


• We introduce a dual equivalent representation of the port

mapping problem, into a conjunctive abstract resource

mapping problem, facilitating the creation of specific micro-

benchmarks to saturate resources.

• We present several new algorithms: to automatically generate

versatile sets of saturating micro-benchmarks, for any instruc-

tion and resource; to build efficient Linear Programming

optimization problems exploiting these micro-benchmark

measurements; and to compute a complete resource mapping

for all benchmarkable instructions.

• We present a complete, automated implementation in Palmed,

which we evaluate against numerous other approaches

including IACA [17], LLVM-mca [33], PMEvo [29] and

UOPS.info [4].

This paper has the following structure. Related work is first

discussed in Sec. II. Sec. III discusses the state-of-practice

and presents our novel approach to automatically generate a

valid port mapping. Sec. IV presents formal definitions and the

equivalence between our model and the three-level mapping

currently in use. Sec. V presents our architecture-agnostic

approach to deduce the abstract mapping without the use of

any performance counters besides elapsed CPU cycles. Sec VI

extensively evaluates our approach against related work on two

off-the-shelf CPU before concluding.

II. RELATED WORK

Intel has developed a static analyzer named IACA [17] which

uses its internal mapping based on proprietary information.

However, the project is closed-source and has been deprecated

since April 2019. Even though some latencies are given directly

in the documentation [10], they are known to contain errors

and approximations, in addition to being incomplete.

First attempts on x86 to measure the latency and throughput

were led by Agner Fog [13] and Granlund [15] using hand-

written microbenchmarks. Fog also uses hardware performance

counters and hand-crafted benchmarks to reverse-engineers port

mappings for Intel, AMD and VIA CPUs. Fog’s mappings are

considered by the community to be quite accurate. For example,

the machine model of the x86 back-end of the LLVM compiler

framework [20] is partially based on them [34]. However, Fog

and Granlund’s approach is tedious and error-prone, since

modern CPU instruction sets have thousands of different

intricate instructions. Abel and Reineke [4], [3] have tackled

this problem by combining an automatic microbenchmark

generator with an algorithm for port-mapping construction.

Their technique relies on hardware counters for the number

of µOPs executed on each execution port, only available on

recent Intel CPUs. They recently started providing data on the

newest generations of AMD CPUs, but by lack of necessary

hardware counters, only latency and throughput are published.

OSACA [21] is an open source alternative to IACA offering

a similar static throughput and latency estimator. It relies on

automated benchmarks manually linked with publicly available

documentation to infer the port mapping and the latencies of

the instructions. The tool Kerncraft [16] focuses on hot loop

bodies from HPC applications while also modeling caches; its

mapping comes from automated benchmarks generated through

Likwid [35] and hardware counters measurements. CQA [31],

a static loop analyzer integrated into the MAQAO frame-

work [12], takes a similar path while also supporting OpenMP

routines. It combines dependency analysis, microbenchmarks,

and a port mapping and previous manual results to offer various

types of optimization advice to the user, such as vectorisation,

or how to avoid port saturation. Both Kerncraft and CQA use

a hard-coded port mapping based on Fog’s work and official

Intel and AMD documentation.

Besides the classic port mappings, machine learning based

approaches have also been used, eg. in Ithemal [25], to

approximate the throughput of basic blocks with good accuracy.

However, the resulting model is completely opaque and cannot

be analyzed or used for any other purpose than the prediction

of basic block throughputs. For instance, Ithemal does not

report on the influence of each instruction, which is critical

for manual assembly optimization.

PMEvo [29] is a tool that, like Palmed, automatically

generates a set of benchmarks that it uses to build a port

mapping. It produces a disjunctive tripartite model with

instructions, µOPs, and ports, which is the key different with

Palmed. It does not require hardware performance counter,

and only relies on runtime measurements of its benchmarks.

The set of benchmarks used is determined semi-randomly

using a genetic algorithm. The benchmarks themselves are

simpler than those used by Palmed and contain at most two

different types of instructions. The main difference between

PMEvo and Palmed is that PMEvo uses internally a disjunctive

bipartite resource model, instead of the conjunctive model

used by Palmed. These models, while able to accurately

predict the execution of pipelined instructions bottlenecked

only on the execution ports, cannot represent other bottlenecks

like the reorder buffer, or the non-pipelined instructions

like division. More importantly, PMEvo’s approach is less

scalable, as handling more instructions may quickly lead to

an overwhelming number of microbenchmarks, while our

approach is focused to generate specifically microbenchmarks

that saturate resources. Palmed can complete the full mapping,

benchmarking included, in a few hours. Another key to this

scalability is our incremental approach to handle complex

instructions using a linear programming formulation to compute

automatically, and optimally, the mapping.

III. MOTIVATION AND OVERVIEW

A. Background

In this work, we consider a CPU as a processing device

mainly described by the so-called “port model”. Here, instruc-

tions are first fetched from memory, then decomposed into

one or more micro-operations, also called µOPs. The CPU

schedules these µOPs on a free compatible execution port,

before the final retirement stage. Even though some instructions

such as add %rax, %rax translate into only a single µOP,

the x86 instruction set also contains more complex instructions

that translate into multiple µOPs. For example, the wbinvd

(Write Back and Invalidate Cache) instruction produces as
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many µOPs as needed to flush every line of the cache, leading

to thousands of µOPs [4].

