Journal of Computational Physics 461 (2022) 111193

Contents lists available at ScienceDirect é‘:,‘:;';‘:l":fmal

Physics

Journal of Computational Physics

www.elsevier.com/locate/jcp

Corrected trapezoidal rules for singular implicit boundary m
integrals

Federico I1zzo ®*, Olof Runborg?, Richard Tsai P

a Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
b Department of Mathematics and Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX,
USA

ARTICLE INFO ABSTRACT
ArtiC{e history: We present new higher-order quadratures for a family of boundary integral operators re-
Received 6 July 2021 derived using the approach introduced in Kublik et al. (2013) [7]. In this formulation, a

Received in revised form 20 January 2022
Accepted 29 March 2022
Available online 31 March 2022

boundary integral over a smooth, closed hypersurface is transformed into an equivalent
volume integral defined in a sufficiently thin tubular neighborhood of the surface. The
volumetric formulation makes it possible to use the simple trapezoidal rule on uniform
Cartesian grids and relieves the need to use parameterization for developing quadrature.

f:{gosrg:'methods Consequently, typical point singularities in a layer potential extend along the surface’s
Closest point projection normal lines. We propose new higher-order corrections to the trapezoidal rule on the grid
Boundary integral formulations nodes around the singularities. This correction is based on local decompositions of the
Singular integrals singularity and is dependent on the angle of approach to the singularity relative to the
Trapezoidal rules surface’s principal curvature directions. The proposed decomposition, combined with the

volumetric formulation, leads to a special quadrature error cancellation.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Boundary integral methods (BIMs) are employed in a wide range of applications for solving partial differential equations
with conditions defined on boundaries of subregions and at infinity. In a BIM, one needs to solve a system of boundary
integral equations (BIEs) involving singular integral operators acting on an unknown function defined on the boundaries
and at infinity.

Typical computational challenges for a boundary integral method involve developing high-order quadrature rules for the
singular integrals and efficient dense matrix-vector computations for solving the resulting linear systems. Overcoming these
challenges leads to highly efficient and accurate solutions for the associated partial differential equations.

We consider applications that require solving BIEs on a sequence of surfaces that are challenging to parametrize. These
may include level set methods [1-3] and the closest point method [4-6] used to track evolving surfaces on a grid, par-
ticularly when the PDE solution is needed only at a small set far away from the surfaces. In such situations, it is not
immediately convenient to use any classical BIM. The implicit boundary integral formulations are derived in [7], aiming
at these situations. We refer to this as the IBIM approach. In [8,9], further analysis related to the closest point projection
is reported. In [10], a similar formulation is derived to approximate the hypersingular integral equations arising from the
Neumann problems of the Helmholtz equation. The method evaluates the limit of a family of surface integrals utilizing
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extrapolative averaging kernels. An IBIM is applied to compute electrostatic potential from large molecules submerged in a
solvent in [11]. That paper also demonstrates that IBIM, coupled with an “off-the-shelf” Fast Multipole Method, can easily
be applied to solve the equations for very large molecules. Partial differential equations arising from calculus of variation
problems defined on closed surfaces can be solved with high order convergence rates using similar strategies; see [12-15].

In the center of these formulations lie volume integrals with identical evaluations to the corresponding surface integrals.
The volume integrals involve integration in thin tubular neighborhoods of the surfaces in the ambient space, and do not
require surface parameterizations. In principle, the integrals can be approximated on a wide range of meshing. Among
the existing work, these volume integrals are discretized on Cartesian grids using the trapezoidal rule and a lower order
regularization of the layer singularities.

This paper presents higher-order accurate quadrature rules for the singular integrals arising from the non-parametric
boundary integral formulation discussed above. In these formulations, the singularities in the integral operators concentrate
along the surface normal lines; these lines generally do not lie on the grid. This feature is atypical in the more classical
boundary integral formulations. Our approach is a generalization of the methods in [16]: Regular trapezoidal rule-based
summation is performed over the grid nodes lying in the regions, excluding small, grid-dependent neighborhoods around
the singularities. This approach is called the punctured trapezoidal rule. We derive additional corrections corresponding to
the skipped grid nodes and add them to the punctured trapezoidal rule. The resulting corrected trapezoidal rule is second-
order accurate with respect to the uniform grid spacing of the underlying Cartesian grid. We discover an additional benefit
of the non-parametric approach — there is cancellation of errors which leads to an improved order of accuracy in practice.

The structure of the paper is as follows: in Section 2 we present an overview of how to express solutions to Laplace and
Helmholtz problems using boundary integral equations, and introduce the volumetric extension setting to express surface
integrals via volume integrals. In Section 3 we present singularity regularization methods for volume integrals of Section 2.
In Section 4 we present a general singularity correction framework for the volume integrals of Section 2, and in Section 5
we go into details about how to apply these methods to the Laplace singular kernels. Finally, Section 6 presents numerical
results for the methods of Sections 3 and 5 applied to the evaluation of Laplace potentials.

2. A short review of boundary integral equations

Boundary integral methods can be used to solve the Laplace and homogeneous Helmholtz equations in both bounded
and unbounded domains. Given a bounded domain D ¢ R3, the problems are

u=for ¥ =g ondQ u:forg—;:g on o2

on

{—Au:O in Q {Au+/\2u=0 in Q

where © = D for the interior problem, and  =R3\ D complement of the closure of D for the exterior problem, and n
is the outward pointing normal to the surface 2 =: I". For the exterior Helmholtz problem, in order to ensure uniqueness
(see §3, Thm 3.13 in [17]), the solution must also satisfy the radiation (or Sommerfeld) condition

a
Il (a—l:(x) - i/\u(x)> =0, r=Ix|. (1)

[IX[|—o00

The Helmholtz equation with A =0 becomes Laplace equation, and the two problems are heavily related. In three dimen-
sions, the fundamental solutions for Laplace and Helmholtz are respectively:

1 1 1 exp(r|x—yl)
Coxy) = —— | Guxy) = = XPUAIX =YD
a7 [x—y] ar x—yl

2.1. Solutions as layer potentials

A solution u to Au+2%u=0in 2 =R3\D, can be expressed, for x € , as

(Single-Layer potential) u(x) =S[¢](X) := / GL(x, y)a(y)doy, (2)
a0
(Double-Layer potential) u(x) =K[8](X) := / %(x, y)B(y)doy, 3)
y
aQ
(Combined-Layer potential) u(x) =C[¢](X) := S[¢](X) +iEK[¢](X). (4)

The functions G; and f,% are called single-layer (SL) and double-layer (DL) kernels respectively. The functions «, 8, ¢, are
called single-layer density, double-layer density, and combined-layer density. Their expressions are derived by the application
of the Green’s identities and the properties of the solutions to interior and exterior Helmholtz problems (see §2.4, 2.5, 3.2
and 3.4 in [17]): for y € 9Q
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0 0
a(y) = %(y) - a—ﬁw), BWY) 1= u(y) — vpL(Y).
0

ver au 1
¢(y) = W ——W=—Wwy —vc®),
n on

3 i&

where vs;, vpr, vcr are solutions to Av +A%2v =0 in € = D with boundary conditions:

Vvsp=u, Vv _ du v +i§8va—u+iéau
SL=U, VpL=oo, Vel on o’

The uniqueness of v, requires & # 0. In practice, the value for £ is usually tuned to improve the properties of the numerical
methods.

When expressing the solution to the problem as a layer potential, the density is unknown. Using the boundary conditions,
we can find BIEs to which the solution is the density. In the Dirichlet problem with boundary conditions u = f on 9 the
solution can be expressed as either a single-layer potential

/GA(X, Va@doy = fx) . xe0Q (5)
19

or a double-layer potential:

aG 1
/8—A(x,y)ﬁ(y)doy¢—ﬂ(X)=f(X) , X€0Q (6)
ny 2

aQ
with minus for the interior and plus for the exterior problem. Note that in general the double-layer formulation is preferable
as it involves the solution of an integral equation of the second kind: this leads to non-singular matrices when discretizing
the integral operators with Nystrém methods.
For the Neumann problem with boundary conditions g—; = g on 3%, the single-layer formulation is preferable as it avoids
the appearance of a hypersingular kernel, and the boundary integral equations to solve is

G 1
—/a—n'\(x,y)a(y)dayzl: Ea(x) =g(X), Xed (7)
Q

with plus for the interior and minus for the exterior problem.
In addition to the single- and double-layer potentials, we also consider the potential appearing in (7), called the double-
layer conjugate potential:

G
o X Ve W)doy. (8)

(Double-Layer Conjugate potential) K*[a](X) := /
a0

4G,

Its treatment is going to be analogous to the treatment of the double-layer potential. The function T

conjugate (DLC) kernel.
It is important to note that these boundary integral equations (5)-(7) are valid for both Laplace and Helmholtz equation,
and the only thing that changes in the formulae is the parameter A (the wavenumber), and consequently the kernel G,

is called double-layer

2.2. Quadratures for singular integrals

If the parametrization of a surface is known, the surface integration can be done straightforwardly by applying any
preferred quadrature rule: given the parametrization z of U C 9%, z(7, ¢) := (x(7, ¢), y(7.§), 2(7, §)), (r,¢) e W,

/F(Z)dUz = /F(Z(T, s)J(z, g)ydrdg ~ ZwijF(Z(Tia SN, sj),
U w ij
where ] (7, ¢) =|z; x z¢| is the surface area element, {(t;, ¢j)}i,j C R? are the nodes, and {wij}ij C R are the weights.

If the function F is smooth, the freedom of choice of the position of the nodes and of the quadrature rule makes it easy
to attain high accuracy. However, if the function F is singular, for example in the origin, then using standard quadrature
rules results in a great loss of accuracy. To remedy this loss, several classes of methods have been developed, for different
kinds of singular integrands.

An important class of methods to handle these singular integrands, the methods of singularity subtraction, approaches
the problem by locally approximating the surface and evaluating the integral analytically, and then adding a correction
term dependent on the surface approximation. If the kernels are similar to the ones for which the analytical results exist,
singularity subtraction is applied and those same results are used [18,19].

