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Abstract— Underwater acoustic networks operate in an
inhomogeneous and dynamic environment, which makes it
difficult to model the propagation path of signals. In essence
acoustic signals experience reflection and refraction due to sound
speed variation, based on many parameters such as salinity,
temperature, and depth. To enable modeling of signal
propagation, the sound speed profile (SSP) has to be accurately
estimated. The most famous SSP equation has been proposed by
Mackenzie and has been widely used among others like the
Coppens’ and UNESCO equations. The drawback of these
equations is that they yield different accuracy levels for various
setups. They are also valid only for certain limits of salinity,
depth and temperature. Moreover, the SSP estimation method
should suit both deep and shallow water environments. In this
paper, we use machine learning algorithms to predict sound
speed in both deep and shallow waters and compare our results
with data collected from acoustic tomography measurements. For
training we have considered sound speed measurements across
various oceans like Pacific Ocean, Arctic Ocean, Indian Ocean,
etc. Our results show that our model achieves 99.99% accuracy
and outperforms Leroy and Mackenzie equations.

Keywords— Sound speed, acoustic communication, Underwater
networks, Machine learning.

I. INTRODUCTION

Despite the popularity of radios in terrestrial based wireless
systems, RF signals get absorbed in water and acoustics are
deemed the most viable means for establishing underwater
communication links. The underwater environment is quite
challenging and is characterized by its inhomogeneous and
dynamically changing properties; these characteristics affect
the propagation of acoustic signals and complicates the
operation of underwater networking applications. For
example, in an acoustic underwater network (AUN), omni-
directional transmissions complicate medium access control
and increase power consumption, and hence directional
transmissions are favored. For directional transmissions to be
effective, the propagation path of signals should be accurately
predicted [1]-[3]. However, as illustrated in Fig. 1, an acoustic
signal is subject to refraction due to changes in the sound
speed experienced along its propagation path. Thus, to
establish robust acoustic communication links in underwater
setup, it is necessary to employ an accurate sound speed
profile (SSP) to predict the signal propagation path and
appropriately steer the transmitter antenna to reach the
targeted receiver. Although in short range communications,
the sound speed may be assumed to be constant, for long range

communications, the sound speed variations have significant
impact on the propagation path of acoustic signals and could
degrade the link quality [3][4]. Furthermore, when there is a
variation of sound speed with respect to depth, acoustic signals
suffer from refraction and in extreme cases shadow zones
could be created where little or no signal propagation could
take place. This could result in communication failure.

For applications like navigation systems for underwater
robotic vehicles and for underwater acoustic positioning
systems (UAPS), highly accurate estimation of sound speed is
necessary; otherwise it could lead to position errors. The
results of [5][6] reveal that the acceptable position error to
operate floats, gliders and unmanned underwater vehicles is
0.01% to 0.04% of the reachable range of surface-based
beacon sources. In [7], the authors present a method to
determine sound speed using signal propagation characteristics
and show that their method, combined with multi-lateration,
enhances localization accuracy. Nonetheless, for underwater
tracking applications, which rely on range measurements, even
a significantly smaller percentage error in effective sound
velocity estimates could lead to serious errors in range
measurements [8]. Furthermore, for applications like Internet
of Underwater Things (IoUT), it is crucial for connectivity to
be robust and for the bit error rate to be minimal in order to
avoid intermittent reachability issues [9]. Hence, there is a
need for highly accurate sound speed measurement for the
aforementioned applications.

Sound speed is traditionally calculated using various
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Fig. 1. Sound speed variations in underwater environment affects the
propagation path of acoustic signals where the direct link between two nodes
does not follow a straight line. A node often ought to pursue transmission
angles in order to reach another node at different depth. In fact, the acoustic
signal may refract due to sound variations.



equations like the Mackenzie, Coppens, UNESCO and Del
Grosso’s or NRL II equation [10]-[12]. However, these
equations have limitations with respect to depth, temperature
and salinity as shown below in Tables 1 and 2. The Mackenzie
and Coppens equations (proposed in 1981) use depth,
temperature and salinity values to compute sound speeds. The
UNESCO and Del Grosso equations use pressure (instead of
depth), temperature and salinity to measure sound speed [12].
However, these equations do not cover all oceans (deep water,
shallow water or high salinity oceans) and based on the
boundary conditions of applications, one need to choose
suitable equations for calculating sound speed [13].

