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a b s t r a c t

Composite structures offer unique mechanical and physical properties enabled by material hetero-
geneity. To harness these properties in stress-constrained topology optimization, the incorporation
of multiple materials is necessary. Established studies in the field typically assume the same yield
criterion for all the candidate materials while vary their stiffness and strengths. To open up the full
design capability for composite structures, we propose a novel yield function interpolation scheme
that allows for the simultaneous incorporation of distinct yield criteria and material strengths. Built
upon this yield function interpolation scheme, we introduce a stress-constrained topology optimization
formulation that handles multiple materials with distinct elastic properties, material strengths, and
yield criteria simultaneously. We investigate several two-dimensional and three-dimensional design
cases with the objective of minimizing the total volume subjected to stress constraints. The optimized
composite designs reveal several fundamental advantages enabled by material heterogeneity, including
design space enlargement, stress deconcentration effect, and exploitation of tension–compression
strength asymmetry. These advantages lead to composite designs with 10 − 40% reduced minimized
volumes as compared to single-material designs and provide new insights for the discovery of more
efficient composite structures.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Composite structures are extensively used across various en-
ineering fields owing to their superior mechanical and phys-
cal properties over single-material structures. The advantages
nspire the use of multiple materials in topology optimization
o achieve novel designs with superior performance. Till now,
reat advances have been achieved in developing versatile mul-
imaterial topology optimization formulations [1–14] to discover
omposite structures with novel geometries and functionalities
n various applications, such as multiphysics [15–19] and meta-
aterial/metastructure design [20–22] problems. In structural
echanics, popular design problems for multimaterial topology
ptimization include compliance minimization, compliant mech-
nism [5,9], inverse design for target mechanical behaviors [21,
2], and stress-constrained design optimization [23,24].
Among these problems, multimaterial stress-constrained

opology optimization is an important and challenging one, which
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has been investigated by relatively fewer studies. Existing stress-
constrained formulations consider a variety of objectives such
as compliance minimization [23,25], maximum stress minimiza-
tion [25], compliant mechanism design [26], volume/mass mini-
mization [23,24], and programming of nonlinear target responses
[22]. In these studies, different candidate materials could take
distinct elastic properties [22,23,25,26], yield strengths [22,23,
25,26], and strength-to-density ratios [24]. However, all of them
are governed by the same yield/failure criterion, e.g., von-Mises.
Yet, the capability of accounting for distinct yield/failure criteria
in different candidate materials is crucial for many applications,
as many real-world composite structures are made of materials
governed by distinct yield/failure criteria. For instance, in rein-
forced concrete structures, the steel rebars are governed by a
hydrostatically-independent criterion, e.g., von-Mises, whereas
the concrete is controlled by a hydrostatically-dependent cri-
terion, e.g., Drucker–Prager. However, this capability has been
rarely explored and is currently underdeveloped in multimaterial
stress-constrained topology optimization.

To fill this gap, this work puts forward a multimaterial stress-
constrained topology optimization formulation capable of ac-
counting for multiple candidate materials with distinct elastic
properties (i.e., stiffness), strengths, and yield/failure criteria si-
multaneously, see Fig. 1(a). This is achieved by the introduction
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Fig. 1. Illustration of the overall goal of this study. (a) Design characterization of composite structures with different material elastic moduli, strengths, and
yield criteria. (b) Proposed multimaterial yield function interpolation scheme and stiffness interpolation. (c) Multimaterial stress-constrained topology optimization
framework with unique advantages produced by material heterogeneity: design space enlargement, stress deconcentration, and performance improvement.
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of a novel yield function interpolation scheme, which effectively
encodes various yield functions of different forms into the de-
sign parameterization (Fig. 1(b)). Using this proposed framework,
we numerically investigate several two-dimensional (2D) and
three-dimensional (3D) design problems that aim to minimize
the total structural volume. The obtained optimized compos-
ite structures exhibit novel distributions of both geometry and
material phases and demonstrate several unique advantages pro-
vided by material heterogeneity with different yield/failure crite-
ria, including design space enlargement, stress deconcentration,
and exploitation of tension–compression strength asymmetry,
see Fig. 1(c). As a result, these advantages significantly reduce
the optimized volume compared to single-material designs and
provide general design guidelines for composite structures and
materials where material constituents are governed by different
yield/failure criteria.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces design parameterization of multimaterial struc-
tures and elaborates the proposed yield function interpolation
scheme, after which the multimaterial stress-constrained topol-
ogy optimization formulation is presented. Section 3 presents
everal design examples, including both 2D and 3D problems,
o demonstrate the unique advantages enabled by the proposed
ormulation. Section 4 provides a few concluding remarks. Appen-
ices (four sections) complement the paper with a brief descrip-
ion of design discretization and regularization, an elaboration
f the effect of yield function interpolation parameter on opti-
ized designs, sensitivity analysis required for gradient-based
ptimization, and values of algorithm parameters.