3
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Another class of methods, the methods of singularity cancellation, use a change of variables to put themselves in a
setting where it is possible to split the integral in a smooth one and a singular one which is only defined close to the
singularity points, and can be computed to high accuracy using exact local parametrization and a suitable quadrature rule,
e.g. trapezoidal rule in polar coordinates [20,21].

A third class of methods, the methods of singularity regularization, relies on regularizing the kernel so that rules for
smooth integrands can be applied, and then adding corrections to account for the different kernel based on analytical
results, or on Richardson extrapolation [22,23,7].

A newer class of methods, called quadrature by expansion (QBX), handles the problem by expanding and treating the
kernel (and the corresponding layer potential) away from the surface target point, e.g. with Taylor or spherical harmonics,
consequently working with smooth integrands, and then evaluate the results back on the surface. It relies on the smoothness
of the expansion terms because the new target point is not on the surface, and on the convergence of the expansion in the
surface target point [24].

Finally, the methods of singularity correction aim to develop specialized quadrature rules to deal with families of singular
integrands by modifying the weights of an existing quadrature rule, often trapezoidal rule, close to the singularity point
[25,16,26]. Marin, Tornberg and Runborg [16] developed corrections to the trapezoidal rule for singularities of the kind |x|”,
y € (—1,0), in one dimension and ||x|~! in two dimensions, proved convergence order, and found an analytic expression
for the weights in one dimension. Wu and Martinsson expanded these results to log|x| in one dimension [26] and found
analytic expression for weights in one and two dimensions [27].

The majority of above-mentioned methods require explicit knowledge of the parametrization, and the possibility to
choose the position of the nodes around the singularity; moreover, often the singularity point lies in one of the nodes.

In our setting however, the position of the nodes on the surface is going to be determined by the projections of the nodes
in the volume onto the surface, which cannot be assumed to have any particular structure (see Fig. 8). Moreover, because of
how the integrand is extended from the surface to the volume, instead of a single singularity point on the surface, we will
have the singularity lying along a straight line in three dimensions.

We will approach this problem then by splitting the three-dimensional trapezoidal rule into the weighted sum of all the
two-dimensional trapezoidal rules on each two-dimensional grid and correct each one separately.

2.3. Volumetric extensions of the layer integrals

Let @ c R" be a bounded open set with C2 boundaries, and 92 =: I". We shall refer to T as the surface. Let f be a
function defined on I" (or R™). In this section we present an approach for extending a boundary integral

/ Fodo, (9)
r

to a volumetric integral around the surface. Instead of parameterizations, this approach relies on the Euclidean distance to
the surface, and its derivatives. More precisely, we define the signed distance function

. _yl. ifxeQ
dr(o =1 Mver XVl X e (10)
—minyer [X—yll, ifxeQ
and the closest point projection
Pr(x) := argmingcr [IX — y|| . (11)

If there is more than one global minimum, we pick one randomly from the set. Let Cr denote the set of points in R" which
are equidistant to at least two distinct points on I'. The reach 7 is defined as infycr yecy IIX — Y|l Clearly, T is restricted by
the local geometry (the curvatures) and the global structure of I' (the Euclidean and geodesic distances between any two
points on T).

In this paper, we assume that I" is C2 and has a non-zero reach. Let T, denote the set of points of distance at most &
from T

Te={xeR": |dr(x)| <e}. (12)
Then, for € < 7, Pr is a diffeomorphism between the level sets of drr and
Pr(x) =x—drX)Vdr(x), xeT;.

We define the extension (or restriction) of the integrand f by

fx):= f(Prx), xeR". (13)
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As in [7,8], we can then rewrite the surface integral (9), for any 1 € [—¢, +¢€], as

/ fx)doy = / f(x)J,x)doy, (14)
r Iy

where J;,(x') is the Jacobian of the transformation from I' to the level set I'; := {x e R" : dr(x) =n}. In R3, the Jacobian
Jy(X) is a quadratic polynomial in 7:

Jp®) =14 2nHX) + 1°G(X) = 0102(P[X),
where H(x') and G(X) are respectively the mean and Gaussian curvatures of I';; at X/, and o102 (P[-X') is the product of the
first two singular values of the Jacobian matrix of P evaluated at X'. See [8] for more detail.
To extend (9) to a volumetric integral, we now average the integral on the right hand side in (14) over 7 ranging from
—¢ to ¢, using
1 ./
s =1o(?)
e (1) 8¢ A
with ¢ € C*°(R) supported in [—1, 1], and fJR ¢ (x)dx = 1. This means
+e

/f(X)dO'x=/ 58(77)/f(PI‘x)Jn(x)dO'x dn.
r I

—&
Applying the coarea formula, we have

+&

/ 53(’7)/f(PrX)Jn(X)de d’7=/f(PrX)Jdr(x)(X)fSa(dr(X))dX
ry Te

—&

Thus from the surface integral, we derive a volume integral with the same evaluation:

/ F@0do = / FPrX)Sre ()X, (15)
T Rn

where

8r,e(X) := Jarx X8 (dr(x)) , xeR".

Our primary focus is when f(x) is replaced by a function K(x,y)¢(y), with K : R" x R" — R and K(x,y) singular for x=y
(corresponding to the layer potentials reviewed in the previous section):

Jg1x) :=/I<(x,y)§(y)doy, xeR™ (16)
r

When a function g : " — R is given, we may form an integral equation for the unknown density ¢. For example, in the case
of the double-layer potential (6), the equation is

J[i](X)¢%C(X)=g(X), xel. (17)
Suppose that for any X, we are interested in evaluating K(x,y) at the point on I" that is closest to y. This can be done by

Kx,y):= KX, Pry), x,yeR". (18)
Hence we refer to K(X,y) as the restriction of K. If K(x,y) is singular for x =y, then K(Prx,y) is singular on the set

{x,y) e R" xR": Prx = Pry]},

ie. for a fixed x* € ', K(x*,y) is singular along the normal line passing through x*, while K(x*,y) is singular in a point. In
Fig. 1 the singular behavior of K(x*,y) along the normal is illustrated.
In conclusion, instead of approximating (16), we approximate

TpIx) = / KX, ¥)p(¥)3r ¢ (y)dy, (19)
Rn
for functions p that are integrable in T,.
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K(z*,y) ™! K (z*,y) " — K(a*,3)" S
2 A \
- \
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0
4 0 1

Fig. 1. Kernel restriction. Visualization of the restriction of K(x*,y) = [x* —y|~! to the unit}ircle and of the singular properties of K. Since K(x*,y) is
singular at y*, K(x*,y) is singular along the line Py =x*. One observes that the gradient of K(x*,y)~! (and thus K(x*,y)) is orthogonal to the normal of
the interface. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Corresponding to (17), we have the equivalent implicit boundary integral equation

_ 1
Jpl(Prx) F E’O(x) =g(Prx), xeTe. (20)

The solution p will coincide with the constant extension along the normals of ¢. To see this, we write the two equations:

1
<J:F 51) [¢ o Pr](x) = g(Prx) , (J:F —1) [p](X) =g(PrXx) , xeT,.

The first equation corresponds to (17) where the integral has been rewritten and the target point x € T, is projected onto
I'. The second is (20) where the equation is imposed for p function defined in T,. If we take the difference of these two
equations, we find

— 1
<J:F§I)[p—§oPr](X)=0, xeT;.

The kernel of the operator on the left-hand side coincides with the kernel of the original operator, so whenever the solution
is unique, p(X) = ¢(Prx) for any x € T,.

In this paper, we will concentrate on developing numerical quadratures for the extended singular integral operator
7[,0](x) for x € " (equivalently, 7[p](Prx) for x € T¢). The quadrature rules will be constructed based on the trapezoidal
rule for the grid nodes Tg :=T¢ NhZ3, which corresponds to the portion of the uniform Cartesian grid hZ3 within T,.
Since the integrand in (19) is singular for x € I', the trapezoidal rule should be corrected near x for faster convergence.
Correction will be defined by summing the judiciously derived weights over a set of grid nodes denoted by Np,(x). The sum
will be denoted by Ry (x). Ultimately, the quadrature for 7[p](Prx) will involve the regular Riemann sum of the integrand
in ch? \ Np(x), and the correction Rp(X) in Np(X):

Tel~ > K& Ym)pGm)dr.e Ym)h® + Ru(X). (21)
Ym€TE\N; ()

The contribution of this paper is a high order, trapezoidal rule-based, quadrature rule for 7 via 7.

Fig. 8 demonstrates a typical configurations the points y;; in the summation for a torus.

In the following two sections, we will see how to build the correction term Rj(X) using two different approaches:
a function regularization independent of trapezoidal rule (Section 3), and the corrected trapezoidal rule (Section 4). Each
approach will determine the set Nj(x) differently.

3. Corrected trapezoidal rules using locally regularized kernels

In this section we present an approach that locally regularizes a singular kernel before the discretization. In this ap-
proach, a special Lipschitz continuous function, ¥, is used to replace the kernel in a neighborhood around the kernel’s
singularity. The integral with the regularized kernel is then extended following (19). Again, the resulting implicit boundary
integral can be discretized on different meshings. When the trapezoidal rule is applied to .7 involving the locally regularized
K, we find an expression of the kind (21) where the term Rj(x) involves a local sum of the integrand with K replaced
by W.

3.1. Alocalized regularization approach

We consider regularization of K(x,y) constructed in the following fashion:

K —y| >
KIS (x,y) = Xy, X =yl > ro, (22)
YrrnXy), [Ix-=yl<ro,
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where Wr, thus is a function which substitutes K close to the singularity point. We choose this as a simple function
(constant, or linear in ||x —y||) which approximates K (x, -) weakly for C! functions on the ro neighborhood of X, such that

Ur o (X, y) p(¥)doy ~ / K(x, y)p(y)doy, peC(D). (23)
T'NByy (X) TNByy (X)
Here, B;,(X) is the ball with radius rg, centered at x.