Leroy et al. proposed a different equation to calculate
sound speed across all seas [14]. However, such an equation
only factors in salinities from pure water up to 42% and fails
to address other salinities. Hence, the applicability of Leroy’s
equation is restricted to certain seas. To better capture the
effect of environment dynamics, in-situ measurements are
aggregated to infer the sound speed within the deployment
area. For example, sound speed is first measured by a few
randomly deployed nodes and such information is then used to
estimate the sound speed profile of a larger area [13].
However, such distributed in-situ methodology imposes a
major computational burden on the underwater nodes and does
not yield the level of accuracy expected for UAPS
applications. Another method has been proposed in [15] to
determine sound speed using surface measurements and
satellite measurements. Obtaining these measurements would
be cost intensive and this method has been tested only for the
Central Arabian Sea.

Table 1: Validity ranges of sound speed for various depths [10][12].

Equation Depth (m) | Temperature (°C) Salinity
(%)

Mackenzie | 0 to 8000 -2t0 30 30 to 40

Coppens 0 to 4000 0to 35 0to 45

Table 2: Validity ranges of sound speed based on pressure [14].

Equation | Pressure (bar) | Temperature (°C) | Salinity (%)
UNESCO |0 to 1000 0 to 40 0 to 40
Del Grosso |0 to 980.66 0to 30 30 to 40

Hence, there is a need for a technique to predict accurate
sound speed across all seas, including salinity ranges of over
200% [14], and it should also be applicable to all underwater
applications. To the best of our knowledge, there are no
equations or methods to accurately predict sound speed for all
salinities, depth, temperature or pressure ranges without
limitations. This paper promotes a novel approach that
employs machine learning to accurately model the sound
speed and overcome the limited data availability. We exploit
regression algorithms which could work efficiently with
limited datasets and measure their performance. We use sound
speed values obtained from XBT and Sonar measurements as
training dataset. The predicted SSP values in our model have
been found to lie within £0.05 m/s of the in-situ measured
SSP values. Machine learning algorithms learn better with

more training data. In practice, as more XBT and Sonar
measurements become available, they could be integrated and
the regression algorithms would be able to yield even better
SSP estimates.

The paper is organized as follows. Section II reviews
related work. Section III explains the machine learning
approach used and briefly explains how regression algorithms
work. Section IV analyzes data and results of sound speed
predicted using regression algorithms with traditional
equations and reports the performance and accuracy of our
technique. Finally, Section V concludes the paper.

II.  BACKGROUND AND RELATED WORK

Given the contribution of the paper, we discuss related work
under two categories: (i) adopting machine learning
techniques for AUN and underwater target localization, and
(i1)) models for predicting sound speed based on various
underwater conditions.

Use of machine learning in underwater environments:
Machine learning could be considered as a “black-box” since
it can work without any prior knowledge of the environment,
yet it can provide instantaneous results that improve over time.
This feature is particularly promising for underwater acoustics
as the environment conditions are fluctuating and the use of
machine learning would avoid costly measurements using
ocean acoustic tomography methods [16]-[18]. Lefort et al.
[16] have proposed using machine learning for source
localization in underwater environments, e.g., determining the
position of an acoustic transmitter in a network, or the source
of the sound detected by a sensor. In [16], direct regressions
have been employed for underwater source localization. Two
regression models, namely, kernel regression and linear
piecewise regression have been explored. Regression models
only need a sample training dataset of the fluctuating
environment, which is obtained from software simulations.
Their experiments show that the source localization error is
reduced by using machine learning algorithms. H. Niu et al.
[19] have analyzed the performance of feed-forward neural
network (FNN), support vector machine (SVM) and random
forest (RF) for source localization and range estimation. The
localization is studied as a supervised learning problem and
the classification algorithms (FNN, SVM and RF) are found to
perform well with a mean absolute percentage error of 2-3%.
Better results have achieved by A. Horri [20] using
convolutional neural networks.

