
A Theoretical Analysis of
Random Regression Test Prioritization

Pu Yi1 , Hao Wang1 , Tao Xie1(�) , Darko Marinov2 , and Wing Lam3

1 Peking University, Beijing, China
lukeyi@pku.edu.cn, tony.wanghao@stu.pku.edu.cn, taoxie@pku.edu.cn

2 University of Illinois Urbana-Champaign, Urbana, IL, USA
marinov@illinois.edu

3 George Mason University, Fairfax, VA, USA
winglam@gmu.edu

Abstract. Regression testing is an important activity to check software
changes by running the tests in a test suite to inform the developers
whether the changes lead to test failures. Regression test prioritization
(RTP) aims to inform the developers faster by ordering the test suite
so that tests likely to fail are run earlier. Many RTP techniques have
been proposed and are often compared with the random RTP baseline
by sampling some of the n! different test-suite orders for a test suite
with n tests. However, there is no theoretical analysis of random RTP.
We present such an analysis, deriving probability mass functions and ex-
pected values for metrics and scenarios commonly used in RTP research.
Using our analysis, we revisit some of the most highly cited RTP papers
and find that some presented results may be due to insufficient sampling.
Future RTP research can leverage our analysis and need not use random
sampling but can use our simple formulas or algorithms to more precisely
compare with random RTP.

Keywords: Regression Test Prioritization · Random · Analysis

1 Introduction

Software developers commonly check their code by running tests. Regression
testing [48] runs tests after code changes, to check whether the changes break
the existing functionality. A test that passes before the changes but fails after
indicates that the changes should be debugged (unless the test is flaky [25]).
Finding test failures faster enables the developers to start debugging earlier.

A popular regression testing approach is regression test prioritization (RTP) [12,
19,21,23,38,39,48], which runs the tests from a test suite in an order that aims
to find test failures sooner. For example, Google [14] and Microsoft [42] report on
using RTP in industry. More formally, a test suite T is a set (unordered) of tests,
and RTP techniques produce a test-suite order—a permutation of the tests in
the test suite—in which to run the tests. Various RTP techniques have been pro-
posed in the literature since the seminal papers from 20+ years ago [12,36,38,47]
that have garnered thousands of citations.

2 P. Yi et al.

RTP techniques are often compared with random RTP. Our inspection [44]
of the 100 most cited papers on RTP shows that 56 papers use random RTP
as a comparison baseline. Although random RTP often performs worse than ad-
vanced techniques, recent papers still use random RTP, because it has a small
overhead and may perform well in certain scenarios. We additionally check pa-
pers published in the latest testing conferences (ICST and ISSTA 2020/2021)
and find that 50% (2/4) of the RTP papers [6,15,30,34] use random RTP. While
random RTP has been used as a baseline for 20+ years, all evaluations have
been empirical, performed by randomly sampling some of the n! orders for a test
suite with n tests. The selected sample size varies (20, 50, 100, 200, 1000), with
no clear correlation with n; some papers do not even report the sample size [44].
However, no prior work has presented a theoretical analysis of random RTP.

Before we summarize our analysis, we describe some metrics and scenarios
most commonly used in RTP research. We first introduce some terms: failure
is simply a failing test, fault is the root cause (bug in the code) for the failure,
and we say that a failure detects a fault if the failure is caused by the fault [36].
In general, many failures may detect the same fault, and one failure may detect
many faults. We capture the relationship between failures and faults by a failure-
to-fault matrix. To compare RTP techniques, researchers quantify how fast (test-
suite) orders find all faults (not failures because having many failures that detect
the same fault is not as valuable as having a few failures that detect many faults).

RTP evaluations involve three aspects: RTP metric, failure-to-fault matrix,
and allowed orders. The most widely used metric is Average Percentage of Faults
Detected (APFD) [38], denoted as α for short. Another popular metric is Cost-
Cognizant APFD (APFDc) [11], denoted as γ for short. Section 2 formally defines
these metrics based on the failure-to-fault matrix; each metric assigns to an order
a value between 0 and 1, with higher values indicating better orders. Traditional
RTP research used seeded faults, which allow fairly precisely deriving the failure-
to-fault matrix [10, 22, 37] that can arbitrarily map failures and faults. Recent
RTP research mostly uses real failures, e.g., analyzing real regression testing
runs from continuous integration systems [14,15,23,24,27,34], making it rather
difficult to precisely derive the failure-to-fault matrix. As a result, the increas-
ingly popular failure-to-fault matrices are all-to-one, where all failures map to
the same one fault, and one-to-one, where each failure maps to a distinct fault.

To describe allowed orders, we note that real test suites often partition tests,
e.g., in JUnit [20], each test method belongs to a test class. Traditional research
ignores this partitioning and allows all n! orders (Ωa(T) for short) of n tests.
We introduced compatible4 orders [46] (Ωc(T) for short) that consider the parti-
tioning and allow only orders that do not interleave tests from different classes.

We present the first theoretical analysis for the cases most commonly used
in RTP research. We introduce an algorithm for efficiently computing the ex-
act probability mass functions (PMFs) of α for all failure-to-fault matrices and
Ωa(T). We demonstrate the efficiency of our algorithm on the benchmarks from

4 Our original term was class-compatible [46] because we considered as tests only test
methods in test classes, but the concept easily generalizes to other kinds of tests.

4 P. Yi et al.

We use α(o) and γ(o) to indicate α and γ, respectively, for a given order o. We
drop o from <o, ≤o, tj(o), τi(o), α(o), and γ(o) when clear from the context.

The most popular RTP metric is α [38], defined for an order o as follows.

Definition 1 (α). APFD is defined as

α = 1−
∑m

i=1 τi
nm

+
1

2n
(1)

Plotting the percentage of faults detected against the percentage of executed
tests, α represents the area under the curve, as shown in two examples in Fig. 1.
The diagonal lines interpolate the percentage of faults detected and lead to nice
properties of mean/median α values and symmetry (Section 6). α ranges between
0 and 1, more precisely between 1/(2n) and 1−1/(2n). A larger α indicates that
an order detects faults earlier, on average.

While α effectively considers the number of tests, the “cost cognizant” metric
γ considers the cost of tests [11]. The cost can be measured in various ways, but
most work uses the test runtime. We use σ(t) to denote the cost (runtime) of a
test t; the total cost of a set of tests T is σ(T) =

∑

t∈T σ(t).

Definition 2 (γ). APFDc is defined as

γ =

∑m
i=1

(

∑n
j=τi

σ(tj)− 1
2σ(tτi)

)

m · σ(T) (2)

Plotting the percentage of faults detected against the percentage of total
test-suite cost, γ represents the area under the curve, as shown in Fig. 1. Note
that α can be viewed as a special case of γ where ∀t, t′ ∈ T.σ(t) = σ(t′).