. Methods

This section presents the multimaterial stress-constrained
opology optimization framework that simultaneously considers
istinct elastic moduli, yield strengths, and yield criteria. We first
2

introduce the design parameterization of multimaterial structures
and then focus on the proposed interpolation scheme for different
yield functions, after which the optimization formulation and
algorithm are presented.

2.1. Design parameterization of multimaterial structures

Design parameterization of multimaterial structures requires
a density design field (denoted by ρ(x)) and a material design
field (denoted by ξ (x)) [27,28]. The density field characterizes
aterial spatial occupancy, with ρ(x) = 1 and 0 indicating solid
nd void, respectively. The material field characterizes material
ypes, with ξ (x) = 1 and 0 representing Material 1 and Material
, respectively. For numerical computation, we consider piece-
ise constant distributions for both fields which are represented
y two design variable vectors denoted by ρ and ξ, with ρe
nd ξe being the values associated with element e in the Finite
lement Analysis (FEA). To regularize the design space, we apply
he density filter [29–31] and projection [32] operations to the
wo design variables to generate their corresponding physical
ariables, ρ̄ and ξ̄, which are used to represent the physical
ultimaterial structures [22,32] (see Appendix A).
Through the two physical variables, the elasticity tensor C(ξ )

of element e is obtained by the Solid Isotropic Material with
Penalization (SIMP) [27,33] through ρ̄ combined with a SIMP-like
interpolation through ξ̄ [2,22,28], i.e.,

C(ξ )
e (ρ̄e, ξ̄e) =

[
ε + (1 − ε)ρ̄epρ

] [
ξ̄e

pξC(1)
+
(
1 − ξ̄e

)pξ C(2)
]
. (1)

Here C(1) and C(2) are elastic tensors of Material 1 and Material 2,
respectively, pρ and pξ are SIMP penalization parameters, and ε
is a small number to avoid numerical singularity. This study uses
pρ = pξ = 3, which are commonly adopted values in topology
optimization studies [22,32,34]. It can be seen that, when ρ̄e =

1 and ξ̄ = 1, C(ξ ) reduces to C(1); and when ρ̄ = 1 and
e e e
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ē = 0, C(ξ )
e reduces to C(2). Notice that the interpolation (1) is

popular numerical scheme to facilitate the design optimization
ather than computing the homogenized properties, and hence,
(ξ ) is physically well-defined only when ρ̄e, ξ̄e ∈ {0, 1}, which is

enforced by the projection technique. Without loss of generality,
we assume that Material 1 and Material 2 are both isotropic
with Poisson’s ratio ν = 0.3. Hence, the interpolation (1) can be
simplified to the interpolation of Young’s moduli,

E(ξ )
e (ρ̄e, ξ̄e) =

[
ε + (1 − ε)ρ̄epρ

] [
ξ̄e

pξ E(1)
+
(
1 − ξ̄e

)pξ E(2)
]
, (2)

with E(1) and E(2) being Young’s moduli of Material 1 and Material
2, respectively.

2.2. Interpolation of yield functions and strengths

This subsection introduces a yield function interpolation
scheme that enables stress-constrained topology optimization
using materials with distinct yield criteria and strengths. We first
express the general yield criterion f (σ) for an isotropic material
as [35]:

f (I1(σ), J2(σ), J3(σ)) ≤ 1, (3)

with I1(σ) = tr(σ), J2(σ) =
1
2 s(σ) : s(σ), J3(σ) = det(s(σ)), where

is the stress tensor, s(σ) = σ −
1
3 I1(σ)I is the deviatoric stress

ensor, I1 is the first invariant of the stress tensor σ, J2 and J3 are
the second and third invariants of the deviatoric stress tensor s,
respectively, and I is the identity tensor. Accordingly, the yield
surface is determined by taking f (I1(σ), J2(σ), J3(σ)) = 1. As two
special cases of (3), the von-Mises [36] and Drucker–Prager [37]
criteria can be expressed as:

f (σ) =

√
3J2(σ)
σ̄

≤ 1 (4)

nd

(σ) =

√
J2(σ)
A

−
B
A
I1(σ) ≤ 1, (5)

respectively, where σ̄ is the strength for von-Mises material, A =

2
√
3

(
σ̄c σ̄t
σ̄c+σ̄t

)
and B =

1
√
3

(
σ̄t−σ̄c
σ̄c+σ̄t

)
are parameters of the Drucker–

Prager material with σ̄t and σ̄c denoting the uniaxial tension and
compression strengths, respectively.