Execution ports are controllers routing µOPs to execution

units with one or more different functional capabilities: for

example, on the Intel Skylake architecture, only the port 4 may

store data; and the store address must have previously been

computed by an Address Generation Unit, available on ports 2,

3 and 7.

The latency of an instruction is the number of clock cycles

elapsed between two dependent computations. The latency of

an instruction I can be experimentally measured by creating a

micro-benchmark that executes a long chain of instances of I ,

each depending on the previous one.

The throughput of an instruction is the maximum number

of instances of that instruction that can be executed in parallel

in one cycle. On every recent x86 architecture, all units but

the divider are fully pipelined, meaning that they can reach

a maximum throughput of one µOP per cycle – even if their

latency it greater than one cycle. For an instruction I , the

throughput of I can be experimentally measured by creating a

micro-benchmark that executes many non-dependent instances

of I: The combined throughput of a multiset1 of instructions

can be defined similarly. For example, the throughput of

{ADDSS2,BSR}, i.e. two instances of ADDSS and one instance

of BSR, is equal to the number of instructions executed per

cycle (IPC) by the micro-benchmark:

repeat:

ADDSS %xmm1 %xmm1; ADDSS %xmm2 %xmm2; BSR %rax %rax;

ADDSS %xmm3 %xmm3; ADDSS %xmm4 %xmm4; BSR %rbx %rbx;

ADDSS %xmm5 %xmm5; ADDSS %xmm6 %xmm6; BSR %rcx %rcx;

...

A resource-mapping describes the resources used by each

instruction in a way that can be used to derive the throughput

for any multiset of instructions, without having to execute the

corresponding micro-benchmark. Such information is crucial

for manual assembly optimization to pinpoint the precise cause

of slowdowns in highly optimized codes, and measure the

relative usage of the peak performance of the machine.

In this work, we target the automatic construction of a

resource mapping for a given CPU on which we can accurately

measure elapsed cycles for a code fragment. Note that Palmed

only uses benchmarks that have no dependencies, that is, where

all instructions can execute in parallel. Consequently the order

of instructions in the benchmark does not matter2.

B. Constructing a Resource Mapping

To characterize the throughput of each individual instruction,

a description of the available resources and the way they are

shared is needed. The most natural way to express this sharing

is through a port mapping, a tripartite graph that describes

how instructions decompose to µOPs and assigns µOPs to

execution ports (see Fig. 1a). The goal of existing work has

1A multiset is a set that can contain multiple instances of an element. As
with normal sets, the order of elements is not relevant

2We assume, like all related work we are aware of, that the CPU scheduler
is able to optimally schedule these simple kernels.

been to reverse engineer such a port mapping for different

CPU architectures.

The first level of this mapping, from instructions to µOPs,

is conjunctive, i.e., a given instruction decomposes into one

or more of each of the µOPs it maps to. The second level of

this mapping, on the other hand, is disjunctive, i.e. a µOP can

choose to execute on any one of the ports it maps to. Even with

hardware counters that provide the number of µOPs executed

per cycle and the usage of each individual port, creating such

a mapping is quite challenging and requires a lot of manual

effort with ad hoc solutions to handle all the cases specific to

each architecture [30], [13], [15], [4].

Such approaches, while powerful and allowing a semi-

automatic characterization of basic-block throughput, suffer

from several limitations. First, they assume that the architecture

provides the required hardware counters. Second, they only

allow modeling the throughput bottlenecks associated with port

usage, and neglect other resources, such as the front-end or

reorder buffer. Thus, it provides a performance model of an

ideal architecture that does not necessarily fully match reality.

To overcome these limitations, we restrict ourselves to only

using cycle measurements when building our performance

model. Not relying on specialized hardware performance

counters may complicate the initial model construction, but in

exchange our approach is able to model resources not covered

by hardware counters with relative ease. This also paves the way

to significantly ease the development of modeling techniques

for new CPU architectures. One of the main challenges is to

generate a set of micro-benchmarks that allows the detection

of all the possible resource sharing. Unfortunately, to be

exhaustive, and in the absence of structural properties, this set

is combinatorial: all possible mixes of instructions need to be

evaluated. A simple way to reduce the set of micro-benchmarks

required is to reduce the set of modeled instructions to those

that are emitted by compilers [25], [29]. Another natural

strategy followed by Ithemal [25] is to build micro-benchmarks

from the “most executed” basic-blocks of some representative

benchmarks. A third strategy, used by PMEvo [29], is to restrict

micro-benchmarks to contain repetitions of only two different

instructions.

Our solution is constructive and follows several successive

steps that allow building a non-combinatorial number of micro-

benchmarks that stresses the usage of each individual resource,

thus characterizing the resource usage of all instructions.

The second main challenge addressed by PMEvo is to build

an interpretable model, that is, a resource-mapping that can

be used by a compiler or a performance debugging tool,

instead of a black-box only able to predict the throughput

of a microkernel. One issue with the standard port-mapping

approach, as used in [4], [21], [33], is that computing the

throughput of a set of instructions requires the resolution of

a flow problem; that is, given a set of micro-benchmarks,

finding a mapping of µOPs to ports that best expresses the

corresponding observed performances requires solving a multi-

resolution linear optimization problem. This linear problem

also does not scale to larger sets of benchmarks, even when

108



DIVPS VCVTT ADDSS BSR JNLE JMP

p0 p1 p6

1 1 1

(a) Port mapping (disjunctive form) and maximum throughput

of each port.