Applying the trapezoidal rule to the integral (19) with the regularized kernel (22), we get a correction to the trapezoidal
rule of the form (21):

TIp10) ~ 1 Y~ Ky (%, Ym) 0 Yim)Sr, e (Yim) = (24)
ymeT?!
=K Y K&YpWmoreWm +h Y Brrm X Yn)pYm)dr.e Vm)
Ym€TH\N, (%) Ym €T AN, (%)

where: K, f:gg, and EF.ro are the restrictions (18) of K, Krrgg, and Vr ;, respectively. The formula (21) holds with:
Nn() ={y e T} : |Pry — Prx| <ro(h)},
Ru) =h> > Wy, Yim) 0 Ym)Sr & (Yim) -
Ym€TENN; (X)

In order to determine Wr ;, we want it to satisfy (23) for p =1 with an error at most O(r%). However, given the lack of
an explicit parametrization of the surface, we approximate I" in the integrals in (23) by a suitable paraboloid, Iy, defined
from the principal curvatures of I" at x (as shown in [7]). The domain I' N By, (X) is furthermore replaced by a neighborhood
M(x,19) ~Tx N By, (x). Eventually, we seek W, satisfying

K (x,y)doy = / Ur,,x,y)doy +O(r5),  p=>2. (25)
M(x,19) M(x,10)

If v is a Lipschitz continuous function on I', we can write

/ Kx,y)v(y)doy = v(x) / K(x,y)doy + / (v(y) — v(X)K(x,y)doy =
M(X,r0) M(X,r0) M(X,r0)
=v(X) / K(x,y)doy + O(13) =
M(x,10)

=v(x) / Wr o (%, Y)doy + O@rf) + O@1p) »
M(X,10)
by using |[M(x, ro)| ~ rg and K(x,y) ~ |x—y||~! for the kernels we are interested in. This approach is used in [7] and [10].

The rest of this section will be now dedicated to showing results of this approach for the Laplace and Helmholtz double-
layer kernels.

3.2. Application to the Laplace and Helmholtz double-layer kernels

oG
Consider the double-layer kernel K(x,y) = a—no(x, y) for Laplace. In [7] the function Wr ,,(X,y) is built as a constant
y
function, Wr (X, y) = Cr r,,

dGo

/ W(x, y)de ~ / CF,ro dJy .
M(X,10) Y M(X,r0)

The constant Cr r, represents the average of the integrand on the set, and Wr ,,(X,y) = Cr r, regularizes the double-layer

kernel:

%% .y, Ix—yl=r
Kres x,y) := | an, YY), yii = 1o, (26)

r9,C
Cr.ro» Ix =yl <ro.
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The expression for Cr r, found in this setting, dependent on the principal curvatures and ro, is:

K1+kK2 Ki1+Kk2
Crno = g’ ~ 513m (1367 — 211z + 1363 ) ro+
2 2 2 2 4 2,2 4
KT+ Kk5) (57 — 2K1Kk2 + S5k KT +2k{Kk5 +K
+ (K1 +K2) (k1 2)( 1 152 2) 1 12 2 rg.
40967 512w

The calculations and details about the setting together with the exact definition of M(x,rg) can be found in the Ap-
pendix A.2.

When treating the Helmholtz double-layer kernel, we can apply this constant regularization approach to the additional
term which differentiates it from the Laplace double-layer kernel: the gradient of the Helmholtz fundamental solution in
three dimensions is
1 exp(irliz|)
ar |z
hence, the double-layer kernel for Helmholtz takes the form:

BGA 1 x—y'ny

( )—4nwexp(1kllx yiD[1 —ir|x—yl] =

VGi(2) = (irl|zll — D z;

T
i (x—y) ny } (27)

= exp(ir[x — yll){ ‘xy) - =

4 |Ix —yl?

In the expression above the factor exp(1k||x y|) is a Lipschitz continuous function in y, and we know how to deal numer-
ically with the Laplace double-layer kernel "GU (using regularizations (26) or (30), or the corrected trapezoidal rule which

will be the focus of Section 4), so we focus only on the secondary kernel
(x— Y)Tny
Ix —yl2

which, if k1 # k7, is undetermined in x =y, as the value depends on the direction of approach. The maximum and minimum
limit values are the ones found traveling along the principal directions, equal to "71 and "2—2 respectively.

Then we wish to find a constant function Wr ;, (X,y) = &F,ro such that the integral around the singularity point is ap-
proximated well,

x—y)'n .
/ wdq,: / Cr.ry doy + O(rg).

Ix —ylI?
M(x,ro) M(x,ro)
This requirement gives
K] + K2 Kl + K2 2 2\ .2
Cror, - (—13/( + i1k —13;<)r . 28
o - 4 256 1 1K2 2% ( )
It is interesting to notice that the first term in Cp 1o i the average of the maximum and minimum limits of the integrand.
The function (” —y)n |zy- for X,y €I, can then be regularized using (28):
x—y)'n
o = |x—yll=r0.
KeE (x,y) = Ix—yll (29)
Cro- Ix—yll <ro.

New regularization with linear function (cappuccio)
Here, we consider regularizing with a class of function that are linear with respect to the distance to the singularity. We
construct the hood-like (cappuccio in Italian) function \IJIE oY) :=ag X —yll/ro +ar:

G
/ oo y)doy ~ / Wk, (x.y) doy.
y

M(x,10) M(X,10)
This condition imposes one constraint; the second constraint we impose is that
1 hIen
W 4 (X, Y) = / — (x,y)doy,
Y] vimre ~ OM®& To) an, Y

IM(X,10)

which means that \IJIE o takes as outermost value the average of the kernel on the boundary of M(Xx, rg).

8
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Fig. 2. Singular behavior - 1. Curvatures with same sign: same (first and second row) and different values (third and fourth row). Left column: double-layer
kernel with target point in the origin, without any regularization. Center column: constant regularization. Right column: linear regularization. The second
and fourth rows show the constant (center) and cappuccio (right) regularizations with ro halved compared to the first and third rows respectively.
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Fig. 3. Singular behavior - 2. Curvatures with different sign. Left column: double-layer kernel with target point in the origin, without any regularization. Cen-
ter column: constant regularization. Right column: linear regularization. The second row shows the constant (center) and cappuccio (right) regularizations
with ro halved compared to the first row.
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The motivation is that the discontinuity in the regularized kernels can be significantly smaller, for small rg, than the
ones regularized by constants. Consequently, the quadrature errors can be smaller. See Figs. 2 and 3 for a comparison. In
particular, the third columns in Figs. 2 and 3 show that the existing and proposed regularizations will lead to discontinuity
between the regularized and original functions if the direction of approach to the target point is not taken into account.
Consequently we believe that a possible future work is to develop a continuous regularization by including dependence on
the principal directions 71, T2 in addition to the curvatures of the surface, e.g. Wr ;) = W, (X -V, k1, T1, K2, T2).

We get the following expression for the regularized kernel,

3Go
— Xy, X -yl >r0,
KT (x,y) = | ™ 30
ol X Y) = xX—yl (30)
ap——— +ay, |x—yll <ro,
where
3(k1 +k2) | 3(Kk1+K2) 2 2
ag=— 21k — 2K1Kk2 + 21Kk5)10 ,
0 167710 51207 21 1k2 + 21K3)r0
K1+kKky 3(k1+k2) 2 2
= — 23Kk7 — 6Kk1K 23K5)10 .
471y 5607 2ok 1z +23k3)To

Note that Wk o Scales as 1/ro for small ro.
In Section 6, we shall present some numerical convergence studies of the approaches mentioned in this section.

4. Corrected trapezoidal rules using modified weights

We have shown in Section 2.3 that the singular integrals of interest can be characterized by their singular behavior along
lines in R3. We view the trapezoidal rule on a three-dimensional uniform Cartesian grid as the sum over the trapezoidal
rules applied to the two-dimensional uniform grids. On each two-dimensional grid, the case is reduced to correction of
trapezoidal rule for functions that are singular only at a single point. However this point is typically not lying on any grid
nodes.

We will first present the trapezoidal rule and the existing methods for correcting it to achieve higher order convergence
rates. We will then present our generalization of these works.

4.1. The punctured trapezoidal rules

Let f:R"™ — R be a compactly supported smooth function. We are interested in approximating its integral [p, f(X)dx
by utilizing values of f on the uniform grid hZ". By the compact support, the trapezoidal rule applied to f becomes the
following simple Riemann sum:

Talf1:=h" )" f@y). (31)

yehZn

When f is compactly supported the order of accuracy of such summations depends on the regularity of f: if f € CP, the
error is O(hP) (see §25.4.3 in [28] and §5.1 in [29]); the trapezoidal rule enjoys spectral accuracy if f € C*.

When f is continuous in R™\ {Xp} and singular at xg, where fRn f(x)dx exists as a Cauchy principal value, it is natural
to modify the trapezoidal rule by skipping the summation over the grid nodes within certain distance to Xg:

TRIf1=h" Y f (32)

YEhZ™\Np (xo)

where Np(Xg) determines which grid nodes we remove. We will call (32) the punctured trapezoidal rule when Ny includes
only a single grid node; in other words,

Na(X) ={y € R": X —ylloo < h/2}. (33)

The punctured trapezoidal rule converges, but with lower order rates at best, even though f may be C* in the punctured
domains. For example, in one dimension for f(x) = log|x|, the order of convergence is sublinear O(hP), p <1, and in two
dimensions for f(x) = ||x||~! the order is 1. The large decrease in order is exactly the property we would like to address
with the correction technique.

The idea is to add a correction term to (32), which makes up for the integral over Nj. In the following, we describe an
approach for defining such corrections in detail.

10
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4.2. Corrections for the trapezoidal rule

From this point forward, we will assume the function f can be factored into the following form

fX) =sx—x0)v(x), XxeR"\ {x0} (34)

where s represents an integrable function, singular in the origin, and v represents a smooth compactly supported function
in R". In this section we discuss a general approach to developing high order quadratures for the integration of such type
of functions. In Section 5 we will provide specific choices of s for use with single- and double-layer kernels arising from the
Laplace or Helmholtz operator.

The trapezoidal rule is a sum of the function values on the grid, where all values have the same weight h". Improving
the order of accuracy of the trapezoidal rule by modifying the weights close to the singularity point has been an approach
studied and applied successfully with different kinds of singular behaviors and in different dimensions. See for example
[25,16,26].