While (3) is general, it does not account for multiple differ-
ent yield criteria. Here, we propose a SIMP-like yield function
interpolation scheme that simultaneously considers two (can be
generalized to any number) distinct yield functions f (1)(σ(1)) and
f (2)(σ(2)) for the two candidate materials. The interpolated yield
function f (ξ )e (·) (associated with element e) takes the expression:

f (ξ )e

(
ξ̄e, σ

(1), σ(2))
= ξ̄e

pfξ f (1)(σ(1)) +
(
1 − ξ̄e

)pfξ f (2)(σ(2)) ≤ 1, (6)

where σ(i) .
= C(i)ϵ(i) is the stress tensor of the ith material with

ϵ(i) being the linearized strain tensor, and pfξ is the penalization
parameter for the yield function interpolation. This study uses
pfξ = 1, which is chosen based on numerical investigations.
More discussions on the appropriate pfξ values are provided in
Appendix B. Similarly to the interpolated elasticity tensor (1), the
interpolated yield function f (ξ )e recovers the yield function of f (1)
and f (2) when ρ̄e = 1, ξ̄e = 1 and ρ̄e = 1, ξ̄e = 0, respec-
tively. We remark that the proposed yield function interpolation
scheme simultaneously accounts for different yield criteria and
different yield strengths, as both information is encoded in the
yield function of each candidate material.

This study assumes well-bonded material interfaces. The as-
sumption is valid for materials that can form sufficiently strong
chemical bonds at the interfaces. For example, cross-linking two
Polydimethylsiloxane (PDMS) elastomers based on partial curing
3

can develop high interfacial strengths and reduce the likelihood
of interfacial failure, which is validated through experiments [38,
39]. For materials that require adhesives to bond, interfacial fail-
ure could happen. In that case, considering interfacial strength in
topology optimization warrants in-depth investigations, however,
it is beyond the scope of this study.

2.3. Topology optimization formulation

Based on the proposed yield function interpolation (6), we
present a multimaterial stress-constrained topology optimization
formulation for volume minimization problems. To achieve faster
convergence in optimization, we transform the original stress
constraint (6) into an equivalent polynomial version [35]. The
polynomial version imposes higher penalty when the stress con-
straint is severely violated and hence accelerates the search for a
feasible optimization domain. The formulation in terms of design
variables ρ and ξ is given by:

minρ,ξ V (ρ) =
∑N

e=1 ρ̄e(ρ)ve
s.t. ge(ρ, ξ,U(ρ, ξ)) = [ε + (1 − ε)ρ̄e(ρ)pρ ]

(f (ξ )e (ξ,U(ρ, ξ)) − 1)
((f (ξ )e (ξ,U(ρ, ξ)) − 1)2 + 1) ≤ 0,
e = 1, . . . ,N

ρe, ξe ∈ [0, 1], e = 1, . . . ,N
with: K(ρ, ξ)U = Fext,

(7)

where N is the total number of elements in the mesh, K(ρ, ξ) is
he global stiffness matrix obtained from the interpolated elastic-
ty tensor in Eq. (1), U is the global displacement vector, and Fext is
the global external force vector. Notice that the formulation does
not restrict the individual volume fraction of each candidate ma-
terial in the design. Hence, the appearance and volume fractions
of different materials in the final designs are determined solely
by the tendency to achieve a lower objective function value.

The formulation (7) involves N nonlinear local stress con-
straints (corresponding to N finite elements) and, hence, is highly
hallenging to solve. In most studies, this challenge is bypassed
y using aggregation methods (e.g., the p-norm approach [40])
here the N constraints are lumped into one or a handful of
onstraints. However, as stress is intrinsically local, aggregation
pproaches may cause numerical issues in the optimized de-
igns [41]. More recently, the Augmented Lagrangian (AL) method
42,43], which preserves the local nature of stress constraints, has
een used to successfully tackle single-material stress-
onstrained problems [35,44–53]. Therefore, the AL method is
dopted in this study to solve the optimization problem (7).
The AL method solves a series of (augmented) unconstrained

ptimization sub-problems with penalty terms to approach the
olution of the original constrained problem. At each step of
he series, an unconstrained optimization problem is solved to
pdate the design variables and penalty parameters. Specifically,
t the kth optimization step, the corresponding unconstrained
ptimization sub-problem is formulated as [52]

in
ρ′,ξ′

ψ (k)(ρ′, ξ′) = V (ρ′) +
1
N

N∑
e=1

[
λ(k)e h(k)

e (ρ′, ξ′)

+
µ(k)

2
h(k)
e (ρ′, ξ′)2

]
,

(8)

where ψ (k)(ρ′, ξ′) is the kth step (augmented) objective function
with ρ′ and ξ′ denoting dummy design variables corresponding to
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Table 1
Overview of numerical examples.
Example Properties varied for

different materials
Highlights

Ex. 1 E and σ̄ Appearance and proportions of two
materials, stress deconcentration effect,
volume reduction due to stiffness
heterogeneity

Ex. 2 σ̄ and f (σ) Distinct yield criteria, distinct optimized
designs for different materials, volume
reduction by exploitation of
tension–compression strength asymmetry