In practice, tests often belong to classes5—e.g., JUnit [20] test methods be-
long to test classes, Maven [28] test classes belong to modules, and pytest [35]
test functions belong to test files—and tests from each class run together. Our
prior work [46] defined compatible orders as those where all tests from each class
are consecutive. We use TC to denote the set of tests in a class C. An order o
is compatible iff ∀C, j ≤ j′ ≤ j′′.tj(o) ∈ TC ∧ tj′′(o) ∈ TC ⇒ tj′(o) ∈ TC . For
example, o2 in Fig. 1 is compatible, while o1 is not. To distinguish the cases for
all orders from the cases for only compatible orders, we use the subscripts a and

c, respectively, e.g., Ea[x] and Ec[x] represent the expected value of x for the
uniform selection of all orders and compatible orders, respectively, and Pa(A)
and Pc(A) represent the probability of event A for the uniform selection of all
orders and compatible orders, respectively. We denote the set of all orders and
all compatible orders for T as Ωa(T) and Ωc(T), respectively [46].

We analyze RTP techniques in scenarios, each of which consists of a test suite
with n tests, m faults, the failure-to-fault matrix, the cost of each test, and for
Ωc(T) the class of each test. To analyze compatible orders, we introduce some
new notation to indicate the class of tests. We use Ti,C = Ti ∩ TC to denote the

5 The term class for a set of tests that run together need not represent a test class.

A Theoretical Analysis of Random Regression Test Prioritization 5

set of tests in class C that detect the fault i. Let C be the set of all classes, and
Ci be the set of classes that contain at least one test that detects the fault i, i.e.,
Ci = {C ∈ C|Ti,C ̸= ∅}. Let C(t) be the class that t belongs to, i.e., t ∈ TC(t).
The number of compatible orders is |Ωc(T)| = |C|!∏C∈C |TC |!.

For a set of orders S, be it Ωa(T) or Ωc(T), the probability mass function
(PMF) of a metric, α or γ, is a function p from the metric value to its probability:
p(x) = P (metric = x) = |{o ∈ S|metric(o) = x}|/|S|. We next derive some
PMFs as all prior RTP work shows only sampled distributions of random RTP.

3 PMF of α

To analyze the PMF of the metric α, we first propose an algorithm to calculate
the PMF of α for the general case of M . We then discuss two special cases, i.e.,
all-to-one and one-to-one, which are the most common in recent RTP research.

3.1 Algorithm to Calculate PMF of α for the General Case

To calculate the PMF of α, a näıve algorithm would enumerate all n! orders and
compute α for each order. In theory, α can take O(n!) different values, e.g., when
m =

∑n
i=1 n

i and all n tests fail and detect n, n2, . . . , nn different faults, then
each of the n! orders has a different α. In practice, however, the number of faults
m and the number of failing tests k are usually small, e.g., in our evaluation
dataset [34], 2906 out of 2980 (98%) scenarios have k ≤ 10. We present an
algorithm that computes the exact PMF with O(n2mk · k!) time complexity.
Despite the k! factor, the algorithm runs in reasonable time in practice, under
30sec for any of the 2906 scenarios. When k > 10, one can resort to sampling.

We next describe the intuition for our algorithm.
∑m

i=1 τi is the only part of
α that depends on the (test-suite) order, so we first calculate the PMF of this
sum and then convert it to the PMF of α. Iterating over the faults does not
lead to a nice recursive formulation. Our key insight is to instead iterate over
the positions of all k failing tests. We view

∑m
i=1 τi as a weighted sum

m
∑

i=1

τi =

k
∑

j=1

wjφj (3)

where φj is the position of the jth failing test in the order, and wj ≥ 0 is the
weight, calculated as the number of faults detected first by the jth failing test
(Line 11 of Algorithm 1). For example, consider the order o1 in Fig. 1. The
relative order of the k = 4 failing tests is ρ = ⟨C2.t2,C1.t1,C1.t3,C2.t1⟩; we use
metavariable ρ to distinguish the notation from o for the order of all n tests. For
this relative order, w = ⟨1, 1, 1, 0⟩ because the m = 3 faults are detected first by
C2.t2, C1.t1, and C1.t3. The positions for this relative order ρ are φ = ⟨1, 2, 3, 5⟩
because the 4 failing tests in ρ appear in these positions in the order o1.

We call a φ = ⟨φ1 . . . φk⟩ valid if 1 ≤ φ1 < . . . < φk ≤ n. Both sequences
φ and w = ⟨w1 . . . wk⟩ can vary for different orders. While φ has

(

n
k

)

valid

6 P. Yi et al.

Algorithm 1: Calculate the PMF of α

1 Input: n,m,M // the number of tests and faults, and the failure-to-fault matrix

2 Output: p // the PMF of α: p(x) = P (α = x)

3 Function PMF() // main function; return the PMF of α for all orders

4 k = |{j|∃i.Mj,i}| // number of failing tests in M, in practice k≪n

5 q = PMF sum() // compute the PMF of
∑m

i=1 τi

6 return λx.q(mn−mnx + m

2
) // convert that PMF to the PMF of α

7 Function PMF sum() // return the PMF of
∑m

i=1 τi for all orders

8 P = ⟨PMF rorder(ρ), ∀ρ ∈ perms({j|∃i.Mj,i})⟩ // enumerate all relative orders

9 return λx.
∑

p∈P
p(x)/|P| // average PMFs of

∑m
i=1 τi for each relative order

10 Function PMF rorder(ρ) // return the PMF of
∑m

i=1 τi for a relative order ρ

11 w = ⟨|{i|Mρj,i ∧ ∄j′ < j.Mρj′ ,i
}|, ∀j ∈ 1..k⟩ // w are the weights in formula (3)

12 return λs.f(w, k, n)(s)/
(

n

k

)

// the total number of φ is
(n
k

)

13 // the function should be memoized to reuse the results for the repeated w,g,h

Function f(w, g, h) // return fg,h given weights w, calculated with formula (4)

14 if g > h then
15 return λs.0
16 if g = 0 then
17 return λs.1s=0

18 return λs.f(w, g, h− 1)(s)+f(w, g − 1, h− 1)(s− wgh)

possibilities, we note that w has at most k! possibilities (with k! ≪
(

n
k

)

as
k ≪ n in practice) because w depends only on ρ. Therefore, we first fix w by
enumerating the k! relative orders of the k failing tests. Then for each relative
order, the problem of calculating the PMF of

∑m
i=1 τi =

∑k
j=1 wjφj becomes

“given w, count the number of valid φ such that
∑k

j=1 wjφj = s for each s”,
which can be solved recursively as follows.

