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A B S T R A C T

Hard-magnetic soft materials, which consist of soft matrix embedded with hard-magnetic
particles, have attracted tremendous interests owing to their untethered control capability, rapid
response, and flexible programmability. This work introduces a powerful topology optimization
framework to guide the rational design of hard-magnetic soft materials and structures with
precisely programmable functionalities under large deformations. Built upon a unified design
parameterization scheme, the proposed framework is capable of simultaneously optimizing
topology, remnant magnetization distribution, and applied magnetic fields. Thus, guided by the
analytical gradient information, our framework can effectively explore the entire design space
to search for optimized structures with multiple target functionalities, such as programmable
deformations and maximized actuation, under the corresponding optimized magnetic fields.
Through five design examples, we showcase applications of the proposed framework in
generating optimized shape-programming metastructures and robots, magnetic actuators, and
unit cells with encoded and adaptable modes. We demonstrate how simultaneous optimization
in topology, magnetization distribution, and applied magnetic field can greatly improve the
performance of a design, and highlight the importance of accounting for finite-rotation kine-
matics to capture the influence of body torque-related magnetic force on the optimized remnant
magnetization distribution. Various optimized magnetic-responsive designs with comparable
performances yet distinct mechanisms are discovered, showing the effectiveness of the proposed
framework to generate unconventional designs with highly programmable magnetic-actuated
behaviors. We envision that the proposed topology optimization framework can potentially
benefit the design process in a wide spectrum of magnetic-responsive applications, such as soft
robots, magnetic actuators, and programmable metamaterials.

1. Introduction

Magnetic-responsive soft materials, allowing untethered and rapid actuation under magnetic fields, have been widely studied
ecently with diverse applications in the areas of robotics (Hines et al., 2017), biomedicine (Sitti, 2018), vibration mitigation (Bastola
et al., 2020), etc. This work focuses on hard-magnetic soft materials (Kim et al., 2018; Zhao et al., 2019), which are obtained by
embedding high-coercivity magnetic particles (e.g., neodymium–iron–boron alloy) in a soft matrix (e.g., rubber). Recently, the hard-
magnetic soft materials have been shown to offer highly flexible programmability and enable various promising functionalities,
such as tunable material properties (Yan et al., 2020; Chen et al., 2021; Montgomery et al., 2021) and programmable shape
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transformations (Lum et al., 2016; Wang et al., 2021). Rapid developments in advanced manufacturing techniques have enabled
the capability of realizing hard-magnetic soft materials with complex geometries and highly heterogeneous remnant magnetization
distributions (Kim et al., 2018; Alapan et al., 2020). However, the existing design approaches for hard-magnetic soft materials have
yet to fully exploit the entire design freedoms. Many impactful studies that achieve great success have adopted experience-based or
bio-mimetic approaches (Kim et al., 2018; Montgomery et al., 2021; Venkiteswaran et al., 2019; Qi et al., 2020) for the considered
design objectives. A few studies use optimization-based (Lum et al., 2016; Wang et al., 2021; Wu et al., 2020) and data-driven (Lloyd
et al., 2020) approaches to generate designs made of hard-magnetic soft materials to achieve programmable actuation or locomotion
performance, with a focus on designing the magnetization distribution of the embedded magnetic particles and/or the external
magnetic fields. The design optimization of the topology or geometric features is rarely explored.

Topology optimization, as a powerful computational design tool to determine the optimal material distributions under given
objective and constraint functions, holds promises to the design of stimuli-responsive materials and structures, such as piezoelectric
actuation (Ruiz and Sigmund, 2018; Homayouni-Amlashi et al., 2020) and thermal action (Sigmund, 2001; Luo et al., 2009).
For magnetic-responsive soft materials, Sundaram et al. (2019) use a topology optimization approach for multi-material magnetic
actuators with controlled physical deflection and optical appearance. Tian et al. (2020) develop a level-set topology optimization
formulation to design the matrix distribution of hard-magnetic soft materials with fixed magnetization distributions and given
applied magnetic fields under the assumptions of linear elasticity. Till now, a topology optimization formulation, which is capable of
simultaneously optimizing the topology (material distribution), local magnetization profile, and the external magnetic fields while
capturing material nonlinearity and large-deformation kinematics, has not been established.

This work proposes a general topology optimization framework to design hard-magnetic soft materials and structures by
simultaneously optimizing their topologies, remnant magnetization distributions, and the applied magnetic fields (see Fig. 1). The
optimization framework is built upon the nonlinear field theory in Zhao et al. (2019) for ideal hard-magnetic soft materials. We
first propose a design parameterization scheme that systematically represents the distribution of material in the matrix phase (which
determines topology), the remnant magnetization distribution, and the applied magnetic field using three sets of design variables.
In particular, the remnant magnetization vector at each location of the design is interpolated from a set of pre-defined candidate
vectors and is promoted to converge toward one (and only one) of the candidate vectors at the end of the optimization. We then
introduce a scheme to interpolate the Helmholtz free energy function from the three sets of design variables. The interpolated
Helmholtz free energy function characterizes the nonlinear response of a given design under the applied magnetic field. We explore
two representative design objective functions, as demonstrated in Fig. 1. The first objective is to program multiple target shapes
into the design under different applied magnetic fields, and the second objective aims to maximize the actuation performance of
the design at target locations. We present several numerical examples (i.e., shape-programming robots, magnetic actuators, and
auxetic unit cells with different deformed modes) to showcase the capabilities of the proposed framework in designing various
magnetic-responsive structures with precisely programmable functionalities. We find that the incorporation of the optimization of
topology enlarges the design space and leads to designs with improved actuation performance. Additionally, the finite rotation of
local magnetization vector plays an important role in determining the optimal magnetization distribution under large-deformation
kinematics.

The remainder of the paper is organized as follows. Section 2 reviews the constitutive model of the nonlinear response of
hard-magnetic soft materials and presents the finite element approximation of the governing equations. Section 3 introduces the
proposed topology optimization framework including design parameterization, optimization formulation, and sensitivity analysis.
Section 4 shows five design examples to exemplify the potential applications and demonstrate the effectiveness of the proposed
framework. Section 5 contains several concluding remarks and discusses relevant future extensions of the present work. Two
appendices complement the paper, which present an alternative stress constraint with corresponding designs and the effectiveness
of the stress constraint.

2. Mechanics theory of hard-magnetic soft materials and finite element approximation

In this section, we briefly review the theoretical model adopted to describe the nonlinear behavior of the hard-magnetic soft
materials and discuss the corresponding finite element approximation using a total Lagrangian framework. Consider a deformable
solid which occupies a domain 𝛺 in its undeformed configuration with 𝑿 denoting the position vector of material particles. We
assume the solid is subjected to an applied displacement field 𝒖̃ on 𝛤𝒖 and is traction-free on 𝛤𝒕 so that 𝛤𝒖 ∪ 𝛤𝒕 = 𝜕𝛺 and
𝛤𝒖 ∩ 𝛤𝒕 = ∅. The solid undergoes a deformation map 𝜒 , which deforms any material particle 𝑿 to the position 𝒙 = 𝜒(𝑿) in a
deformed configuration 𝛺𝑡. The corresponding deformation gradient tensor 𝑭 is given by 𝑭 = ∇𝜒 , where ∇ stands for the gradient
operator with respect to the undeformed configuration.

This work adopts the mechanics theory for ideal hard-magnetic soft materials developed by Zhao et al. (2019), which is validated
to make prediction in excellent agreement with experimental results. It is worth mentioning that the theory of Zhao et al. (2019)
introduces several rational assumptions to simplify what would otherwise be a complex and coupled nonlinear magneto-mechanical
theory. Those assumptions include: (1) The material retains a residual magnetic flux density 𝑩𝑟 independent of the applied magnetic
field, which is much lower than the coercivity of the embedded hard-magnetic material. (2) In the undeformed configuration,
the magnetic flux density 𝑩 of the hard-magnetic soft material is linearly dependent on the applied magnetic field 𝑯 , namely,
𝑩 = 𝜇0𝑯 +𝑩𝑟, where 𝜇0 = 1.257×10−6H/m is the vacuum (or air) permeability. (3) The magnetic permeability of the hard-magnetic
soft material, 𝜇0, is the same as that of the ambient media, and the presence of the hard-magnetic soft material will not perturb the
2

applied magnetic flux density 𝑩𝑎. We highlight that in this study, the applied magnetic flux density is assumed to be a uniform vector.
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Fig. 1. Illustration of the proposed topology optimization framework for designing hard-magnetic soft materials and metastructures with two functional objectives.
The objectives are to achieve shape-programming or actuation-maximized hard-magnetic soft materials by optimizing topology (matrix distribution), remnant
magnetization distribution, and applied magnetic fields.