Ex. 3 E, σ̄ and f (σ) Three-dimensional problem, distinct
stiffness, strengths, and yield criteria

ρ and ξ, he(ρ′, ξ′) is the equality constraint for eth element given
y

(k)
e (ρ′, ξ′) = max

(
ge(ρ′, ξ′,U(ρ′, ξ′)),−

λ
(k)
e

µ(k)

)
, (9)

where λ(k)e are the Lagrange multiplier estimators, and µ(k) is a
enalty coefficient. The solution of the unconstrained problem (8)
pdates the design variables, i.e., ρ(k+1)

= ρ′∗ and ξ(k+1)
= ξ′∗,

hich are then used to update the penalty parameters through
(k+1)

= min
(
αµ(k), µmax

)
and λ(k+1)

e

= λ(k)e + µ(k)h(k)
e

(
ρ(k+1), ξ(k+1)) , (10)

here α > 1 is a constant penalty update factor and µmax is
an upper bound of the penalty coefficient to prevent numeri-
cal instability. The unconstrained sub-problem is solved by the
gradient-based Method of Moving Asymptotes [54]. The expres-
sions of the gradients with respect to the design variables are
provided in Appendix C.

3. Results and discussions

This section presents three numerical examples of optimized
multimaterial designs obtained with the proposed yield func-
tion interpolation scheme. The first example focuses on stress
deconcentration effect produced by stiffness heterogeneity. The
second example demonstrates the efficient utilization of avail-
able candidate materials with different yield criteria. The third
example extends the proposed methodology to a complex 3D
problem. The three examples demonstrate unique advantages of
material heterogeneity (i.e., variation in Young’s modulus E, yield
strength σ̄ , and yield criterion f (σ)) from different perspectives.
A summary of the highlights and features of these examples is
given in Table 1.

The optimization is terminated when a prescribed maximum
number of AL steps is reached or a prescribed tolerance for
the stress constraints is achieved after the projections of design
variables are applied. The values of the AL parameters and con-
vergence tolerances for all numerical examples are provided in
Appendix D.

3.1. Ex.1: Designs with distinct stiffness and strengths

The first example reveals two key parameters governing the
appearance and relative portions of different materials in opti-
mized designs. It also illustrates the unique stress deconcentra-
tion effect produced by material stiffness heterogeneity, which
yields multimaterial designs with significantly lower volumes
than single-material designs. This example considers two candi-
date materials (labeled as Material 1 and Material 2, respectively)
both governed by the von-Mises criterion but with different
 i

4

elastic moduli and yield strengths. Using the two materials, we
investigate five design cases with a corbel design domain as
shown in Fig. 2(a). Different material parameters are listed in
Fig. 2(b). The first three cases (Dsg. 1 to 3) use two materials
with increasing yield strength in Material 2. The other two cases
(Dsg. 3 A and 3B) use single materials with properties identical to
Dsg. 3. The obtained optimized designs with density and material
filter radii Rρ = Rξ = 190.0 mm are shown in Fig. 2(c) along
with their fringe plots of yield function measure (YFM) (defined as[
ε + (1 − ε)ρ̄epρ

]
f (ξ )e ) and principal stress distributions relative

to the yield surfaces. The yield surface plots demonstrate the
satisfaction of stress constraints within all structures.

With Dsgs. 1 to 3, we show that the appearance and relative
portions of the two materials depend not only on the relative
yield strengths but also on the strength-to-stiffness ratios of
different materials denoted by φ. On the one hand, the influence
of the relative yield strengths is demonstrated by Dsg. 1 where
only Material 1 with higher yield strength but the same φ appears
as it allows for higher stress in the design as compared to Material
2. On the other hand, the influence of the strength-to-stiffness
ratio φ is demonstrated by Dsg. 2 where Material 2 with the lower
yield strength but higher φ value appears in the two re-entrant
corners. In general, the material with higher values of σ̄ and φ
occupies a larger portion in the optimized designs. This trend is
shown by comparing Dsgs. 1 to 3, where the increase of these
two quantities in Material 2 raises its portion in the optimized
structures.