DIVPS VCVTT ADDSS BSR JNLE JMP

r0 r01 r1

1 2 1
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r06

2
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1

2
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(b) Abstract resource mapping (conjunctive form) and maximum

throughput of each resource.

ADDSS BSR

r01 r1

1/2
1/2

1

r016

1/3

1/3

(c) Normalized conjunctive form for

ADDSS and BSR.

Fig. 1: Mappings computed for a few SKL-SP instructions.

restricting the micro-benchmarks to only contain up to two

different instructions. PMEvo addressed this issue by using a

evolutionary algorithm that approximates the result.

TABLE I: SUMMARY OF KEY FEATURES OF PALMED VS. RELATED WORK

no HW no manual
interpretable general

counters expertise

llvm-mca [33] ✗ ✗ ✓ ✓

Ithemal [25] ✓ ✗ ✗ ✗

IACA [17] N/A ✗ ✓ ✓

uop.info [4] ✗ ✗ ✓ ✓

PMEvo [29] ✓ ✓ ✓ ✗

Palmed ✓ ✓ ✓ ✓

C. Resource Mapping: Dual Representation

Our approach is based on a crucial observation: a dual

representation exists for which computing the throughput is not

a linear problem, but a simple formula instead. While it takes

several hours to solve the original disjunctive-port-mapping

formulation, only a few minutes suffice for the corresponding

conjunctive-resource-mapping formulation.

For the sake of illustration only (Palmed finds in practice

a mapping for all supported instructions), we consider the

Skylake instructions restricted to those that only use ports 0, 1,

or 6 (denoted as p0, p1, and p6). Fig. 1a shows the port mapping

for six such instructions. In this example: the µOP of BSR has

a single port p1 on which it can be issued; as for instruction

ADDSS, its µOP can be issued on either p0 or p1. Hence,

BSR has a throughput of one, that is, only one instruction

can be issued per cycle, whereas ADDSS has a throughput of

two: two different instances of ADDSS may be executed in

parallel by p0 and p1. The throughput of the multiset K =
{ADDSS2,BSR}, more compactly denoted by ADDSS2BSR, is

therefore determined by the combined throughput of resources

p0 and p1. Indeed, in a steady state mode, the execution can

saturate both resources by repeating the pattern represented

in Fig 2a. In this case, there clearly does not exist any better

scheduling, and the corresponding execution time for K is

3 cycles for every 6 instructions, that is, an Instruction Per

Cycle (IPC) of 2. Now, if we consider the set ADDSS BSR2,

its throughput is limited by p1. Indeed, the optimal schedule

in that case would repeat the pattern represented in Fig 2b,

which requires 2 cycles for 3 instructions, that is, an IPC of

1.5. More generally, the maximum throughput of a multiset

on a tripartite port-mapping can be solved by expressing the

minimal scheduling problem as a flow problem.

p0 p1

ADDSS BSR

ADDSS BSR

ADDSS ADDSS

(a) ADDSS2
BSR

p0 p1

ADDSS BSR

∅ BSR

(b) ADDSS BSR
2

Fig. 2: Disjunctive port assignment examples

The dual representation, advocated in this paper, corresponds

to a conjunctive bipartite resource mapping as illustrated in

Fig. 1b. In this mapping, an instruction such as ADDSS which

uses one out of two possible ports p0 and p1 will only use

the abstract resource r01 representing the combined load on

both ports, and will use neither r0 nor r1. In this model, the

maximum throughput of r01 is the sum of the throughput of

p0 and p1, that is, 2 uses per cycle. Instructions that may

only be computed on p0 will then use r0 and r01, along with

all other resources combining the use of p0 with other ports

such as r06 and r016. Followingly, the average execution time

of a microkernel is computed as the maximum load over all

abstract resources, that is, their number of uses divided by

their throughput (see Sec. IV). One can prove (see [1]) the

strict equivalence between the two representations without

the need for any combinatorial explosion in the number of

combined resources. Because of this property, the trade-off

offered by the conjunctive formulation (more resources for a

simpler throughput computation) offers better overhaul solving

complexity that former disjunctive-based approaches for real

processors, hence the better scalability of Palmed. Indeed, in

practice, some combined resources are not needed (e.g. r16 in

our example) as their usage is already perfectly described by

the usage of individual resources (here, r1 and r6).

A key contribution of this paper is to provide a less

intricate two-level view, that can be constructed quicker than

previous works. Instead of representing the execution flow as

the traditional three-level “instructions decomposed as micro-

operations (micro-ops) executed by ports” model, we opt for

a direct “instructions use abstract resources” model. Whereas

an instruction is transformed into several micro-ops which in

turn may be executed by different compute units; our bipartite

model strictly uses every resource mapped to the instructions.