Let fg,h(s) be the number of assignments for the values of φ1, . . . , φg such
that 1 ≤ φ1 < . . . < φg ≤ h and

∑g
j=1 wjφj = s. The problem is to find

fk,n(s). As the base case, (1) fg,h(s) = 0 for g > h because φg < g cannot hold;
(2) f0,h(s) = 1s=0, where 1 is the indicator function, because only the empty

sequence ⟨⟩ is valid and
∑0

j=1 wjφj = 0. For all h ≥ g > 0, the number of
assignments for fg,h(s) has two cases: (1) if φg ≤ h− 1, the number is equal to
fg,h−1(s) by definition; (2) if φg = h, the number for s is equal to the number of

assignments for φ1, . . . , φg−1 such that φg−1 ≤ φg − 1 = h− 1 and
∑g−1

j=1 wjφj =

(
∑g

j=1 wjφj)− wgφg = s− wgh, which is fg−1,h−1(s− wgh). In total,

fg,h(s) =







0 g > h
1s=0 g = 0
fg,h−1(s) + fg−1,h−1(s− wgh) otherwise

(4)

After solving fk,n, we get the PMF of
∑m

i=1 τi for each relative order of the
k failing tests. Because each of k! relative orders has the same probability by
symmetry, we simply take the average of their PMFs to get the PMF of

∑m
i=1 τi

for all orders. Finally, we convert the PMF of
∑m

i=1 τi to the PMF of α.

A Theoretical Analysis of Random Regression Test Prioritization 7

Table 1: Number of tests, failures, runtime (in ms), and Jensen-Shannon (JS)
distance for 10 largest scenarios [34] and one synthetic scenario (TSmax)

Test #Tests #Failures Runtime [ms] Jensen-Shannon
suite (n) (k) all-to-one one-to-one distance (§3.2.2)

TS1 2118 1 513 505 0.0000
TS2 1986 2 563 629 0.0005
TS3 2080 3 617 871 0.0003
TS4 1929 4 680 1147 0.0004
TS5 1795 5 731 1408 0.0006
TS6 339 6 627 732 0.0040
TS7 465 7 678 756 0.0034
TS8 813 8 829 2009 0.0023
TS9 52 9 1496 1846 0.0442
TS10 161 10 10989 27095 0.0150

TSmax 2118 10 32801 242400 0.0011

We next describe Algorithm 1 in more detail. The input is the number of tests
n, the number of faults m, and the failure-to-fault matrix M . The main function
PMF invokes PMF sum to get the PMF of

∑m
i=1 τi and converts it to the PMF of

α. The function PMF sum enumerates all relative orders ρ of the k failing tests,
invokes PMF rorder(ρ) to get the PMF of

∑m
i=1 τi for each relative order, and

averages these PMFs to get the PMF of
∑m

i=1 τi for all (relative) orders. Function
PMF rorder(ρ) computes the weights w from formula (3), invokes f(w,k,n) to
get fk,n for w, and converts it to the PMF of

∑m
i=1 τi.

We finally discuss the time complexity and the empirical performance of
Algorithm 1. The major cost comes from computing the function f. Because
there are O(k!) different w and 0 ≤ g ≤ k, g ≤ h ≤ n, we have O(nk ·k!) different
inputs for which to compute f. With memoization, f is computed only once for
each input. Each computation takes O(nm) because |support(fg,h)| = O(nm)
as 1 ≤ τi ≤ n for 1 ≤ i ≤ m. Therefore, the cost of computing f for all inputs
is O(n2mk · k!). The other costs in the algorithm are lower than the cost of f;
hence, the overall time complexity of Algorithm 1 is O(n2mk · k!).
Implementation: While top-down recursion makes it easier to present the al-
gorithm, for better performance our implementation uses bottom-up dynamic
programming to compute f. Our implementation fits in only 117 lines of C++.

Dataset: We use the RTP dataset with the most Java projects [34] for our
evaluation. In this dataset, each test is a test class and each class is a Maven
module [28]. The dataset has 2980 scenarios, and 2906 (98%) have k ≤ 10. We
select, for each k ≤ 10, the scenario with the maximum number of tests (n)
from the dataset. We also make a synthetic scenario with 2118 tests, being the
largest number of tests in the dataset, and 10 failures. We use both all-to-one
and one-to-one failure-to-fault matrices on the selected scenarios.

Evaluation: As Table 1 shows, the code finishes in under 30sec (on a common
laptop) for all real scenarios; it takes more time on the synthetic one for all-to-one
and one-to-one, but the runtime is still 33sec and 4min, respectively.

8 P. Yi et al.

3.2 PMFs of α for Special Cases

As mentioned in Section 1, recent RTP research uses real failures and faults,
with two kinds of failure-to-fault matrices: all-to-one and one-to-one. We discuss
the PMFs of α for these two commonly used cases.
3.2.1 All-to-One: We first derive the PMF of α for all-to-one. In this case,
m = 1, k ≥ 1, and w1 = 1, ∀j > 1.wj = 0 in formula (3). Therefore, the
recursive formula (4) becomes fg,h(s) = fg,h−1(s)+fg−1,h−1(s) for g > 1, which
is similar to Pascal’s triangle. This observation hints that the PMF of α for
all-to-one may have a closed formula with binomial coefficients.

Theorem 3 (The PMF of α for all-to-one failure-to-fault matrix).

P (α = 1− s

n
+

1

2n
) =

(

n−s
k−1

)

(

n
k

) , s ∈ {1, 2, . . . , n− k + 1} (5)

Proof. For all-to-one, the α value depends solely on τ1, which is essentially φ1 in
formula (3). For 1 ≤ s ≤ n−k+1, τ1 = s holds as long as s = φ1 < . . . < φk ≤ n.
To satisfy the condition, we just need to choose the k−1 positions after position s.
Therefore,

(

n−s
k−1

)

out of
(

n
k

)

ways to choose k positions in n satisfy the condition,

so P (τ1 = s) =
(

n−s
k−1

)

/
(

n
k

)

, and formula (5) directly follows.