Furthermore, the material with higher values in σ̄ and φ does
ot exclusively occupy the final designs. As shown in Dsg. 3,
lthough Material 2 has higher σ̄ and φ than Material 1, Ma-
erial 1 remains in the optimized design. This reveals a stress
econcentration effect enabled by stiffness heterogeneity that can
e harnessed to further reduce the volume of the design. To
llustrate this stress deconcentration effect, we investigate two
ingle-material designs (Dsg. 3A and 3B) with material properties
elastic moduli and yield strengths) identical to those in Dsg. 3. As
hown in Fig. 2(c), the volume of the composite Dsg. 3 is 31% and
% lower than the single-material Dsgs. 3A and 3B, respectively.
he reduction in volume comes from a stress deconcentration
ffect enabled by stiffness heterogeneity, which can be elucidated
y comparing the YFM fringe plots of the three designs. In the
ingle-material designs (Dsg. 3A and 3B), the internal parts of the
ptimized structures are under-stressed with YFM values lower
han 0.7, while their outer parts are close to maximum stress
imits of the corresponding materials with YFM values equal to
. Although the substantial amount of unused strength capac-
ty in the internal parts may indicate inefficient material usage,
hese internal members cannot be arbitrarily reduced in size or
emoved because doing so would increase the stress level in those
everely-stressed outer regions and lead to violation of the stress
onstraint in those regions. By contrast, the inefficiency is allevi-
ted in the multimaterial design (Dsg. 3). As shown in the fringe
lot of Dsg. 3, the YFM is distributed much more evenly with
alues close to 1, representing a less concentrated stress state in
uter regions. This stress deconcentration effect is achieved by
ombining materials with different stiffness within the structure
o that the stiffer material placed in regions that tend to be
nder-stressed can partially unload stress in regions that tend
o get higher stress. By harnessing this stress deconcentration
echanism enabled by stiffness heterogeneity, the proposed mul-

imaterial framework generates a composite structure with lower
olume compared to single-material structures made of either of

ts constituent material.
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Fig. 2. Stress deconcentration in optimized multimaterial designs. (a) Design domain and boundary conditions (BCs), L = 2.0 × 103 mm, d = 4.0 × 102 mm,
q = 5.3× 104 N/mm. (b) Material properties used for the designs (units: N and mm). (c) Multimaterial and single-material designs, corresponding YFM distributions,
and principal stresses with yield surfaces.
3.2. Ex.2: Designs with distinct strengths and yield criteria

The second design example presents structures optimized
considering multiple materials governed by distinct yield cri-
teria and demonstrates enhancement of structural performance
enabled by tension–compression strength asymmetry. The de-
sign domain and prescribed boundary conditions are shown in
Fig. 3(a). For this design problem, we consider two materials with
the same elastic moduli governed by von-Mises and Drucker–
Prager yield criteria, respectively. The values of material proper-
ties are listed in Fig. 3(b). Notice that, the tension and compres-
sion strengths of the von-Mises material are identical; whereas
the compression strength of the Drucker–Prager material is
higher than the tension one. Filter radii Rρ = Rξ = 50.0 mm
re used for all three designs.
In this example, we investigate three design scenarios. The

irst and second designs only consider the von-Mises material
Dsg. VM), and the Drucker–Prager material (Dsg. DP), respec-
ively. The third design considers both von-Mises and Drucker–
rager materials by adopting the proposed yield function
nterpolation scheme (6). These three optimized designs are
hown in Fig. 3(c) along with their YFM plots and principal
stresses.

The three optimized designs considering different yield cri-
eria show distinct geometries, which is caused by the different
ension–compression symmetry properties of the von-Mises and
rucker–Prager criteria. As shown in Fig. 3(c), Dsg. VM forms
wo vertical tension members to connect the upper rollers and
as no structural members attached to the bottom supports.
his is because forming members to connect the upper rollers
ields a shorter load path than forming members to reach the
5

bottom supports. Moreover, the high tension strength in von-
Mises material allows those vertical tension members to have
small cross-sectional areas in order to minimize volume. By con-
trast, because such a high tension strength is unavailable in the
Drucker–Prager material, compression members are favored in
the Dsg. DP over tension ones in order to reduce their cross-
sectional areas. As a result, Dsg. DP forms two inclined columns
attached to the bottom supports and has no tension members
connected to the upper rollers, leading to a structural configu-
ration distinct from Dsg. VM. Notice that, although Dsg. DP has a
slightly longer load path than Dsg. VM, their optimized volumes
are almost identical. This is because the structural members in the
Dsg. DP have relatively smaller cross-sectional areas enabled by
the higher compression strength of the Drucker–Prager material
compared to the von-Mises one.

The two-material design (Dsg. VM-DP) attains a structural
configuration which combines features from both optimized
single-material designs. As shown in Fig. 3(c), both the tension
members, which are made of von-Mises material and connected
to the upper rollers, and the compression columns, which are
made of Drucker–Prager material and connected to the bot-
tom supports, are present in Dsg. VM-DP. We remark that such
a two-material design cannot be achieved by considering two
candidate materials both of which are governed by either von-
Mises or Drucker–Prager criteria. The optimized volume of the
two-material design (Dsg. VM-DP) is approximately 10% lower
than those of the two single-material ones, which is a result of
the enlarged design space and the suitable exploitation of the
tension–compression symmetry properties of the different yield
criteria for the candidate materials. Moreover, the two-material

Dsg. VM-DP along with its further reduced volume demonstrates
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Fig. 3. Multimaterial design with von-Mises and Drucker–Prager type materials. (a) Design domain and BCs, L = 2.0× 103 mm, H = 1.5× 103 mm, t = 7× 102 mm,
b = 4.5 × 102 mm, h = 5.0 × 102 mm, d = 1.0 × 102 mm, q = 1.9 × 104 N/mm. (b) Material properties used for the designs (units: N and mm). (c) Single-material
and multimaterial designs, corresponding YFM distributions, and principal stresses with yield surfaces.
the effectiveness of the yield function interpolation and the
unique advantages of using multiple candidate materials with
different yield criteria.

