2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) | 978-1-6654-0584-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/CG053902.2022.9741289

PALMED: Throughput Characterization for
Superscalar Architectures

Nicolas Derumigny*¥, Théophile Bastian*, Fabian Gruber*, Guillaume Iooss*
Christophe Guillon®, Louis-Noél Pouchet!, Fabrice Rastello*
* Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
T STMicroelectronics, France
1 Colorado State University, Fort Collins, Colorado, USA

Abstract—In a super-scalar architecture, the scheduler dynam-
ically assigns micro-operations (1OPs) to execution ports. The
port mapping of an architecture describes how an instruction
decomposes into /OPs and lists for each ;(OP the set of ports it can
be mapped to. It is used by compilers and performance debugging
tools to characterize the performance throughput of a sequence
of instructions repeatedly executed as the core component of a
loop.

This paper introduces a dual equivalent representation: The
resource mapping of an architecture is an abstract model where,
to be executed, an instruction must use a set of abstract resources,
themselves representing combinations of execution ports. For
a given architecture, finding a port mapping is an important
but difficult problem. Building a resource mapping is a more
tractable problem and provides a simpler and equivalent model.
This paper describes Palmed, a tool that automatically builds a
resource mapping for pipelined, super-scalar, out-of-order CPU
architectures. Palmed does not require hardware performance
counters, and relies solely on runtime measurements.

We evaluate the pertinence of our dual representation for
throughput modeling by extracting a representative set of
basic-blocks from the compiled binaries of the SPEC CPU
2017 benchmarks. We compared the throughput predicted by
existing machine models to that produced by Palmed, and found
comparable accuracy to state-of-the art tools, achieving sub-10
% mean square error rate on this workload on Intel’s Skylake
microarchitecture.

Index Terms—performance model, port mapping, throughput,
superscalar architecture, compiler, performance debugging, code
selection

I. INTRODUCTION

Performance modeling is a critical component for program
optimizations, assisting compilers as well as developers in
predicting the performance of code variations ahead of time.
Performance models can be obtained through different ap-
proaches that span from precise and complex simulation of
a hardware description [22], [23], [37] to application level
analytical formulations [36], [16]. A widely used approach
for modeling the CPU of modern pipelined, super-scalar,
out-of-order processors consists in decoupling the different
sources of bottlenecks, such as the latency related ones (critical
path, dependencies), the memory-related ones (cache behavior,
bandwidth, prefetch, etc.), or the port throughput related
ones (instruction execution units). Decoupled models allow
to pinpoint the source of a performance bottleneck, which
is critical both for compiler optimization [28], [20], kernel

hand-tuning [38], [14], and performance debugging [30], [17],
[21], [24], [33], [5]. In particular, the code selection step
is based on ad-hoc instruction cost models, that Palmed
aims at automatically generating for new architectures. Cycle-
approximate simulators such as ZSim [32] or MCsimA+ [6]
can also take advantage of such an instruction characterization.
This paper focuses on modeling the port throughput, that is,
estimating the performance of a dependency-free loop where
all memory accesses are LI-hits.

Such modeling is usually based on the so-called port
mapping of a CPU, that is the list of execution ports each
instruction can be mapped to. This motivated several projects
to extract information from available documentation [8], [21].
But the documentation on commercial CPUs, when available,
is often vague or outright lacking information. Intel’s processor
manual [10], for example, does not describe all the instructions
implemented by Intel cores, and for those covered, it does not
even provide the decomposition of individual instructions into
micro operations (©OPs), nor the execution ports that these
pOPs can use.

Another line of work that allows for a more exhaustive
and precise instruction characterization is based on micro-
benchmarks, such as those developed to characterize the
memory hierarchy [9]. While characterizing the latency of
instructions is quite easy [13], [18], [15], throughput is more
challenging. Indeed, on super-scalar processors, the throughput
of a combination of instructions cannot be simply derived
from the throughput of the individual instructions. This is
because instructions compete for CPU resources, such as
functional units, or execution ports, which can prevent them
from executing in parallel. It is thus necessary to not only
characterize the throughput of each individual instruction, but
also to come up with a description of the available resources
and the way they are shared.