From a topology optimization perspective, the simplification in the mechanics model reduces the complexity of the computation
involved in each optimization iteration. We note that for hard-magnetic soft materials with non-uniform remnant magnetization
distributions, the presence of the surrounding air may have an influence on the local distributions of magnetic fields (i.e., 𝑩 and
) (Mukherjee et al., 2021), which will be an important future research direction.
According to the theory, the constitutive relation of the ideal hard-magnetic soft materials is described by the following nominal

elmholtz free energy function (per unit volume in the undeformed configuration) (Zhao et al., 2019):

𝑊 (𝑭 ,𝑩𝑟,𝑩𝑎) = 𝑊𝐸 (𝑭 ) +𝑊𝑀 (𝑭 ,𝑩𝑟,𝑩𝑎) = 𝑊𝐸 (𝑭 ) − 1
𝜇0

𝑭𝑩𝑟 ⋅ 𝑩𝑎, (1)

where 𝑩𝑟 is the residual magnetic flux density (which relates to remnant magnetization in the undeformed configuration via
𝑴 = 𝑩𝑟∕𝜇0); 𝑊𝐸 (𝑭 ) is hyperelastic stored-energy (per unit volume in the undeformed configuration) of the soft matrix materials;
𝑊𝑀 (𝑭 ,𝑩𝑟,𝑩𝑎) = −1∕𝜇0𝑭𝑩𝑟 ⋅ 𝑩𝑎 is magnetic free energy (per unit volume in the undeformed configuration); and 𝑩𝑎 is the applied
magnetic flux density. We note that the Helmholtz free energy is a function of the deformation gradient 𝑭 , and both 𝑩𝑟 and 𝑩𝑎
fields remain constant during the deformation process of the solid. Taking the derivative of Eq. (1) with respect to 𝑭 , we can obtain
the first Piola–Kirchhoff stress 𝑷 (Zhao et al., 2019; Dorfmann and Ogden, 2003):

𝑷 (𝑭 ,𝑩𝑟,𝑩𝑎) =
𝜕𝑊𝐸 (𝑭 )

𝜕𝑭
− 1

𝜇0
𝑩𝑎 ⊗ 𝑩𝑟. (2)

he elastic part of the free energy function 𝑊𝐸 (𝑭 ) can be any commonly-used hyperelastic models. In this study, we adopt the
ompressible Ogden model (Ogden, 1997; Feng et al., 2006) for 𝑊𝐸 (𝑭 ), which is of the form:

𝑊𝐸 (𝑭 ) =
𝑁𝑎
∑

𝑎=1

𝜇𝑎
𝛼𝑎

(

𝜆𝛼𝑎1 + 𝜆𝛼𝑎2 + 𝜆𝛼𝑎3 − 3
)

+
𝑁𝑎
∑

𝑎=1

𝜇𝑎
𝛼𝑎𝛽𝑎

(

𝐽−𝛼𝑎𝛽𝑎 − 1
)

, (3)

here 𝜆1, 𝜆2, 𝜆3 are the principal stretches associated with the deformation gradient 𝑭 ; 𝐽 ≐ det(𝑭 ); and 𝜇𝑎, 𝛼𝑎, 𝑁𝑎, and 𝛽𝑎 are
aterial parameters such that the initial shear modulus 𝐺 = 1

2
∑𝑁𝑎

𝑎=1 𝜇𝑎𝛼𝑎 and initial bulk modulus 𝜅 =
∑𝑁𝑎

𝑎=1 𝜇𝑎𝛼𝑎(
1
3 + 𝛽𝑎). In this

ork, one-term Ogden model, i.e., 𝑁𝑎 = 1, is used.
In the undeformed configuration, the equilibrium of the solid is governed by:

∇ ⋅ 𝑷 + 𝒃 = 𝟎 in 𝛺,
𝒖 = 𝒖̃ on 𝛤𝒖,
𝑷𝑵 = 𝟎 on 𝛤𝒕,

(4)

here ∇⋅ stands for the divergence operator in the undeformed configuration, 𝑵 is the outward unit vector normal to the undeformed
oundary of the solid, and 𝒃 is body forces (per unit volume in the undeformed configuration), which can be neglected in this work.
ntroducing a virtual displacement field 𝛿𝒖, the variational form associated with the equilibrium Eq. (4) is obtained as

𝑷 ∶ ∇(𝛿𝒖)d𝑿 − 𝒃 ⋅ 𝛿𝒖d𝑿 = 𝟎. (5)
3

∫𝛺 ∫𝛺
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The above variational form is discretized using the standard bilinear quadrilateral finite elements. In the vector form, the
quilibrium condition is expressed as (Zhao et al., 2019):

𝒓(𝒖) = 𝒇 int(𝒖) − 𝒇 ext(𝒖) = 𝟎, ∀𝛿𝒖, (6)

where 𝒖 is the displacement vector; and 𝒓, 𝒇 int and 𝒇 ext are the global residual, internal force, and external force vectors, respectively.
The above nonlinear system of equations is solved iteratively using the Newton–Raphson procedure with inexact line search
method (Armijo, 1966; Zhang et al., 2017), which makes use of the global tangent stiffness matrix 𝑲𝑇 (𝒖) = 𝜕𝒓∕𝜕𝒖 evaluated
according to Zhao et al. (2019). In this study, we focus on two dimensional problems under plane stress condition. Under the
plane stress condition, the displacement-based finite elements are free of volumetric locking and can handle soft materials with
near-incompressible behaviors (Li et al., 2021).

3. Proposed topology optimization framework

This section proposes a topology optimization framework that simultaneously optimizes 1) the matrix, 2) the remnant magneti-
zation distributions of hard-magnetic soft materials, and 3) the external applied magnetic fields. In this section, we first introduce
the design parameterization and material interpolation schemes of the proposed magnetic-responsive design framework. We then
propose the optimization formulation with two representative objective functions and discuss the sensitivity analysis.

3.1. Design parameterization of hard-magnetic soft materials

We present a design parameterization scheme that simultaneously parametrizes matrix material topology, remnant magnetization
distribution, and applied magnetic flux densities. Inspired by the scheme introduced in Zhang et al. (2021a), the parameterization
s realized by three sets of design variables described as follows.

.1.1. Parameterization of matrix distribution (i.e., topology)
The distribution of matrix characterizes the spatial occupancy of material. Here, a density-based approach (Bendsoe and Sigmund,

013) is adopted. The matrix distribution is associated with the density variable 𝝆 with 𝜌𝑒 for the 𝑒th element. We apply the Heaviside
rojection operator (Wang et al., 2011) (with 1∕2 being its threshold) to the density variable to obtain the physical density variables

𝝆 with 𝜌𝑒 given by

𝜌𝑒 =
tanh( 𝛽𝜌2 ) + tanh(𝛽𝜌(𝜌𝑒 −

1
2 ))

2 tanh( 𝛽𝜌2 )
, (7)

where 𝛽𝜌 being the parameter controlling the discreteness of the projection, and 𝜌𝑒 being the intermediate design variable regularized
ia the density filter (Bourdin, 2001; Sigmund, 2007) as

𝜌𝑒 =

∑

𝑖∈𝑒(𝑅𝜌) 𝑤
(𝑖,𝑒)
𝜌 𝑣𝑖𝜌𝑒

∑

𝑖∈𝑒(𝑅𝜌) 𝑤
(𝑖,𝑒)
𝜌 𝑣𝑖

, (8)

where 𝑒(𝑅𝜌) is the 𝑒th element set within a prescribed region defined by a feature parameter 𝑅𝜌 (e.g., a circle with a radius of 𝑅𝜌
at the centroid of 𝑒th element); and 𝑣𝑖 is the 𝑖th element volume. The weighting factor 𝑤

(𝑖,𝑒)
𝜌 (𝑅𝜌, 𝑞𝜌) depends on the distance between

the centroids of 𝑖th and 𝑒th elements (denoted as 𝑿𝑖 and 𝑿𝑒, respectively), namely, 𝑤
(𝑖,𝑒)
𝜌 = 1 − (‖

‖

𝑿𝑖 −𝑿𝑒
‖

‖

∕𝑅𝜌)
𝑞𝜌 , with 𝑞𝜌 being

he power of the filter. The physical design variable 𝜌𝑒 serves as an indicator of whether a given location in space is solid or void:
𝜌𝑒 = 1 represents solid and 𝜌𝑒 = 0 represents void.

3.1.2. Parameterization of remnant magnetization distributions
The residual magnetic flux density at each location of the design is selected from a set of 𝑁𝑚 pre-selected candidate residual

magnetic flux densities, 𝑩(1)
𝑟 , . . . , 𝑩

(𝑁𝑚)
𝑟 , each pointing at one direction. Formally, we define the residual magnetic flux density in

lement 𝑒 as

𝑩𝑟,𝑒 =
𝑁𝑚
∑

𝑗=1

(

𝑚(𝑗)
𝑒

)𝑝𝑚
𝑩(𝑗)

𝑟 . (9)

n the above interpolation, 𝑚(𝑗)
𝑒 is the physical magnetization variable which serves as an indicator of the magnetization of element

: 𝑚(𝑗)
𝑒 = 1 means the 𝑗th candidate residual magnetic flux density 𝑩(𝑗)

𝑟 is selected, and 𝑚(𝑗)
𝑒 = 0 means the 𝑗th candidate residual

agnetic flux density 𝑩(𝑗)
𝑟 is not selected. A Solid Isotropic Material with Penalization (SIMP)-type (Rozvany et al., 1992; Bendsøe,

989) penalization parameter 𝑝𝑚 is introduced to penalize the mixture of candidate magnetizations and to promote the convergence
f the physical magnetization variables to either 1 or 0.
4
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In this work, we allow non-magnetized regions to appear in the design. Thus, the physical magnetization variables need to
atisfy the following two constraints: (i) ∑𝑁𝑚

𝑗=1 𝑚
(𝑗)
𝑒 ≤ 1 and (ii) 𝑚(𝑗)

𝑒 ≥ 0, ∀𝑗. We make use of the Hypercube-to-Simplex Projection
(HSP) approach (Zhou et al., 2018; Zhang et al., 2021a) to define 𝑚(𝑗)

𝑒 . The main advantage of HSP is that both above-mentioned
constraints (i) and (ii) are satisfied implicitly by construction and, as a result, we do not need to introduce explicit constraints of 𝑚(𝑗)

𝑒
n the optimization formulation. In particular, we introduce a set of magnetization design variables 𝜉(𝑗)𝑒 , 𝑗 = 1,… , 𝑁𝑚 for element
𝑒. Using the same expressions in Eqs. (7) and (8), we apply the filtering and Heaviside projection operators on the magnetization
esign variables to obtain intermediate variables with 𝑅𝑚, 𝑞𝑚, and 𝛽𝑚 being filter radius, filter power, and discreteness parameter
f Heaviside projection, respectively. Then, the HSP approach defines the physical magnetization variable 𝑚(𝑗)

𝑒 as

𝑚(𝑗)
𝑒 =

2𝑁𝑚
∑

𝑖=1
𝑠(𝑗)𝑖

(

(−1)
(

𝑁𝑚+
∑𝑁𝑚

𝑗=1 𝑐
(𝑗)
𝑖

) 𝑁𝑚
∏

𝑘=1

(

𝜉
(𝑘)
𝑒 + 𝑐(𝑘)𝑖 − 1

)