In other words, the or in the mapping graph are replaced

with and, which greatly simplifies throughput estimation. This

representation may also represent other bottlenecks such as

the instruction decoder or the reorder buffer as other abstract

resources. Note that this corresponds to the user view, where the

micro-ops and their execution paths are kept hidden inside the
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processor. An important contribution of this paper is to provide

a constructive algorithm that provides a non-combinatorial

set of representative micro-benchmarks that can be used to

characterize all instructions of the architecture.

D. Palmed: Flow of Work

Fig. 3 overviews the major steps of Palmed, which are

extensively described in Sec. V. Our algorithm follows an

approach similar to the one developed by uops.info: its principle

is to first find a set of basic instructions producing only one

µOP and bound to one port.

This first step can be done on Intel CPUs by measuring

the µOP per cycle on each port for each instruction through

performance counters.

Those basic instructions are then used to characterize the

port mapping of any general instruction by artificially saturating

one-by-one each individual port and measuring the effect on the

usage of the other ports. The challenge addressed by Palmed

is to find a mapping, even for architectures that do not have

such hardware counters.

This translates in two major hardships: firstly, in our case,

there is no predefined resources; secondly, there even is no

simple technique to find the number of µOPs an instruction

decomposes into. As illustrated by Fig. 3 the algorithm of

Palmed is composed of three steps: 1. Find basic instructions;

2. Characterize a set of abstract resources (expressed as a core

mapping) and an associated set of saturating microkernels (a

single instruction might not be enough to saturate a resource);

3. Compute the resource usage of each other instruction with

respect to the core mapping.

As an example, let us go back to our example: instructions

using only p0, p1, or p6. On Intel’s Skylake microarchitecture,

there exists 754 benchmarkable instructions using only these

3 ports. Quadratic benchmarking – that is, measuring the

execution time of one benchmark per pair of instruction, leading

to a quadratic number of measures (567762) – allows us to

regroup those who have the same behavior together, leading

to only 9 classes of instructions. For each class, a single

instruction is used as a representative. Among those instructions,

two heuristics (described in sec V-A) select the set of basic

instructions, outputting DIVPS, BSR, JMP, JNLE, and ADDSS.

Fig. 1b shows the output of the Core Mapping stage in

Fig. 3, in bold. In practice, abstract resources are internally

named R0, . . . , R5. For convenience we renamed them to the

hardware execution ports they correspond to: for example, the

abstract resource r01 corresponds to the combined use of port

p0 and p1 for an optimal schedule.

The Core mapping also computes a set of saturating micro-

benchmarks that individually saturate each of the individual

abstract resource. Here, each basic instruction will constitute

by itself a saturating micro-benchmark: DIVPS will saturate

r0, BSR will saturate r1, JMP will saturate r6, ADDSS will

saturate r01, and JNLE will saturate r06. Note that this is

not the case in general: we possibly need to combine several

basic instructions together to saturate a resource. Here, the

saturating micro-benchmark for resource r016 is composed of

two basic instructions: ADDSS and JNLE. The last phase of

our algorithm will, for each of the 742 remaining instructions,

build a set of micro-benchmarks that combine the saturating

kernels with the instruction, and compute its mapping.

IV. THE BIPARTITE RESOURCE MAPPING

This section provides a formal presentation of the dual

conjunctive formulation used by Palmed.

Definition IV.1 (Microkernel). A microkernel K is an in-

finite loop made up of a finite multiset of instructions,

K = I
σK,1

1 I
σK,2

2 · · · I
σK,m

m without dependencies between

instructions, σK representing the number of repetition of the in-

struction K in the microbenchmark. The number of instructions

executed during one loop iteration is |K| =
∑

i σK,i.

In a classical disjunctive port mapping formalism, an

instruction i from a microkernel K is assigned to a port

(resource r) that is compatible. The execution time of K
is determined by the resource which is used the most by its

instructions in a given such assignment, and depends on the

assignment picked, as presented in Sec III. Instead, we consider

a conjunctive port mapping:

Definition IV.2 (Conjunctive port mapping). A conjunctive

port mapping is a bipartite weighted graph (I,R, E, ρI,R)
where: I represents the set of instructions; R represents the

set of abstract resources, that has a (normalized) throughput of

1; E ⊂ I ×R expresses the required use of abstract resources

for each instruction. An instruction i that uses a resource

r ((i, r) ∈ E) always uses the same proportion (number of

cycles) ρi,r ∈ Q+. If i does not use r, then ρi,r = 0.

Let K = I
σK,I1

1 I
σK,I2

2 · · · I
σK,Im
m be a microkernel. In a

steady state execution of K, for each loop iteration, instruction

i must use a resource r for (σK,iρi,r) cycles. The number of

cycles required to execute one loop iteration is:

t(K) = max
r∈R

(

∑

i∈K

σK,i · ρi,r

)

One should observe that Def. IV.2 defines formally a

normalized version where throughputs of abstract resources

are set to 1. For the sake of clarity, the example in Sec. III was

considering non-normalized throughputs, that is, different than

1. Going from non-normalized (as in Fig. 1b) to normalized

form (as in Fig. 1c) simply relies in dividing the incoming

edges of a resource by the resource’s throughput before setting

its throughput to 1. For example, in the non-normalized form

VCVTT uses 2 times r01, which has a throughput of 2, leading

to a normalized ρVCVTT,r01 of 1. Similarly, ρADDSS,r016 = 1/3.