In this work, we present a fully automated, architecture-
agnostic approach, fully implemented in Palmed, to automat-
ically build a mapping between instructions and execution
ports. It automatically builds a static performance model of
the throughput of sets of instructions to be executed on a
particular processor. While prior techniques targeting this
problem have been presented, e.g. [29], [4], we make several
key contributions in Palmed to improve automation, coverage,
scalability, accuracy and practicality:

978-1-6654-0584-3/22/$31.00 © 2022 IEEE 106

o We introduce a dual equivalent representation of the port
mapping problem, into a conjunctive abstract resource
mapping problem, facilitating the creation of specific micro-
benchmarks to saturate resources.

« We present several new algorithms: to automatically generate
versatile sets of saturating micro-benchmarks, for any instruc-
tion and resource; to build efficient Linear Programming
optimization problems exploiting these micro-benchmark
measurements; and to compute a complete resource mapping
for all benchmarkable instructions.

« We present a complete, automated implementation in Palmed,
which we evaluate against numerous other approaches
including TACA [17], LLVM-mca [33], PMEvo [29] and
UOPS.info [4].

This paper has the following structure. Related work is first
discussed in Sec. II. Sec. III discusses the state-of-practice
and presents our novel approach to automatically generate a
valid port mapping. Sec. IV presents formal definitions and the
equivalence between our model and the three-level mapping
currently in use. Sec. V presents our architecture-agnostic
approach to deduce the abstract mapping without the use of
any performance counters besides elapsed CPU cycles. Sec VI
extensively evaluates our approach against related work on two
off-the-shelf CPU before concluding.

II. RELATED WORK

Intel has developed a static analyzer named IACA [17] which
uses its internal mapping based on proprietary information.
However, the project is closed-source and has been deprecated
since April 2019. Even though some latencies are given directly
in the documentation [10], they are known to contain errors
and approximations, in addition to being incomplete.

First attempts on x86 to measure the latency and throughput
were led by Agner Fog [13] and Granlund [15] using hand-
written microbenchmarks. Fog also uses hardware performance
counters and hand-crafted benchmarks to reverse-engineers port
mappings for Intel, AMD and VIA CPUs. Fog’s mappings are
considered by the community to be quite accurate. For example,
the machine model of the x86 back-end of the LLVM compiler
framework [20] is partially based on them [34]. However, Fog
and Granlund’s approach is tedious and error-prone, since
modern CPU instruction sets have thousands of different
intricate instructions. Abel and Reineke [4], [3] have tackled
this problem by combining an automatic microbenchmark
generator with an algorithm for port-mapping construction.
Their technique relies on hardware counters for the number
of uOPs executed on each execution port, only available on
recent Intel CPUs. They recently started providing data on the
newest generations of AMD CPUs, but by lack of necessary
hardware counters, only latency and throughput are published.

OSACA [21] is an open source alternative to IACA offering
a similar static throughput and latency estimator. It relies on
automated benchmarks manually linked with publicly available
documentation to infer the port mapping and the latencies of
the instructions. The tool Kerncraft [16] focuses on hot loop
bodies from HPC applications while also modeling caches; its

mapping comes from automated benchmarks generated through
Likwid [35] and hardware counters measurements. CQA [31],
a static loop analyzer integrated into the MAQAO frame-
work [12], takes a similar path while also supporting OpenMP
routines. It combines dependency analysis, microbenchmarks,
and a port mapping and previous manual results to offer various
types of optimization advice to the user, such as vectorisation,
or how to avoid port saturation. Both Kerncraft and CQA use
a hard-coded port mapping based on Fog’s work and official
Intel and AMD documentation.

Besides the classic port mappings, machine learning based
approaches have also been used, eg. in Ithemal [25], to
approximate the throughput of basic blocks with good accuracy.
However, the resulting model is completely opaque and cannot
be analyzed or used for any other purpose than the prediction
of basic block throughputs. For instance, Ithemal does not
report on the influence of each instruction, which is critical
for manual assembly optimization.

