


quite suitable as representations of “near-term”/“immediate”

intents suitable for finite time horizon predictions of the

robot’s position. The Bayesian intent inference framework

then generates a finite set of possible intents using given

patterns of temporal logic formulas and places a prior

distribution on these formulas to represent the probability

that a given formula represents the robot’s intent. Next, we

use a model of “noisy rationality” to provide a probability

that a robot takes a given action in the workspace given

its true intent. This model compares the cost of the action

and the most efficient path from the resulting state to the

overall goal of the intent against other possible actions. We

use temporal logic planning techniques based on converting

formulas to automata and solving shortest path problems to

compute these costs.

Temporal logic specification inference from observation

data have been studied widely in the recent past [25]–[28].

The main difference from our work is that they assume the

entire trajectory is available at once, whereas we use the parts

of the trajectory. Furthermore, our approach uses intents as

a means to perform predictions of future positions.

We evaluate our framework on two datasets: a probabilistic

roadmap simulation dataset, wherein we use the popular

PRM planning technique to generate motion plans for some

tasks while using our intent inference technique to predict the

intents and future positions without knowledge of the overall

mission plan. A second data set consists of trajectories of

humans inside a room, called TḦOR [29]: here we are

provided noisy position measurements with unknown intents.

Thus, both datasets include a moving agent implementing

various subtasks on the way to a goal, which is unknown to

our monitor. The results show that our method can predict

future positions with high accuracy, and all computations can

be implemented in real-time.

The contributions of this paper are as follows:

1) We introduce a Bayesian intent inference framework

leveraging an intent information of a robot. The frame-

work computes the probability distribution of all possi-

ble intents written in LTL.

2) Using the outputs of the framework, we can effectively

carry out predictive monitoring that can be used in many

robotic applications.

3) All computations can be implemented with sufficient

efficiency to enable real-time monitoring.

To the best of our knowledge, this work is the first attempt

to use a logic-based Bayesian intent inference for predictive

monitoring.

II. PROBLEM FORMULATION

Central to our framework is a “map” of the robot’s

workspace that is discretized into finitely many cells. Each

cell is labeled with an atomic proposition that characterizes

the attributes of the cell. We use the mathematical model of

a weighted finite transition system to capture the map (or the

workspace) of the robot.

Definition 1 (Weighted Finite Transition System): A

weighted finite transition system T is a tuple (C,R,Π,L,ω)

wherein C is a finite set of cells, R ⊆C×C is the transition

relation that represents all allowable moves from one cell

to the next by the robot, Π is a set of boolean atomic

propositions, L : C → 2Π is a labeling function that associates

each cell c ∈C with a set of atomic propositions L(c), and

ω : R →R≥0 maps each edge in R to a non-negative weight.

Therefore, the position of a robot at time t can be defined

as a cell xt ∈C. Atomic propositions label attributes/features

such as airport, fire, mountain, and so on (see Fig. 1). A path

in T is an infinite sequence of cells p = c0c1c2 · · · such that

ci ∈C and (ci,ci+1) ∈ R for each i ∈ N.

a) Linear Temporal Logic: In this paper, we assume

that a robot has a high-level mission to implement before

going to a goal location. For example, “H1: Visit π1,π2, and

π3 in some order”, or “H2: Visit π3 while avoiding π5”. To

formally express such requirements, we use linear temporal

logic (LTL) whose grammar is defined as follows:

ϕ ::= true | false |π ∈ Π |¬ϕ |ϕ ∧ϕ |#ϕ |ϕ U φ .

In addition, two temporal operators, eventually (♦ϕ :

trueU ϕ) and globally (�ϕ : ¬♦¬ϕ) can be derived. The

formula �ϕ is satisfied if ϕ holds for all time and ♦ϕ is

satisfied if eventually at some point in time ϕ is satisfied.

We refer the reader to standard texts for a detailed description

of temporal logic and its applications [30], [31]. Using LTL,

we can express the mission H1 : ♦π1 ∧ ♦π2 ∧ ♦π3 and

H2 : ♦π3 ∧�¬π5. Using LTL is beneficial because it is ca-

pable of describing complex missions clearly although some

fundamental properties like safety (�¬ϕ) and reachability

(♦ϕ) are mostly used for robot missions in many scenarios,

and because it enables us to use temporal logic motion

planning [14]–[20].

b) Assumptions: We assume full knowledge of the

transition system T is available at any time. Also, if the

map is updated in the case of dynamic scenarios, the new

information is assumed to be available immediately. On the

other hand, the robot’s mission is assumed to be unknown

but expressible as a temporal logic formula involving atomic

propositions in the map.

In this paper, we investigate two problems — intent

inference and predictive monitoring. Fig. 2 shows how these

problems relate to each other in our proposed framework.

Intent Inference: Given a transition system T

and the recent history of robot cells at time t,

xt ,xt−1, · · · ,xt−h, we wish to infer a distribution of likely

intents{(ϕ1, p1), . . . ,(ϕn, pn)}, wherein ϕi is a temporal

logic formula involving atomic propositions Π, and pi ≥ 0

is its associated probability with ∑
n
i=1 pi = 1.