)

, (10)

where 𝑐(𝑗)𝑖 = {0, 1} is the 𝑖th vertex of a 𝑁𝑚-dimensional unit hypercube for the 𝑗th candidate remnant magnetization vector, and
𝑠(𝑗)𝑖 is the mapped vertex of a 𝑁𝑚-dimensional standard simplex domain:

𝑠(𝑗)𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑐(𝑗)𝑖
∑𝑁𝑚

𝑗=1 𝑐
(𝑗)
𝑖

if ∑𝑁𝑚
𝑗=1 𝑐

(𝑗)
𝑖 ≥ 1,

0 otherwise.
(11)

3.1.3. Parameterization of applied magnetic flux density
Unlike the material and magnetization distributions, the applied magnetic flux density variable is assumed to be a uniform vector

over the design domain. Let us consider a total of 𝑚 operating conditions and denote 𝑩(𝓁)
𝑎 as the applied magnetic flux density in

the 𝓁th operating condition. We express 𝑩(𝓁)
𝑎 as

𝑩(𝓁)
𝑎 =

⎡

⎢

⎢

⎣

𝐴(𝓁)
𝐵𝑎

cos(𝜃(𝓁)𝐵𝑎
)

𝐴(𝓁)
𝐵𝑎

sin(𝜃(𝓁)𝐵𝑎
)

⎤

⎥

⎥

⎦

, (12)

where 𝐴(𝓁)
𝐵𝑎

∈ [0, 𝐴max] and 𝜃(𝓁)𝐵𝑎
∈ [0, 2𝜋] are magnitude and angle design variables associated with the 𝓁th applied magnetic field,

respectively.
In summary, with the three sets of physical design variables (𝝆, 𝒎(𝑗), and 𝑩(𝓁)

𝑎 ), hard-magnetic soft materials can be represented
as shown in Fig. 2. The optimized matrix and remnant magnetization distributions are characterized by 𝝆 and 𝒎(𝑗) (Fig. 2a),
espectively. By multiplying the two physical design variables, we can obtain the optimized structure (Fig. 2b) in the undeformed
onfiguration. Under the optimized external applied magnetic field 𝑩(𝓁)

𝑎 , the structure achieves either shape-programming or
ctuation-maximized functionality (Fig. 2c), which is mainly caused by magnetic torques (induced by torques of magnetized particles
ssentially (Zhang et al., 2020)). We aim to obtain nearly-discrete designs (i.e., the continuous design variables 𝝆 and 𝒎(𝑗) take the
values close to 0 or 1), which are promoted through the Heaviside projections and the SIMP-type interpolation schemes.

3.2. Interpolation of the Helmholtz free energy function

To describe the nonlinear mechanical behavior of the hard-magnetic soft material designs, we introduce the following interpo-
lation of the Helmholtz free energy function from the physical variables 𝝆 and 𝒎(𝑗), 𝑗 = 1,… , 𝑁𝑚. Under the applied magnetic flux
density 𝑩(𝓁)

𝑎 , the interpolated free energy 𝑊𝑒 of element 𝑒 is given by

𝑊𝑒(𝜌𝑒, 𝑚
(1)
𝑒 ,… , 𝑚(𝑁𝑚)

𝑒 ,𝑩(𝓁)
𝑎 , 𝒖(𝓁)𝑒 ) =

[

𝜖 + (1 − 𝜖)(𝜌𝑒)
𝑝𝜌
]

𝑊𝐸 (𝒖(𝓁)𝑒 ) +

(𝜌𝑒)
𝑝𝜌𝑊𝑀

(

𝒖(𝓁)𝑒 ,𝑩𝑟,𝑒(𝑚
(1)
𝑒 ,… , 𝑚(𝑁𝑚)

𝑒 ),𝑩(𝓁)
𝑎

)

, (13)

here 𝒖(𝓁)𝑒 is the displacement vector in element 𝑒 under 𝑩(𝓁)
𝑎 ; and 𝜖 = 10−5 is a small value to avoid singular stiffness. In the above

interpolation formula, the SIMP approach (Bendsoe and Sigmund, 2013; Bendsøe, 1989) is used to penalize both elastic-stored energy
nd magnetic free energy associated with intermediate variables of 𝜌𝑒 to drive them toward either 0 or 1. The penalization parameters
associated with both energies are taken to be the same, which is found to alleviate the parasite effect commonly found in topology
optimization considering design-dependent loads (Ruiz and Sigmund, 2018; Bruyneel and Duysinx, 2005; Zhang et al., 2021b). In
addition, based on our numerical experience, excessive deformations of low-stiffness regions can lead to numerical instabilities in
FE analysis during the optimization. Thus, the energy interpolation scheme (Wang et al., 2014) is applied to the stored-energy 𝑊𝐸
to address the numerical instabilities of low stiffness regions (defined to be regions with (𝜌𝑒)

𝑝𝜌 ≤ 0.01 in this work). We also apply
he same concept to the magnetic free energy 𝑊𝑀 so that the magnetic actuation in low stiffness regions is negligible. The readers
5

re referred to Wang et al. (2014) for details.
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Fig. 2. Illustration of an optimized magnetic-responsive design represented by three sets of physical design variables (𝝆, 𝒎, and 𝑩(𝑙)
𝑎 ): (a) Matrix and remnant

magnetization distributions represented by 𝝆 and 𝒎, respectively; (b) Optimized design by multiplying 𝝆 and 𝒎; (c) Deformation mechanism under optimized
magnetic field 𝑩(𝑙)

𝑎 .

3.3. Optimization formulation

Having introduced the design parameterization and free-energy interpolation schemes, we now propose the topology optimization
formulation to generate optimized designs composed of hard-magnetic soft materials. Let us assume that there is a total of 𝑁𝓁 of
pplied magnetic fields, denoted as 𝑩(1)

𝑎 , . . . , 𝑩
(𝑁𝓁 )
𝑎 , which can be either optimized (treated as design variables) or pre-determined.
6

he mesh 𝛺ℎ is composed of 𝑁𝑒 elements and 𝑁𝑛 nodes. The goal of the proposed topology optimization is to minimize a certain
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performance objective 𝑓 (⋅) which collects the nonlinear responses (represented by the displacement vectors 𝒖(1), . . . , 𝒖(𝓁)) of the
design under those applied magnetic fields.

Formally, we formulate the topology optimization problem as:

min
𝝆,𝝃(1) ,…,𝝃(𝑁𝑚 ) ,

𝑩(1)
𝑎 ,…,𝑩

(𝑁𝓁 )
𝑎

𝑓
(

𝒖(1),… , 𝒖(𝑁𝓁 )
)

s.t.: 𝒗𝑇 𝝆
|𝛺ℎ|

≤ 𝑣max
{𝑁𝑒

∑

𝑒=1

[𝑤𝜎 (𝜌𝑒)
𝑣𝑒 ∫𝛺ℎ,𝑒

𝜎VM
(

𝝈𝐸
(

𝒖(𝓁)
)

)

d𝑿
]𝑝𝑛

}1∕𝑝𝑛

≤ 𝜎(𝓁)max, 𝓁 = 1,… , 𝑁𝓁

𝒓(𝝆,𝒎(1),… ,𝒎(𝑁𝑚),𝑩(𝓁)
𝑎 , 𝒖(𝓁)) = 𝟎, 𝓁 = 1,… , 𝑁𝓁

𝟎 ≤ 𝝆 ≤ 𝟏
𝟎 ≤ 𝝃(𝑗) ≤ 𝟏, 𝑗 = 1,… , 𝑁𝑚

0 ≤ 𝐴(𝓁)
𝐵𝑎

≤ 𝐴max, 𝓁 = 1,… , 𝑁𝓁

0 ≤ 𝜃(𝓁)𝐵𝑎
≤ 2𝜋, 𝓁 = 1,… , 𝑁𝓁 ,

(14)

here 𝒗 is the element volume vector with 𝑣𝑒 being the volume of element 𝑒; 𝑣max is the assigned maximum volume for matrix
materials. We note that the above formulation allows the three sets of design variables (𝝆, 𝝃(𝑗), and 𝑩(𝓁)

𝑎 ) to be optimized either
imultaneously or selectively. For example, if one wants to only optimize the matrix material topology under the prescribed
emnant magnetization distribution and applied magnetic fields, then one can fix the design variables 𝝃(𝑗) and 𝑩(𝓁)

𝑎 throughout
the optimization and only optimize the design variable 𝝆.