A new data-driven technique has been proposed in [15] to
determine SSP from surface parameters that are obtained using
remote sensing measurements. Artificial neural networks
(ANN) have been employed to determine SSP from hourly
surface observations. Surface observations from mooring as
well as satellites have been used for the analysis. The
employed ANN algorithm is based on the multilayer
perceptron model with two hidden layers utilizing the
backpropagation algorithm. Comparing the SSP values
calculated using ANN with in-situ measurements have
revealed that 76% of the predicted values lie within *1 m/s,
and 93% of predicted values lie within *2 m/s of the SSP




values obtained from mooring. Such a data-driven method is
based on the assumption that it is difficult to obtain in-situ
measurements of temperature, depth and salinity profiles of
the seawaters and has been tested only for the central part of
the Arabian Sea. Unlike our approach, this work further
involves obtaining surface and satellite measurements which
are costly and time-intensive.

Underwater sound speed estimation: Conventionally, a
number of approximate models are used for estimating sound
speed in an underwater environment like the Mackenzie’s,
Coppens’, UNESCO and Del Grosso’s and NRL II equations.
These models use field measurements to devise a polynomial
that captures the effect of the various environment parameters,
such as temperature and depth. However, these equations are
not universal for all oceans and hence, based on application
requirements the best candidate is chosen.

Although the UNESCO equation covers wider salinity
ranges than the NRL II equation, its measurements are derived
by comparison with pure water. Furthermore, the UNESCO
equation gives incorrect results of sound speed under high
pressure conditions and in regions where the acoustic signal
propagates through greater depth, while the NRL II equation
performs better in these conditions [14]. Due to the absence of
precise measurements under pressure, there was no universal
equation for sound speed calculation in low-saline oceans and
pure water. Belogol’skii et al. [21] proposed an equation for
measurement of sound speed in pure water under pressure
with pressure estimation of up to 60 MPa and temperature
ranges of 0.4 to 40°C. However, this equation requires
complex computations and could be impractical for
underwater nodes. Meanwhile, Leroy et al. [14] covers salinity
ranges from pure water to salinities up to 42%, calculates
sound speed by using depth, temperature, salinity and ocean
latitude across all seas and oceans. The only exception is
regions like the Mediterranean Sea, Red sea or Gulf of Mexico
where salinities could exceed 200%. These regions have not
been considered by Leroy et al. or others while calculating
sound speed.

Popular sound speed equations use parameters like depth,
temperature and salinity and hence are closely related to our
machine learning model. Mackenzie’s equation [10] for sound
speed factors in depth, temperature and salinity is as follows:

C = 1448.96 + 4.591T — 5.304 x 107%T? + 2.374 x 107*T3
+1.340(S — 35) +1.630x 1072 D + 1.675 x 1077D?
—1.025x1072T(S—35) — 7.139x 10713 TD3 (1)

where 7 is temperature in Celsius, D is depth in meters and S
is salinity in parts per thousand. Meanwhile the equation
proposed by Leroy et al. [14] considering the ocean latitude is
as follows:

C = 1402.5 + 5T — 5.44x1072T2 + 21.x1074T3 + 1.335 —
1.23x1072ST + 8.7x10755T2 + 1.56x1072Z +
2.55x1077Z% — 7.3x1071223 4+ 1.2x107Z(¢p — 45) —
9.5x10713TZ3 4+ 3x1077T2Z + 1.43x1075SZ )

where T is temperature in Celsius, Z is depth in meters, S is
salinity in % and ¢ is latitude in degrees.

Collected field measurements of sound speed have
indicated that substantially more variations occur in the
vertical axes, i.e., with depth, than on the horizontal axes [22].
Hence, most researchers consider a layered model to profile an
acoustic region, corresponding to changes in depth. One such
approach is the Distributed Real-time Oceanic Profiling
approach (DROP) [4], which uses parabolic ranging and
measured sound speed values of a few randomly deployed
nodes to determine the sound speed profile of a larger area. In
this method, the 3D environment is mapped to an equivalent
2D one and then a second order degree polynomial is applied
to determine the path of the transmitted signal. The slope
gradient of the polynomial is utilized to create a layered
medium. DROP finally obtains an SSP by utilizing the locally
determined sound speed values and the sound speed in each
distinct layer (calculated from the signal refraction). Although
DROP provides real-time estimation of SSP, it has high
computational complexity.