3.3. Ex.3: 3D designs with distinct stiffness, strengths, and yield
criteria

This example presents 3D multimaterial structures optimized
using two candidate materials with distinct elastic moduli, yield
strengths, and yield criteria (Tresca [55] and Mohr–Coulomb
[56]). Tresca criterion is hydrostatically-independent and has
identical tension and compression strengths, and it is mainly used
for metals; whereas Mohr–Coulomb criterion is hydrostatically-
dependent and has a tension strength considerably lower than
compression strength, which is typically used for quasi-brittle
materials. For comparison, we investigate designs optimized with
Tresca material only (Dsg. TR), Mohr–Coulomb material only
(Dsg. MC), and both materials (Dsg. TR-MC). The design domain
(discretized by approximately 322K hexahedral elements) and
boundary conditions are shown in Fig. 4(a). The properties of both
Tresca (Material 1) and Mohr–Coulomb (Material 2) materials
are listed in Fig. 4(b). The optimized designs with filter radii
Rρ = Rξ = 40.0 mm of the three cases are shown in Fig. 4(c)
along with their corresponding YFM fringe plots and principal
stresses.

The three optimized designs exhibit distinct geometries and
material distributions, which are caused by the different shapes
of the two yield surfaces. Dsg. TR forms four tension members
which connect to the top supports to sustain the load and has
no members connecting to the bottom supports as they would
increase total structural volume due to longer load paths. By
contrast, Dsg. MC generates four inclined columns which are
under compression to attach to the bottom supports and forms
no tension members connecting to the top supports because
6

those members would require much larger cross-section area
(and hence total volume) as a result of the low tension strength of
the Mohr–Coulomb material. The inefficiency of tension members
is demonstrated at the lower chords of Dsg. MC, which have
wide, plate-like cross-sections that lead to a 55% increase in
total volume compared to Dsg. TR. The two-material Dsg. TR-
MC forms four compression columns made of the Mohr–Coulomb
material, which is similar to Dsg. MC, but the lower chords are
made of Tresca material and hence possess a considerably smaller
cross-section area compared to Dsg. MC. The optimized geometry
and distribution of the two distinct materials produce a total
structural volume lower than those of Dsg. TR and Dsg. MC,
demonstrating the advantage of combining multiple materials to
achieve higher structural efficiency.

4. Conclusions

This study puts forth a multimaterial stress-constrained topol-
ogy optimization formulation with the objective of minimizing
total structural volume. The main innovation of the formulation
lies in its capability of simultaneously handling multiple can-
didate materials with distinct elastic properties, strengths, and
yield criteria, the latter of which has been rarely investigated
in existing work. To enable this capacity, a novel yield function
interpolation scheme is proposed to handle multiple candidate
materials not only having different yield/failure strengths but also
governed by different yield criteria (with distinct forms of yield
functions) in a unified manner. An AL algorithm, which preserves
the local nature of the stress constraint, is employed to efficiently
solve the optimization problem with many constraints.

Using the proposed formulation, we investigate several 2D
and 3D design cases and obtain optimized structures with un-
conventional geometries and material phase distributions. The
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Fig. 4. Multimaterial design with Tresca and Mohr–Coulomb type materials. (a) Design domain and BCs, L = 1.5 × 103 mm, H = 1.0 × 103 mm, B = 7.5 × 102 mm,
= 1.0 × 103 mm, h = 6.5 × 102 mm, d = 1.0 × 102 mm, r = 5.0 × 101 mm, q = 76.4 N/mm2 . (b) Material properties used for the designs, (units: N and mm). (c)
ingle-material and multimaterial designs, corresponding YFM distributions, and principal stresses with yield surfaces.
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ptimized designs reveal several fundamental advantages pro-
ided by heterogeneity in stiffness, strength, and yield/failure
riteria, including the enlarged design space achieved by the
nclusion of different yield criteria, the stress deconcentration
ffect enabled by stiffness and strength heterogeneity, and the ex-
loitation of diverse tension–compression symmetry/asymmetry
n both hydrostatically-independent and -dependent materials.
hese unique advantages are comprehensively and effectively
arnessed by the proposed formulation to generate optimized
omposite designs with significantly improved structural effi-
iency and reduced structural volume relative to single-material
tructures. The findings facilitate the discovery of better and more
fficient composite structures across various fields.
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ppendix A. Projection and filter of design variables