In addition, the above optimization formulation incorporates stress constraints in which the von-Mise stress 𝜎VM(⋅) associated
with the Cauchy stress tensor of elastic stored-energy 𝝈𝐸 = 1∕𝐽 (𝜕𝑊𝐸 (𝑭 )∕𝜕𝑭 )𝑭 𝑇 (i.e., mechanical Cauchy stress) is constrained
o be below a prescribed upper bound. Notably, the mechanical Cauchy stress is symmetric and only explicitly depends on the
ensity variable 𝝆 and displacement vector 𝒖(𝓵). Alternatively, the stress constraint can be imposed on the total Cauchy stress,
hich is an asymmetric tensor (Zhao et al., 2019) and depends on additional design variables 𝝃 and 𝑩𝑎. This alternative total
auchy stress constraint and the comparison with the mechanical Cauchy stress are reported in Appendix A. The stress constraint
s imposed individually on the deformation state 𝒖(𝓁) under each applied magnetic flux density 𝑩(𝓁)

𝑎 with 𝜎(𝓁)max being a user-defined
upper bound. To prevent the singularity issue in the stress constrained topology optimization (Cheng and Jiang, 1992; Duysinx and
Bendsøe, 1998; Bruggi, 2008), we adopt the relaxation approach proposed by Bruggi (2008) and define 𝑤𝜎 (𝜌𝑒) ≐ 𝜖 + (1 − 𝜖)𝜌

𝑞𝜌
𝑒 with

𝑞𝜌 chosen as 𝑞𝜌 = 1∕3. The stress constraint is handled by the 𝑝-norm approach (Duysinx and Bendsøe, 1998) with 𝑝𝑛 = 12. We note
that the stress constraint serves as a numerical technique, which is found to be effective in this study, to prevent thin members and
hinge-like connections from appearing in the optimized design as well as to limit the level of local deformations (Li et al., 2021)
see Appendix B for the demonstration of effectiveness). They are not related to the physical material failure of hard-magnetic soft
aterials.
This study considers two representative performance objective functions 𝑓 (⋅). One aims to program a set of target deformation

hapes into the design, which may be useful for robotic applications. The other maximizes the deformation of the design at several
arget locations, which can be employed in design devices such as actuators. The first objective function is defined as

𝑓1(𝒖(1),… , 𝒖(𝑁𝓁 )) = max
𝓁∈{1,…,𝑁𝓁}

(

1
𝑁𝛼

𝑁𝛼
∑

𝛼=1

(

𝑢(𝓁)𝛼 − 𝑢∗(𝓁)𝛼
)2
)

, (15)

where 𝑢(𝓁)𝛼 and 𝑢∗(𝓁)𝛼 are respectively the actual and target displacements at 𝛼th control degree of freedom (DOF) under 𝑩(𝓁)
𝑎 in the 𝓁th

operating condition; and 𝑁𝛼 is the total number of selected control DOFs. This objective function aims to minimize the maximum
mean square error of the actual and target displacements at the control points under a set of (optimized or pre-defined) applied
magnetic fields. The second objective function is defined as

𝑓2(𝒖(1),… , 𝒖(𝑁𝓁 )) = max
𝓁 ∈ {1,… , 𝑁𝓁}
𝛼 ∈ {1,… , 𝑁(𝓁)

𝛼 }

𝑢(𝓁)𝛼 , (16)

where 𝑢(𝓁)𝛼 is the actual displacement at the 𝛼th control DOF under 𝑩(𝓁)
𝑎 ; and 𝑁𝛼 is the total number of selected control DOFs. We

note that the actual displacement 𝑢(𝓁)𝛼 is defined to take appropriate sign so that minimizing 𝑢(𝓁)𝛼 equals to maximizing it in the
opposite direction (which is the target direction).

The proposed formulation (14) is solved by gradient-based update algorithm. Thus, the sensitivities information of objective and
constraint functions with respect to the design variables are required. We use the adjoint method (Bendsoe and Sigmund, 2013) to
perform the sensitivity analysis. For simplicity, we use a generic function 𝜙 to represent either an objective or a constraint function.
The sensitivity of 𝜙 with respect to the physical variables 𝝆 and 𝒎(𝑗), 𝑗 = 1,… , 𝑁𝑚 are given by

𝜕𝜙
=

𝜕𝜙
(

𝝆,𝒎(1),… ,𝒎(𝑁𝑚),𝑩(𝓁)
𝑎 , 𝒖(𝓁)

)

+ (𝝀(𝓁))𝑇
𝜕𝒓

(

𝝆,𝒎(1),… ,𝒎(𝑁𝑚),𝑩(𝓁)
𝑎 , 𝒖(𝓁)

)

, (17)
7
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Table 1
Brief description of the numerical examples.
Ex. Name Design variables Obj. function Feature

1 Shape-programming arm 𝝃 and 𝑩𝑎 𝑓1(⋅) Enable a shape-programming arm achieving 5 target shapes
under corresponding optimized magnetic fields

2 Frog-inspired swimming robot 𝝃 and 𝑩𝑎 𝑓1(⋅) Program 3 motions (thrust, insweep, and steering phases) in
a frog-inspired swimming robot under corresponding
optimized magnetic fields

3 Magnetic-responsive double-clamped actuator 𝝆 and 𝝃 𝑓2(⋅) Demonstrate the importance and advantage of incorporating
matrix optimization; Investigate the influences of design
parameters on optimized results

4 Magnetic actuator with local magnetization regions 𝝆 and 𝝃 𝑓2(⋅) Study a variety of magnetic actuators generated by assigning
different local magnetization zones

5 Magnetic-responsive unit cell design 𝝆, 𝝃, and 𝑩𝑎 𝑓2(⋅) Discover multiple magnetic-responsive unit cells achieving
various programmed actuation modes under different
magnetic fields

and

𝜕𝜙

𝜕𝑚(𝑗)
𝑒

=
𝜕𝜙

(

𝝆,𝒎(1),… ,𝒎(𝑁𝑚),𝑩(𝓁)
𝑎 , 𝒖(𝓁)

)

𝑚(𝑗)
𝑒

+ (𝝀(𝓁))𝑇
𝜕𝒓

(

𝝆,𝒎(1),… ,𝒎(𝑁𝑚),𝑩(𝓁)
𝑎 , 𝒖(𝓁)

)

𝜕𝑚(𝑗)
𝑒

, 𝑗 = 1,… , 𝑁𝑚, (18)

espectively, where 𝝀(𝓁) is the adjoint vector obtained from solving the following adjoint equation associated with the 𝓁th magnetic
ield:

[

𝑲 (𝓁)
𝑇 (𝝆,𝒎(1),… ,𝒎(𝑁𝑚),𝑩(𝓁)

𝑎 , 𝒖(𝓁))
]

𝝀(𝓁) = −
𝜕𝜙

(

𝝆,𝒎(1),… ,𝒎(𝑁𝑚),𝑩(𝓁)
𝑎 , 𝒖(𝓁)

)

𝜕𝒖(𝓁)
, (19)

with 𝑲 (𝓁)
𝑇 being the tangent stiffness matrix associated with 𝑩(𝓁)

𝑎 . Once the sensitivities 𝜕𝜙∕𝜕𝜌𝑒 and 𝜕𝜙∕𝜕𝑚(𝑗)
𝑒 are obtained, the

sensitivities of 𝜙 with respect to the design variables 𝝆 and 𝝃(𝑗) can be obtained through differentiating expressions (Eqs. (7), (8),
and (10)) and using the chain rule (Bruns and Tortorelli, 2001; Wang et al., 2011). The sensitivity of 𝜙 with respect to the design
variables 𝐴(𝓁)

𝐵𝑎
and 𝜃(𝓁)𝐵𝑎

associated with 𝑩(𝓁)
𝑎 can be obtained using the same procedure as Eqs. (17) and (18). The method of moving

asymptotes (MMA) (Svanberg, 1987) is adopted together with the bound formulation (Olhoff, 1989) to handle the min–max type
bjective functions (Eqs. (15) and (16)).

. Numerical examples

This section presents five examples to demonstrate the capability of the proposed framework in optimizing designs composed of
ard-magnetic soft materials, which are summarized in Table 1. Examples 1 and 2 aim to program a set of target deformed shapes
nto an arm and a swimming robot by simultaneously optimizing their remnant magnetization distribution and the applied magnetic
ields. Example 3 maximizes the performance of a magnetic actuator by simultaneously optimizing the topology (i.e. distribution
f matrix materials) and remnant magnetization distributions. This example also showcases the improved performance enabled
y optimizing the topology and investigates the influences of various design parameters on the optimized designs, actuation
erformances, and corresponding mechanisms. Example 4 designs magnetic actuators by simultaneously optimizing their topologies
nd remnant magnetization distributions. This example shows that assigning different active magnetization zones in the design
omain leads to optimized actuators with distinct actuation mechanisms yet comparable performances. Example 5 generates unit
ells that achieve different actuation modes under various applied magnetic fields (which mimic materials with positive and negative
oisson’s ratios) by simultaneously optimizing topology, remnant magnetization distributions, and the applied magnetic fields. The
ast example also studies how various initial guesses influence the discovered designs as well as their actuation mechanisms. The
bjective function 𝑓1(⋅) (Eq. (15)) is applied to Examples 1 and 2 and the objective function 𝑓2(⋅) (Eq. (16)) is employed in Examples
3–5. The adopted matrix material properties in all the examples are selected based on the measured experimental data (Zhao et al.,
2019; Poulain et al., 2017) of silicon-based elastomers. The specific values of material properties in the examples are tuned to avoid
xcessive deformations and convergence difficulties of FE analysis during the optimization.
In terms of the topology optimization setup, we apply the continuation strategy to penalization parameters 𝑝𝜌 and 𝑝𝑚 (in Eqs. (13)

and (9), respectively) as well as the sharpness parameters 𝛽𝜌 and 𝛽𝑚 associated with the Heaviside projection. We first simultaneously
increase 𝑝𝜌 and 𝑝𝑚 (e.g., 𝑝𝜌 = 𝑝𝑚 = 1, 1.5,… , 3), following by sequentially doubling 𝛽𝑚 (e.g., 𝛽𝑚 = 1, 2, 4,… , 32) and then 𝛽𝜌
(e.g., 𝛽𝜌 = 1, 2, 4,… , 32) until well-defined results are obtained. A further illustration of the parameter continuation strategy is
8

discussed based on a representative case in Section 4.3.
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4.1. Shape programming robots under magnetic actuation

This subsection focuses on the generation of metastructures with programmed shapes, which is a popular design problem for
any soft robotic applications (see, for example, Lum et al., 2016; Wang et al., 2021). More specifically, our goal is to program a

set of target deformed shapes into a magnetic-responsive metastructure by optimizing both the remnant magnetization distribution
and the corresponding set of applied magnetic fields, with each field induces one target deformed shape. We introduce two
design problems to demonstrate the capabilities of the proposed framework to generate shape-programming magnetic-responsive
metastructures.