Definition IV.3 (Throughput). The throughput K of a mi-

crokernel K is its instruction per cycle rate (IPC), defined

as:

K =
|K|

t(K)
=

∑

i∈K σK,i

maxr∈R

∑

i∈K σK,i · ρi,r
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Fig. 3: High-level view of the algorithms of Palmed

Example: If K = ADDSS2 BSR, as in Fig 2a,

t(K) = max r∈{r1,r01,r016} (2× ρADDSS,r + ρBSR,r)

= max

(

(r1) 2× 0 + 1, (r01) 2×
1

2
+

1

2
, (r016) 2×

1

3
+

1

3

)

= 1.5

K = (2 + 1)/1.5 = 2

On K ′ = ADDSS BSR2, as in Fig 2b, the same computation

gives t(K ′) = 2, the bottleneck being r1; hence, K ′ = 3/2.

The mathematical definitions, the method to build a con-

junctive port mapping from a disjunctive one, and the abstract

resource and the equivalence proof can be found in [1].

V. COMPUTING RESOURCE MAPPING

As depicted in Fig. 3, our approach can be decomposed

into three different steps. Sec. V-A describes the selection

of basic instructions, a subset of instructions that map to as

few resources as possible. Sec. V-B describes the computation

of the core mapping for these basic instructions. The core

mapping stays fixed for the rest of the algorithm. Along with

the core mapping, we also select a saturating micro-benchmark

for each resource, called the saturating kernel. The saturating

kernel is made up of basic instructions that do not place a

heavy load on other resources. Sec. V-C describes how Palmed

uses the saturating kernels and the core mapping to deduce,

one by one, the resources used by the remaining instructions

of the targeted architecture.

A. Basic Instructions Selection

The first step of our algorithm trims the instruction set to

extract a minimal set of instructions for which the mapping

will be computed. As this (core) mapping will be reused later,

we need enough instructions to detect all resources, but the

more instructions we have, the longer the resolution of the

linear problem this mapping will take. We thus first apply two

simple filters that reduce the number of basic instructions, as

depicted in the first half of Algo. 1.

Low-IPC: If a < 1 (measured with a microbenchmark

repeating only a), then a is not consider as a candidate for

basic instructions. Assuming every physical resource to have a

throughput of 1, such instructions use one resource more than

once. However, these low-IPC instructions are still mapped at

the very last step of Palmed (see Sec. V-C).

Then, we compute, for every remaining pair of instruction

(a, b), the throughput of the microkernel aabb. This set of

benchmarks is called quadratic benchmarks (see Fig. 3) as their

number is quadratic with respect to the number of instructions.

These quadratic benchmarks are later reused in each of the

following heuristics.

Equivalent classes: If ∀p, aapp = bbpp then keep only

a or b. The second filter removes duplicates, that is, if two

instructions behave similarly with regard to the evaluation

used for our basic instruction selection, then one of them

can be ignored. Obviously, on a real machine, despite all the

crucial efforts to remove execution hazards, measured IPC

never perfectly match and the correct criteria for selecting a

representative instruction for duplicates should approximate the

equality test ∀p, aapp ≈ bbpp. The construction of equivalence

classes and associated representative instruction in this context

uses hierarchical clustering [26].

1 Function Select basic insts(I, n)
2 IF := I;

// Remove low-IPC; compute eq. classes

3 foreach a ∈ IF do
4 if a ≤ 1− ϵ then IF := IF − {a} ;

5 if ∃b ∈ IF , ∀p ∈ I, aapp = bbpp then
6 IF := IF − {a}

// Select very basic instructions

7 foreach a ∈ IF do

8 Dj[a] :=
{

b ∈ IF , a
abb = a+ b

}

9 let a <VB b ⇔
10 (|Dj[a]| > |Dj[b]|) ∨

(

|Dj[a]| = |Dj[b]| ∧ a > b
)

;
11 IVB := ∅;
12 for a ∈ IF in <VB order do
13 if IVB ⊂ Dj[a] then IVB := IVB ∪ {a} ;
14 if |IV B | = n then return IB := IV B ;

// Select most greedier instructions

15 IMF := ∅;
16 for a ∈ IF in ≼greedier order do
17 IMF := IMF ∪ {a};
18 if |IV B ∪ IMF| = n then return IB := IVB ∪ IMF;
19 return IB := IVB ∪ IMF;

Algorithm 1: Set of basic instructions IB

Once low IPC instruction duplicates have been removed, the

selection relies on two criteria (cf Algo. 1):

• Very basic instructions: Instructions a and b are con-

sidered disjoint if aabb = a + b. The set of very basic

instructions is defined as a maximal clique of disjoint
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1 Function Core mapping(IB)
// Characterize resources

2 K :=
⋃

(a,b)∈I2

B
, a ̸=b

{

a, aabb, aMb
}

;

3 do
4 G := Shape Mapping(K, IV B , IMF )) ; // LP1

5 Knew :=
⋃

r∈R

{

Πi∈IB , ρi,b≥ϵi
i
}

−K;

6 K := K ∪ Knew;
7 until Knew = ∅;
8 G := Mapping(K,G) ; // LP2

// Find saturating kernels

9 foreach r ∈ R do
10 sat[r] := K ∈ K s.t. ρK,r = 1 minimizing cons(K);
11 for i ∈ IB s.t. i /∈ sat[r] do
12 K := K ∪ {Ksat(i, r)};
13 return K, sat,G;

Algorithm 2: Core mapping and saturating kernels

1 Function Shape mapping(K, IV B , IMF )
2 Solve
3 ∀(i, r) ∈ I ×R, ρi,r ∈ {0, 1};
4 ∀i ∈ IV B ,minr∈R 1− ρi,r +

∑

j∈IV B\{i} ρj,r = 0;

5 ∀i ∈ IMF ,maxr∈R ρi,r +
∑

j><i
ρj,r = 1 + |{j ><

i}|;
6 foreach k ∈ K s.t.