We note that so far all existing equations for sound speed
calculations are restricted to certain salinity, temperature,
depth profiles and for varying applications suitable equations
should be used. For various applications like IoUT and target
recognition, we need precise values of sound speed. This
paper fills the technical gap and promotes a novel machine
learning based approach, where a model is trained using
available sound speed measurements to predict SSP across all
seas irrespective of their salinity, temperature, depth, pressure,
or latitude profiles. In Section V, we show that our approach
outperforms the popularly used sound speed equations.

III. DATA-DRIVEN SSP MODELING

A learning problem in machine learning comprises a dataset
on n samples and the algorithm tries to predict properties of
unspecified data. Machine learning can be classified as either
supervised or unsupervised learning. Supervised learning is
subdivided into two groups, namely, classification and
regression [23][24]. A classification problem is one where
samples correspond to two or more classes and the objective is
to factor in already-labeled data and estimate the class of
unlabeled data. In other words, classification could be
considered as a discrete form of supervised learning where the
n samples of data have to be labeled as belonging to a
particular class (category) from the available finite set of
classes (categories). A regression problem is one where the
required output is composed of one or more continuous
variables. Since we are not trying to label but rather predict
sound speed based on parameters like depth, temperature and
salinity, the output has continuous values and thus sound
speed profiling is a regression problem. We use two regression
algorithms, specifically, Ridge and Ensemble Bagging
Regression because we found through tests that these
algorithms provide better results for our dataset. A brief
overview of these algorithms is presented below.

A. Ensemble Bagging Regression

An ensemble is a linear combination of a model fitting or
statistical learning methods rather than using one particular
method. Let us consider the example of function estimation.



We are keen on finding a real valued function, g: IR® — IR,
based on data (X;,Y;) ........ (X;,, ¥) where X represents a d-
dimensional predictor variable and Y represents a univariate
response. Suppose a base approach is defined such that for
every input data it produces an estimated function §(.). The
base approach could be a regression tree, kernel estimator or
other estimators. We can repeat the base approach several
times by reweighting original data to generate corresponding
estimates g7(.),G2(.), ..., gu(.), where M is the estimate for
the M" reweighted input data set. An ensemble-based function
estimate g.,s(.) is then obtained as a linear combination of
individual function estimates gy (. ), as follows [25]:

Gens(-) = k=1 ¢k G () (€)
grx () is derived from the base approach using the reweighted

k™ input data set. The value ¢, = i, is the linear combination

coefficient and is obtained by averaging the weights.
Boosting and Bagging are two common types of ensemble
methods. Boosting involves creating samples and assigning

initial weights to each sample as, W; = % wherei =1,2...N.

So the samples are trained on the original data. For every
subsequent iteration, the sample weights are updated and then
the learning algorithm is subjected to use the updated weights.
The weights are increased for samples whose prediction was
incorrect during the previous step and the weights are reduced
for samples which gave accurate predictions in previous step.
This process is repeated several times and the samples with
worse predictions keep increasing their weights in each cycle.
The final prediction is obtained by a majority vote or
averaging of individual predictions. The sample with higher
weight influences the final prediction [26]. Meanwhile,
Bagging is an ensemble method used for enhancing unstable
estimation and is popular because of its easy implementation.
A bagging algorithm consists of the following steps [25]:
Step 1: Develop a bootstrap sample (X1, Y7), ..., (X5, Yn) by
randomly drawing » times and by using replacement
from data (X1, Y7) ... ... , (X Y

Step 2: Calculate the bootstrapped estimator from equation,
G- ()=ha(X1, YD), ., (X3, YD) ()

Step 3: Repeat steps 1 and 2 M times to obtain §**(.) where
k=1, 2,..., M. The bagged estimator is given by,

pag() = — Tk, G () (4)

In summary, ensemble bagged regression consists of creating
random bootstrap samples from the initial dataset which are
used for training and hence several versions of the base
predictor are developed. Every estimation for a new
observation involves predicting with all the trained predictors.
The bagged estimation is therefore the mean of all individual
predictions.