With (5), we can use O(n) time to compute the PMF of α for all-to-one. We
can compute the needed binomial coefficients iteratively, starting from

(

k−1
k−1

)

= 1,

with the recurrence
(

n′+1
k−1

)

= n′+1
n′−k+2

(

n′

k−1

)

, n′ ≥ k − 1, and get
(

n
k

)

= n
k

(

n−1
k−1

)

.
3.2.2 One-to-One: We next consider the PMF of α for one-to-one. In this case,
m = k and each failing test finds a distinct fault, so for every relative order of
the k failing tests, ∀j.wj = 1 in formula (3). Therefore, running Algorithm 1 and
memoizing on w, the complexity becomes O(n2k2 + k!). k! is because we need
to iterate through all the relative orders. We can avoid k! if we check in advance
that the failure-to-fault matrix is one-to-one, so the complexity is O(n2k2).

Moreover, considering formula (4) when ∀j.wj = 1, fk,n essentially models
the problem “counting the number of partitions of s into k distinct summands
from {1, 2, . . . , n}”. Specifically, fg,h(s) can be viewed as the number of parti-
tions of s into g distinct summands in {1, 2, . . . , h}, and fg,h(s) = fg,h−1(s) +
fg−1,h−1(s−h) holds because the summand g can be either less than h or exactly
h, corresponding to fg,h−1(s) and fg−1,h−1(s − h), respectively. To the best of
our knowledge, no closed formula is known for this problem. Considering that
in our evaluation dataset, 99.8% (2975/2980) of scenarios have n2k2 < 109, the
O(n2k2) algorithm is efficient enough for practical use for almost all cases.
Approximation: Furthermore, we can approximate the PMF by ignoring the
distinct-number constraint, i.e., “counting the number of partitions of s into
k summands from {1, 2, . . . , n}”. This problem has a nice generating function
(x+ x2 + . . .+ xn)k, where the coefficient of xs is the number of partitions [43]:

⌊ s−k
n ⌋
∑

i=0

(

k

i

)

(−1)i
(

s− ni− 1

k − 1

)

(6)

A Theoretical Analysis of Random Regression Test Prioritization 9

We can calculate these coefficients using two algorithms with different tradeoffs.
The first algorithm first pre-calculates the binomial coefficients with Pascal’s
triangle and then calculates all the coefficients with formula (6). The first step
takes O(nk2) because s− ni− 1 ≤ nk and i ≤ k. The second step takes O(nk2)
because each ofO(nk) coefficients takesO(k) to compute as ⌊ s−k

n ⌋ ≤ k. Thus, the
overall time complexity of the first algorithm is O(nk2). The second algorithm
calculates the generating function directly with the fast Fourier transform [4] by
first converting x + x2 + . . . + xn to the point-value representation, calculating
each point value to the kth power, and interpolating to get the coefficients. The
second algorithm takes O(nk log(nk)) because the length of the polynomial is
O(nk). Comparing the complexity, the first algorithm is better when k is small
compared to n (i.e., k − log k < log n), and the second is better otherwise.

To evaluate the approximation, we use Jensen–Shannon (JS) distance [16]
between the exact and the approximated PMFs. We check our approximation
on the same real scenarios as in Section 3.1. As Table 1 shows, the approximation
yields PMFs with a small JS distance, the largest only 0.0442 for n = 52, k = 9.

3.3 PMF of γ

The PMF of γ is more complex than that of α because even for the simplest all-
to-one failure-to-fault matrix, the number of possible values of γ can be Ω(2n).
For example, consider n tests with costs 1, 2, 4, . . . , 2n−1, and only one test fails
and detects the only fault. The γ value depends on the sum of the costs of the
tests that precede the failure. 2n−1 different sets of the tests can precede the
failure, and every set has a distinct sum of the costs. Even for the example in
Fig. 1, the support of PMF for γ (33) is much bigger than that for α (8).

4 Expected Values for All Orders Ωa(T)

While some comparisons of RTP techniques use full samples of PMFs, many use
just the arithmetic mean of the samples. We next derive formulas for expected
values to obtain the mean faster and without the imprecision from sampling.

In this section, we consider the case where order o is uniformly selected from
Ωa(T), allowing n! orders of n tests. Because α is a special case of γ where
∀t, t′ ∈ T.σ(t) = σ(t′), we first derive γ.

To start with a simple example, consider a test suite with only one failing
test (k = 1). For a random order, the test can be at any position with equal
probability. Intuitively, the expected position across all of the orders is at the
middle of the sequence, hence α and γ should be about 1/2. In fact, we will show
that they are exactly 1/2. Moreover, the expected values of both α and γ are
1/2 as long as each fault is detected by only one failing test (∀i.ki = |Ti| = 1,
which includes one-to-one). In general, the failure-to-fault matrix can be more
complex: many tests could detect the same fault, and a test could detect many
faults. To compute the expected values of α and γ, we first prove a useful lemma.

10 P. Yi et al.

Lemma 4. For every fault i,

∀t /∈ Ti.Pa(t < tτi) = Pa(∀t′ ∈ Ti.t < t′) =
1

ki + 1
(7)

Proof. Since τi is the position of the first test from Ti in the order, t precedes
tτi iff t precedes every t′ ∈ Ti. Consider the relative position of each t /∈ Ti with
respect to all the tests from Ti in a random order. By symmetry, it is equally
likely that t is in any of the ki+1 relative positions created by the relative order
of the ki tests from Ti. Therefore, the probability that t is in the relative position
preceding all the ki tests from Ti is

1
ki+1 .

We first use this lemma to compute Ea[γ].

Theorem 5 (The expected value of γ for Ωa(T)).

Ea[γ] = 1−
∑m

i=1

(

σ(T\Ti)
ki+1 + σ(Ti)

2ki

)

m · σ(T) (8)

Proof. From (2), the two key terms in γ are σ(tτi) and
∑n

j=τi
σ(tj). By symme-

try, any test t ∈ Ti can be the first in the order, or equivalently t = tτi , with
probability 1

ki
. Thus

Ea[σ(tτi)] =
∑

t∈Ti

P (t = tτi)σ(t) =
σ(Ti)

ki
(9)

Next, consider that
∑n

j=τi
σ(tj) =

∑

t∈T σ(t)1tτi≤t can be also calculated as
∑

t∈Ti
σ(t)1tτi≤t +

∑

t/∈Ti
σ(t)1tτi≤t. For every test t ∈ Ti, tτi ≤ t by definition,

so ∀t ∈ Ti.Ea[1tτi≤t] = 1. For every test t /∈ Ti, Ea[1tτi≤t] = Pa(tτi ≤ t) =

1 − Pa(t < tτi) = ki

ki+1 . The last equality stems from Lemma 4. Therefore, by
the linearity of expectation, we get

Ea[

n
∑

j=τi

σ(tj)] = σ(Ti) +
ki

ki + 1
σ(T \ Ti) (10)

From (2), (9), and (10), we get (8).

Corollary 5.1 (The expected value of α for Ωa(T)).