{iα ∈ k s.t. cycles(iα) = cycles(k)} = ∅ do
7 maxr∈R

∑

i∈k
ρi,r ≥ |{i ∈ k}|;

8 foreach k ∈ K s.t.
{iα ∈ k s.t. cycles(iα) = cycles(k)} ≠ ∅ do

9 ∀iα ∈ k s.t. cycles(iα) = cycles(k)
10 minr∈R 1− ρi,r +

∑

j∈k,j ̸=i
ρj,r = 0;

11 Minimize
∑

i∈IB
maxr∈R ρi,r;

12 return (I,R, {ρi,r});

Algorithm 3: LP1: Shape of core mapping

1 Function Mapping(K,G)
2 Solve Bipartite Weight Problem
3 I := instructions(K);
4 (ρi,r)I,R := edges(G);
5 ∀(i, r) ∈ I ×R, 0 ≤ ρi,r ∈ [0, 1];
6 ∀(K, r) ∈ K ×R,
7 ρK,r =

(
∑

i∈I σK,iρi,r
)

×K/
(
∑

i∈I σK,i

)

;

8 ∀(K, r) ∈ K ×R, ρK,r ≤ 1;
9 ∀K ∈ K, SK = maxr∈R ρK,r;

10 Minimize
∑

K∈K(1− SK);
11 return (I,R, {ρi,r});

Algorithm 4: LP2: Bipartite Weight Problem (BWP), used in LP2 and
LPAUX

1 IB := select basic insts(I, n);
2 K, sat,G := Core mapping(IB);
3 foreach inst ∈ I do
4 K :=

⋃

r∈R Ksat(inst, r);
5 I := IB ∪ {inst};
6 Solve Find a solution to the following problem
7 ∀r ∈ R, 0 ≤ ρinst,r;
8 ∀(K, r) ∈ K ×R, ρk,r =

(
∑

i∈I σK,iρi,r
)

× k/
(
∑

i∈I σK,i

)

;

9 ∀(K, r) ∈ K ×R, ρK,r ≤ 1;
10 ∀K ∈ K, SK = maxr∈R ρK,r;
11 Minimize

∑

K∈K(1− SK);

Algorithm 5: LPAUX: Complete resource mapping

instructions. This captures instructions that maps to a

single resource. Indeed, two instructions that do not share

any resource will have their IPC additive, thus belonging

to the maximum clique of our graph.

• Most greedier instructions: Instruction a is considered

more greedier than b (a ≼greedier b) if ∀p, aapp ≥ bbpp.

This relation defines a pre-order, and we select the n most

greedier instructions.

B. Core Mapping

The core mapping phase as described in Alg. 2 is decom-

posed in two steps. The objective of the first step is to build

the shape of the resource mapping from the basic instructions,

containing all visible resources and possible edges. In the

second step, Palmed computes the values of the edges and

outputs a saturating benchmark for every detected resource.

Similarly to Abel and Reinecke’s work [4], these benchmarks

are reused as an indicator of the usage of their resource in the

complete mapping phase (Sec. V-C).

Both of these steps use linear programming to build step-

by-step a mapping that reflects accurately the measured IPC

of a set of microkernels K, and are detailed in the following

two paragraphs.

Characterize resources (LP1): The goal of the first

step is to find the shape of the resource mapping, that is, the

number of resources needed and the possible edges from core

instructions to resources. For this, Palmed solves the following

Integer Linear Programming (ILP) problem, formalized in

Alg. 3, repeated until no new benchmark is added:

Objective function: Minimize the number of resources.

Constraints: From the following seed of microkernels:

1) a ∈ I alone;

2) aabb, as this benchmark has and IPC of a + b if a and

b are independents or if their common resources are not

dominantly used.

3) aMb (with M = 4 in practice – see [1] for detailed

justification) to avoid the convergence of the solver to

a simpler solution with fewer resources.

We derive the following constraints (in the order of Alg. 3):

– Each very basic instruction as defined in Sec. V-A is

linked to at least one resource unused by other very basic

instructions (line 4).

– For each greedier instruction i as defined in Sec. V-A, there

exists at least one resource common to i and to all other

instructions a for which iiaa ̸= i+a (line 5). This relation

corresponds to the negation of the disjoint relation defined

in Sec. V-A, that we note ><.

– For all other microkernels: 1) every instruction identified

as saturating (that is, instructions for which the execution

time of the microkernel is equal to its execution time) maps

to at least a resource unused by other instructions of the

microkernel (line 7); 2) if no saturating instruction is found,

then there exists a resource shared by every instruction of

the benchmark (line 10).