4.1.1. Example 1: Shape-programming arm
In this design problem, we aim to achieve a shape-programming arm by optimizing remnant magnetization distribution and

applied magnetic fields. The dimension of the design domain is shown in Fig. 3(a). The domain is discretized by 400 × 10 = 4, 000
quadrilateral finite elements. As demonstrated by the solid lines with markers in Fig. 3(c), we prescribe 𝑁𝓁 = 5 target shapes by
assigning the corresponding target displacements (in both 𝑥 and 𝑦 directions) to the 10 (corresponds to 𝑁 (1,2,…,𝑁𝓁 )

𝛼 = 20) uniformly-
distributed control points along the center line of the arm. The matrix material is modeled by the compressible Ogden model with
𝜇𝑎 = 1 MPa, 𝛼𝑎 = 2, and 𝛽𝑎 = 24.5, which lead to 𝐺 = 1MPa and 𝜅 = 50MPa. There are a total of 𝑁𝑚 = 8 candidate magnetization
vectors, 𝑩(𝑗)

𝑟 , 𝑗 = 1,… , 8, whose orientations are 45◦ apart from each other and magnitudes are all equal to 100mT. In addition to
these candidate magnetization vectors, non-magnetized regions are also allowed at each location of the optimized design. To ensure
the remnant magnetization is uniform within each 2mm by 4mm sub-region in Fig. 3(a), we set 𝑞𝑚 = 0 and 𝑅𝑚 = 4mm as the length
of each sub-region. The number of candidate magnetization vectors and the size of the sub-region (i.e., the programming resolution
of remnant magnetization) are selected for a demonstration purpose, and they are adjustable to comply with the requirements
of selected manufacturing approaches. In addition, maximum magnitude of the applied magnetic field 𝐴max is set as 30mT. The
optimization starts from an initial design with solid material 𝝆 = 𝟏 and uniform magnetization (namely, 𝜉(𝑗)𝑒 = 1∕8). The initial
applied magnetic fields are taken as 𝑩(𝓁)

𝑎 = [0,−𝐴max∕2]mT, ∀𝓁 ∈ {1,… , 5}. During the optimization, the density design variables 𝝆
are kept constant as we gradually optimize the design variables 𝝃(𝑗) and 𝑩(𝓁)

𝑎 to minimize the objective function value. Because the
matrix materials are treated as non-designable in this example, the volume and stress constraints in the optimization formulation
(14) are inactive accordingly.

The optimized remnant magnetization distribution, the five optimized applied magnetic fields, and the corresponding five
deformed shapes are shown in Fig. 3(b)–(c). Both magnetized and non-magnetized regions exist in the optimized design, suggesting
hat the entire domain does not need to be magnetized to achieve the five target shapes. To quantify the fitting error, we define the
ollowing error measure:

Error = max
𝓁∈{1,…,𝑁𝓁}

[ 1
𝑁 (𝓁)

𝛼

𝑁 (𝓁)
𝛼
∑

𝛼=1

|

|

|

𝑢(𝓁)𝛼 − 𝑢∗(𝓁)𝛼

𝑢∗(𝓁)𝛼

|

|

|

]

, (20)

where | ⋅ | stands for the absolute operator. This error is measured to be 0.12% for the obtained optimized design, suggesting that
the arm with optimized remnant magnetization distribution deforms precisely to the five target shapes when subjected to each of
the five corresponding optimized applied magnetic fields.

4.1.2. Example 2: Frog-inspired swimming robot
A frog-inspired swimming robot design with optimized remnant magnetization distribution and optimized magnetic fields is

presented in this subsection to further demonstrate the capability of generating shape-programming metastructures. The dimension
of the design domain is shown in Fig. 4(a) with a FE mesh of 7000 quadrilateral elements. As demonstrated by the solid lines with
markers in Fig. 4(c), we prescribe 𝑁𝓁 = 3 target shapes, i.e., thrust, insweep, and steering phases, by assigning the corresponding
target displacements (in both 𝑥 and 𝑦 directions) to 10, 10, and 2 control points (corresponding to 𝑁 (1)

𝛼 = 20, 𝑁 (2)
𝛼 = 20, and 𝑁 (3)

𝛼 = 4),
espectively. The matrix material is characterized by the compressible Ogden model with 𝜇𝑎 = 0.33MPa, 𝛼𝑎 = 2, and 𝛽𝑎 = 24.5,
hich lead to 𝐺 = 0.33MPa and 𝜅 = 16.67MPa. There are a total of 𝑁𝑚 = 8 candidate magnetization vectors, 𝑩(𝑗)

𝑟 , 𝑗 = 1,… , 8, whose
rientations are 45◦ apart from each other and magnitudes are all equal to 100mT. In addition to these candidate magnetization
ectors, non-magnetized regions are also allowed at each location of the optimized design. To ensure the remnant magnetization is
niform within each 2mm by 2mm square in Fig. 4(a), we set 𝑅𝑚 = 2mm as the length of each sub-region. In addition, the maximum
agnitude of the applied magnetic field 𝐴max is set as 50mT. To enable symmetric deformations with respect to the 𝑥 direction for
arget shapes 1 and 2, we fix the directions of the associated applied magnetic fields (𝑩(1)

𝑎 and 𝑩(2)
𝑎 ) towards the left and right,

espectively, and set the residual magnetization of the central rectangular region (32mm*4mm) to be a constant vector, which has
he magnitude of 100mT and points rightward. The initial guesses of design variables and optimization setup are the same as the
nes we describe in Section 4.1.1.
Fig. 4(b)–(c) show the frog-inspired swimming robot design including the optimized remnant magnetization distribution, the

hree optimized magnetic fields, and the corresponding three deformed shapes. The obtained remnant magnetization distribution
Fig. 4b) is non-intuitive owing to the relatively complex prescribed topology and target shapes. As shown in Fig. 4(c), the actuation
hapes 1 and 2 under the two opposite horizontal magnetic fields can guide the motions of the swimming robot in the thrust and
nsweep phases, respectively, driving it to move forward. The tilted magnetic field steers the swimming robot to change its direction,
9

s demonstrated in the actuation shape 3. The error (quantified by Eq. (20)) between the actual and target shapes is 16%, which is
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Fig. 3. Shape-programming arm: (a) Design domain and candidate magnetizations; (b) Optimized remnant magnetization distribution; (c) Target and optimized
ctual shapes (0.12% error).

arger than the design shown in Section 4.1.1 owing to the increased complexity of this design problem. Having encoded those three
basic quasi-static motions (i.e., thrust, insweep, and steering phases), the frog-inspired swimming robot is promising to be used for
a robotic application to complete sophisticated tasks.

In summary, both designs presented in this subsection showcase the effectiveness of the proposed topology optimization approach
in generating accurate shape-programming designs under a number of optimized applied magnetic fields. This capability of the
proposed framework makes it a promising design tool to encode various quasi-static motions into magnetic-responsive soft robots,
for example, by sequentially varying the applied magnetic fields, to generate complex locomotion (Lum et al., 2016; Wu et al.,
2020).

4.2. Example 3: Magnetic-responsive double-clamped actuator with maximized actuation performance

Example 3 aims to highlight the importance and advantage of optimizing matrix topology in the proposed framework by
demonstrating that simultaneously optimizing both matrix topology and remnant magnetization distribution can lead to designs
with improved performance as compared to optimizing the remnant magnetization distribution alone. In addition, this example also
investigates the influences of several design parameters on the optimized designs and corresponding mechanisms.

We consider a double-clamped rectangular design region with its dimensions and boundary conditions shown in Fig. 5(a). The
domain is discretized by 300 × 75 = 22, 500 quadrilateral finite elements. To model the feedback force of the actuator, we connect
springs to center nodes on the top of the design domain (Bendsoe and Sigmund, 2013; Zhu et al., 2020). Each spring has a constant
stiffness which are summed to be 𝑘out. A larger 𝑘out leads to a larger actuation force generated by the optimized actuator. These
connected center nodes are also taken as the control points (i.e., 𝑁 (1,2,…,𝑁𝓁 )

𝛼 = 5) and we aim to minimize their upward displacements
(which correspond to maximizing the displacement in the downward direction) using objective function 𝑓2(⋅) in Eq. (16) with𝑁𝓁 = 1.
o compare the final performance of the optimized designs, we report the averaged value of the downward displacement in those
ontrol points, denoted as 𝑢out. A larger 𝑢out value indicates better actuation performance.
The matrix material is modeled by the compressible Ogden model with 𝜇𝑎 = 0.33 MPa, 𝛼𝑎 = 2, and 𝛽𝑎 = 499.5, leading to
= 0.33MPa and 𝜅 = 333MPa. We consider a total of 𝑁 = 8 candidate magnetization vectors with uniform orientation space of
10

𝑚
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Fig. 4. Frog-inspired swimming robot: (a) Design domain and candidate magnetizations; (b) Optimized remnant magnetization distribution; (c) Target and
optimized encoded shapes under magnetic actuation.

45◦ and same magnitude of 250mT. Unlike Examples 1 and 2, the applied magnetic flux design 𝑩𝑎 is fixed to be pointing upward
with a magnitude of 160mT throughout the optimization. For all the results represented in this example, we adopt initial guesses of
𝜉(𝑗)𝑒 = 1∕8, 𝑗 = 1,… , 8 and 𝜌𝑒 = 𝑣max (when we optimize topology) with 𝑣max = 0.3. The linear density filters (𝑞𝜌 = 𝑞𝑚 = 1) are used
with 𝑅𝜌 = 𝑅𝑚 = 1.5mm being the radius for both design variables 𝝆 and 𝝃(𝑗), 𝑗 = 1,… , 8.

4.2.1. Simultaneous optimization of matrix topology and remnant magnetization versus optimization of remnant magnetization distribution
alone

The subsection of the example compares the actuation performance of the designs obtained by fixing topologies and only optimiz-
ing remnant magnetization distributions with that of the design obtained by optimizing both topology and remnant magnetization
distribution simultaneously. Through comparison, we demonstrate that the incorporation of matrix topology variations enlarges the
design space and leads to optimized designs with improved actuation performance.

An optimized actuator design is generated using the proposed formulation by simultaneously optimizing both matrix topology
and remnant magnetization distributions. The maximum volume fraction of the actuator is set to be 30%. The optimized design
and its deformed states under the applied magnetic field are shown in Fig. 5(b) (namely, Case 1). For comparison, we manually
design four actuator topologies by experience and intuition (with the same 30% volume fraction), and then we optimize their
remnant magnetization distributions. Fig. 5(c) (namely, Cases 2–5) depicts the optimized designs with their remnant magnetization
distributions together with their deformed shapes under the applied magnetic field. For all the cases, we set 𝑘out = 0.2N/mm and
|𝑩𝑎| = 160mT.