Ea[α] = 1−
(n+ 1)

∑m
i=1

1
ki+1

nm
+

1

2n
(11)

Revisiting the case where each fault can be detected by only one failing test,
setting ∀i.ki = 1 in (8) or (11), gives exactly 1/2 = Ea[α] = Ea[γ]. In fact, even
in the general case of any failure-to-fault matrix, we find that the two expected
values are similar if not the same, inspiring us to derive the following bound:

A Theoretical Analysis of Random Regression Test Prioritization 11

Theorem 6 (The expected difference of α and γ for Ωa(T)).

− 1

12
< Ea[α]− Ea[γ] <

1

2n
(12)

Proof. From formulas (8) and (11), we have Ea[α] − Ea[γ] = ∆γ − ∆α + 1
2n ,

where ∆γ =
∑m

i=1(
1

2ki
− 1

ki+1)σ(Ti)

m·σ(T) and ∆α =
∑m

i=1
1

ki+1

nm . Since ki ≥ 1, we have

− 1
12 ≤ 1

2ki
− 1

ki+1 ≤ 0 (with basic calculus, minimum is for ki = 2 or ki = 3),

which, combined with σ(Ti) ≤ σ(T), gives − 1
12 ≤ ∆γ ≤ 0. Since ki ≥ 1, we

also have 0 < 1
ki+1 ≤ 1

2 , which gives 0 < ∆α ≤ 1
2n . Thus, we have − 1

12 ≤
∆γ −∆α+

1
2n < 1

2n . However, ∆γ −∆α+
1
2n = − 1

12 would require ∆α = 1
2n and

thus ∀i.ki = 1, in which case ∆γ = 0 and ∆γ −∆α + 1
2n = 0 ̸= − 1

12 . Therefore,
the equality cannot hold and − 1

12 < Ea[α]− Ea[γ] <
1
2n .

5 Expected Values for Compatible Orders Ωc(T)

In this section, we consider the expected values of α and γ for Ωc(T). Compatible
orders do not interleave tests from different classes, as defined in Section 2.
Similar to Ωa(T), we first prove a useful lemma for Ωc(T).

Lemma 7. For every fault i, (note that if t /∈ Ti, C(t) may have another t′ ∈ Ti)

∀t /∈ Ti.Pc(t < tτi) = Pc(∀t′ ∈ Ti.t < t′) =

{

1
|Ci|(|Ti,C(t)|+1) C(t) ∈ Ci

1
|Ci|+1 C(t) /∈ Ci

(13)

Proof. For C(t) ∈ Ci case, two conditions must hold for t /∈ Ti,C(t) to precede
all tests that detect the fault i. First, among all classes in Ci, C(t) must be the
first in the order, and by symmetry, each class in Ci can be the first with the
same probability 1

|Ci|
. Second, t must precede all tests from Ti,C(t), which (sim-

ilar to Lemma 4) holds with the probability 1
|Ti,C(t)|+1 . The two conditions are

independent because they are about the class order and the test order inside the
class, respectively, and these orders are independent of each other. Therefore, the
probability that t precedes the first test that detects the fault i is 1

|Ci|(|Ti,C(t)|+1) .

For C(t) /∈ Ci case, only one condition—C(t) precedes all classes in Ci—
must hold for t to precede the first test that detects the fault i, which (similar
to Lemma 4) happens with probability 1

|Ci|+1 .

Theorem 8 (The expected value of γ for Ωc(T)).

Ec[γ] = 1− 1
m·σ(T)

∑m
i=1

(

∑

C/∈Ci
σ(TC)

|Ci|+1 +

1
|Ci|

∑

C∈Ci

(

σ(TC\Ti,C)
|Ti,C |+1 +

σ(Ti,C)
2|Ti,C |

)

) (14)

12 P. Yi et al.

Proof. We first compute the two key terms σ(tτi) and
∑n

j=τi
σ(tj) in γ. For each

test t ∈ Ti to be the first, its class C(t) ∈ Ci should be the first among all classes
in Ci with probability 1

|Ci|
, and t must be the first among all tests in Ti,C(t) with

probability 1
|Ti,C(t)|

. These two events are independent, so the joint probability

is 1
|Ci||Ti,C(t)|

. By σ(tτi) =
∑

t∈Ti
σ(t) · 1t=tτi

, we have

Ec[σ(tτi)] =
∑

t∈Ti

σ(t)

|Ci||Ti,C(t)|
=

1

|Ci|
∑

C∈Ci

σ(Ti,C)

|Ti,C |
(15)

Next, consider
∑n

j=τi
σ(tj) =

∑

t∈T σ(t)·1tτi≤t. Each t is either (1) t ∈ Ti, where
1tτi≤t = 1 by definition of τi; or (2) t /∈ Ti, where Ec[1tτi≤t] = Ec[1tτi<t] =
Pc(tτi < t) = 1 − Pc(t < tτi) can be obtained from Lemma 7. Combining these
cases, we have

Ec[
∑n

j=τi
σ(tj)] = σ(Ti) +

|Ci|
|Ci|+1

∑

C/∈Ci
σ(TC)+

∑

C∈Ci

(

1− 1
|Ci|(|Ti,C |+1)

)

σ(TC \ Ti,C)
(16)

From (2), (15), and (16), we get (14).

Corollary 8.1 (The expected value of α for Ωc(T)).

Ec[α] = 1− 1

nm

m
∑

i=1

(

∑

C/∈Ci
|TC |

|Ci|+ 1
+

1

|Ci|
∑

C∈Ci

|TC |+ 1

|Ti,C |+ 1

)

+
1

2n
(17)

We next discuss the expected difference of Ec[α] and Ec[γ]. Unlike the case
with Ωa(T), where the difference has a rather small bound, we find that the
difference can be rather large for Ωc(T).

Theorem 9 (The expected difference of α and γ for Ωc(T)).

