 

is salinity in parts per thousand. Meanwhile the equation 

proposed by Leroy et al. [14] considering the ocean latitude is 

as follows: 

𝐶 = 1402.5 + 5𝑇 − 5.44𝑥10−2𝑇2 + 21. 𝑥10−4𝑇3 + 1.33𝑆 −
1.23𝑥10−2𝑆𝑇 + 8.7𝑥10−5𝑆𝑇2 + 1.56𝑥10−2𝑍 +
2.55𝑥10−7𝑍2 − 7.3𝑥10−12𝑍3 + 1.2𝑥10−6𝑍(𝜙 − 45) −
9.5𝑥10−13𝑇𝑍3 + 3𝑥10−7𝑇2𝑍 + 1.43𝑥10−5𝑆𝑍             (2)                                                            

where T is temperature in Celsius, Z is depth in meters, S is 

salinity in % and ϕ is latitude in degrees. 

Collected field measurements of sound speed have 

indicated that substantially more variations occur in the 

vertical axes, i.e., with depth, than on the horizontal axes [22]. 

Hence, most researchers consider a layered model to profile an 

acoustic region, corresponding to changes in depth. One such 

approach is the Distributed Real-time Oceanic Profiling 

approach (DROP) [4], which uses parabolic ranging and 

measured sound speed values of a few randomly deployed 

nodes to determine the sound speed profile of a larger area. In 

this method, the 3D environment is mapped to an equivalent 

2D one and then a second order degree polynomial is applied 

to determine the path of the transmitted signal. The slope 

gradient of the polynomial is utilized to create a layered 

medium. DROP finally obtains an SSP by utilizing the locally 

determined sound speed values and the sound speed in each 

distinct layer (calculated from the signal refraction). Although 

DROP provides real-time estimation of SSP, it has high 

computational complexity. 

We note that so far all existing equations for sound speed 

calculations are restricted to certain salinity, temperature, 

depth profiles and for varying applications suitable equations 

should be used. For various applications like IoUT and target 

recognition, we need precise values of sound speed. This 

paper fills the technical gap and promotes a novel machine 

learning based approach, where a model is trained using 

available sound speed measurements to predict SSP across all 

seas irrespective of their salinity, temperature, depth, pressure, 

or latitude profiles. In Section V, we show that our approach 

outperforms the popularly used sound speed equations.  

III. DATA-DRIVEN SSP MODELING  

A learning problem in machine learning comprises a dataset 

on n samples and the algorithm tries to predict properties of 

unspecified data. Machine learning can be classified as either 

supervised or unsupervised learning. Supervised learning is 

subdivided into two groups, namely, classification and 

regression [23][24]. A classification problem is one where 

samples correspond to two or more classes and the objective is 

to factor in already-labeled data and estimate the class of 

unlabeled data. In other words, classification could be 

considered as a discrete form of supervised learning where the 

n samples of data have to be labeled as belonging to a 

particular class (category) from the available finite set of 

classes (categories). A regression problem is one where the 

required output is composed of one or more continuous 

variables. Since we are not trying to label but rather predict 

sound speed based on parameters like depth, temperature and 

salinity, the output has continuous values and thus sound 

speed profiling is a regression problem. We use two regression 

algorithms, specifically, Ridge and Ensemble Bagging 

Regression because we found through tests that these 

algorithms provide better results for our dataset. A brief 

overview of these algorithms is presented below.  

A. Ensemble Bagging Regression 

An ensemble is a linear combination of a model fitting or 

statistical learning methods rather than using one particular 

method. Let us consider the example of function estimation. 