The following is a brief presentation of the one- and two-dimensional corrections found in [16], where Xp is always
assumed to be the origin.

The starting point is the punctured trapezoidal rule in one dimension. When s(x) = |x|¥ for —1 <y < 0, an error
expansion of the following type can be derived,

/s(x)v(x)dx =TPIsvI+h" wv(0) + 0 (R*1Y).
The goal is to find the constant w, which is independent of v (but depends on y ), and use it to correct the rule as

QPIf1:=TPIf1+h"Y wv(0).

While Tl? is of order 1+ y, the method Qf? is of order 3 + y. Note that Qf? only modifies the original trapezoidal rule in
one point; the value in the singular point is replaced by the value of the smooth part v(0), weighted by @ and a suitable
power of h. In general w is a functional of the singular function s and we write w = w[s].

In order to find w[s] we define w(h) as the actual error of T,? for a fixed h and a smooth test function g with g(0) =1,
scaled by h'tY. More precisely,

/s(x)g(x)dx =TPIsgl+h'" ™V a(h). (35)

From the error expansion above, since g(0) =1, we see that

1
@(h) = e </s(x)g(x)dx - T{f[sg]) = w[s] + 0(h?).

Hence, the weight @(h) converges to w[s] # 0 for h — 0T, independent of g.

This is a crucial property, which makes it possible to compute, store and reuse w for the integration of any integrand
of the kind (34). In order to do that one needs to be able to accurately compute the integral [ s(x)g(x)dx containing
the test function. As this computation is only needed for one function g, it can be done either by analytical means or
adaptive high order numerical integration. If the test function g is chosen more flat at the singularity point, such that
0=g'(0)=g"(0)=... one can show that the convergence will be faster, which makes the numerical computations easier.
In fact, g would be ideally the constant function g(x) =1 but in order to avoid dealing with the boundary conditions of
trapezoidal rule and keep the expression of T{f equal to the Riemann sum with the exclusion of a single node, g is taken
compactly supported.

Higher order corrections are also possible, where more terms in the error expansion are canceled. The weights must then
be modified in more points close to the singularity. The condition (35) can be interpreted as requiring that T?, corrected
with the weight @(h), integrate s(x)g(x) exactly. When multiple weights are used, the weights are similarly defined by

requiring that the modified method integrates not only s(x)g(x) exactly but also s(x)g(x)x, s(x)g(x)x%, .... A set of h-
dependent weights are then obtained, which converge as h — 0%,
One can also apply the same idea to other singularities. In [26] this was done for s(x) = —log|x|. Then the factor h!*Y

must be replaced by an expression a(h) = h(2 — logh) and a second order method is obtained
/ sVEdx=QpIsvI+Oh*),  QPlsvl=Tplsv]+a(hols] v(0).

In two dimensions, similar to one dimension, for functions (34) with s(x) = ||x||~!, the corrected trapezoidal rule is defined
as

QPIsvl:=TPlsv]+hwls] v(0)

11
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Bh {}

X

a|ath

Fig. 4. Singularity unaligned to the grid. Position of the singularity point Xo relative to the closest grid node X ; the parameters «, 8 are used to characterize
its position relative to the grid.

where w[s] is calculated as the limit:

o[s]:= lim ! /s(x)g(x)dx—Tg’[sg] , (36)
§—>0t+ &

2

for a test function g with g(0) = 1. In [16] it was proven that the corrected method for s(x) = ||x||~! is third order accurate,

/s(x)v(x)dx: QPIsvl+OM?). (37)
R

Corrections for singularity unaligned to the grid

To prepare for the proposed quadrature rules for implicit boundary integrals, we first generalize the approach presented
in Section 4.2 to the case when the singularity does not lie on a grid node. We consider two dimensions and retain the
assumption that f can be factorized as s(x — Xg)v(x) where s has a singularity and v is smooth and compactly supported.
However, the singularity is now in a point Xg which may not be part of the grid. We let xo be the grid node closest to xq,

Xa = arg min ||x —Xoll,
xehZ?

or one of the closest in the case that it may not be unique, such that

(@, ) = %, for some o, B € [—1/2,1/2),

as shown in Fig. 4. When (¢, 8) # 0 the usual trapezoidal rule is well-defined also for the singular function and the same
type of error expansion holds as for the punctured trapezoidal rule in the previous section. However, the error constant is
not uniform and blows up as (&, 8) — 0. We therefore use the punctured trapezoidal rule also for unaligned grids as the
base method for correction.

The singular functions considered in this paper are of the form f(x) = s(X — Xg)v(x) where |s(x)| ~ ||x||~!. For those
functions the same scaling in h as s(x) = ||x||~! is appropriate and we define the single-correction trapezoidal rule for un-
aligned grids in two dimensions as

QPPIf1:=TPIs(- —x0) V()1 +hols; &, BIv(Xa). (38)

The weight is given as the limit of the sequence:
wls; o, Bl := lim ws[s; o, B, (39)
§—0F
where as before wsl[s; «, 8] is defined using a smooth compactly supported test function g with g(0) =1,

S 5= X0)g(x — X0)dx — T9[s(- ~ %0) &(- ~ X0)]
wss; e, B] == =
3 g(Xa — Xo)
Jre s@0gdx — T2[s(- = (@ £)8) 8- — (@, £)9) |
B 8 g(—(a, B)d) '

In the last step we shifted the exact integral by Xo and the trapezoidal rule by xa, the closest node of the grid §Z2, to
show that the weight, in addition to s, only depends on the difference xo — Xo, i.e. on & and B, not on Xq itself.

The expression converges quickly when the stepsize § is halved, and the accurate computation of w is possible without
needing specialized quadratures for singular integrands. In this paper, w[s; «, 8] will be computed offline and tabulated for

(40)

12
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a suitable set of (, 8), and for relevant functions s; for values outside of the tabulation, we will use interpolation. In the
next section, we will discuss a few specific cases involving layer kernels, and we shall then present more details about the
approximation of w via tabulation and interpolation.

When o = 8 =0 we get the same weights as in the aligned case. In particular, for s(x) = ||x||~! the limit (39) will find
the same weight as the one found in [16]. For the more general kernels considered in this paper and with unaligned grids,
in numerical experiments we observe an error expansion of the type

/ s(x —x)v(x)dx = Q2P [s(- — x0) v(-)] + F1 (e, B)h* + Fa(a, B)h® + O(h%), (41)
]RZ

where F; is a smooth function of o, 8. Moreover, F1(0,0) =0 # F»(0, 0), which means that we have the same third order
error (37) as for s(x) = ||x||~! when the grid is aligned. The properties of F; will be further explored in Section 6.2. Proving
these error results rigorously is in program for future research.

4.3. Corrected trapezoidal rules for implicit boundary integrals

We describe our approach in developing corrected trapezoidal rules for the family of integrals defined in (19):

/ K(X*,y)p(y)or.e(y)dy, x“eT. (42)

R3
Without loss of generality, we consider, as the target point, x* = (x*, y*, z*) € ', where the surface normal at x* is n =
(n1,ny, 1): from this point forward we will only consider this case, and if the normal direction points instead more towards
the X or y directions, we can apply a change of coordinates and proceed with the same reasoning. To simplify notation we
let f be the integrand

fW) =K, y)p¥)sr.ey). (43)

Notice that f in (43) is compactly supported in T, if I is a compact point set. Furthermore, since the restricted kernel
Kx*,y) =K(x* +tn,y) for all t € R, the integrand f is singular along this line.

The plan is then to construct a quadrature for (42) “plane-by-plane” on the grid hZ3. First the standard trapezoidal rule
is used in the z-direction,

/f(x,y,z)dxdydz:/ /f(x,y,z)dxdy dz%hZ/f(x,y,kh)dxdy.
R3 R |R? k Re

Then, the corrected trapezoidal rule is used to compute the integrals on each plane,

/f(x, y, khydxdy ~ QZP[f (-, -, kh)].
R2

See Fig. 5 for an illustration. As the z-component of n is 1, f is singular in one point only when restricted to the planes.
We can therefore use the quadrature rules described above.
We let y = (x, y) denote a point in the xy-plane and introduce the projection onto this plane

y=ny=n(y,2)=XY). (44)
For a fixed z, the singular point yg of f(-, -, z) is then given by

Vo) =myo(2),  Yo(2) =X"+ (z—2z")n=(Jo(2), 2). (45)

The corresponding closest grid node is denoted by ya(z) and its shift parameters o = «(z), B = 8(z). The factorization
of f(-, -,z) will be of the kind

f@.2)=s¥—¥0(2), Vv, 2), (46)

where s is smooth in the second argument, which ensures that the partial integral [ fdxdy is smooth in z, justifying the
use of the standard trapezoidal rule in this variable. The functions s and v correspond to factorizations specific to the kernel
K and the geometry of I". They will be discussed in detail in the next section.

13
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7

Yo(z) = (a(zp). Bz )h + Yazi)

v

Fig. 5. Intersections of the line in three dimensions. Intersection of the line passing through x* with direction n with the planes {z = z}: on every plane,
the intersection will be yo(zx) (orange circle), and the closest grid node will be ya(zx) (red square). The parameters which characterize the position of
Vo(zx) with respect to the grid hZ?2 are (cr(z¢), B(zx)) such that Yo(z¢) = (c¢(z¢), B(zk))h + ¥ a (k).

With this notation we can now give the precise form of the corrected method

/f(x, v, 2)dxdy ~ TP[s(- — Yo (2), 2)v(-, 2)] + hols(-, 2); a(2), B@D) V(A (2), 2).
R?