The enrichment is done as follows: for each resource found,

we add a benchmark composed of every instruction using it
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with a multiplicity of their IPC, splitting it in case of undesired

merges. Once convergence has been reached, we expect most

of existing resources and edges to be discovered: Palmed passes

to the (LP2) step to compute the value of the edges.
Bipartite Weight Problem (BWP) and Core Mapping

(LP2): The BWP is formalized in Alg. 4, and aims at finding

the correct values of the edges found during the LP1. Using the

notations from Def. IV.2: ρi,r ∈ Q+ expresses the proportional

usage of the resource r by instruction i, and K the average

number of instructions executed each cycle when K is executed

by the CPU. The proportion of a resource r that is used is

thus ρK,r = K ·
(
∑

i∈I
σK,iρi,r

)

/
(
∑

i∈I
σK,i

)

, bounded by

its throughput (ρK,r ≤ ρr = 1). One of the resources must

be the limiting factor, that is, ∃r, ρK,r = 1. However, we

authorise sub-saturation of the resources, acknowledging our

model does not predict accurately every microkernel, and we

note SK = maxr ρK,r ≤ 1. We also restrict the possible edges

to the ones output by the LP1. These constraints form our

linear problem minimizing the sum of predictions error, that

is
∑

k∈K
(1− Sk).

Once the mapping has been computed, for every resource

r, a saturating kernel sat[r] is chosen among all saturating

microbenchmarks of the LP2 (K s.t. ρK,r = 1, at least one

necessarily exists by construction) as the one that has minimum

consumption:

cons(K) =
∑

i∈I, r∈R

ρi,r

C. Complete Mapping (LPAUX)

In the last step, corresponding to Algo. 5, an optimization

problem is solved for each remaining instruction. The for-

mulation of the new optimization problem is very similar to

the BWP, except that the resources and the edges of the core

mapping computed previously are frozen. The presence or

absence of an edge from the to-be-mapped instruction i to a

resource r is constrained by using Ksat(i, r) = iisat[r]L∗sat[r]

in the set of microbenchmarks, with L = 4 in practise. The

idea is to force the saturation of r by charging it with sat[r],
hence expressing the usage of r by i.

VI. EVALUATION

Our evaluation section compares throughput accuracy on

assembly microkernels extracted from two benchmarks suites:

the SPECrate version of SPECint2017 [7] and Polybench [27].

We compare Palmed against the native execution, along with

the predictions of four existing tools: IACA [17], PMEvo [29],

llvm-mca [33] and the port mapping deduced from uops.info’s

work [4].

Our evaluation is performed on two architectures: the SKL-

SP is an Intel Xeon Silver 4114 CPU at 2.20 GHz, using

Debian, Linux kernel 4.19 and PAPI 6.0.0.1 to collect the

execution time in cycles for each microbenchmarks, restraining

to non-AVX-512 instructions. The ZEN is an AMD EPYC

7401P CPU at 2 GHz with a similar software setup. For

each of these two architectures, the number of generated

microbenchmarks, resources found and mapped instructions

are gathered in Table II.

A. Calibration of the Model

The port mapping is computed using the algorithm presented

in Section V using a list of x86 instructions extracted from

Intel’s XED [11]. We discard instructions which cannot be

instrumented in practice, such as instruction modifying the

control flow (as our microbenchmark generator cannot handle

non-trivial control flow in the instrumented instructions),

privileged instructions, along with instructions whose IPC

is lower than 0.05, as they do not present any interest for

performance prediction of throughput-limited microkernels.

While benchmarking memory instructions, we ensure that every

access hits the L1 cache to avoid cache-related bottlenecks,

which are out of Palmed’s scope. Due to the complexity of the

x86 instruction set, we separate the SSE and AVX instructions

from the “base ISA”: we apply separately the heuristics of

Sec. 1 before gathering all selected instructions in a single

combined basic instructions’ set as described in Fig. 3.

We also forbid benchmarks combining different extensions

(e.g. SSE+AVX). Indeed, combinations of several vector

extensions of different width are known to cause extra latency,

that is, a sort of dependency from one instruction to the other

(two consecutive SSE instructions would not be penalized,

whereas one SSE and one AVX will). This violates our

assumption that the relative order of instruction does not matter,

and in practice we observed a significant degradation of the

mapping without this mitigation.

Because of variations in the real-world measurements, we

constrain the error rate to 0.05 for the micro-benchmark

coefficient, meaning that the number of repetitions of an

instruction inside its microkernel differs by at most 5% from

what the algorithm requires. For example, a benchmark aabb

with a = 0.06 and b = 1 will be rounded to a1b20. Note

that in the BWP defined in Algorithm 4, we use the rounded

coefficients and not the ideal ones. The IPC is also rounded

accordingly. Note that our microbenchmark generator is pre-

constrained with these limitations; therefore we did not evaluate

Palmed with another measurement back-end – although we

expect similar results as we ensured to have reproducible

execution times.