PMEvo [29] is a tool that, like Palmed, automatically
generates a set of benchmarks that it uses to build a port
mapping. It produces a disjunctive tripartite model with
instructions, ©OPs, and ports, which is the key different with
Palmed. It does not require hardware performance counter,
and only relies on runtime measurements of its benchmarks.
The set of benchmarks used is determined semi-randomly
using a genetic algorithm. The benchmarks themselves are
simpler than those used by Palmed and contain at most two
different types of instructions. The main difference between
PMEvo and Palmed is that PMEvo uses internally a disjunctive
bipartite resource model, instead of the conjunctive model
used by Palmed. These models, while able to accurately
predict the execution of pipelined instructions bottlenecked
only on the execution ports, cannot represent other bottlenecks
like the reorder buffer, or the non-pipelined instructions
like division. More importantly, PMEvo’s approach is less
scalable, as handling more instructions may quickly lead to
an overwhelming number of microbenchmarks, while our
approach is focused to generate specifically microbenchmarks
that saturate resources. Palmed can complete the full mapping,
benchmarking included, in a few hours. Another key to this
scalability is our incremental approach to handle complex
instructions using a linear programming formulation to compute
automatically, and optimally, the mapping.

III. MOTIVATION AND OVERVIEW
A. Background

In this work, we consider a CPU as a processing device
mainly described by the so-called “port model”. Here, instruc-
tions are first fetched from memory, then decomposed into
one or more micro-operations, also called pOPs. The CPU
schedules these pOPs on a free compatible execution port,
before the final retirement stage. Even though some instructions
such as add %rax, %rax translate into only a single ©OP,
the x86 instruction set also contains more complex instructions
that translate into multiple ©OPs. For example, the wbinvd
(Write Back and Invalidate Cache) instruction produces as

107

many ¢OPs as needed to flush every line of the cache, leading
to thousands of pOPs [4].

Execution ports are controllers routing pOPs to execution
units with one or more different functional capabilities: for
example, on the Intel Skylake architecture, only the port 4 may
store data; and the store address must have previously been
computed by an Address Generation Unit, available on ports 2,
3 and 7.

The latency of an instruction is the number of clock cycles
elapsed between two dependent computations. The latency of
an instruction I can be experimentally measured by creating a
micro-benchmark that executes a long chain of instances of I,
each depending on the previous one.

The throughput of an instruction is the maximum number
of instances of that instruction that can be executed in parallel
in one cycle. On every recent x86 architecture, all units but
the divider are fully pipelined, meaning that they can reach
a maximum throughput of one pOP per cycle — even if their
latency it greater than one cycle. For an instruction I, the
throughput of I can be experimentally measured by creating a
micro-benchmark that executes many non-dependent instances
of I: The combined throughput of a multiset! of instructions
can be defined similarly. For example, the throughput of
{aDDSS?, BSR}, i.e. two instances of ADDSS and one instance
of BSR, is equal to the number of instructions executed per
cycle (IPC) by the micro-benchmark:

repeat:
ADDSS %$xmml %$xmml; ADDSS %$xmm2 %$xmm2; BSR %$rax %rax;
ADDSS %$xmm3 %$xmm3; ADDSS $xmm4 $xmm4; BSR %$rbx %$rbx;
ADDSS %$xmmb5 %$xmm5; ADDSS %$xmm6 %$xmm6; BSR $rcx %rcx;

A resource-mapping describes the resources used by each
instruction in a way that can be used to derive the throughput
for any multiset of instructions, without having to execute the
corresponding micro-benchmark. Such information is crucial
for manual assembly optimization to pinpoint the precise cause
of slowdowns in highly optimized codes, and measure the
relative usage of the peak performance of the machine.

In this work, we target the automatic construction of a
resource mapping for a given CPU on which we can accurately
measure elapsed cycles for a code fragment. Note that Palmed
only uses benchmarks that have no dependencies, that is, where
all instructions can execute in parallel. Consequently the order
of instructions in the benchmark does not matter?.

B. Constructing a Resource Mapping

To characterize the throughput of each individual instruction,
a description of the available resources and the way they are
shared is needed. The most natural way to express this sharing
is through a port mapping, a tripartite graph that describes
how instructions decompose to pOPs and assigns pOPs to
execution ports (see Fig. 1a). The goal of existing work has

'A multiset is a set that can contain multiple instances of an element. As
with normal sets, the order of elements is not relevant

2We assume, like all related work we are aware of, that the CPU scheduler
is able to optimally schedule these simple kernels.

been to reverse engineer such a port mapping for different
CPU architectures.