After the discretization, z; = kh, and we can write the full method as

Qul1=hY_{TRIsC- = Yo (@, 20v (T - 201+ hols(-, 20; (@), B@)]VFa @), 20}

keZ
=Yy Y sE-Yo@), 2)vE, z) +h Y wls(-, z); @), Bz IV 2)
keZ ye(hZ?\Np(yo(z))) keZ
= > FR+R) ols(-, 2 @), B@)lvYa (@), (47)
xe(hZ3\Nj (x*)) keZ
where
N ) = Na(Wo@)) = ya (@) . (48)
k k
Then we can see that this method is of the form (21) with A}, (x) as in (48) and
RnX) =h*Y " o[s(-, 2); @(zi), Bz v(Ya (@) (49)
keZ

5. Factorization of the Laplace kernels and the resulting quadratures

In the previous Section 4.3 we have seen the corrected trapezoidal rule (47) for the family of integrals of the kind (42).
We have however not gone into detail about the form of the singular functions and the consequent splitting (46) involved,
as they depend on the functions (43) and the corresponding kernels

K(x,y) = K(x, Pry)

where K is one of the Laplace layer kernels:

1 1
(SL): Go&x,y) = — ,
4ar |x =yl
9G 1 x—y)'n
D 20y = L XN Dy (50)
ony, a7 ||x—yI
aG 1 x—y7
(DL0): L0 y) = - L XV
ony 4 |Ix -yl

In this section, we will derive the proposed quadrature rules for the above kernels. In the same way the surface integral
of the single-layer potential (2) in the non-parametric setting becomes the volume integral (19), the double-layer (3) and
double-layer conjugate (8) potentials are extended to volume integrals in the tubular neighborhood Ty c R3. Between the
DL and DLC kernels we will only consider the DLC kernel, because the singularity behavior is identical.

14
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Table 1
Key ingredients in Section 5.

[Foc ppwiramay~ G =1 3 @+ ovath)

R3 T YehZ3\Nj (x*) keZ

=10/] R (X*)

FW =2 =5y -yo@,m)¢ (L"@ z) vy),
ol

=s(¥y—Yo(2).2) from (46)
where
S,y :=nl|rxn|~", r,neR3,
Kx*, t@1,92,0) + yo(2)) ; }
, qeSt,
S(t(q1.492,0),m)

0(q; z) == limy_, o+ in Section 5.1.1.

Additive splitting:

In Section 5.1: V- 02
=S(y— N v S(y— N | — v s
fW=Sy-Yo(2),m) V(y) + SY —Yyo(2).m) (HY—YO(Z)H Z> »
where
V(y) :=p¥)dre (X), in Section 5.1.2.
K(x*.y) ( ¥— 0@ ))
- == )V, Yy#Yo(2),
9§, 2) = S(Y—Yo(2),m Iy — Yol
0, V=Y¥0(2).
wy = w(kh),
o(2) =wlsy,2); a(2), f(2)]
p S P
In Section 5.2: A Cow [m a, ﬂ} + Z?’:] {cjw [W; a(2), ﬂ(z)} +djo [75”1( ”J)_:ll‘/(y)): a(2), ﬂ(l)“ ,

where g, ¢j,d; come from s((y,2), n) |yll ~ co + Z?l:] {cjcosjy @) +d;sinjy ()} . and
y=IIyll (cos(¥ (¥)), sin(y(¥))) -

In Section 5.1 we present our approach to define the factorization f =s v in (46). s describes K close to the singularity
point and it will be written as the product of S ¢, where S takes a very simple form that is easy to work with. After
introducing the function S, we will explain how to find the corresponding function ¢ in Section 5.1.1, and then show the
full expression of (47) in Section 5.1.2. Finally, in Section 5.2, we will describe how the weights w[s; o, 8] are defined from
S ¢ and computed. A brief outline of the process can be found in Table 1.

5.1. Correction formula for the three kernels

Let x* € I" be a target point with normal to the surface n = (nq,ny,n3), n3 #0, ||n|| = 1. We want to apply the three-
dimensional second order correction formula (47) to the layer potential ng K(x*,y)p(y)or.¢(y)dy with one of the three
layer kernels (50), for example the single-layer kernel K (x,y) = Go(X,y) = (47 |x—y||)~'. The starting point is the following
singular function:

-1

rxn

S:(r,n)e<R3\{0})xR3r—><” i ”) €R, (51)
n

which represents the reciprocal of the distance from a point r to the line with direction n passing through the origin:

{tn : t e R}.

This choice is equivalent to approximating the distance on the denominator of the three kernels (50) as ||x* — Pry| ~
IX* — yrmx|l, where yryx+) is the projection of y onto the tangent plane to I' at x*. The reciprocal of the distance
IX* — yrm@e |l is conveniently given by S(x* —y, n).

With S, we write formula (46) as

f(¥.2)=S((¥,2) — yo(2), M)V (y, 2). (52)
The function v (-, z) defined via f and S in (52), while bounded, is discontinuous at yo(z) for all three kernels. In Fig. 6 the
left column shows the behavior of f/S for f written using the three Laplace layer kernels.
The next step is to isolate the discontinuous behavior in v(y, z). We observe Fig. 6 that v has different limits at yo(z),
depending on the approaching angle. So we will derive the function ¢ which has the same discontinuity. More precisely,

0 K(X*, (tq1,tq2,0) +Yo(2))

q; 2) .= }Lo S(tq1. 102, 0). 1) , 9=(q1,492), llqll=1. (53)
We write v as
V(. 2) =¢ (W;z) v, 2) (54)
ly —vo@ll
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Double-layer kernel DL Approximation DL Difference

0.02
-
-0.02
Yy T
DLC Difference

Yy T
SL Difference

Fig. 6. Discontinuous behavior. Left column: kernel multiplied by the singular function (51). Center column: function ¢ analytically found by taking the
limit (53). Right column: plot of the function used in the additive splitting f/S — €.

This defines the new function v which is smooth; hence f =S-¢-v, and the weights for the corrected trapezoidal rule
will be therefore derived for the singular function

s(y) =5(F.2) = S(y. m) ¢ (i;z) .
19l

5.1.1. Derivation of the formula for the new factor

Due to the closest point projection in K, the limit function ¢ depends on the intrinsic geometry of I' (the principal
curvatures) as well as the orientation and distance of yo(z) to I (the signed distance n = 1(z)). For different values of z
but fixed direction q, Pr may map the lines (tq, 0) + yo(z) to different curves on I'. The speed at which these curves,
Pr((tq, 0) +yo(2)), pass through the target point X* may vary, depending on the curvature of the curve.

To calculate explicitly the limit that defines ¢, we will replace the projection Pr by Py, a high order local approximation
of the closest point projection to the osculating paraboloid at x*. In the following, we will present the derivation of an
explicit formula for ¢, based on

K(x*, Pr((tq1,tq2, 0) +¥0(2)))
S((tq1,tq2,0), m)
and building up from the simplest case. In the derivations, we let 71, T, n be the orthonormal basis of R3 composed of

the principal directions t;, with corresponding principal curvature k;j, ordered such that T1 x T2 =n. We write a point in
this basis as

0q; 2) = 35’?) , (55)

(a,b,c)r :=atq1+ bty +cCn.

We first assume the z planes are parallel to the tangent plane T M(x*), i.e. n = e3. Thus we want to find the limit

KO, PL((tp1. tp2, )T +X) ey
) = ) ) =1. 56
Sy w0 PTPLPR PP o)

For convenience, we translate the problem so that x* is in the origin, and work only in the 71, T, n basis. See a
representation of this setting in the left plot of Fig. 7. The paraboloid I" will then be

r={(x Ly 2
= ,y,z(/c1><+/<zy)

In a sufficiently small neighborhood of the origin, a point (x, y, n)r and its closest point

X, V€ ]R} .
T
Pa((x,y,mM1) =&, ¥, (K]’_(z +K2372) /2)T
satisfy
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. 72 52 _ 1 32 52 ¥ Y .
*, ¥y, mr — (x, y.5 (le + K2y ))T = (n -3 (Iqx + K2y ) (—K1X, —K2Y, D7 ;

i.e. the vector pointing to the closest point on I'" should be normal to the surface, with magnitude equal to the distance to
the surface. Along (tp1, tp2, n)t, we have:

_ _ _ _ = t 3
tp1 = p1 —k1P1[n — (k1] +Kk2P3)/2] P1L= Ty PO,
= (57)
tpa = P2 — K2Paln — (k1P7 +K2P3)/2] P2 =y n P2 OE).
— K2

For example if p = (1,0) the limit is taken along the 7, direction, the projected point will travel along the curve
corresponding to the first principal direction, and the limit value for the double-layer conjugate kernel will be:

1 X = Pp(t,0,m7)) -1

K(x*, (tp1,tp2, 1) — lim
(>0t 4w ||x* — P((t,0,m1)|3

1
t—0 S((tp1,tp2, n)T,N)

(¢, 0,m1 — (0,0, mrll

p=(1.0)
S P 4
— lim —-— 2 e + O t
t—0t 4w 2 4 1 K12t4 5 3/2
ey T O+ 2 70
= l/c 1—«k11n)
= 8 1 1) .
In general, we have
Kox*, (tp1,tpa, 1) 1 (X" = Pp((tp1.tpa. 1))’ m 1€P1. P2, 77 — 0.0, T |
(50 S((tp1, tp2, MT.M) 10+ 47 X" — Pa(tpy, tp )P | P PR IDT T R R
1 P 1, 2 4
— lim — - 2K1 G ~ 22 Gy OO t
=0t AT 203 L oay 4 1 [ e 303 o2 - i
Toan? T Gz TO) + 3| G T Goagnr 1O | €
pi p3

A= kem? TP A —kan)?

1
- 3/2 "
Sl I A
A —kim? (1 —kan)?

We now consider the more general case in which n # e3. Again we consider the target point to be in the origin: x* =0.
We define the plane IT; := {(x, ¥, n(2))1 : X, y € R} parallel to the tangent plane TM (x*) at distance 1n(z) :=dr(yo(2)). Fixed
z € R, the projection

(58)

V4
Pr, : X = (X1,X2,%3) € R® > (1—n®n)x+n—nenz
3

takes a point x to the intersection of the line {x + tn : t € R} and the plane IT,.