Projection [32] and filter [31] are common techniques in topol-
gy optimization used to achieve mesh-independent and dis-
rete designs [31,34]. The physical variables are obtained by the
7

smoothed Heaviside projection [22,32] through

ρ̄e =
tanh(βρηρ) + tanh(βρ(ρ̃e − ηρ))
tanh(βρηρ) + tanh(βρ(1 − ηρ))

and

ξ̄e =
tanh(βξηξ ) + tanh(βξ (ξ̃e − ηξ ))
tanh(βξηξ ) + tanh(βξ (1 − ηξ ))

(A.1)

here the projection discreteness is regulated by the Heaviside
arameters βρ and βξ , and the projection thresholds ηρ and ηξ ,

and ρ̃ and ξ̃ are intermediate filtered variables [29,30] obtained
by:

ρ̃e =

∑
j∈ne(Rρ) w

(
xj
)
vjρj∑

j∈ne(Rρ) w
(
xj
)
vj

and ξ̃e =

∑
j∈ne(Rξ ) w

(
xj
)
vjξj∑

j∈ne(Rξ ) w
(
xj
)
vj

(A.2)

where xj is the location of the centroid of element j, vj is the
orresponding element volume, ne is the neighborhood of ele-
ent defined by a filter radius R, i.e., ne(R) =

{
j :
xj − xe

 ≤ R
}
,(

xj
)
is the cubic weight function defined as w

(
xj
)

= max

0, 1 −
∥xj−xe∥2

R

)3
, and Rρ and Rξ are the filter radii for density

and material design variables, respectively.

Appendix B. Effect of parameter pfξ in yield function interpo-
lation

The parameter pfξ in the proposed yield function interpolation
(6) can impact the final optimized designs. Here, we study and
demonstrate this impact, discuss its underlying mechanism, and
justify the value (pfξ = 1) used in all the numerical examples.
To this end, we use three different values of pfξ , i.e., pfξ = 0.5,
1, and 1.5 and show their associated interpolated yield surfaces
with ξ̄ = 0.2, 0.5, and 0.8, respectively. We also compare the
three corresponding optimized designs in terms of their final
volumes, YFM fringe plots, principal stress distributions, and the
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Fig. B.5. Effect of parameter pfξ in yield function interpolation. (a) Interpolated yield surfaces for different values of pfξ and ξ̄ , E and σ̄ are in MPa. (b) Optimized
multimaterial designs for different values of pfξ , corresponding YFM distributions, and principal stresses with yield surfaces.
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extent of intermediate material remaining in the final optimized
designs. The parameterMξ represents the amount of intermediate
materials in the optimized design and it is calculated as [31]
Mξ =

1
NS

∑
e∈S 4ξ̄e

(
1 − ξ̄e

)
× 100%, where S is the element set

ith ρ̄ > 0.01 and NS is the number of elements that belong to
.
Fig. B.5(a) illustrates the influence of parameter pfξ on the

hape of interpolated yield surface for various levels of material
ixing (characterized by ξ̄ values). For pfξ = 0.5, the interpolated
ield surface is contained by the two material yield surfaces for

¯ = 0.2, 0.5, and 0.8. This restricted interpolation reduces the
tress limit in mixed materials existing during the early stage of
he optimization, which could result in higher objective function
alue compared to the case pfξ = 1. For pfξ = 1, the interpolated
ield surface lies between the yield surfaces of Material 1 and
aterial 2 for all ξ̄ values and hence represents a proper inter-
olation of strengths. For pfξ = 1.5, the interpolated yield surface
s relaxed and excluded from yield surfaces of the two materials
nd overestimates the stress limits in mixed materials. This can
ead to violation of the local stress constraints in the optimized
esigns.
Fig. B.5(b) demonstrates the influence of parameter pfξ on

he optimized multimaterial designs. The restricted interpolation
pfξ = 0.5) induces excess penalization of stresses for inter-
ediate materials at the early stage of optimization, and leads

o an optimized design with higher volume compared to the
esign with proper interpolation (pfξ = 1). By contrast, the
elaxed interpolation (pfξ = 1.5) promotes material removal
y overestimating stress limits in mixed materials, and leads to
n optimized design with volume slightly lower than that with
roper interpolation (pfξ = 1). However, the relaxed interpolation
ontains almost 8 times more intermediate materials in the final
esign compared to the proper interpolation with the same βξ .
oreover, we observe that the relaxed and restricted interpola-

ions tend to cause stress-constraint violations for Material 1 and

, respectively, which are indicated by corresponding maximum

8

FM values surpassing 1 and principal stresses residing outside
he material yield surfaces.

ppendix C. Sensitivity analysis

Gradient-based design updates require the sensitivity of the
L function in Eq. (8). Here, we present the detailed expression
f the sensitivity for the proposed multimaterial formulation. The
ensitivity of the AL function with respect to ρ and ξ is obtained
hrough the chain rule:

∂ψ (k)