 

We are keen on finding a real valued function, 𝑔: 𝐼𝑅𝑑 →  𝐼𝑅, 

based on data (𝑋1, 𝑌1) … … . . (𝑋𝑛, 𝑌𝑛) where X represents a d-

dimensional predictor variable and Y represents a univariate 

response. Suppose a base approach is defined such that for 

every input data it produces an estimated function 𝑔̂(. ). The 

base approach could be a regression tree, kernel estimator or 

other estimators.  We can repeat the base approach several 

times by reweighting original data to generate corresponding 

estimates 𝑔1̂(. ), 𝑔2̂(. ), … , 𝑔𝑀̂(. ), where M is the estimate for 

the Mth reweighted input data set. An ensemble-based function 

estimate 𝑔𝑒𝑛𝑠(. ) is then obtained as a linear combination of 

individual function estimates 𝑔𝑘̂(. ), as follows [25]: 

𝑔𝑒𝑛𝑠̂ (. ) = ∑ 𝑐𝑘
𝑀
𝑘=1 𝑔𝑘̂(. )              (3) 

𝑔𝑘̂(. ) is derived from the base approach using the reweighted 

kth input data set. The value 𝑐𝑘 =
1

𝑀
,  is the linear combination 

coefficient and is obtained by averaging the weights.  

Boosting and Bagging are two common types of ensemble 

methods. Boosting involves creating samples and assigning 

initial weights to each sample as, 𝑊𝑖 =
1

𝑁
 where 𝑖 = 1,2 … 𝑁. 

So the samples are trained on the original data. For every 

subsequent iteration, the sample weights are updated and then 

the learning algorithm is subjected to use the updated weights. 

The weights are increased for samples whose prediction was 

incorrect during the previous step and the weights are reduced 

for samples which gave accurate predictions in previous step. 

This process is repeated several times and the samples with 

worse predictions keep increasing their weights in each cycle. 

The final prediction is obtained by a majority vote or 

averaging of individual predictions. The sample with higher 

weight influences the final prediction [26]. Meanwhile, 

Bagging is an ensemble method used for enhancing unstable 

estimation and is popular because of its easy implementation. 

A bagging algorithm consists of the following steps [25]: 

Step 1: Develop a bootstrap sample (𝑋1
∗, 𝑌1

∗), … , (𝑋𝑛
∗ , 𝑌𝑛

∗) by 

randomly drawing n times and by using replacement 

from data (𝑋1, 𝑌1) … … , (𝑋𝑛, 𝑌𝑛) 

Step 2: Calculate the bootstrapped estimator from equation, 

𝑔∗̂(. )=ℎ𝑛((𝑋1
∗, 𝑌1

∗), … , (𝑋𝑛
∗ , 𝑌𝑛

∗))(. ) 

Step 3: Repeat steps 1 and 2 M times to obtain 𝑔̂∗𝑘(. ) where 

k=1, 2,…, M. The bagged estimator is given by, 

𝑔̂𝐵𝑎𝑔(. ) =
1

𝑀
∑ 𝑔̂∗𝑘(. )𝑀

𝑘=1              (4) 

In summary, ensemble bagged regression consists of creating 

random bootstrap samples from the initial dataset which are 

used for training and hence several versions of the base 

predictor are developed. Every estimation for a new 

observation involves predicting with all the trained predictors. 

The bagged estimation is therefore the mean of all individual 

predictions. 

B. Decision Trees  

A tree structure grows upside down starting at the root and 

leads to splits or nodes. An observation starts at the root and 

proceeds through the nodes (splits) where a decision is made 

regarding the direction to continue depending on the value of 

the explanatory variables. The predicted response is given 

when eventually a terminal node is reached. Binary recursive 

partitioning is used to fit trees. The term binary implies that 

the root or parent node would always be divided into two 

equal child nodes. The term recursive means that the process 

repeats wherein each child node becomes parent and is in turn 

divided into two equal child nodes and so on. The recursion 

stops if the node is a terminal node. The process starts one 

explanatory variable to create a split. The variable and location 

of the split are determined to reduce the node impurity at that 

position. A split yields two child nodes that are in turn split 

using the same basis and the process continues until no more 

splits are possible or if the process is terminated based on a 

user-defined criterion [27].  

Decision trees are categorized into classification and 

regression trees. The terminal nodes of a classification tree 

ascribe to the class which constitutes the plurality of cases in 

that node. The terminal nodes of a regression tree are 

attributed a value, which is the mean of cases in that node. 