The comparison of optimized designs in Fig. 5 shows that optimizing both matrix topology and remnant magnetization
distribution simultaneously produces optimized designs with apparently improved actuation performance (measured by a larger
𝑢out) over the ones with intuitively-designed topologies (even with optimized remnant magnetization distributions). We further
make several observations to elucidate how topology variation and large deformations are exploited by the optimization algorithm
to enhance the actuation performance. First, the better actuation performances of Cases 4–5 than those of Cases 2–3 makes it evident
that designs with more intricate topologies typically have larger actuation displacements. Second, we notice that both member
rotation and bending deformations induced by the local magnetic torque can serve as actuation mechanisms. Varying the topology
of the actuator can switch between these two mechanisms. For example, the actuation modes of designs in Cases 2–4 are dominated
by bending deformations, whereas the designs in Cases 1 and 5 are mainly actuated by large rotations of certain members. The
comparison of 𝑢 for those designs suggests that the large rotation-based actuation mechanism is in general more effective than the
11
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Table 2
Design parameters and the resulting actuated displacements of the optimized designs for Example 3 (𝑣max and 𝜎max are the upper bounds of volume fraction and
von Mises stress, respectively; |𝑩𝑎| is the magnitude of the external magnetic flux destiny; 𝑘out is the spring stiffness; 𝑢out is the averaged output displacements).
Case |𝑩𝑎| (mT) 𝜎max (MPa) 𝑣max 𝑘out (N/mm) 𝑢out (mm)

1 160 – 0.3 0.2 2.50

6 40 – 0.3 0.2 1.42
7 80 – 0.3 0.2 1.98
8 120 – 0.3 0.2 2.50

9 160 0.3 0.3 0.2 1.87
10 160 0.4 0.3 0.2 2.25
11 160 0.5 0.3 0.2 2.30
12 160 0.6 0.3 0.2 2.40

13 160 – 0.2 0.2 1.65
14 160 – 0.4 0.2 3.18
15 160 – 0.5 0.2 3.73

16 160 – 0.3 0.1 4.46
17 160 – 0.3 0.3 1.73
18 160 – 0.3 0.4 1.32

ones based on bending deformations. Third, a closer comparison of the optimized remnant magnetization distributions of the designs
shows that the local magnetizations of those bending-actuated designs (i.e., Cases 2–4) are typically perpendicular to the applied 𝑩𝑎
in their undeformed states, whereas the local magnetizations in some regions of the rotation-actuated designs (Cases 1 and 5) are
different. Instead, those local magnetizations are rotated together with the underlying members under the applied magnetic field
and become almost orthogonal to the 𝑩𝑎 in the deformed configurations. This observation suggests that, when accounting for large
deformations, setting the local magnetization vector to be orthogonal to the applied magnetic flux density 𝑩𝑎 in the undeformed
configuration is not necessarily optimal, because local magnetization will be closely interacting with the local structural deformation
and be rotated accordingly in the deformed configuration. We remark that such behavior related to finite rotation cannot be captured
by topology optimization formulations under small deformation assumptions. Finally, the design obtained by optimizing both matrix
topology and remnant magnetization distribution simultaneously (i.e., Case 1) not only exhibits an actuation mechanism based on
large rotations of members but also has bulkier rotated members (as compared to designs whose topologies are not optimized) to
increase the actuation forces generated. As a result, this design achieves the largest actuated displacement among all designs.

4.2.2. Influences of design parameters on optimized results and corresponding mechanisms
In this subsection, we restrict our attention to the simultaneous optimization of matrix topology and remnant magnetization

distribution and investigate the influences of various design parameters, including the magnitude of applied magnetic flux density
|𝑩𝑎|, stress upper bound 𝜎max, volume fraction 𝑣max, and spring stiffness 𝑘out, on the optimized designs as well as their actuated
displacement 𝑢out. In addition to the design Case 1 considered in the preceding subsection, we also use the optimization framework
to generate design Cases 6–18 with different design parameter choices. Those choices are summarized in Table 2 for each design
case. The parameters that are not listed in the table are taken to be the same as Case 1 described in the preceding subsection.

The influences of the four design parameters on 𝑢out are shown in Fig. 6(a)–(d). Fig. 6(a) shows the influence of |𝑩𝑎|. We
bserve that 𝑢out increases with |𝑩𝑎| as a result of the larger magnetic torques generated. We also notice that, only two candidate
agnetization vectors (pointing to 0◦ and 180◦) are selected when |𝑩𝑎| is small (i.e., 40mT). This is in contrast to the cases for
arger |𝑩𝑎| (i.e., 80mT–160mT), where four candidate magnetization vectors are selected (with two additional pointing to 225◦
nd 315◦). This contrast in optimized distribution reveals how the magnitude of applied magnetic field influences the optimized
emnant magnetization distribution together with large deformations. Under the applied magnetic field with a small magnitude, the
eformations level is relatively small and the remnant magnetization with orthogonal 𝑩𝑟 and 𝑩𝑎 is more effective for actuation.
his phenomenon, however, does not hold for the applied magnetic field with a large magnitude, which requires the analysis of
hese quantities in the deformed configuration as a result of large deformations induced (in particular rotations). Fig. 6(b) shows
he influence of the stress upper bound 𝜎max. We observe that 𝑢out of the optimized design increases if a larger 𝜎max is used. We
also notice that the optimized remnant magnetization distributions are different for designs obtained with lower and higher stress
upper bounds. Similar to the magnitude of |𝑩𝑎|, this is because a tighter allowable stress limit corresponds to a smaller allowable
local deformation level, which prevents the members in the optimized design from experiencing large rotations. Fig. 6(c) shows the
influence of allowable volume fraction 𝑣max. We observe a general trend that a larger 𝑣max leads to an optimized design with higher
𝑢out. This trend can be understood by the body force nature of the magnetic torques generated in hard-magnetic soft materials. A
design with a larger material volume experiences stronger magnetic torque in total and therefore has a larger actuated displacement.
Unlike |𝑩𝑎| and 𝜎max, we notice that varying 𝑣max greatly influences the optimized topology but does not impact the optimized
remnant magnetization distributions (see designs in Cases 1, 13, 14, and 15). This is because varying the allowable volume fraction
of the design does not affect the allowable deformation level. With the smallest allowable volume 𝑣max = 20%, larger member
rotations can still be achieved together with a topology containing hinge-like connections which concentrate local deformations.
Fig. 6(d) shows the influence of spring stiffness 𝑘out. We observe that 𝑢out decreases as we increase the value of 𝑘out as a result
of increased feedback forces. Unlike other design parameters, we notices that varying the spring stiffness 𝑘 does not lead to
12
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Fig. 5. Magnetic-responsive double-clamped actuator: (a) Design domain and candidate magnetizations; (b) Undeformed and deformed configurations of the
designs with optimized 𝝆 and 𝝃(𝑗); (c) Undeformed and deformed configurations of the designs with prescribed 𝝆 and optimized 𝝃(𝑗).

significant changes in both the optimized topology and optimized remnant magnetization distribution (see designs in Cases 1, 16,
17, and 18).

To conclude, we emphasize that large deformations and, particularly, large rotation kinematics play an important role in how
those design parameters (in particular |𝑩𝑎| and 𝜎max) impact the matrix topologies and remnant magnetization distributions of the
optimized designs as well as their actuation performance. Our proposed topology optimization framework, formulated based on
13

finite deformation kinematics, is able to capture those influences effectively.



Journal of the Mechanics and Physics of Solids 158 (2022) 104628Z. Zhao and X.S. Zhang

i
𝜇
m
t
o
a

t

t

Fig. 6. Influences of physical design parameters on the optimized topologies and actuated displacements: (a) The magnitude of 𝑩𝑎; (b) The upper bound of von
Mises stress constraint 𝜎max; (c) The upper bound of volume constraint, 𝑣max; (d) Spring stiffness, 𝑘out.

4.3. Example 4: Magnetic actuators optimized with various local magnetization regions

This example designs and studies magnetic actuators which are only magnetized locally. We demonstrate that, by assigning
different local magnetization zones, the proposed formulation can generate a variety of alternative actuator designs, which
have different topologies and remnant magnetization distributions to achieve comparable performances with different actuation
mechanisms. The design scenarios studied in the example could be useful in applications in which magnetizing the entire structure
or applying the magnetic field to the entire design space is not permitted.