B. Decision Trees

A tree structure grows upside down starting at the root and
leads to splits or nodes. An observation starts at the root and
proceeds through the nodes (splits) where a decision is made

regarding the direction to continue depending on the value of
the explanatory variables. The predicted response is given
when eventually a terminal node is reached. Binary recursive
partitioning is used to fit trees. The term binary implies that
the root or parent node would always be divided into two
equal child nodes. The term recursive means that the process
repeats wherein each child node becomes parent and is in turn
divided into two equal child nodes and so on. The recursion
stops if the node is a terminal node. The process starts one
explanatory variable to create a split. The variable and location
of the split are determined to reduce the node impurity at that
position. A split yields two child nodes that are in turn split
using the same basis and the process continues until no more
splits are possible or if the process is terminated based on a
user-defined criterion [27].

Decision trees are categorized into classification and
regression trees. The terminal nodes of a classification tree
ascribe to the class which constitutes the plurality of cases in
that node. The terminal nodes of a regression tree are
attributed a value, which is the mean of cases in that node.
Two impurity measures are commonly used for the regression
trees, namely, least squares and least absolute deviations. The
least squares measure aims at minimizing the sum of squared
difference between the observations and mean at each node.
The least absolute deviations measure strives to reduce the
mean absolute deviation from the median within the node.
This method is superior to least squares because it is not
sensitive to irregularities [27].

IV. DATA AND RESULTS

Several open source machine learning libraries are available
today like Tensorflow, Scikit-learn, Theano, Caffe and Torch
which have equivalent competence and either one could be
used to solve machine learning problems [18]. Given its
popularity we have used the Scikit-learn library to validate our
approach; the source code of our implementation can be found
at https://github.com/ambrinherz/underwater _ml.

A. Dataset

In order to validate our approach, we have used 3 datasets.
The first dataset is the XCTD and Sonar data collected from
submarines in the Arctic Ocean for Scientific Ice Expeditions
from 1999 to 2000 [28]. This dataset includes sound speed
measured at 140 positions of varying latitude and longitude;
each position calculates the sound speed for depths between
13m and 1000m. This Arctic Ocean dataset has 170,574
records, each includes —measurements of depth, salinity,
temperature and sound speed. The second dataset represents
the oceanographic data collected in the Molucca sea, Celebes
sea, Philippine Sea and North Pacific Ocean from June 2010
to July 2010 [29]. This dataset includes XBT data of sound
speed measured at 38 positions of varying latitude and
longitude; each position calculates the sound speed for depths
between Om and 800m. This data set referred to as the Pacific
Ocean dataset has 44,057 sound speed values. The third
dataset represents the data collected in the Southern oceans
including Indian and South Atlantic Ocean from 1998 to 2000
and is hereby referred to as the Southern Oceans dataset [30].



This dataset includes XCTD data of sound speed measured at
36 positions of varying latitude and longitude; each position
calculates the sound speed for depths between Om and
1000m.This dataset has a total of 34,360 sound speed values.

We have applied our machine learning based approach to
predict the sound speed. About 70% of the dataset was used
for training and the remaining 30% was used for testing. We
have also studied the effect of the training dataset size on
performance. We have experimented with several machine
learning algorithms for regression like Elastic Net, Lasso,
Ridge, Ensemble Random Forest etc. Table 3 shows the
algorithm prediction score per feature for the worldwide
dataset. The score value lies between 0 and 1, where a higher
score reflects better prediction accuracy. The worldwide
dataset refers to the combination of the Arctic, Southern and
Pacific Ocean datasets.