− 1

2
< Ec[α]− Ec[γ] ≤

1

2
− 1

2n
(18)

Proof. From (14) and (17), we get Ec[α]− Ec[γ] = ∆γ −∆α + 1
2n , where

∆γ = 1
m·σ(T)

∑m
i=1

(

∑

C/∈Ci
σ(TC)

|Ci|+1 + 1
|Ci|

∑

C∈Ci

(

σ(TC\Ti,C)
|Ti,C |+1 +

σ(Ti,C)
2|Ti,C |

)

)

and

∆α = 1
nm

∑m
i=1(

∑

C/∈Ci
|TC |

|Ci|+1 + 1
|Ci|

∑

C∈Ci

|TC |+1
|Ti,C |+1). ∆γ > 0 because all the terms

in ∆γ are positive. From ∀i, C ∈ Ci.|Ci| ≥ 1, |Ti,C | ≥ 1, we have

∆γ ≤ 1
m·σ(T)

∑m
i=1

(

∑

C/∈Ci
σ(TC)

1+1 + 1
1

∑

C∈Ci

(

σ(TC\Ti,C)
1+1 +

σ(Ti,C)
2·1

)

)

= 1
m·σ(T) · 1

2

∑m
i=1 σ(T) =

1
2

Similarly,

A Theoretical Analysis of Random Regression Test Prioritization 13

∆α ≤ 1
nm

∑m
i=1(

∑

C/∈Ci
|TC |

|Ci|+1 + 1
|Ci|

∑

C∈Ci

|TC |+1
1+1)

≤ 1
nm

∑m
i=1(

∑

C/∈Ci
|TC |

2|Ci|
+

∑

C∈Ci
(|TC |+1)

2|Ci|
) = 1

nm

∑m
i=1(

n
2|Ci|

+ 1
2) ≤ n+1

2n

From 0 ≤ |Ti,C | ≤ |TC |, we also have ∆α ≥ 1
n . Combining 0 < ∆γ ≤ 1

2 and
1
n ≤ ∆α ≤ n+1

2n , we get − 1
2 < ∆γ −∆α + 1

2n ≤ 1
2 − 1

2n

Considering many inequalities in the preceding proof, one may expect the
bounds to be loose, but we show two scenarios where bounds are close to tight.
Both scenarios have only one fault. Scenario one has two classes: C1 has only
one passing test t with cost qN (q > 0 is arbitrary), and C2 has N failing
tests each with cost q

N . We assume N ≫ 1. t must be the first or last in any
compatible order, each with probability 1/2 (when C1 is first or second). Ec[α] is

close to 1, and Ec[γ] is only about 1/2. Precisely, Ec[α]−Ec[γ] =
N2−2N+2
2N2+2N ≈ 1

2
when N ≫ 1. Scenario two has two classes: C2 has N failing tests with cost q

N ,
and C3 has N2 passing tests each with cost q

N3 . The two classes have only two
orders, each with probability 1/2. Ec[γ] is close to 1, and Ec[α] is only about

1/2. Precisely, Ec[α]− Ec[γ] =
1

N+1 − N2+2
2N2+2N + 1

2N ≈ − 1
2 when N ≫ 1.

5.1 Comparison of Ωa(T) and Ωc(T)

Orders that are compatible have more constraints on the PMF, which could
increase or decrease average α or γ values. To compare how orders in Ωa(T) and
Ωc(T) perform on average, we compare Ea[α] with Ec[α] and Ea[γ] with Ec[γ].

Theorem 10 (Difference of Ec[γ] and Ea[γ]).

1

2n
− 1

2
≤ Ec[γ]− Ea[γ] ≤

1

6
(19)

Proof. From (8) and (14), we have

Ec[γ]− Ea[γ] =
1

m·σ(T)

∑m
i=1

(

σ(Ti)
2ki

+ σ(T\Ti)
ki+1 −

∑

C/∈Ci
σ(TC)

|Ci|+1 −

1
|Ci|

∑

C∈Ci

(

σ(TC\Ti,C)
|Ti,C |+1 +

σ(Ti,C)
2|Ti,C |

)

) (20)

Because ∀i.1 ≤ ki ≤ n, |Ci| ≥ 1, |Ti,c| ≥ 1, we have

Ec[γ]− Ea[γ] ≥ 1
m·σ(T)

∑m
i=1(

1
2n − 1

2)σ(T) =
1
2n − 1

2

For the other side, because ∀i.|Ci| ≤ ki, |Ti,c| ≤ ki, we have

Ec[γ]− Ea[γ] ≤ 1
m·σ(T)

∑m
i=1

(

σ(Ti)
2ki

+ σ(T\Ti)
ki+1 −

∑

C/∈Ci
σ(TC)

ki+1 −
(
∑

C∈Ci
σ(TC))−σ(Ti)

|Ci|(ki+1) − σ(Ti)
2|Ci|ki

)

= 1
m·σ(T)

∑m
i=1

(

1− 1
|Ci|

)(

∑

C∈Ci
σ(TC)

ki+1 − σ(Ti)
(

1
ki+1 − 1

2ki

))

≤ 1
m·σ(T)

∑m
i=1

(

1− 1
|Ci|

)

∑

C∈Ci
σ(TC)

ki+1

≤ 1
m·σ(T)

∑m
i=1

|Ci|−1
|Ci|(|Ci|+1)

∑

C∈Ci
σ(TC)

≤ 1
m·σ(T)

∑m
i=1

σ(T)
6 = 1

6

14 P. Yi et al.

The third last inequality holds because ∀ki ≥ 1. 1
ki+1 − 1

2ki
≥ 0. The last inequal-

ity holds because ∀|Ci| ≥ 1. |Ci|−1
|Ci|(|Ci|+1) ≤ 1

6 , which can be shown with simple

calculus, and
∑

C∈Ci
σ(TC) ≤ σ(T).

Corollary 10.1 (Difference of Ec[α] and Ea[α]).

1

2n
− 1

2
≤ Ec[α]− Ea[α] ≤

1

6
(21)

We give two scenarios where the preceding bounds are close to tight. In both
scenarios, we set ∀t, t′ ∈ T.σ(t) = σ(t′), so that α = γ and Ec[α] − Ea[α] =
Ec[γ]−Ea[γ]. The first scenario has one fault F , each of the |C| classes contains
n
|C| tests, and tests from only one class detect F but all tests in that class detect

F . In this scenario, Ea[α] = 1 − |C|(n+1)
n(n+|C|) + 1

2n , and Ec[α] = 1 − |C|−1
2|C| − 1

2n .

If we consider |C| =
√
n, when n ≫ 1, Ea[α] ≈ 1 but Ec[α] ≈ 1/2, hence

Ec[α]−Ea[α] ≈ −1/2. The second scenario has one fault F and two classes with
1 and n − 1 tests, and each class contains only one test that detects F . In this
scenario, Ea[α] =

2
3 − 1

2n and Ec[α] =
3
4 . When n ≫ 1, Ec[α]−Ea[α] ≈ 1

12 , close
to the upper bound of 1/6.

In brief, measured by α or γ, compatible orders can be much worse on average
than all orders (up to 1/2) but cannot be much better (up to 1/6).