We consider a rectangular design domain with its dimensions and boundary conditions shown in Fig. 7. The design domain
is discretized by 240 × 160 = 38, 400 quadrilateral finite elements. Similar to the preceding example, we connect springs (in the 𝑥
direction only) to finite element nodes surrounding the center on the right side of the domain. The total stiffness of those springs
are summed to be 𝑘out = 0.02N/mm. We treat the finite element nodes as the control points (i.e., 𝑁 (1,2,…,𝑁𝓁 )

𝛼 = 5) and minimize
their displacements, averaged as 𝑢out, in the 𝑥 direction (corresponding to maximizing the displacement in the opposite direction).
The objective function 𝑓2(⋅) in Eq. (16) is used together with 𝑁𝓁 = 1, and the applied magnetic field is prescribed to be pointing
n the negative 𝑥 direction with a magnitude of 50mT. The matrix material is modeled by the compressible Ogden model with
𝑎 = 0.33MPa, 𝛼𝑎 = 2, and 𝛽𝑎 = 499.5, leading to 𝐺 = 0.33MPa and 𝜅 = 333MPa. In addition, we consider two different local
agnetization zone setups (with the same total area of 6mm2) as shown in Fig. 7(b). The remnant magnetization at each location of
he magnetization zones is selected by the optimizer from 𝑁𝑚 = 8 candidate magnetization vectors, which are 45◦ apart from each
ther and have the same magnitude of 200mT. The materials outside of the magnetization zone are assumed to be non-magnetized
nd are not responsive to the applied magnetic field.
The results presented in this example are obtained by simultaneously optimizing matrix topology and remnant magnetization in

he assigned magnetization zones with a stress upper bound of 𝜎max = 0.5MPa. The initial guesses of design variables are 𝜉(𝑗)𝑒 = 1∕8,
𝑗 = 1,… , 8 and 𝜌𝑒 = 𝑣max,1 with 𝑣max,1 = 25%. We apply a quadratic filter (𝑞𝜌 = 2 in Eq. (8)) to design variables 𝝆 with a radius of
𝑅𝜌 = 1.2mm and a linear filter (𝑞𝑚 = 1) to design variables 𝝃(𝑗), 𝑗 = 1,… , 8, with a radius of 𝑅𝑚 = 1mm. We note that the quadratic
filter is used for 𝝆 to obtain well-defined boundaries of the resulting topology in this example. In addition, to prevent materials
from concentrating in the magnetization zones by forming highly bulky members, we introduce a second volume constraint, namely,
(
∑

𝑖∈ 𝑣𝑖𝜌𝑖)∕|𝛺ℎ| ≤ 𝑣max,2, with  being the element set of the magnetization zone and 𝑣max,2 = 15%.
The optimized designs obtained from Cases 1 and 2 and their corresponding 𝑢out are presented in Fig. 8(a). We notice that the

wo designs achieve actuation via different topologies and remnant magnetization distributions. For the design in Case 1, magnetic
14
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Fig. 7. Magnetic actuator: (a) Design domain, applied magnetic field, and candidate magnetizations; (b) Two cases with different magnetization zones.

torque-induced rotations are first generated in the four magnetized members on the left portion and then transmitted to the output
location via three non-magnetized members. Instead, for the design obtained in Case 2, the magnetized members in both top and
bottom regions experience gripping-type deformations, which are then transformed into a pulling motion in the non-magnetized
member in the middle region to trigger displacement at the output location. Although having distinct topologies and remnant
magnetization distributions, both optimized designs achieve comparable actuation performance, which demonstrates the capability
of the proposed optimization framework in generating a variety of magnetic actuator designs with comparable performances by
assigning various local magnetization zone layouts.

Moreover, Fig. 8(b) shows a representative convergence history of the objective function together with several intermediate
esigns to demonstrate how designs evolve in the proposed optimization formulation. First, we observe a smooth convergence
f the objective function with each increase caused by the change of an optimization parameter in the continuation strategy.1
Second, by monitoring how design evolves, we demonstrate that, at the beginning of optimization, the intermediate designs have
blurred topologies and remnant magnetization distributions. As the SIMP penalization and Heaviside projection sharpness parameters
increase, intermediate designs with crisper topologies and remnant magnetization distributions gradually appear until they reach
an optimized design with binary topology and clearly-separated remnant magnetization distribution. Finally, we remark that the
other examples presented in this paper show similar design evolution processes.

4.4. Example 5: Magnetic-responsive unit cell designs with programmable and adaptable actuation modes

This example uses the proposed topology optimization framework to discover magnetic-responsive unit cell designs that achieve
various programmed actuation modes (including auxetic ones) that are adaptable under different applied magnetic fields. As
shown in Fig. 9(a), we consider a square design domain which is fixed at its four corners. The design domain is discretized by
00 × 200 = 40, 000 quadrilateral elements. The unit cell is surrounded by a 0.5mm-thick layer of non-magnetized materials which
are treated as passive design regions throughout the optimization. We investigate three design scenarios, each is associated with
multiple (i.e., 𝑁𝓁 > 1) target actuation modes as illustrated in Fig. 9(b). In design scenario 1, the two adaptable target actuation
modes correspond to expansion in either horizontal or vertical direction and contraction in the other, mimicking how materials with
positive Poisson’s ratios deform. In design scenario 2, the two target actuation modes correspond to either expansion or contraction
in both directions, mimicking how materials with negative Poisson’s ratios deform. In design scenario 3, we aim to discover a
unit design that achieve all the above-mentioned four adaptable target modes (i.e., 𝑁𝓁 = 4) under corresponding optimized applied
magnetic fields. The optimization goal in the three scenarios is to maximize the deformation of the unit cell in those target actuation
modes. To achieve that, we place one control point to the center of each side of the unit cell, namely 𝑁 (𝓁)

𝛼 = 4, 𝓁 = 1, 2,… , 𝑁𝓁 . We
monitor the vertical displacements associated with control points 𝐶1 and 𝐶2, and the horizontal displacements for control points
𝐶3 and 𝐶4. Those monitored displacements (incorporated with appropriate signs) are then used by the objective function 𝑓2(⋅) (see
Eq. (16)) to maximize certain actuation modes. The averaged absolute displacements of the four control points in the 𝓁 deformation
mode, denoted as |𝑢|(𝓁)out hereafter, will be used to measure the performance of the optimized unit cells. A larger value of |𝑢|(𝓁)out
indicates optimized unit cells with better magnetic-actuated performance.

We simultaneously optimize all three design variables, i.e., topology (matrix material distribution), remnant magnetization
distribution, and the applied magnetic fields. The matrix material is modeled by the compression Ogden model with 𝜇𝑎 = 0.33MPa,
𝛼𝑎 = 2, and 𝛽𝑎 = 499.5, leading to 𝐺 = 0.33MPa and 𝜅 = 333MPa. We consider a total of 𝑁𝑚 = 8 candidate magnetization vectors

1 The continuation strategies for 𝑝𝜌, 𝑝𝑚, 𝛽𝜌, and 𝛽𝑚 are as follows: We first run for 100 iterations with 𝑝𝜌 = 𝑝𝑚 = 1 and 𝛽𝜌 = 𝛽𝑚 = 1. We then increase 𝑝𝜌
and 𝑝𝑚 together by 1 every 50 iterations until 𝑝𝜌 = 3 and 𝑝𝑚 = 5. Afterwards, we first double 𝛽𝑚 every 50 iterations until 𝛽𝑚 = 32 and then double 𝛽𝜌 every 50
15

iterations until 𝛽𝜌 = 32. We finally run 300 addition iterations before optimization reaches convergence.
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Fig. 8. Undeformed and deformed configurations of two designs (Cases 1–2) for magnetic actuators with different magnetization zones; (b) Optimization history
and structural topology evolution of Case 1.

which are 45◦ apart from each other and have the same magnitude of 100mT. Multiple applied magnetic fields are needed — one for
ach target deformation mode. Since the goal is to maximize deformation, the magnitude of both applied magnetic flux densities 𝑩(𝓁)

𝑎
are set to be 50mT. In design scenarios 1 and 2, we fix the direction of 𝑩(1)

𝑎 to be pointing downward and optimize the direction
of 𝑩(2)

𝑎 (the initial guess of 𝑩(2)
𝑎 is assumed to point upward). In design scenario 3, we fix the directions of 𝑩(3,4)

𝑎 to be pointing
downward and upward, respectively, and optimize the directions of 𝑩(1,2)

𝑎 (the initial guesses of 𝑩(1,2)
𝑎 are assumed to point leftward

and rightward, respectively). For optimization, we apply a quadratic filter (𝑞𝜌 = 2 in Eq. (8)) to design variables 𝝆 with a radius
f 0.75mm and a linear filter (𝑞𝑚 = 1) to design variables 𝝃(𝑗) with a radius of 1mm. We note that the quadratic filter is used for
to obtain well-defined boundaries of the resulting topology in this example. For all the designs, the allowable volume fraction is
et to be 𝑣max = 30% (excluding the passive non-magnetized boundary layer). Based on our numerical experience, the stress upper
ounds are taken to be 𝜎(1)max = 𝜎(2)max = 0.25MPa for design scenarios 1 and 2 as well as 𝜎(1)max = 𝜎(2)max = 𝜎(3)max = 𝜎(4)max = 0.2MPa for
esign scenario 3. In addition, the initial guesses of the design variables 𝜉(𝑗)𝑒 , 𝑗 = 1,… , 8, are set to be uniformly 1∕8 in the domain.
Figs. 10(a)–(b) show optimized designs, in both undeformed and deformed configurations, obtained for design scenarios 1 and

, respectively. For each scenario, we consider two types of initial guesses for the topology design variables 𝝆, which are depicted
n the first column of Fig. 10. For Scenario 1, the optimized design obtained from the uniform initial guess of 𝝆 contains four
magnetized members, each attached to two neighboring sides of the non-magnetized boundary layer. These magnetized members
rotate under the applied magnetic fields, causing the non-magnetized boundary layer to bend accordingly to generate displacements
in the control points. By contrast, the four magnetized members in the optimized design obtained from the non-uniform initial guess
of 𝝆 (i.e., four squares) are isolated in the center of the unit cell and their induced rotations are transferred to each control point via
small axial members under tension or comparison. For Scenario 2, the optimized design obtained from the uniform initial guess of
𝝆 contains eight magnetized members, each attached to only one side (as compared to two sides in the counterpart in Scenario 1) of
the non-magnetized layer. These members experience rotations under the applied magnetized fields, which bend the non-magnetized
layer to actuate the corresponding actuation modes. In fact, designs with similar actuation mechanisms are also presented in the
literature (Montgomery et al., 2021; Wu et al., 2019). Instead, the optimized design obtained from the non-uniform initial guess of
𝝆 (i.e., one square) possesses more intricate topologies and remnant magnetization distributions. Four larger magnetized members
appear in the center region of the domain and experience large rotations under the applied magnetic fields. These large rotations
are then transferred to the control points in the 𝑥 direction by four smaller magnetized members rotating in the opposite directions
and the ones in the 𝑦 direction by two axial members under tension or compression. This asymmetry of topology, magnetized
distribution, and actuation mechanisms in the 𝑥 and 𝑦 directions is a consequence of the asymmetry of the applied magnetic flux
densities 𝑩(1) and 𝑩(2), which are both in the vertical direction.
16
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Fig. 9. Unit cell design: (a) Design domain and candidate magnetizations; (b) Three design scenarios (each has multiple deformed modes to be achieved under
different magnetic fields).