B. Throughput Estimations

To evaluate Palmed, the same microkernel is run:

(1) natively on each CPU, with the IPC measured with

CPU_CLK_UNHALTED; (2) using our mapping with abstract

resources corresponding to the actual machine, as described

in Section VI-A; (3) using Abel’s work (uops.info) [4], by

running a conjunctive mapping with exact compatibility and

approximating the execution time by the port with the highest

usage; (4) using PMEvo [29], ignoring any instruction not

supported by its provided mapping; (5) using IACA [17], by

inserting assembly markers around the kernel and running the

tool; (6) using llvm-mca [33], by inserting markers in the

assembly code generated by our back-end and running the tool

with this assembly.

Unlike PMEvo and llvm-mca, UOPS and IACA do not

support the ZEN1 architecture; hence the absence of data.
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instructions they cannot handle, some will crash on the basic

block. For PMEvo, we ignored any instruction not supported

by their mapping – degrading the quality of the result; hence, a

plain error is a basic block in which no single instruction was

supported. Although it would be fairer to other tools to measure

absolute coverage – that is, the proportion of basic blocks

supported by the tool, regardless of what Palmed supports –,

technical limitations prevented us from doing so: running the

various tools requires our back-end to generate assembly code,

which can only be done for the instructions it supports.

TABLE II: MAIN FEATURES OF THE OBTAINED MAPPINGS

Machine SKL-SP ZEN1

Processor
2x Intel Xeon AMD EPYC
Silver 4114 7401P

Cores 20 24

Benchmarking time 8h 6h
LP solving time 2h 2h

Overall time 10h 8h

Gen. microbenchmarks ∼ 1,000,000 ∼ 1,000,000
Resources found 17 17

uops’ inst. supported 3313 1104
Instructions mapped 2586 2596

We compare the number of instructions supported by Palmed

with the ones supported by uops.info as a baseline. As uops

supports only partially AMD’s architecture (providing only

throughput and latencies, but no usable port mapping), less

than half the instructions supported by our tool are present for

this target. Contrarily, on SKL-SP, uops supports the AVX-512

extension, therefore leading to a more complete set of supported

instructions. PMEvo’s mapping behaves poorly in terms of

coverage (see Fig. 4b), failing to support all instructions in more

than 25 % of the basic blocks on any benchmark and processor

tested. This behavior is due to our different compilation options,

as PMEvo’s supported instructions are directly collected from

their SPEC2017 binaries. As a consequence, both MSE and

Kendall’s tau values are lower than other tools as those

unsupported instructions are treated as if they took no resource

at all on our IPC estimates.

Moreover, Palmed requires 2h of solving time (see Tbl. II)

to map about 2500 instructions. This is between one half

(SKL-SP) and one eighth (Zen) of PMEvo’s solving time [4],

demonstrating the scalability of Palmed with respect to the

number of instructions.

In Fig. 4, we observe that Palmed performs significantly

better than uops.info and PMEvo on both platforms. On

Skylake, it outperforms all other tested tools in terms of

Kendall’s tau, and compares well with IACA and LLVM-

MCA, archiving sub-10 % mean square error rate on SPEC2017.

However, those two last tools use manual expertise and are

tailored for a platform, whereas our tool is fully automated

and generic.

On Zen1, Palmed is comparable to LLVM-MCA, but

shows a greater error rate than on Intel. This is due to

the internal organization of the Zen microarchitecture, which

uses a separated pipeline for integer/control flow and floating

point/vector operations. As Palmed tries to minimize the

number of resources, this separation is not properly detected,

leading to IPC predictions lower than the actual value as seen

on the heatmaps on Fig. 4a.

More generally, IACA, uops.info and LLVM-MCA tend

to over-estimate the IPC, which is due to their port-based

approach: bottlenecks coming from neither ports nor front-end

limitations are not taken into account, leading to higher IPC

estimations for microkernels where other resources are bottle-

necking. Contrarily, benchmarking-based approaches (Palmed

and PMEvo) present both under and over approximations as

they are based on real-life execution, where all bottlenecks are

present. Note that Palmed, IACA, LLVM-MCA (Zen1 only)

and PMEvo (Zen only) also express the front-end bottleneck:

the limit on the maximal number of instructions being decoding

in one cycle (no over-approximation of microkernels with high

IPC), that is, a maximal IPC of 4 on SKL-SP and 5 for Zen1.

Therefore, we expect Palmed (and PMEvo) to have maximal

error rate on benchmarks with few instructions, case in which

some undetected / wrongly detected common resource will

have higher importance, whereas LLVM-MCA, uops.info and

IACA will tend to be more fragile on long microkernels with

possible non-port related resources – especially memory ones.

VII. CONCLUSION

We presented Palmed which automatically builds a resource

mapping for CPU instructions. This allows to model not only

execution port usage, but also other limiting resources, such as

the front-end or the reorder buffer. We presented an end-to-end

approach to enable the mapping of thousands of instructions

in a few hours, including microbenchmarking time. Our key

contributions include the mathematically rigorous formulation

of the port mapping problem as solving iteratively linear

programs, enabling an incremental and scalable approach to

handling thousands of instructions. We provided a method to

automatically generate microbenchmarks saturating specific

resources, alleviating the need for statistical sampling. We

demonstrated on one Intel and one AMD high-performance

CPUs that Palmed generates automatically practical port

mappings that compare favorably with state-of-the-art systems

like IACA and uops.info that either use performance counters

or manual expertise.
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