Predictive Monitoring: Given a distribution over intents, we

wish to compute a distribution of future positions xt+k at time

t+k. At time t+1, our approach receives new robot position

xt+1, requiring updates to the intents, and the predicted future

cell. This update needs to be computed in time that is much

smaller than the overall sampling time.
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Fig. 2. Diagram of the Bayesian intent inference framework

III. BAYESIAN INTENT INFERENCE

We first introduce our Bayesian approach to solve the

intent inference problem. The idea of our approach is to

generate possible intents as our hypotheses and evaluate their

probabilities using Bayesian inference (see Fig. 2).

A. Hypothesis Generation

Hypothesis generation is achieved using temporal logic

specification patterns that have been explored in previous

works (Cf. [16], [18]). Such patterns specify temporal logic

formulae with “holes” that can be filled in with atomic

propositions. Each such pattern defines a set of formulas

obtained by substituting all possible atomic propositions

of interest for each hole. To avoid potentially vacuous or

inconsistent intents, we may further require that the same

atomic proposition not be used in two distinct holes for a

given template.

Example 1: We list some commonly encountered patterns

of interest below. We substitute an atomic proposition in the

place of a hole denoted by “ ? ”, ensuring that the same

proposition does not appear in more than one hole.

• Avoid Region: �¬ ?

• Cover Region: ♦ ?

• First and Then Second Region: ♦
(

? ∧♦

(

?
))

• Reach While Avoid: ♦ ? ∧�¬ ?

As a result, each pattern can be expanded out into a set

of LTL formulae that represent possible intents of the agent.

B. Temporal Logic and Büchi Automata

We recall the standard connection between temporal log-

ics and automata on infinite strings, specifically Büchi au-

tomata [32], [33]. Let ϕ be a temporal logic formula over

atomic propositions in Π. Recall such a formula can be

encoded as a nondeterministic Büchi automaton.

Definition 2 (Büchi Automaton): A Büchi automaton A

is a tuple (Q,Π,E,q0,F) wherein Q is a finite set of states;

Π is a finite set of atomic propositions; E ⊆ Q×Π×Q is a

set of transitions, wherein each transition (qi,π,q j) indicates

the transition from state qi to q j upon observing atomic

proposition π; q0 is an initial state and F is the set of

accepting state.

Given an infinite sequence of atomic propositions

π0,π1,π2, . . ., a run of the automaton is an infinite sequence

of states q0,q1,q2, . . ., such that q0 is the initial state and

(qi,πi,qi+1) ∈ E for all i ≥ 0. Finally, a run is accepting

iff it visits an accepting state q ∈ F infinitely often. It is

well-known that every LTL formula can be translated into a

Büchi automaton [30], [31]. The problem of constructing a

Büchi automaton from a LTL specification has been widely

studied [34] with numerous tools such as SPOT [35].

a) Safety/Guarantee Formulas and Automata: In this

paper, we focus on a very specific class of safety and guar-

antee formulas, originally introduced by Manna & Pnueli

as part of a larger classification of all LTL formulas [24].

Briefly, safety formulas can be written using the � operator

with negations appearing only in front of atomic proposi-

tions, whereas guarantee formulas are written using the ♦

operator with negations appearing only in front of atomic

propositions.

Example 2: Going back to the Example 1, we note that

the “avoid regions” pattern is a safety formula, whereas the

“cover regions” and “temporal sequencing” patterns are guar-

antee formulas. Note that the coverage with the safety pattern

is the conjunction of a guarantee sub-formula (involving ♦)

and a safety sub-formula (involving �).

Assumption: We will assume that any hypothesis being

considered can be written as
(

M
∧

i=1

�¬πs,i

)

∧

(

N
∧

j=1

♦πg, j

)

, (1)

wherein A : {πs,1, . . . ,πs,M} is disjoint from B :

{πg,1, . . . ,πg,N}, and N > 1 (i.e, B 6= /0). Such a formula

represents the intent that the robot seeks to reach all regions

labeled by atomic propositions in the set B, in some order,

while avoiding all regions in A. More generally, however,

our framework can accommodate the conjunction of safety

formulas and guarantee formulas.

However, since our framework is probabilistic it associates

a measure of belief/probability with each hypothesis. Also,

since our framework is dynamic, these probabilities change

over time. Thus, it is possible for our framework to implicitly

infer a more complex high level objective that is not express-

ible in our restricted fragment of LTL. We will explore this

aspect of our work further in the future.

We now consider a special type of Büchi automaton that

we will call a safety-guarantee automaton.

Definition 3 (Safety-Guarantee Automaton): A Büchi au-

tomaton is said to be a safety-guarantee automaton if the set

of states Q is partitioned into three mutually disjoint parts:

Q : Qt ⊎F ⊎{r} wherein (a) the initial state q0 ∈ Qt ∪F , (b)

Qt is a set of “transient” states such that no state in Qt is

accepting; (c) F is the set of accepting states, and (d) r is

a special reject state. Furthermore, the outgoing edges from

each state in F either take us to a state in F or to the reject

state r. Finally, all outgoing edges from r are self-loops back

to r. Fig. 3 illustrates safety-guarantee automata.
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Lemma 1: A formula that satisfies the pattern in Eq. (1)

is represented by a safety-guarantee Büchi automaton.