∂ρe
=

N∑
i=1

∂ψ (k)

∂ρ̄i

∂ρ̄i

∂ρ̃i

∂ρ̃i

∂ρe
(C.3)

∂ψ (k)

∂ξe
=

N∑
i=1

∂ψ (k)

∂ξ̄i

∂ξ̄i

∂ξ̃i

∂ξ̃i

∂ξe
(C.4)

The second and third terms of the R.H.S. of the Eqs. (C.3) and (C.4)
can be computed based on (A.1) and (A.2), respectively. Thus,
the main complication lies in the first terms. They are computed
through

∂ψ (k)

∂ρ̄e
=

ve∑N
k=1 vk

+
1
N

{[
λ(k)e + µ(k)h(k)

e

] ∂h(k)
e

∂ρ̄e
+ ΛT

(
∂Fint
∂ρ̄e

)}
(C.5)

∂ψ (k)

∂ξ̄e
=

1
N

{[
λ(k)e + µ(k)h(k)

e

] ∂h(k)
e

∂ξ̄e
+ ΛT

(
∂Fint
∂ξ̄e

)}
(C.6)

where Λ is the adjoint vector obtained by solving the adjoint
system:

KΛ = −

N∑[
λ(k)e + µ(k)h(k)

e

] ∂h(k)
e

∂U
(C.7)
e=1
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F
e
c
k

or the linear material model considered in our study, the gradi-
nts of internal force Fint with respect to the physical variables
an be expressed using the solid material stiffness matrices k(1)

0,e,
(2)
0,e, and displacement vector ue for the eth element as:

∂Fint
∂ρ̄e

= [(1 − ϵ)pρ ρ̄
pρ−1
e ]

(
ξ̄
pξ
e k(1)

0,e + (1 − ξ̄e)pξ k
(2)
0,e

)
ue (C.8)

∂Fint
∂ξ̄e

= [ϵ + (1 − ϵ)ρ̄pρ
e ]

(
pξ ξ̄

pξ−1
e k(1)

0,e − pξ (1 − ξ̄e)pξ−1k(2)
0,e

)
ue

(C.9)

The gradients of equality constraints h(k)
e vanish when g (k)

e <

−
λ
(k)
e
µ(k) ; otherwise, they are computed through (superscript k is

omitted hereafter because all the operations are carried out in
same kth AL step):

∂he

∂ρ̄e
=
∂ge
∂ρ̄e

= [(1 − ϵ)pρ ρ̄
pρ−1
e ](f (ξ )e − 1)((f (ξ )e − 1)2 + 1) (C.10)

∂he

∂ξ̄e
=
∂ge
∂ξ̄e

= [ϵ + (1 − ϵ)ρ̄pρ
e ](3(f (ξ )e − 1)2 + 1)

∂ f (ξ )e

∂ξ̄e
(C.11)

∂he

∂U
=
∂ge
∂U

= [ϵ + (1 − ϵ)ρ̄pρ
e ](3(f (ξ )e − 1)2 + 1)

∂ f (ξ )e

∂U
(C.12)

Finally, the gradients of f (ξ ) with respect to the physical mate-
rial variable ξ̄ and state variable U are obtained for element e
through:

∂ f (ξ )e

∂ξ̄e
= pfξ ξ̄

pfξ −1
e f (1) − pfξ (1 − ξ̄e)

pfξ −1f (2) (C.13)

∂ f (ξ )e

∂U
= ξ̄

pfξ
e
∂ f (1)

∂U
+ (1 − ξ̄e)

pfξ
∂ f (2)

∂U
(C.14)

∂ f (m)

∂U
=

(
∂ f (m)

∂ I (m)
1

∂ I (m)
1

∂σ(m) +
∂ f (m)

∂ J (m)
2

∂ J (m)
2

∂σ(m) +
∂ f (m)

∂ J (m)
3

∂ J (m)
3

∂σ(m)

)
·
∂σ(m)

∂U

m = 1, 2

(C.15)

Here, f (m), I (m)
1 , J (m)

2 , and J (m)
3 are obtained from the Cauchy stress

σ(m) corresponding to Material m (m = 1, 2) inside element e. For
the detailed expressions of the gradients of single-material yield
function with respect to the stress invariants and gradients of
stress invariants with respect to Cauchy stress tensor, the readers
are referred to [35]. The gradient of Cauchy stress tensor with
respect to displacement vector is obtained as ∂σ(m)

∂U = C(m)B(m),
where C(m) is the solid material constitutive matrix and B(m) is
the strain–displacement matrix of Material m (m = 1, 2).

Appendix D. Parameters for the augmented Lagrangian algo-
rithm

The values of the AL parameters and convergence criteria for
all numerical examples are listed in Table D.2. Lagrange multiplier
estimators (λe) are updated after each AL step, and the penalty
coefficient (µ) is updated when the average change in density
design variable is below a prescribed tolerance.
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