Table 3: Algo. prediction score per feature for the worldwide dataset

No Algorithm 2‘;‘;2: Depth | Temperature| Salinity
1 | Lasso 0.7194 10.0496| 2.11E-9 | 2.89E-6
2 | Ridge 0.8507 10.0791 0.3498 0.8462
3 | Elastic Net 0.0031 ] 0.0011 2.11e-9 2.89%¢-6
4 | Bagging Regressor | 0.9997 | 0.9980 0.9997 0.9904
5 | Random Forest 0.9996 |0.9982 0.9997 0.9904
6 | Extra Trees 0.9996 | 0.9985 0.9996 0.9909
7 | Ada Boost 0.9983 | 0.7665 0.9797 0.5152
8 | Gradient Boosting | 0.9999 | 0.9757 0.9989 0.9615

Table 3 shows the performance of different algorithms
when predicting one feature while the others are known. For
example, when depth, temperature and salinity are known, the
Lasso algorithm can predict sound velocity with a prediction
score of 0.7194. We have found that Bagging Regressor,
Random forest, Gradient Boosting and Extra trees algorithms
have similar scores for predicting depth, temperature, salinity
or sound velocity. Hence, any of these algorithms would be an
appropriate choice. We have picked Bagging Regressor for
further consideration.

We have used data from the Southern Oceans, Arctic
Ocean, Pacific Ocean and a combination of all these datasets
called worldwide dataset to predict sound velocity using
Bagging Regressor and Decision Tree Regressor algorithms.
We also used different base estimator sizes for the Bagging
Regressor to determine the best prediction accuracy for the
Arctic Ocean and compared the results with Mackenzie’s
equation as shown in Table 4. We increased the size of the
base estimator from 10 to 400 and found that after an
estimator size of 100 the prediction accuracy flattens or
remains constant. Further the prediction accuracy is about
99.98% for all the estimator sizes. Hence, we decided to use
the default base estimator size of 10 for subsequent testing.
We have used default parameters for the Bagging Regressor
which includes the following:

e “base esimator”, which defaults to the Decision Tree

Regressor,

e “n_estimators” indicates the number of base estimators

included in the ensemble and has a default value of 10,

e “max_samples: default”, which refers to the number of
samples that are drawn from the dataset and is set to 1,

e “max_features:default”, which specifies the number of
features that are drawn from the dataset and are in turn
used to train the estimator. This parameter is set to 1.

We have used default parameters for the Decision Tree
Regressor, which comprises “criterion= mse”, “splitter=best”,
“min_samples_split=2", “min_samples_leaf= 17,
“max_depth=None”, etc. The criterion “mse” refers to mean
squared error which is used to measure the quality of a split.
When the maximum depth of the tree is None, the nodes are
expanded to reach all pure leaves or to reach all leaves holding
less than “min_samples split” samples. The default
“min_samples _split” is 2 and reflects the minimum needed
number of samples to split an internal node. Each leaf node
has a minimum sample of one [24]. At every depth in the test
dataset, we have predicted the sound velocity and determined
the difference between the predicted value and actual sound
speed. We have then averaged this difference to calculate the
mean difference in sound velocity for various oceans. We have
also evaluated the mean difference for the sound velocity
calculated using the Mackenzie equation; the results are
tabulated in Table 4.

Table 4: Sound velocity prediction using Mackenzie’s equation and
Bagging Regressor in the Arctic Ocean

Mean Difference (m/s)

Base estimator size
Mackenzie
Equation 10 50 100 200 300
9.77 0.0176 0.0167 | 0.0148 | 0.0149 0.015
(90.23%) 1(99.982%)|(99.983%)(99.985)((99.985%)(99.985%)

Table 5 shows that for the Arctic Ocean, the Mackenzie
equation is 9.77 m/s (on average) away from the actual values
of sound velocity while the Bagging Regressor and the
Decision Tree are only 0.018 and 0.0134 m/s (on average)
away from the actual sound velocity values, respectively. We
have repeated the tests to compare with Leroy’s equation;
Table 6 shows the results. Note that the Decision Tree and
Bagging Regressor results in Tables 5 and 6 are different since
Leroy’s equation uses latitude and longitude as a parameter for
calculations. Hence, the dataset used for this test includes
latitude and longitude for all considered oceans while applying
Bagging Regressor, Decision Tree and Leroy’s equation.