Two impurity measures are commonly used for the regression 

trees, namely, least squares and least absolute deviations. The 

least squares measure aims at minimizing the sum of squared 

difference between the observations and mean at each node. 

The least absolute deviations measure strives to reduce the 

mean absolute deviation from the median within the node. 

This method is superior to least squares because it is not 

sensitive to irregularities [27]. 

IV. DATA AND RESULTS   

Several open source machine learning libraries are available 

today like Tensorflow, Scikit-learn, Theano, Caffe and Torch 

which have equivalent competence and either one could be 

used to solve machine learning problems [18]. Given its 

popularity we have used the Scikit-learn library to validate our 

approach; the source code of our implementation can be found 

at https://github.com/ambrinherz/underwater_ml. 

A. Dataset 

In order to validate our approach, we have used 3 datasets. 

The first dataset is the XCTD and Sonar data collected from 

submarines in the Arctic Ocean for Scientific Ice Expeditions 

from 1999 to 2000 [28]. This dataset includes sound speed 

measured at 140 positions of varying latitude and longitude; 

each position calculates the sound speed for depths between 

13m and 1000m. This Arctic Ocean dataset has 170,574 

records, each includes  measurements of depth, salinity, 

temperature and sound speed. The second dataset represents 

the oceanographic data collected in the Molucca sea, Celebes 

sea, Philippine Sea and North Pacific Ocean from June 2010 

to July 2010 [29]. This dataset includes XBT data of sound 

speed measured at 38 positions of varying latitude and 

longitude; each position calculates the sound speed for depths 

between 0m and 800m. This data set referred to as the Pacific 

Ocean dataset has 44,057 sound speed values. The third 

dataset represents the data collected in the Southern oceans 

including Indian and South Atlantic Ocean from 1998 to 2000 

and is hereby referred to as the Southern Oceans dataset [30]. 



 

This dataset includes XCTD data of sound speed measured at 

36 positions of varying latitude and longitude; each position 

calculates the sound speed for depths between 0m and 

1000m.This dataset has a total of 34,360 sound speed values. 

We have applied our machine learning based approach to 

predict the sound speed. About 70% of the dataset was used 

for training and the remaining 30% was used for testing. We 

have also studied the effect of the training dataset size on 

performance. We have experimented with several machine 

learning algorithms for regression like Elastic Net, Lasso, 

Ridge, Ensemble Random Forest etc. Table 3 shows the 

algorithm prediction score per feature for the worldwide 

dataset. The score value lies between 0 and 1, where a higher 

score reflects better prediction accuracy. The worldwide 

dataset refers to the combination of the Arctic, Southern and 

Pacific Ocean datasets. 

Table 3: Algo. prediction score per feature for the worldwide dataset 

No. Algorithm 
Sound 

Speed 
Depth Temperature Salinity 

1 Lasso 0.7194 0.0496 2.11E-9 2.89E-6 

2 Ridge 0.8507 0.0791 0.3498 0.8462 

3 Elastic Net 0.0031 0.0011 2.11e-9 2.89e-6 

4 Bagging Regressor 0.9997 0.9980 0.9997 0.9904 

5 Random Forest 0.9996 0.9982 0.9997 0.9904 

6 Extra Trees 0.9996 0.9985 0.9996 0.9909 

7 Ada Boost 0.9983 0.7665 0.9797 0.5152 

8 Gradient Boosting 0.9999 0.9757 0.9989 0.9615 

 

Table 3 shows the performance of different algorithms 

when predicting one feature while the others are known. For 

example, when depth, temperature and salinity are known, the 

Lasso algorithm can predict sound velocity with a prediction 

score of 0.7194. We have found that Bagging Regressor, 

Random forest, Gradient Boosting and Extra trees algorithms 

have similar scores for predicting depth, temperature, salinity 

or sound velocity. Hence, any of these algorithms would be an 

appropriate choice. We have picked Bagging Regressor for 

further consideration.  