Let q = (q1,q2) € S1, and let (tq1,tqz, 0) + yo(z) be a point on the z plane. To find the limit, we first consider the
projection of the line (tq1, tqz, 0) +yo(z) onto the plane I1;, and then apply the previous formula; in the expression of (58)
we consequently have

(tp1(q1,92), t p2(q1,92). n(2)1 = P, ((tq1, tq2, 0) + Yo (2))

instead of (tq1, tq2,0) + yo(2). This change does not affect the limit expression because of the property

P ((tx, ty, 0) +Yo(2)) = Py ((tx, ty, n(2)1) + O(t?)

for small values of t, which expresses how the orientation of the plane z with respect to the basis 71, T2, n does not affect
significantly the projection of points close to the singularity point yo(z).
Let

(P1, P2, 0)1 = Pr1y(q1. G2, 0)
be the projection of (g1, g2, 0) onto the tangent plane TM(x*) = I1p; then
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/
—

Fig. 7. Limit computation setting. The surface is approximated around the target point with a paraboloid defined by the surface’s principal curvatures and
directions. Points on the circles on each plane are mapped to the closest points on the paraboloid I" (instead of T') for calculation of the limit defined in
(55). Right plot: n# Z; a circle (blue) drawn on the z plane (yellow plane) around the singular point yo(z) becomes an ellipse (red) when projected on the
plane I, (blue plane) parallel to the tangent plane of I' in x*. The angle ¥ between e; and a given direction (red direction) on the plane z will correspond
to the angle v between 7, and the projected direction (yellow direction) on the plane IT,.

g1 cos by — q?z(ab cos g + (b + c?) sinfyp)

p1=p1(q1,q2) = —— , (59)

\/1 + (acoseoJCrzbsmeo)

g1 sinfp + q—z(ab sin6y + (a* + c?) cosbp)

P2 =p2(q1.q2) = < , , (60)

(acos@p+bsinbp)?

i1 et

and (58) will be valid with

p=(p1.p2) = (P1. P2)/\/ P + P3. (61)

The expressions relating p1, p» to pi, p2 can be visualized in the right plot of Fig. 7. The circle {t(q1,q2,0) + yo(2) :
q% + q% =1} on the plane z, projected onto the plane IT, will become an ellipse in general.
The parameters a, b, c, 6y relate 1, T to the standard R3 basis {ei}?:]. They are given by

(a,b,c) = (sinf cosé&, sinfsiné, cosb),

where 6 is such that cos@ =ns, i.e. it is the second spherical coordinate of n; & is such that tan& = egtz/egn, hence it is
the angle between T and the projection of e3 on the plane T1, T3; and 6 is such that tanfy = elrtz/ef‘n, meaning it is
the angle between 71 and the projection of e; on the plane 71, 7.

Given a unit vector (g1, q2) on the z plane, formulae (59)-(60) map it to the unit vector p;T1 + p2T». The unit direction
(p1, p2) on the plane I1;, (p1, p2,0)r, is the corresponding direction in which the limit (in the definition (55) of £(q; z))
will be evaluated. Recall that the formula for the limit for any given direction is already derived in (58). For convenience,
we write the unit vector (q1, q2) = (cos ¥, sinyr), and correspondingly we will treat pq, p2, defined in (59)-(61), as functions
of .

Thus we write the formulae for ¢ for the double-layer conjugate, double-layer, and single-layer kernels as:

p3(y) p3()
1 "0 an@? A = kan@)?
(DL-DLC): £(y, 2) = o , ; 377 (62)
p2(¥) p3(¥)
(1 —k1n(2)? (1 —k2n(2))?
_1
, 1 piY) p3(¥) ’
CL: 602 =47 { A—wn@? " A—kan@?| (©3)

Again, 1(z) =dr(yo(2)) is the signed distance of yo(z) to the surface.

The center and right column in Fig. 6 illustrate how the formulae found approximate the behavior f/S. The center
column plots the function ¢ in (62)-(63) found for the three Laplace layer kernels, while the right column shows the
difference between the function ¢ found and the values f/S.
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5.1.2. The quadrature formulae
With ¢ defined above, we will work with the following singular function-smooth function factorization:

f¥,2) =5y —-Y0(2),2)v(y,2) (64)

with s(y,2) = S((¥,2),n) £ §/[yll; 2)

where the weight for the corrected trapezoidal rule applied to f is computed with s = S - £. The function s completely
captures the asymptotic behavior of the given kernel K in yo(z) and we can apply (38) to f(¥y, 2):

QLS (.2 = TRIS- = Yo(2). ) V()] + hoIs(-. 2): €(2). B(2)]- [@s.2

= = < <> (65)
¥Ya —¥0(2),2)

if (a(2), B(2)) # (0, 0), otherwise

QPP (. D1 =TPIs(- —§0(2), 2) v(-)] + hols(-, 2); 0,01 v(Jo, 2) -

As long as ¢ is non-zero, the function v is well-defined through (64), away from yo(z) and by continuity at yo(z). As can
be seen from (62) and (63), this is always the case for the single-layer kernel but for the double-layer kernels in general
only if k1 and k, have the same sign. Even though ¢ is zero only at isolated points, we cannot apply formula (65) as it is
numerically problematic. We need a different approach which works as follows.
We use the discontinuity subtraction from K: first, to shorten the formulae below, we define the smooth function
V(y,2):=p(y,2)dr,2)

so that f(y,z) = K(X*, (¥, 2))V (¥, z). We then replace the splitting in (64) by

f@.2=S(¥,2) — §F0(2),2),MV({F,2) +sF —§o(2), )V (¥, 2),

where

. K(x*, (§,2) y—¥o(2 _
,2) = = = -l == ; V(y,2).
Y2 (s«y,z)—wo(z),z),n) (IIY—YO(Z)II Z)) v

Then ¥ is well-defined everywhere, bounded and continuous around yg, by construction of £ via the limit (53). We therefore
rewrite (65) as

QPPIf (- 1= QPP IK(x*, (-, 2)V (-, 2)]

A 2D Kx*, (-, 2) ( - —Yo(2) >
= -/ — 5 S hE) - ) v "
% [(5<(~,z)—yo<z>,n> gy 2) )P Y@ w2

"~ Y@
S((-,2) - M| i Z | V(.
+5((+,2) —yo(2),m) (II-—YO(Z)II 2> ( 2)}

=T)[K&X*, (-,.2)V(-,2)]+

' h{w[s(("z) Y@ i@ A <S<(9AI,<S)(*—’(§AO’<ZZ)),)2>, m < ||§i ?§3§3u ‘ ))
+a)[s(-,z);a(z),ﬂ(z)]]V(S/A,z), (66)
where inside the braces only the second term remains if («(z), 8(z)) = (0, 0).
Our corrected trapezoidal rule (66) for the implicit boundary integral takes the form:
Qlfl=h* Y f@+RD VEa@) Rekya@). (67)

ye(hZ3\Ny(x*)) keZ

where
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Ruk(¥a(zk) == (68)
o[S((-, zx) — Yo(zk), m); &e(zk), B(zx)]
y ( Ko ya@) ., ( YA @) ~Yo@) Zk))
= S((¥a(zk), zk) —Yo(z), m) VA (z1) — Yo(zi) |
+ols(, zk); @ (zk), B(zp)], if o (zy), B(zk) #0,
o[s(-, z¢); 0, 0], otherwise.

The general correction form (21) of this method is then valid for AV (x) as in (48) and

RnX) =h*Y "V (ya@))Rak¥a (@)
keZ

5.2. Approximation and tabulation of the weights

We approximate the singular functions using a Fourier interpolation, then tabulate the weights for the simpler singular
terms of the expansion, and compose the general weights for any behavior needed.

Given a 7 -periodic function £(-; z), such as (62) or (63), we wish to compute the weight w[s(-, z); «, 8], where s comes
from the factorization (64):

s(¥,2) =S((y,2),mey/ 1yl 2) .
Both the factors in this expression can be seen as functions of the angle of approach, v, to the singular point 0:

_ o Sa(Y(y - o . _
S((y,Z),n)Z(y/||y||;2)=%é(w(y)ﬂ) where y = [|y|l(cos(¥ (¥)), sin(y(¥))) -

Given the dependence on z is only present in ¢ through 7(z), we write wls; o, 8] instead of w[s(, 2); «, B].
We use Fourier interpolation to approximate this function with a trigonometric polynomial:

N
Sa(WL(W:2) ~ o+ Y [cjcos(2jy) +djsinjy)] . (69)
j=1

Since the weight w[s; «, B] is a linear functional of the singular function,

1
w[s;a,ﬁ]%cw[m;a,ﬁ}r (70)
N - . -
cos(2 sin(2
+Z{c;w[w;a,ﬂ} +djw[w;a,ﬂ]} :
p lyll Iyl
Therefore, we can precompute the weights for the basis functions and for certain values of « and 8:
20w (¥ N in(2iv v N
{Q,[M;a,ﬁ“ and {w[wga,ﬂ“ , (71)
Iyl j=0 Iyl j=1

For values outside of the precomputed tables, we interpolate.

In the evaluation of w [% o, ﬁ] using formulae (40) and (39), we need the value of the integral:

ffRZ w‘g(y)dy for some test function g. We use g(¥) = exp(—||y||I®) which has derivatives 9¥g(0) =0, k
N2, 0 < |Kk| <8. Then

2 oo 2 00
//cos(ZJW(y))g(y)dyz/dw/dr{rexp(—rg)cos(Zp/f)}= /cos(ij)dw /exp(—rs)dr =
Iyl / / r / s
oo R
:27r80]-/exp(—rs)dr%Znﬁoj/exp(—rB)dr,
0 0

where 8p; is the Kronecker delta; R is set to 1.9 as the integrand is essentially zero at double precision. The integral

fOR exp(—r®)dr is computed once with high precision using common integration libraries and reused for all instances as a
constant.
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Yy

Fig. 8. Torus. Left: the torus used in the tests. Right: the torus and the projections of the Cartesian grid nodes inside the tubular neighborhood T,. The
projected nodes serve as the quadrature nodes.

It is impractical to tabulate precomputations of the coefficients {q}?’zo, {d I}y=1 as they depend on too many variables.
Instead, we compute c; and d; on the fly, by solving the square linear system

N

co+ Z [cjcos(jyi) +djsinjyi) | =Sa(WiL(Wi; 2), i =

j=1

L7 i=0,---,2N.
2N +1
Because of the smoothness of the 7 -periodic functions we deal with, we can use a relatively small N in order to accurately
approximate the weights.