We observe from Tables 5 and 6 that the Bagging
Regressor and Decision Tree results are much closer to the
actual sound speed. For example, in the Arctic Ocean we see
that the Mackenzie and Leroy equations are only 90% accurate
while the Bagging Regressor and Decision Tree are 99.98%
accurate. This affirms that machine learning algorithms
perform much better than traditional equations for predicting
sound velocity. Since the Bagging Regressor algorithm
internally uses several decision trees, we have been eager to
find the effect a single decision tree has on the results. Based
on Tables 5 and 6, a single decision tree has similar
performance to the Bagging Regressor and runs much faster as



well. Therefore, for the remaining tests we used a single
decision tree for predicting sound velocity.

Table 5: Sound velocity prediction using Mackenzie’s
equation and Bagging/Decision Tree.

The results are tabulated in Table 8. The fact that the Decision
Tree is able to predict unseen data with high accuracy in such
a variety of regions is a significant advantage for our machine
learning based sound speed estimator.

Mean Difference (m/s) Tab}g 8: Sounq velocity predi.ction using Leroy equation and
. Decision Tree (with dataset shuffling)
No. | Algorithm | Arctic | Indian | North Pacific |Worldwide
Ocean Ocean Ocean Mean Difference (m/s)
1 |Mackenzie | 9.77 0.14 0.12 6.74 No. | Algorithm | Arctic | Indian | North Pacific [Worldwide
Equation | (90.23%) | (99.86%) (99.98%) (93.26%) Ocean Ocean Ocean
2 |Bagging 0.018 0.02 0.034 0.021 1 |Leroy 9.744 0.1935 0.1197 7.139
Regressor | (99.98%) |(99.98%) |  (99.96%) (99.97%) Equation | (90.25%) | (99.8%) (99.88%) (92.86%)
3 | Decision 0.0134 0.0137 0.0219 0.015 3 |Decision 0.0436 0.0391 0.0728 0.05
Tree (99.98%) | (99.98%) | (99.97%) (99.98%) Tree (99.95%) 1(99.96%) |  (99.93%) (99.95%)

Table 6: Sound velocity prediction using Leroy equation and
Bagging/Decision Tree

Mean Difference (m/s)
No. | Algorithm | Arctic Indian | North Pacific | Worldwide
Ocean Ocean Ocean
1 |Leroy 9.732 0.1935 0.1195 6.715
Equation | (90.26%) | (99.8%) (99.88%) (93.28%)
2 |Bagging 0.0184 0.0185 0.034 0.021
Regressor | (99.98%) | (99.98%) (99.96%) (99.97%)
3 |Decision 0.0134 0.0116 0.0224 0.015
Tree (99.98%) | (99.98%) (99.97%) (99.98%)

B. Predicting unseen data

We have also evaluated the prediction accuracy when the
dataset was shuffled and also when the algorithm has never
seen the data before. For this purpose, we have applied a
random shuffle method in python to the dataset, and then split
it into 70% training subset and 30% testing subset. We have
repeated this process for the Arctic Ocean, Southern Oceans
and Pacific Ocean. The training subset for the Arctic Ocean,
Pacific Ocean, and Southern Oceans include 119,402, 30,840
and 24,052 sound speed values, respectively. The
corresponding sizes for the test sets are 51,172, 13,217 and
10,308, respectively. The worldwide dataset refers to the
combination of the Arctic, Southern and Pacific Ocean
datasets. We further compared the results of the decision tree
with the Mackenzie equation and observed that the decision
tree outperforms the Mackenzie equation by 10% or more. The
results are tabulated in Table 7.

Table 7: Comparing Sound velocity prediction using Mackenzie
equation and Decision Tree (with dataset shuffling)

Mean Difference (m/s)
No. | Algorithm |  Arctic Indian | North Pacific |Worldwide
Ocean Ocean Ocean
1 |Mackenzie | 9.678 0.1398 0.1202 6.916
Equation (90.3%) |(99.86%) (99.87%) (93.08%)
3 | Decision 0.0408 0.039 0.0716 0.0465
Tree (99.95%) | (99.96%) (99.93%) (99.95%)

We used the same approach for testing with Leroy’s equation,
where the latitude and longitude are factored in. Again,
decision trees outperform Leroy’s equation by 10% or more.