We have used data from the Southern Oceans, Arctic 

Ocean, Pacific Ocean and a combination of all these datasets 

called worldwide dataset to predict sound velocity using 

Bagging Regressor and Decision Tree Regressor algorithms. 

We also used different base estimator sizes for the Bagging 

Regressor to determine the best prediction accuracy for the 

Arctic Ocean and compared the results with Mackenzie’s 

equation as shown in Table 4. We increased the size of the 

base estimator from 10 to 400 and found that after an 

estimator size of 100 the prediction accuracy flattens or 

remains constant. Further the prediction accuracy is about 

99.98% for all the estimator sizes. Hence, we decided to use 

the default base estimator size of 10 for subsequent testing. 

We have used default parameters for the Bagging Regressor 

which includes the following:  

 “base_esimator”, which defaults to the Decision Tree 

Regressor,  

 “n_estimators” indicates the number of base estimators 

included in the ensemble and has a default value of 10, 

 “max_samples: default”, which refers to the number of 

samples that are drawn from the dataset and is set to 1,  

 “max_features:default”, which specifies the number of 

features that are drawn from the dataset and are in turn 

used to train the estimator. This parameter is set to 1. 

We have used default parameters for the Decision Tree 

Regressor, which comprises “criterion= mse”, “splitter=best”, 

“min_samples_split=2”, “min_samples_leaf= 1”, 

“max_depth=None”, etc. The criterion “mse” refers to mean 

squared error which is used to measure the quality of a split. 

When the maximum depth of the tree is None, the nodes are 

expanded to reach all pure leaves or to reach all leaves holding 

less than “min_samples_split” samples. The default 

“min_samples_split” is 2 and reflects the minimum needed 

number of samples to split an internal node. Each leaf node 

has a minimum sample of one [24]. At every depth in the test 

dataset, we have predicted the sound velocity and determined 

the difference between the predicted value and actual sound 

speed. We have then averaged this difference to calculate the 

mean difference in sound velocity for various oceans. We have 

also evaluated the mean difference for the sound velocity 

calculated using the Mackenzie equation; the results are 

tabulated in Table 4. 

Table 4: Sound velocity prediction using Mackenzie’s equation and 

Bagging Regressor in the Arctic Ocean 

Mean Difference (m/s) 

Mackenzie 

Equation 

Base estimator size  

 

10 50 100 200 300 

9.77 

(90.23%) 

0.0176 

(99.982%) 

0.0167 

(99.983%) 

0.0148 

(99.985) 

0.0149 

(99.985%) 

0.015 

(99.985%) 

 

Table 5 shows that for the Arctic Ocean, the Mackenzie 

equation is 9.77 m/s (on average) away from the actual values 

of sound velocity while the Bagging Regressor and the 

Decision Tree are only 0.018 and 0.0134 m/s (on average) 

away from the actual sound velocity values, respectively. We 

have repeated the tests to compare with Leroy’s equation; 

Table 6 shows the results. Note that the Decision Tree and 

Bagging Regressor results in Tables 5 and 6 are different since 

Leroy’s equation uses latitude and longitude as a parameter for 

calculations. Hence, the dataset used for this test includes 

latitude and longitude for all considered oceans while applying 

Bagging Regressor, Decision Tree and Leroy’s equation.  

We observe from Tables 5 and 6 that the Bagging 

Regressor and Decision Tree results are much closer to the 

actual sound speed. For example, in the Arctic Ocean we see 

that the Mackenzie and Leroy equations are only 90% accurate 

while the Bagging Regressor and Decision Tree are 99.98% 

accurate. This affirms that machine learning algorithms 

perform much better than traditional equations for predicting 

sound velocity. Since the Bagging Regressor algorithm 

internally uses several decision trees, we have been eager to 

find the effect a single decision tree has on the results. Based 

on Tables 5 and 6, a single decision tree has similar 

performance to the Bagging Regressor and runs much faster as 



 

well. Therefore, for the remaining tests we used a single 

decision tree for predicting sound velocity. 

Table 5: Sound velocity prediction using Mackenzie’s 

equation and Bagging/Decision Tree. 