6 Properties of Metrics and Checking Prior RTP Work

Prior work on random RTP uses sampling and often visualizes α and γ values
as boxplots that may show the median, mean, quartiles (25% and 75%), and
“whiskers” (1.5 times the interquartile range) of the sampled distribution. For
papers that show these boxplots, we identify two properties for the boxplots, fo-
cusing on Ωa(T) because it is used in almost all prior work instead of Ωc(T) [46]:

– Mean/Median at Least Half: Ea[α],Meda(α),Ea[γ],Meda(γ) ≥ 1/2.
– Symmetric PMF: Ea[α] = 1/2 ⇔ Meda(α) = 1/2 ⇔ Ea[γ] = 1/2 ⇔

Meda(γ) = 1/2 ⇔ ∀i.ki = 1 ⇒ PMFs of α and γ are symmetric around 1/2.

To check the boxplots from prior work, we search on Google Scholar for
papers related to “test prioritization” and keep only the papers that contain
both “test” and “prioriti” in the titles. We sort these papers based on their
citation count and check the top 100 papers with the highest citation count [44].

6.1 Mean/Median at Least Half

Lemma 11. ∀o ∈ Ωa(T) and its reverse order o ∈ Ωa(T),

γ(o) + γ(o) ≥ 1 (22)

The equality holds iff ∀i.ki = 1.

A Theoretical Analysis of Random Regression Test Prioritization 15

Proof sketch. To give some intuition, when ∀i.ki = 1, the test that detects the
fault i first does not change by reversing the order, so the “prefixes” of the test
in o and o complement each other and form the entire test suite. In this case,
γ(o) + γ(o) = 1. If ∃i.ki ≥ 2, the test that detects the fault i first in o is not the
same test in o, and the “prefixes” of these two tests in o and o do not form the
entire test suite, so γ(o) + γ(o) > 1. We omit the details due to space limit.

Theorem 12 (Measures of central tendency are at least half).

min{Ea[α],Meda(α),Ea[γ],Meda(γ)} ≥ 1/2 (23)

The equality holds iff ∀i.ki = 1.

Proof sketch. From (22), we get Ea[γ] = 1
2 ·

∑

o∈Ωa(T)(γ(o)+γ(o))

n! ≥ 1
2 and the

equality holds iff ∀i.ki = 1. Because α can be viewed as a special case of γ, we
also have the same result for Ea[α]. The same result for Meda(α) and Meda(γ)
can also be derived from (22). We omit the details due to space limit.

When we inspect the top 100 most cited RTP papers, we find at least five
papers with boxplots clearly showing a mean or median below 1/2. These papers
range from seminal papers [12, Figs. 2b, 2c, 2e] (year 2000) and [13, Fig. 3:
schedule, tcas] (2002) to more recent [29, Fig. 4] (2007), [5, Fig. 2] (2016 – a co-
author of this prior paper is also in this paper), and [41, Fig. 5] (2017). Instead of
sampling random orders for an arbitrary number of times, future RTP research
could use our formulas or algorithm to obtain correct mean and median values.

6.2 Symmetric PMF

We also prove that α and γ PMFs are symmetric when (23)’s equality holds.

Theorem 13 (Symmetry of the α and γ PMFs). If Ea[α] = 1/2 ∨Meda(α) =
1/2 ∨ Ea[γ] = 1/2 ∨Meda(γ) = 1/2 ∨ ∀i.ki = 1, then

∀δ.P (α = 1/2− δ) = P (α = 1/2+ δ) ∧ P (γ = 1/2− δ) = P (γ = 1/2+ δ) (24)

Proof. From Theorem 12, min{Ea[α],Meda(α),Ea[γ],Meda(γ)} = 1/2 ∨ ∀i.ki =
1 ⇔ ∀i.ki = 1 ⇒ ∀o.α(o) + α(o) = 1 ∧ γ(o) + γ(o) = 1. Each order has exactly
one reverse order, so the PMFs of α and γ are symmetric around 1/2.

When we inspect the top 100 most cited RTP papers again, we find at least
three papers relevant to this property. Based on the information in these pa-
pers, we believe that ∀i.ki = 1 is true. Ideally, we would confirm each paper’s
failure-to-fault matrix, but papers often omit such details. On a positive note,
the authors of one paper [38] released their dataset, which we analyze and con-
firm that ∀i.ki = 1. The papers that violate this property include the most
widely cited paper on RTP [38, Fig. 5: schedule, schedule2, tcas] (year 2001;
1563 citations per Google Scholar) and others, both older [36, Fig. 4: schedule,
schedule2, tcas] (1999) and newer [40, Fig. 2] (2015) papers.

16 P. Yi et al.

Instead of randomly sampling orders to approximate PMFs, future RTP pa-
pers could use our algorithm to compute exact PMFs. While we find only five
and three papers that definitely violate Mean/Median at Least Half and Sym-
metric PMF, respectively, we suspect that many others may violate these or
similar properties. However, due to the lack of data in many papers (e.g., no
boxplot for random RTP), we cannot easily identify all violations.

7 Related Work

Some prior work [45, 49] considers expected values of α and γ but in different
contexts from ours. Random testing (but not random RTP) has been studied for
a while [7–9,17,18,31–33,50]. The most related are theoretical analyses of random
test generation. Böhme and Paul [2, 3] analyze how random sampling of test
inputs compares to systematic generation: random can be more efficient when
the cost to systematically generate a test input exceeds the cost to randomly
sample an input by some factor. Böhme et al. [1] analyze the connection between
Shannon’s entropy and the discovery rate of a fuzzer that randomly generates
inputs. They provide the foundation for identifying random seeds for the fuzzer
to improve the overall efficiency. Their analysis also enables future systematic
approaches for test generation to be more efficiently compared with random.
Similarly, our analysis can help future RTP work more efficiently compare against
random RTP and avoid insufficient sampling. Beyond random test generation,
Majumdar and Niksic [26] present a theoretical analysis on the effectiveness
of randomly inserted partition faults to find bugs in distributed systems. In
contrast, our analysis is on test-suite orders for random RTP.

8 Conclusion

Regression test prioritization (RTP) is a popular regression testing approach.
Majority of highly cited RTP papers have compared RTP techniques with ran-
dom RTP. However, all evaluations have been empirical, with no prior theoretical
analysis of random RTP. This paper has presented such analysis, by introduc-
ing an algorithm for efficiently computing the exact probability mass function
of APFD, deriving closed-form formulas and approximations for various metrics
and scenarios, and deriving two interesting properties forAPFD and APFDc.
Overall, our analysis provides new insights into the random RTP, and our re-
sults show that future RTP work often need not use random sampling but can
use our simple formulas or algorithms to more precisely evaluate random RTP.