Proof: (Sketch) Note that such a formula is made up

of a conjunction of �(¬π j) and ♦πi subformulas whose

automata are shown in Fig. 3 (left). The overall conjunction

is represented by the product of these automata, wherein a

product state is accepting iff each of the individual compo-

nent states are accepting. The rest of the proof is completed

by identifying the states in each partition to establish the

overall safety-guarantee structure of the automaton.

b) Significance of Safety-Guarantee Structure: We will

briefly explain why the overall structure of the automaton is

important in our framework. Note that temporal logic formu-

las are quite powerful in expressing a variety of patterns that

may include formulas such as �♦π which states that a cell

satisfying the atomic proposition π must be reached infinitely

often, or ♦�π which states that the robot will eventually

enter a region where π holds and stay in that region forever.

Natually, it is impossible us to infer that such an intent holds

or otherwise by observing any finite sequence of cells, no

matter how long such a sequence may be. For instance, a

robot intending to visit a region infinitely often may take a

long time before its first visit to such a region since there are

infinitely many steps ahead in the future. In this regard, the

safety-guarantee structure allows the robot to signal its likely

intent using a finite sequence: a robot intending to satisfy an

intent can signal this in finitely many steps by reaching an

accepting state in F . Likewise, a violation can also be seen

in finitely many steps by reaching the reject state r.

c) Product Automaton: We define the Cartesian prod-

uct between a weighted transition system T defining the

workspace and a Büchi automaton A .

Definition 4 (Product Transition System): The product

automaton T ⊗A is defined as the tuple: (S,δ , F̂ , ω̂):
1) S : C×Q is the Cartesian product of the set of cells in

T and states in A ;

2) δ ⊆ S×S is a transition relation s.t. ((ci,qi),(c j,q j))∈ δ
iff (ci,c j) ∈ R and (qi,πk,q j) ∈ E for some πk ∈ L(ci);

3) F̂ : C×F is the set of accepting states, and

4) ω̂((ci,qi),(c j,q j)) is a weight function that is set to be

equal to ω(ci,c j) if ((ci,qi),(c j,q j)) ∈ δ

The product automaton models all the “joint” moves that

can be made by a copy of the automaton A in conjunction

with a transition system T , wherein the atomic propositions

labeling each cell in T governs the possible enabled edges

in the automaton A .

C. Cost of Formula Satisfaction

Let T be a weighted transition system describing the

workspace of the robot and ψ be a formula that follows

the pattern in Eq. (1), and described by a safety-guarantee

automaton Aψ . For a given state xt of T , we define the cost

of satisfaction: C (xt ,ϕ) as the shortest path cost for a path

in the transition system T whose atomic propositions satisfy

the formula ϕ . Formally, we define (and compute) C (xt ,ϕ)
using the following steps:

1) Compute the product automaton T ⊗Aψ .

2) Compute the shortest path cost from the product state

(xt ,q0) to the set of accepting states F̂ in the product

automaton, wherein the cost of a path is given by the

some of edge weights along the path.

Note that the shortest cost path from a single product

automaton state to a set of accepting states is defined as

the minimum among all possible shortest path from the

source to each element of the set. Since all edge weights are

positive, we can calculate the cost from each cell xt ∈C to

the set of accepting states in time using Dijkstra’s algorithm

(single destination shortest path). To handle a set of possible

destination, we simply add a designated new destination

node and connect all accepting states to it using a 0 cost

edge. This calculation runs in time O((|δ |+ |S|) log(|S|))
wherein |S|= |C|×|Q| is the number of states in the product

automaton and |δ |= |R|× |E| denotes the number of edges.

D. Bayesian Inference of Intent

Let H : {ϕ1, . . . ,ϕn} be the set of hypothesized intents of

the robot whose current cell is denoted by xt ∈ C. We will

assume a prior probability distribution π over H wherein

π(ϕ j) denotes the prior probability over hypothesis formula

ϕ j. Our initial prior starts out by assigning each hypothesis

a uniform probability. The posterior from step t − 1 forms

the prior for step t with some modifications.

At each step, we obtain an updated robot position xt+1 ∈
C and use this fact to update the current distribution over

H . To do so, we require a model of robot decision making

that determines the conditional probability P(xt+1 | xt ,ϕ):
the probability given the intent ϕ and current cell xt , the

robot moves to cell xt+1. We will make an assumption of

Boltzmann noisy rationality [36].

a) Boltzmann Noisy Rationality Model: Let next(xt)
denote all the neighboring cells to xt . We assume that for

each cell c ∈ next(xt) the probability of moving to c is

proportional an exponential of the sum of the cost of moving

from xt to c and the cost of achieving the goal from c.

P(c|xt ,ϕ j) ∝ exp(−β (ω(xt ,c)+C (c,ϕ j))) ,

wherein β is a chosen positive number that represents the

rationality. For β = 0, the robot’s choice is just a uniform
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