No. Algorithm 

Mean Difference (m/s) 

Arctic 

Ocean 

Indian 

Ocean 

North Pacific 

Ocean 

Worldwide 

1 Mackenzie 

Equation 

9.77 

(90.23%) 

0.14 

(99.86%) 

0.12  

(99.98%) 

6.74 

(93.26%) 

2 Bagging 

Regressor 

0.018 

(99.98%) 

0.02 

(99.98%) 

0.034 

(99.96%) 

0.021 

(99.97%) 

3 Decision 

Tree 

0.0134 

(99.98%) 

0.0137 

(99.98%) 

0.0219 

(99.97%) 

0.015 

(99.98%) 

 

Table 6: Sound velocity prediction using Leroy equation and 

Bagging/Decision Tree 

No. Algorithm 

Mean Difference (m/s) 

Arctic 

Ocean  

Indian 

Ocean  

North Pacific 

Ocean 

Worldwide  

1 Leroy 

Equation 

9.732 

(90.26%) 

0.1935 

(99.8%) 

0.1195 

(99.88%) 

6.715 

(93.28%) 

2 Bagging 

Regressor 

0.0184 

(99.98%) 

0.0185 

(99.98%) 

0.034 

(99.96%) 

0.021 

(99.97%) 

3 Decision 

Tree 

0.0134 

(99.98%) 

0.0116 

(99.98%) 

0.0224 

(99.97%) 

0.015 

(99.98%) 

 

B. Predicting unseen data 

We have also evaluated the prediction accuracy when the 

dataset was shuffled and also when the algorithm has never 

seen the data before. For this purpose, we have applied a 

random shuffle method in python to the dataset, and then split 

it into 70% training subset and 30% testing subset. We have 

repeated this process for the Arctic Ocean, Southern Oceans 

and Pacific Ocean. The training subset for the Arctic Ocean, 

Pacific Ocean, and Southern Oceans include 119,402, 30,840 

and 24,052 sound speed values, respectively. The 

corresponding sizes for the test sets are 51,172, 13,217 and 

10,308, respectively. The worldwide dataset refers to the 

combination of the Arctic, Southern and Pacific Ocean 

datasets. We further compared the results of the decision tree 

with the Mackenzie equation and observed that the decision 

tree outperforms the Mackenzie equation by 10% or more. The 

results are tabulated in Table 7.  

Table 7: Comparing Sound velocity prediction using Mackenzie 

equation and Decision Tree (with dataset shuffling) 

No. Algorithm 

Mean Difference (m/s) 

Arctic 

Ocean 

Indian 

Ocean 

North Pacific 

Ocean 

Worldwide 

1 Mackenzie 

Equation 

9.678 

(90.3%) 

0.1398 

(99.86%) 

0.1202 

(99.87%) 

6.916 

(93.08%) 

3 Decision 

Tree 

0.0408 

(99.95%) 

0.039 

(99.96%) 

0.0716 

(99.93%) 

0.0465 

(99.95%) 

 

We used the same approach for testing with Leroy’s equation, 

where the latitude and longitude are factored in. Again, 

decision trees outperform Leroy’s equation by 10% or more. 

The results are tabulated in Table 8. The fact that the Decision 

Tree is able to predict unseen data with high accuracy in such 

a variety of regions is a significant advantage for our machine 

learning based sound speed estimator. 

Table 8: Sound velocity prediction using Leroy equation and 

Decision Tree (with dataset shuffling) 

No. Algorithm 

Mean Difference (m/s) 

Arctic 

Ocean 

Indian 

Ocean 

North Pacific 

Ocean 

Worldwide 

1 Leroy 

Equation 

9.744 

(90.25%) 

0.1935 

(99.8%) 

0.1197 

(99.88%) 

7.139 

(92.86%) 

3 Decision 

Tree 

0.0436 

(99.95%) 

0.0391 

(99.96%) 

0.0728 

(99.93%) 

0.05 

(99.95%) 