In the next section, we present numerical convergence studies using weights computed with N = 22. The small linear
system can be inverted efficiently, e.g. using FFT, with a negligible computational time.

In the convergence studies, an array of weights of dimensions (45,101,101) has been precomputed, with 101 values for
o and B in [—%, %] and 45 for the Fourier series with N = 22. Biquintic interpolation is used to approximate the weights
for given (o, B8) outside of the precomputed values.

In the case £ =1, {cj}?lzo and {dj}?’:1 depend only on 6 and ¢. In that case, they can also be precomputed, stored, and

used in an interpolation process when needed.
6. Numerical examples

We demonstrate the convergence and accuracy of the proposed quadrature rules by evaluating the double layer potential
with constant density on the surface I' ¢ R3. We demonstrate the numerical errors computed by the proposed corrected
trapezoidal rule for approximating

0Go

I=/—(*,y)doy.

ony,

The value of I is known explicitly to be —1/2 for any x* € I". So, we report

G 1
Ei(h) = ‘Qh [a—n” (x*, -)]+5
y

for several randomly chosen x* € I'. We will compare the results for the four different quadrature rules, including the two
new quadrature rules Q,LB,M defined by the regularization (30) and Qj, defined in (67).

The integral is first extended to the tubular neighborhood of T, as in (16)-(18), using the compactly supported C*
averaging function

ae <L> if || <1
s =10 ey) k<1 (73)

0, otherwise;

; (72)

here a ~ 7.51393 normalizes the integral fR ¢ (x)dx to 1.

The surfaces chosen for the tests are a sphere and a torus, centered in a random point in 3D and rotated with random
angles along the x-, y- and z-axes.

The sphere is characterized by center

C=(0.5475547095598521,0.6864792402110276,0.3502726366462485) - 107t

and radius R = 0.7. The torus is described by the following parametrization
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(RycosO + Ry)coso
T@®,$)=Q | (Rycosd + Rq)sing | +C (74)
R, sin6

where Ry =0.7, R, =0.2, C is the same as the sphere, and Q = Q(c)Qy(b)Qx(a) is the composition of the three rotation
matrices. The terms Qx(a), Qy(a), and Q(a) are the matrices corresponding to a rotation by an angle a around the x, y,
and z axes respectively.

The parameters used for the rotations were:

a=0.2440241225550843
b=0.7454097947651017
€=0.2219760487439292-10%

Of course to test our algorithms, we retain no information about the parameterizations. The test sphere and torus are
represented only by drr and Pr on the given grid. Fig. 8 shows the torus that we use and the points used in the quadrature
rule in a configuration. The Jacobian Jr is approximated using a fourth-order centered differencing of Pr on the grid,
see [8].

6.1. Convergence studies

We compare the numerical orders of convergence for the quadrature rules discussed in this paper. The quadratures are
defined on the grid nodes in T,. The parameter &, which describes the width of the tubular neighborhood, comes into
play through the function 6r ¢, and the factor h/e determines the number of grid nodes in a cross section of the tubular
neighborhood TQ. It consequently determines how well the integrand is resolved. The errors for the proposed quadratures

p
are formally O ((g) ) p > 2, as h — 0. Thus, for fixed ¢ = O(1), we see the order of convergence resembling p. If we

choose ¢ ~ h'/4, we will formally have the errors scale as O(hP1~1/®)_If ¢ ~ h, then the method will not converge formally,
but in the range of the grid resolution considered in practice, the method may yield results with acceptable accuracy.

In Figs. 9, 10, and 11 the errors are shown as function of the Cartesian grid’s spacing h; the first figure shows the errors
for the sphere, while the others show them for the tilted torus. We show also how the errors scale for & ~ h® (left plot in
Fig. 9, and Fig. 10), and & ~ h“ for different s (other plots in Fig. 9, and Fig. 11).

In Fig. 10 we show the error curves for three target points; affected by their relative positions to the grid and the surface,
the errors at some target point is larger than at others. Furthermore, the errors at each target point oscillate as one varies h.

We now show that the accuracy of the weights used in the tests is sufficient for the discretization used. In the previous
tests, the number of terms in the Fourier expansion was 2N + 1 with N =22, and each term was tabulated in «, 8 with
Ny g = 101 values each. We repeated the same test as in Fig. 10 for the smallest h ~0.00437, first decreasing N to 11,
and then decreasing Ny, g to 51. The corresponding results are in the following table:

N Na g Avg. error

22 101 2.05289-10°°
22 51 2.05290-10°°
11 101 2.05277-10°°

The table suggests that for this range of parameters, the error from the correction of trapezoidal rule is dominating.
For & ~ (1), the formal order of convergence for the proposed quadrature is @ (h?), but we have observed a rate of
O(h?3). In the next subsection, we present a property of our quadrature that we believe leads to the increase in accuracy.

6.2. Order increase from error cancellation

As discussed in Section 4.3, our corrected trapezoidal rule is applied on every plane in T, (see Fig. 5), and the error for
the whole integral is a sum of the quadrature errors on each relevant plane.

For a fixed target point the singular line intersects each plane at a different location relative to the grid. The relative
positions are given by the shift parameters & and B, which depend on both the plane’s z-coordinate and the grid spacing
h. More precisely, let yo(z) = (xo(z), yo(2)). Then

@ 111 _y@ 11 1
a_{ h +2} 2’ ﬁ_{ h +2} 2’

where {x} denotes the fractional part of x. Defining the 1-periodic function r(x) = {x + 1/2} — 1/2 and using the expression
for the singular line yo(z) in (45) where n = (n1,ny, 1), we can write
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108

10

10°]

0.005 0.01 0.0150.02 0.005 0.01 0.0150.02 0.005 0.01 0.0150.02
h h h

Fig. 9. Sphere tests. Averaged Eq(h) errors (72) on 50 random target points on a sphere. Errors for the punctured trapezoidal rule (32) (black crosses)
and the three considered methods in the evaluation of the double-layer potential: Q€ constant regularization (26) (blue upward triangles); Q' cappuccio
regularization (30) (red downward triangles); Qp corrected trapezoidal rule (67) (magenta circles). The three plots reflect three different settings for the
tubular neighborhood width: left plot & = 0.1; center plot & ~h%7; right plot & ~ h08,

=01

1072

—a—— Q% M

—— Qb 1074

10°°

1076

- - - - 107 =t - - -
0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02
h h

Fig. 10. Torus tests - 1. Tilted torus with 50 random target points on the surface. Tubular neighborhood width constant with respect to h: & = 0.1. Left
figure: mean error Eq(h) plotted for the four different methods considered (punctured trapezoidal rule (32) (black crosses), constant regularization (26)
(blue upward triangles), linear regularization (30) (red downward triangles), and corrected trapezoidal rule (67) (magenta circles). Right figure: distri-
bution of the Eq(h) errors for the 50 target points for the corrected trapezoidal rule. The yellow, green and purple convergence lines correspond to
three of the randomly generated target points: they correspond respectively to the parameters (6, ¢) = (0.674795533436653,1.5287503395568336),
(5.5902567180364535,3.0915183172680867), (3.0463292511788698,5.738447188350594).

zni + xo(0 zn 0

a:a(h,z/h):r( 1+ x0(0) z-H’o()).
h h

This shows that the relative location (&, 8) may vary rapidly between planes both in h and z when h is small, and since r

is discontinuous, the variation is non-smooth.
Let E(z, h) be the quadrature error for one plane. Based on (41) we can express it as

), ﬂ:ﬂ(h,z/h):r(

E(h,z) = Fi(a(h, z/h), B(h, z/h), z) h* + O(h>), (75)

where F; is a smooth function of (&, 8, z). In Fig. 13 we can see the function F;(«, B, z) for a specific value of z. The total
error for the three-dimensional integral, is then

Evor(h) = ) hE(h,z) = D(h* + O(h),
k
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10 1 10°5F ]
| O(h1'4) |: | _____ O(hl.:}) |

10-5 L

0.01 0.02 0.01 0.02 0.01 0.02
h h h

Fig. 11. Torus tests - 2. Tilted torus with 50 random target points; tubular neighborhood width & dependent on h. Mean error for the three considered
methods in the evaluation of the double-layer potential. Top plots: QICB,M constant regularization (blue upward triangles); Q,LB,M linear regularization,
cappuccio (red downward triangles); Qj corrected trapezoidal rule (magenta circles). From left to right, the four plots represent: & ~ h%3 & ~h07> g ~ h09,
& =5h.

where, noting that z,/h =k,
D(h) = hFi(a(h, k), Bh, k), z).
k

The coefficient D(h) is thus the mean of the error coefficients on the different planes. Since F; is smooth, and evaluated
in a compact set, D is therefore bounded in h. However, o and g are non-smooth in h and underresolved in the second
argument in the sum. Therefore, D is not a smooth function of h. This accounts for the irregular convergence plots. See for
instance the left subplot in Fig. 12 or the right one in Fig. 10.

The analysis above would predict second order accuracy for the method, when ¢ is independent of h. However, in
practical computations we typically observe the higher order convergence rate 2.5. We believe this can be explained by a
further property of Fq. Looking at Fig. 13, we may notice a skew-symmetry in Fi(c, 8, z) for fixed z. It is reasonable to
expect that the average value of F; over @ and B is much smaller in module compared to the maximum error. In fact, we
conjecture that the average value of Fq for fixed z is zero,

12 172
/ Fi(a, B,z)dadB =0.
-1/2-1/2

In the sum of Fi(x(h,k), B(h,k), z;), defining D(h) the first two arguments (o, 8) vary much faster than the third (z). If
the sequence k — («(h, k), B(h, k)) has some ergodic property the sum will behave similar to the full integral, which would
be zero

12 12

D(h)%// /F1(a,ﬂ,z)dadﬂdz:0.