C. Future prediction based on historical data

In order to gauge the effectiveness of machine learning
algorithms in predicting unknown sound speed values in areas
based on historical measurements, we have used data collected
from the Arctic Ocean during the years 1999 to 2000 on
SCICEX expedition as training data (same Arctic Ocean
dataset as in section IV. A). The testing dataset includes
sound speed measured at 27 positions of varying latitude and
longitude for the years 2001-2002 in the Arctic Ocean during
the SCICEX expedition; each position calculates the sound
speed for depths between 13m and 1000m. This test dataset
has a total of 34,276 records, each includes measurements of
depth, salinity, temperature and sound speed. We have found
that machine learning algorithms are indeed successful in
predicting sound speed accurately for the years 2001-2002 and
the results match with the measured values on the SCICEX
expedition for the years 2001-2002. The results are shown in
Tables 9 and 10.

Table 9: Future Sound velocity prediction using Mackenzie equation
and Machine learning algorithms

No. Algorithm Mean Difference (m/s)
1 Mackenzie Equation 41.4515 (58.54%)
2 Bagging Regressor 0.0678 (99.93%)
3 Single Decision Tree 0.0903 (99.9%)

Table 10: Future Sound velocity prediction using Leroy equation and
Machine learning algorithms

No. Algorithm Mean Difference (m/s)
1 Leroy Equation 41.4145 (58.58%)
2 Bagging Regressor 0.12 (99.88%)
3 Single Decision Tree 0.1175 (99.88%)

We observe from Tables 9 and 10 that the Bagging Regressor
and Decision Tree methods achieve 99.9% prediction accuracy
while the Mackenzie and the Leory equations are only 58.5%
accurate. This validates our approach and confirms that the
machine learning algorithms are thus invaluable and enable us
to accurately determine sound speeds of the region under test




(Arctic Ocean in this scenario) sometime in the future using
the current datasets.

D. Measuring the effect of training data size on accuracy

To assess the effect of the training dataset size on the accuracy
of the sound speed prediction, we have used the shuffled
worldwide dataset from Section IV.B again. After shuffling
the dataset, we split it into various sizes, 40-60, 50-50, 60-40,
70-30, etc. A size of 40-60 means the dataset was split so that
40% of the dataset would be used for training and 60% of the
dataset would be used for testing. The results are tabulated in
Table 11. We notice that as the training dataset size increases
from 40% to 80%, there is an increase in the accuracy of the
sound velocity prediction. When the training dataset size is
80%, the accuracy is 99.95% and hence, it is very close to the
actual values of sound velocity.

Table 11: Sound speed prediction for different training dataset sizes
while using the Decision Tree algorithm

Mean Difference (m/s)

Dataset size | Dataset size |Dataset size | Dataset size | Dataset size
(40-60) (50-50) (60-40) (70-30) (80-20)
0.0599 0.0543 0.0503 0.0465 0.0457

(99.94%) ((99.94%) (99.94%) (99.95%) (99.95%)

V. CONCLUSIONS

Sound speed variations significantly impact signal modeling
for underwater acoustic communications. Hence, it is critical
to determine precise values of sound speed in applications like
target recognition and IoUT networks. Although generic
equations are available and other techniques utilizing a layered
model have been explored, there is no clear universal method
for all seas and all salinities. We have proposed using machine
learning and regression algorithms in particular to predict
sound speed. Using published XBT and Sonar data, we have
been able to predict sound speed with more accuracy than the
reference equations. Specifically, using datasets from various
oceans like the Southern Oceans, Pacific Ocean and Arctic
Ocean, an accuracy of 99.9% has been achieved for the SSP
prediction. Our approach is naturally adaptive; as more data
sets become available, they may be further incorporated to
enhance prediction accuracy. Our future work will evaluate
the impact of our approach on propagation models, e.g.,
Bellhop.
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