C. Future prediction based on historical data 

In order to gauge the effectiveness of machine learning 

algorithms in predicting unknown sound speed values in areas 

based on historical measurements, we have used data collected 

from the Arctic Ocean during the years 1999 to 2000 on 

SCICEX expedition as training data (same Arctic Ocean 

dataset as in section IV. A).  The testing dataset includes 

sound speed measured at 27 positions of varying latitude and 

longitude for the years 2001-2002 in the Arctic Ocean during 

the SCICEX expedition; each position calculates the sound 

speed for depths between 13m and 1000m. This test dataset 

has a total of 34,276 records, each includes measurements of 

depth, salinity, temperature and sound speed. We have found 

that machine learning algorithms are indeed successful in 

predicting sound speed accurately for the years 2001-2002 and 

the results match with the measured values on the SCICEX 

expedition for the years 2001-2002. The results are shown in 

Tables 9 and 10.   

Table 9: Future Sound velocity prediction using Mackenzie equation 

and Machine learning algorithms  

No. Algorithm Mean Difference (m/s) 

1 Mackenzie Equation 41.4515 (58.54%) 

2 Bagging Regressor 0.0678 (99.93%) 

3 Single Decision Tree 0.0903 (99.9%) 

Table 10: Future Sound velocity prediction using Leroy equation and 

Machine learning algorithms  

No. Algorithm Mean Difference (m/s) 

1 Leroy Equation 41.4145 (58.58%) 

2 Bagging Regressor 0.12 (99.88%) 

3 Single Decision Tree 0.1175 (99.88%) 

 

We observe from Tables 9 and 10 that the Bagging Regressor 

and Decision Tree methods achieve 99.9% prediction accuracy 

while the Mackenzie and the Leory equations are only 58.5% 

accurate. This validates our approach and confirms that the 

machine learning algorithms are thus invaluable and enable us 

to accurately determine sound speeds of the region under test 



 

(Arctic Ocean in this scenario) sometime in the future using 

the current datasets. 

D.  Measuring the effect of training data size on accuracy  

To assess the effect of the training dataset size on the accuracy 

of the sound speed prediction, we have used the shuffled 

worldwide dataset from Section IV.B again. After shuffling 

the dataset, we split it into various sizes, 40-60, 50-50, 60-40, 

70-30, etc. A size of 40-60 means the dataset was split so that 

40% of the dataset would be used for training and 60% of the 

dataset would be used for testing.  The results are tabulated in 

Table 11. We notice that as the training dataset size increases 

from 40% to 80%, there is an increase in the accuracy of the 

sound velocity prediction. When the training dataset size is 

80%, the accuracy is 99.95% and hence, it is very close to the 

actual values of sound velocity. 

Table 11: Sound speed prediction for different training dataset sizes 

while using the Decision Tree algorithm  

Mean Difference (m/s) 

Dataset size 

(40-60) 

Dataset size 

(50-50) 

Dataset size 

(60-40) 

Dataset size 

(70-30) 

Dataset size 

(80-20) 

0.0599 

(99.94%) 

0.0543 

((99.94%) 

0.0503 

(99.94%) 

0.0465 

(99.95%) 

0.0457 

(99.95%) 

V. CONCLUSIONS  

Sound speed variations significantly impact signal modeling 

for underwater acoustic communications. Hence, it is critical 

to determine precise values of sound speed in applications like 

target recognition and IoUT networks. Although generic 

equations are available and other techniques utilizing a layered 

model have been explored, there is no clear universal method 

for all seas and all salinities. We have proposed using machine 

learning and regression algorithms in particular to predict 

sound speed. Using published XBT and Sonar data, we have 

been able to predict sound speed with more accuracy than the 

reference equations. Specifically, using datasets from various 

oceans like the Southern Oceans, Pacific Ocean and Arctic 

Ocean, an accuracy of 99.9% has been achieved for the SSP 

prediction. Our approach is naturally adaptive; as more data 

sets become available, they may be further incorporated to 

enhance prediction accuracy. Our future work will evaluate 

the impact of our approach on propagation models, e.g., 

Bellhop. 
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