In Fig. 11, we show the optimized design and the four adaptable modes under corresponding optimized magnetic fields for
Scenario 3. Similar to the actuation mechanism of the last design in Fig. 10, four central magnetized members rotate under applied
magnetic fields, and the rotations are transferred to non-magnetized layers through four magnetized members in the 𝑥 direction
and two small non-magnetized members in the 𝑦 direction. Different from the designs in Fig. 10, the local remnant magnetization
distribution is neither fully orthogonal nor parallel to the applied magnetic fields, which is relatively non-intuitive and demonstrates
that encoding an increased number of target deformation modes in Scenario 3 makes the optimization problem more complex.

Comparing the designs in Fig. 10, we conclude that different initial designs lead to magnetic-responsive optimized unit cells with
different topologies, remnant magnetization distributions, and actuation mechanisms, which is a demonstration of the non-convexity
of the optimization formulation. Although it may not be generalizable to other design scenarios, we find that a non-uniform initial
guess for 𝝆 always leads to optimized designs with better actuation performances as compared to uniform initial guesses in this
example. We also find that, in design scenarios 1 and 2, the optimized applied magnetic flux density 𝑩(2)

𝑎 always point to the opposite
direction of 𝑩(1)

𝑎 , which is fixed throughout the optimization. For design scenario 3, the directions of optimized applied magnetic flux
densities 𝑩(1)

𝑎 and 𝑩(2)
𝑎 are close to being opposite (19◦ and 196◦) to each other. These findings suggest that by reversing the applied

magnetic field, one can obtain an opposite deformation mode (i.e., control points all point to opposite directions) in this example.
Moreover, we remark that this example demonstrates that the proposed topology optimization framework can lead to a promising
path toward the automatic discovery of magnetic-responsive metamaterials with various unconventional yet programmable actuation
modes and nonlinear behaviors under the optimized applied magnetic fields.

5. Conclusion

This work proposes a general topology optimization framework for the rational design of hard-magnetic soft materials and
structures by simultaneously optimizing their matrix topologies, remnant magnetization distributions, and applied magnetic fields.
The framework is built upon the nonlinear field theory for ideal hard-magnetic soft materials (Zhao et al., 2019). We first propose
a design parameterization scheme that represents matrix material topology, remnant magnetization distribution, and the applied
magnetic field using three sets of design variables. In particular, the remnant magnetization vector at each location of the design is
interpolated from a set of pre-defined candidate vector (with the same magnitude) and is promoted to converge towards one (and
only one) of the candidate vector at the end of the optimization. We then introduce a scheme to interpolate the Helmholtz free
energy function from the three sets of design variables. The interpolated Helmholtz free energy function characterizes the nonlinear
response of a given design under the applied magnetic field. We formulate the general optimization problem and consider two
representative design objective functions, which aim to program deformed shapes and maximize magnetic actuations, respectively.

We present five examples with various optimized magnetic-responsive designs to exemplify the potential applications and
demonstrate the capabilities of the proposed topology optimization framework. In the first and second examples, we simultaneously
optimize the remnant magnetization distribution and applied magnetic fields to generate a magnetic-responsive arm and a frog-
inspired swimming robot that achieve multiple target deformed shapes under optimized magnetic fields. The demonstrated
17
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Fig. 10. The initial guesses, optimized designs, and corresponding adaptable actuation modes of magnetic-responsive unit cells for (a) Scenario 1 and (b) Scenario
2, mimicking how materials with positive and negative Poisson’s ratios deform, respectively. See Fig. 9 for actuation modes associated with each scenario.

capability of the proposed framework in generating highly programmable magnetic-responsive metastructures holds great potential
in various applications related to soft robotics.

In the third example, we design double-clamped actuators with maximized magnetic actuation performance to highlight the
importance of optimizing the matrix topology. We also demonstrate that large deformations and, particularly, large rotations, which
are accounted for in the proposed framework, play important roles in determining both the optimized topologies and optimized
18
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Fig. 11. The optimized magnetic-responsive unit cell design and four adaptable actuation modes (Scenario 3). See Fig. 9 for actuation modes associated with
each scenario.

remnant magnetization distributions. In the fourth example, we present designs of magnetic actuators which are magnetized
locally. By varying the prescribed magnetization zones, designs with various topologies and remnant magnetization distributions
are generated, which can achieve comparable actuation performance. Together, Example 3 and 4 showcase the proposed framework
offers an effective design tool to discover efficient magnetic actuators for various applications.

In the last example, we apply the proposed framework to explore magnetic-responsive unit cell designs capable of achieving
various programmable and several adaptable actuation modes under different magnetic fields (mimicking how materials with
positive and negative Poisson’s ratios deform) by simultaneously optimize all design variables. Multiple designs with unconventional
optimized topologies and remnant magnetization distributions are generated by varying optimization initial guesses, demonstrating
the effectiveness of the proposed methodology to explore various designs with distinct mechanisms. This example also demonstrates
that the proposed framework holds the potential to enable a path towards the automatic discovery and rational design of
metamaterials with unconventional yet highly programmable magneto-mechanical behaviors.

Finally, we make several remarks on the future directions of the present work in terms of design parameterization, modeling, and
validation aspects. In terms of design parameterization and modeling, for hard-magnetic soft materials structures with non-uniform
remnant magnetization distributions, the presence of the surrounding air has non-negligible influence on the local distributions of
magnetic fields (i.e., 𝑩 and 𝑯) in the structure (Mukherjee et al., 2021). Thus, an important future extension of the present work
is to include the surrounding air in both design parameterization and modeling (Psarra et al., 2019) parts of the framework. In
terms of manufacturing and experimental validation, we remark that the proposed formulation in this study does not explicitly
incorporate manufacturing considerations, such as the minimum feature sizes of each structural member and magnetization region,
the manufacturable complexity of magnetization distributions and structural topologies, and the influence of manufacturing errors on
the performance of the optimized designs. Therefore, the realization of the optimized designs via advanced manufacturing techniques
19

(and further experimental validation of their performance) are important directions of future work.
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Fig. 12. Comparisons of two stress constraints: The designs of magnetic actuator obtained by the stress constraint acting on (a) mechanical Cauchy stress and
(b) total Cauchy stress. The designs of magnetic actuators (with non-magnetized zones) obtained by the stress constraint acting on (c) mechanical Cauchy stress
and (d) total Cauchy stress.
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ppendix A. Alternative stress constraint

This appendix presents an alternative stress constraint serving as a numerical technique to prevent hinge-like connections (or thin
embers) from appearing in the optimized designs. Rather than using the stress constraint reported in Eq. (14) which restricts the
20
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Fig. 13. Comparison of topologies, deformations, and maximum principal stretch distributions for the designs obtained (a) without the stress constraint and (b)
with the stress constraint (stress upper bound is 0.4MPa).

mechanical Cauchy stress (𝝈𝐸), the alternative constraint acts on the total Cauchy stress (involving both mechanical and magnetic
Cauchy stresses), which is given by

{𝑁𝑒
∑

𝑒=1

[𝑤𝜎 (𝜌𝑒)
𝑣𝑒 ∫𝛺ℎ,𝑒

𝜎VM
(

𝝈𝑇
(

𝒖(𝓁), 𝝃,𝑩(𝓁)
𝑎

)

)

d𝑿
]𝑝𝑛

}1∕𝑝𝑛

≤ 𝜎(𝓁)max, 𝓁 = 1,… , 𝑁𝓁 , (21)

here 𝝈𝑇 = 1∕𝐽 (𝜕𝑊 (𝑭 )∕𝜕𝑭 )𝑭 𝑇 is total Cauchy stress, which is a asymmetric tensor (Zhao et al., 2019). Other variables in Eq. (21)
re the same as the ones described in Eq. (14).
We perform a comparison of the optimized designs obtained from the two stress constraints in Fig. 12. The designs in Fig. 12(a)

nd (c) are the same as the ones in Case 10 of Example 3 and Case 1 of Example 4, respectively, which are obtained using the
tress constraint acting on the mechanical Cauchy stress. As shown in Fig. 12(b) and (d), we use the same design setups and
mploy the stress constraint imposing on the total Cauchy stress to obtain magnetic actuator designs, with the stress upper bounds
.45MPa and 0.40MPa, respectively. From the two pairs of designs, i.e. (a) versus (b), and (c) versus (d), we find that the matrix and
agnetization distributions as well as the actuated displacements are similar, and no hinge-like connections are generated in all
he designs. Therefore, we conclude that both stress constraints are capable of generating hinge-free designs and avoiding excessive
ocal deformations (their effectiveness is further demonstrated in Appendix B). We highlight that the two stress constraints purely
erve as a numerical technique to prevent hinge-like connections of the optimized designs in this study, and whether the two stress
onstraints capture physical material failure remains future investigations.

ppendix B. Effectiveness of the stress constraint to prevent hinge-like connections

This appendix demonstrates that the applied stress constraint effectively eliminates hinge-like connections (or thin members),
hich can lead to excessively large deformations. We compare two designs of the double-clamped actuator (Example 3, Case 13)
enerated without and with the stress constraint (stress upper bound is 0.40MPa), respectively. As shown in Fig. 13(a), the design
without stress constraint generates hinge-like connections between the central bulky members and their surrounding bars. Under
the applied magnetic field, these hinge-like connections are stretched excessively with a maximum principal stretch of 3.44. On the
contrary, the design with stress constraint in Fig. 13(b) has no hinge-like connections with a lower maximum principal stretch of
1.23. Even though the hinge-free design obtained with the stress constraint induces a smaller actuated displacement than the design
obtained without the stress constraint, it can avoid excessive local deformations and ease the manufacturing process. Through this
comparison, we conclude that the applied stress constraint can effectively prevent hinge-like connections (or thin members) from
being generated in the optimized designs with hard-magnetic soft materials.
21
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