—1/2-1/2

A precise analysis of this effect is beyond the scope of this article. Here we just show in Fig. 12 an example of how
Fi(a(h, k), B(h,k), z¢) and (c(h, k), B(h, k)) may vary for two different h that are very close to each other.
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= 0.0093, o = 5.6030
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Fig. 12. Error behavior and nonsmooth convergence. Single target point on a “flat” torus. In the left half of the figure, it is shown the convergence behavior
of the error for the double-layer potential, with two discretizations highlighted (upward and downward triangles). In the right half of the figure, top plots
show the error behavior for the discretization h ~4.57 - 10~3 (downward triangle in the left figure) on the corrected planes as function of 1(z) =ii(z — z*)
with n= ,/n% +n§ +1, which corresponds to the error 3.61-10~8. Bottom plots show the error behavior for the discretization h ~ 4.66 - 10~3 (upward

triangle in the left figure) on the corrected planes as function of 7(z) which corresponds to the error 5.03 - 10~6. The left figures show the signed error as
function of 7(z); the right plot shows the distribution of the («(h, k), 8(h, k)) values on the different planes, where the color represents the value of the
error. From the mean p and variance o printed on top of the left plots we can see that the top case has mean much smaller than the bottom case, and
the variance is half. This explains the much smaller error (downward triangle) compared to the other (upward triangle).
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Fig. 13. Error as function of o and B. Error Fi(o, B,n) seen for n ~ —0.056; the singularity line has direction defined by the spherical coordinates
(6, ¢) ~ (2.298, 3.154). The mean over « and B is 0.01625.
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Appendix A
A.1. Relating curvatures and the principal directions on parallel surfaces

Let Q c R3 be a bounded domain, and let dr and P be the signed distance function and the closest point projection
defined in (10) and (11) in Section 2.3. We assume that the distance function is twice continuously differentiable in the
tubular neighborhood T :={zeR3? : |dr(2)| <e}.

The derivation of the proposed quadratures relies heavily on the knowledge of geometrical information of the surface T,
through that of the level sets of dr. In this section, we relate the principal curvatures and the corresponding directions on
different parallel surfaces I'; :={z e T, : dr(z) =n}, for n e [—¢, ¢].

Let z be an arbitrary point in T, and 1 = dr(z). The curvature information of I'; at z can be retrieved from the Hessian
of dr. Through eigenvalue decomposition, we have

0
_ T
Hdr(z):VZdr(z):[n T1 1,'2] —K1 [n T1 ‘L'z]
—ity
where k1 and i, are the principal curvatures of Iy, at z and 71, T2 the corresponding principal directions.
One can derive easily that the following formula, relating the principle curvatures «; of I' at Prz and k; of I'y, at z:

_,21.

=—— i=12
1+dr@k;

—K;
See for example [30] (§14.6 Appendix: Boundary Curvatures and Distance Function). The principal directions will remain the
same:

Lemma 1. Let T" be a C% surface, z € T; let "y be a parallel surface, and z € T'yy such that Z = Prz. The principal directions at z coincide
with the principal directions at zZ.

Proof. The tangent plane TMy(z) for I'; at z is parallel to the tangent plane TM(z) for I at z.

Let (b1, by) be an orthonormal basis for the plane TMq(z), and v=b{ cosé + by sinf a unit vector. We can consider the
plane Hy passing though z and parallel to the normal vector, and Hy N I" will locally be the support of the regular curve
Vo (s), which is the normal section of I at z. Corresponding to the normal section we can calculate the normal curvature k (6)
of I' at z along v.

Then «(0) is a periodic function in [0, 7r]. The minimum and maximum attained by the curvature are the two principal
curvatures k1 := ming k (6) =k (61) and k7 := maxy k (6) = k (6). Consequently, k' (0;) =0, i=1,2, and «” () <0 < k" (67).
Corresponding to these values are two unit vectors on TMy(z), which form an orthonormal basis, called principal directions.

On TMj(z), we can use the same exact setup, the same basis (b, by), and same unit vectors v =bq cosé + by sinf. We
know that the curvatures will be transformed via the relation

_ Kk (0)
K@O)= ————.
1—nk(0)
The maximum and minimum values of this function are going to be again 6; and 6, as
_ K’ (6;
K/(el)z%z s :1’2
[1—nk )]
_ K" (6))
K (0) = —————;
[1—nK©)]
then the values 6;, i =1, 2 are extrema also for this case, and the second derivatives have the same sign as the ones on I.

Consequently the angles at which maximum and minimum are attained are the same, and the principal directions on the
two parallel surfaces coincide. O

A.2. Calculation of the regularizations of the double-layer kernels

Given a target point x € I', and rg > 0, let M(X,19) C I" be a neighborhood of x dependent on the parameter rq; we will
define it more clearly later. We want to find Wr , such that
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1 x—y)'n, 3Gy
/ an dey = / E(x’ y)doy = / Ur 1, (X, y)doy .

M(x,rp) M(x,r0) M(x,r0)

We approximate the surface using a paraboloid, and we assume the surface is positioned with the target point in the
origin X =0, and the normal in the target placed along the z-axis: nx = (0,0, 1). Given the principal curvatures of the
surface in the target point X, x1 and k3, and assuming the corresponding principal directions lie along the x-axis and y-axis
respectively, the surface is described around the origin as P(x, y) := (x, y, z(x, ¥)), with z such that

z(0,0) = az(O 0) = az(0 0)= 9%z (0,00=0
U ex T ay T axdy
and
8%z 8%z
—(0,0)=x1, —(0,0) =«>.
sz( ) =K1 Byz( ) =K2

The paraboloid is the surface I defined for points close to the origin with coordinates (x, y,z(x, y)) with z(x, y) :=
3 (k1% + k2y?). The paraboloid I' approximates the surface I with errors of the third order: O(x3, y3, x2y, xy?). The Jaco-
bian J(x, y) is going to be the norm of the normal vector to the surface

2 2
eon=is (Zon) s (L) - e v
0x ay

By using this approximation of the surface and considering as the neighborhood M (x,rp) the set

My = {P(x, y) X +y? < ro}

we can rewrite the integral as

le
/ a—no(O,P(x,y))dox,yz / F(x,y)J(x, y)dxdy,
Mg Y My

where

K1X% + K2 2

F(x,y):=

Nlw

1
8 '
[ J1+kix2 +k2y?

In the article [7] the function Wr ;,(x, y) = Cr r, is defined as a constant with respect to x and y:

X4+ y2+ g (ki + szz)z]

0G

/ 960 0, p(x, y))doyy ~ / Crr dox y
ony,

My Mg

The constant Cr r, represents the average of the integrand over M,,. From elementary calculation, we have

CPH(ro) = / F(x, y)J(x, y)dxdy =

My,

2 o
:/d@/dr{rF(rcosO,rsin@)](rcos@,rsin@)}:

0 0

K1+kK K1+K
= 18 210 + 15122(—5/(12—}-2/{1162—5K22)T8+(9(r8),

2 o
Cr(ro) = / J(x, y)dxdy=/d9/dr{r](rcos@,rsin6)}
My, 0 0

T
= nr% + 3 (Kl2 + Kzz)rg + O(rg) .
Then
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_ CPL(ro) _Kitka K1tk
"7 Cr(ro) 871 5127

(13;<]2 —2K1k2 + 13:c22) ro+ O(rg).

Finally, %(x —Y¥), X,y €T can then be regularized as:
9Go
— &y, lx-yl=ro,
,DL
K&t (x,y) = amy (A1)

CF,T‘O B ||X—y|| <Tp.

The same reasoning can be applied to the double-layer conjugate kernel, where in the previous calculations the expres-
sion of F is

1 K1X% + K2 2
Fx,y):= 87 3
[xz +y2 41 (a4 szz)z] ’
and the result is the following regularization:
990 .y, Ix—yl=r
Y, —Yi=ro,
K[EPH x, y) = O (A2)
cRLC, Ix—yl <ro.
where
pic K1tk 5 Kk1+kK2 2 2 3
= - 3k1 + 2k1k2 + 3k5)r0 + O(rg) -
L= Tgrre | 1536 (ki 1K2 310 (ro)

For the case of the secondary kernel of the Helmholtz equation, the function F is

K1X%2 + K22

1
Fx,y):= 5 ,
252 4 y2 4 1 (1122 + 12y2)°

and the regularization becomes

x—y)'n
reg.HL x_72y7 IXx—=yll >r0,
Krg,é X,y) = Il yll (A.3)
Clljﬁo, Ix—yll <o,
where
HL _ K1+K2 K1tk 2 2,2 4
CHly == — —5zg~ (1367 — 212 +133)r5 + 0.

New regularization with linear function (cappuccio)
An potential improvement on (26) can be made by building Wr ;, as linear with respect to the distance from the singu-
larity Wr , (X, y) = ‘Vr,rg x,y):=ap w +ar:

0-— ,
/F(x,y)J(x,y)dxdyz / (ao%vw])](x,y)dxdy.

Mz, 0

The second property we impose is the following: we express P(x, y) = P(rcos6,rsin6) in polar coordinates, and impose
. 27
\IJIE ro (T COs 0, 1o sinf) = — / F(rgcos@,rgsing)dé .
' 21
0

We call:

Ca= [ 10- Pl )l yyddy
My,

Pt = / F(x, )] (x, y)dxdy
Mro
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Cr= / J(x, y)dxdy
My,

2

1
$o = —/F(ro cos 0, rgsind)do
2

0

then the conditions imposed form the following linear system:

ap+ai =¢o

ap
T—Crz +a1Cr ZC?L
0

from which we find:

CPE — ¢oCr
aO = =
Cr2 —1oCr
3 K1+kK2 3 K14k 2 2 3
=—— 21k — 2k1K2 4+ 21k5)rg + O(T
16 7ro 5120 ( 1 1k2 + 2)0+ (0)
¢oCp2 — CI[_—”'T()
aq=—
C2 —roCr
K1+ K2 3 K1+kK2 2 2 3
= — 23k — 6K1Kk2 + 23K5)rg + O(T,
- 9560 (23K 1k2 + 23K5)r0 + O(rg)
This regularization is then:
0Go
— Xy, Ix=yll =r0,
reg,DL any
Kro’,_ x,y) = x—yl (A.4)
a——— t+a, |x—yll<ro.
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