Acknowledgments. We thank Anjiang Wei, Dezhi Ran, and Sasa Misailovic
for their help. This work was partially supported by US NSF grants CCF-
1763788. CCF-1956374, NSFC grant No. 62161146003, Tencent Foundation, and
XPLORER PRIZE. We acknowledge support for research on regression testing
from Dragon Testing, Microsoft, and Qualcomm. Tao Xie is the corresponding
author, and also affiliated with Key Laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education, China.

A Theoretical Analysis of Random Regression Test Prioritization 17

References

1. Böhme, M., Manès, V.J.M., Cha, S.K.: Boosting fuzzer efficiency: An information
theoretic perspective. In: ESEC/FSE (2020)

2. Böhme, M., Paul, S.: On the efficiency of automated testing. In: FSE (2014)
3. Böhme, M., Paul, S.: A probabilistic analysis of the efficiency of automated software

testing. TSE (2016)
4. Brigham, E.O.: The fast Fourier transform and its applications. Prentice-Hall, Inc.

(1988)
5. Busjaeger, B., Xie, T.: Learning for test prioritization: An industrial case study.

In: FSE (2016)
6. Cheng, R., Zhang, L., Marinov, D., Xu, T.: Test-case prioritization for configuration

testing. In: ISSTA (2021)
7. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of

Haskell programs. In: ICFP (2000)
8. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: A hybrid analysis tool for

bug finding. TOSEM (2008)
9. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. TSE (1984)

10. Elbaum, S., Kallakuri, P., Malishevsky, A., Rothermel, G., Kanduri, S.: Under-
standing the effects of changes on the cost-effectiveness of regression testing tech-
niques. STVR (2003)

11. Elbaum, S., Malishevsky, A., Rothermel, G.: Incorporating varying test costs and
fault severities into test case prioritization. In: ICSE (2001)

12. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Prioritizing test cases for regression
testing. In: ISSTA (2000)

13. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: A family
of empirical studies. TSE (2002)

14. Elbaum, S., Rothermel, G., Penix, J.: Techniques for improving regression testing
in continuous integration development environments. In: FSE (2014)

15. Elsner, D., Hauer, F., Pretschner, A., Reimer, S.: Empirically evaluating readily
available information for regression test optimization in continuous integration. In:
ISSTA (2021)

16. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. Trans-
actions on Information Theory (2003)

17. Fraser, G., Zeller, A.: Generating parameterized unit tests. In: ISSTA (2011)
18. Hamlet, R.: Random testing. In: Encyclopedia of Software Engineering (1994)
19. Jiang, B., Zhang, Z., Chan, W.K., Tse, T.H.: Adaptive random test case prioriti-

zation. In: ASE (2009)
20. JUnit (2022), https://junit.org
21. Kim, J.M., Porter, A.: A history-based test prioritization technique for regression

testing in resource constrained environments. In: ICSE (2002)
22. Kim, J.M., Porter, A., Rothermel, G.: An empirical study of regression test appli-

cation frequency. STVR (2005)
23. Liang, J., Elbaum, S., Rothermel, G.: Redefining prioritization: Continuous prior-

itization for continuous integration. In: ICSE (2018)
24. Lu, Y., Lou, Y., Cheng, S., Zhang, L., Hao, D., Zhou, Y., Zhang, L.: How does

regression test prioritization perform in real-world software evolution? In: ICSE
(2016)

25. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests.
In: FSE (2014)

18 P. Yi et al.

26. Majumdar, R., Niksic, F.: Why is random testing effective for partition tolerance
bugs? In: POPL (2017)

27. Mattis, T., Rein, P., Dürsch, F., Hirschfeld, R.: RTPTorrent: An open-source
dataset for evaluating regression test prioritization. In: MSR (2020)

28. Maven (2022), https://maven.apache.org
29. Mirarab, S., Tahvildari, L.: A prioritization approach for software test cases based

on Bayesian networks. In: FASE (2007)
30. Mondal, S., Nasre, R.: Summary of Hansie: Hybrid and consensus regression test

prioritization. In: ICST (2021)
31. Ntafos, S.: On random and partition testing. In: ISSTA (1998)
32. Ozkan, B.K., Majumdar, R., Oraee, S.: Trace aware random testing for distributed

systems. OOPSLA (2019)
33. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test

generation. In: ICSE (2007)
34. Peng, Q., Shi, A., Zhang, L.: Empirically revisiting and enhancing IR-based test-

case prioritization. In: ISSTA (2020)
35. pytest (2022), https://docs.pytest.org
36. Rothermel, G., Untch, R., Chu, C., Harrold, M.: Test case prioritization: An em-

pirical study. In: ICSM (1999)
37. Rothermel, G., Elbaum, S., Malishevsky, A., Kallakuri, P., Davia, B.: The impact

of test suite granularity on the cost-effectiveness of regression testing. In: ICSE
(2002)

38. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. TSE (2001)

39. Rummel, M.J., Kapfhammer, G.M., Thall, A.: Towards the prioritization of re-
gression test suites with data flow information. In: SAC (2005)

40. Saha, R.K., Zhang, L., Khurshid, S., Perry, D.E.: An information retrieval approach
for regression test prioritization based on program changes. In: ICSE (2015)

41. Spieker, H., Gotlieb, A., Marijan, D., Mossige, M.: Reinforcement learning for
automatic test case prioritization and selection in continuous integration. In: ISSTA
(2017)

42. Srivastava, A., Thiagarajan, J.: Effectively prioritizing tests in development envi-
ronment. In: ISSTA (2002)

43. Stanley, R.P.: Enumerative Combinatorics, Volume 1. Cambridge University Press
(2011)

44. A Theoretical Analysis of Regression Test Prioritization website (2022), https:
//sites.google.com/view/theoretical-analysis-of-rtp

45. Wang, Z., Chen, L.: Improved metrics for non-classic test prioritization problems.
In: SEKE (2015)

46. Wei, A., Yi, P., Xie, T., Marinov, D., Lam, W.: Probabilistic and systematic cov-
erage of consecutive test-method pairs for detecting order-dependent flaky tests.
In: TACAS (2021)

47. Wong, W., Horgan, J., London, S., Agrawal, H.: A study of effective regression
testing in practice. In: ISSRE (1997)

48. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
A survey. STVR (2012)

49. Zhai, K., Jiang, B., Chan, W.: Prioritizing test cases for regression testing of
location-based services: Metrics, techniques, and case study. IEEE TSC (2012)

50. Zhang, S., Saff, D., Bu, Y., Ernst, M.D.: Combined static and dynamic automated
test generation. In: ISSTA (2011)

A Theoretical Analysis of Random Regression Test Prioritization 19

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

	A Theoretical Analysis of Random Regression Test Prioritization