The first level of this mapping, from instructions to pOPs,
is conjunctive, i.e., a given instruction decomposes into one
or more of each of the ©OPs it maps to. The second level of
this mapping, on the other hand, is disjunctive, i.e. a ©OP can
choose to execute on any one of the ports it maps to. Even with
hardware counters that provide the number of uOPs executed
per cycle and the usage of each individual port, creating such
a mapping is quite challenging and requires a lot of manual
effort with ad hoc solutions to handle all the cases specific to
each architecture [30], [13], [15], [4].

Such approaches, while powerful and allowing a semi-
automatic characterization of basic-block throughput, suffer
from several limitations. First, they assume that the architecture
provides the required hardware counters. Second, they only
allow modeling the throughput bottlenecks associated with port
usage, and neglect other resources, such as the front-end or
reorder buffer. Thus, it provides a performance model of an
ideal architecture that does not necessarily fully match reality.

To overcome these limitations, we restrict ourselves to only
using cycle measurements when building our performance
model. Not relying on specialized hardware performance
counters may complicate the initial model construction, but in
exchange our approach is able to model resources not covered
by hardware counters with relative ease. This also paves the way
to significantly ease the development of modeling techniques
for new CPU architectures. One of the main challenges is to
generate a set of micro-benchmarks that allows the detection
of all the possible resource sharing. Unfortunately, to be
exhaustive, and in the absence of structural properties, this set
is combinatorial: all possible mixes of instructions need to be
evaluated. A simple way to reduce the set of micro-benchmarks
required is to reduce the set of modeled instructions to those
that are emitted by compilers [25], [29]. Another natural
strategy followed by Ithemal [25] is to build micro-benchmarks
from the “most executed” basic-blocks of some representative
benchmarks. A third strategy, used by PMEvo [29], is to restrict
micro-benchmarks to contain repetitions of only two different
instructions.

Our solution is constructive and follows several successive
steps that allow building a non-combinatorial number of micro-
benchmarks that stresses the usage of each individual resource,
thus characterizing the resource usage of all instructions.

The second main challenge addressed by PMEvo is to build
an interpretable model, that is, a resource-mapping that can
be used by a compiler or a performance debugging tool,
instead of a black-box only able to predict the throughput
of a microkernel. One issue with the standard port-mapping
approach, as used in [4], [21], [33], is that computing the
throughput of a set of instructions requires the resolution of
a flow problem; that is, given a set of micro-benchmarks,
finding a mapping of ©OPs to ports that best expresses the
corresponding observed performances requires solving a multi-
resolution linear optimization problem. This linear problem
also does not scale to larger sets of benchmarks, even when

108

RRP PP

1 1 1

(a) Port mapping (disjunctive form) and maximum throughput
of each port.

(b) Abstract resource mapping (conjunctive form) and maximum
throughput of each resource.

®

(¢c) Normalized conjunctive form for
ADDSS and BSR.

Fig. 1: Mappings computed for a few SKL-SP instructions.

restricting the micro-benchmarks to only contain up to two
different instructions. PMEvo addressed this issue by using a
evolutionary algorithm that approximates the result.

TABLE I: SUMMARY OF KEY FEATURES OF PALMED VS. RELATED WORK

no HW no manual .
. interpretable general

counters expertise
llvm-mca [33] X X v v
Ithemal [25] v X X X
IACA [17] N/A X v v
uop.info [4] X X v v
PMEvo [29] v v v X
Palmed v v v v

C. Resource Mapping: Dual Representation

Our approach is based on a crucial observation: a dual
representation exists for which computing the throughput is not
a linear problem, but a simple formula instead. While it takes
several hours to solve the original disjunctive-port-mapping
formulation, only a few minutes suffice for the corresponding
conjunctive-resource-mapping formulation.

For the sake of illustration only (Palmed finds in practice
a mapping for all supported instructions), we consider the
Skylake instructions restricted to those that only use ports 0, 1,
or 6 (denoted as pg, p1, and pg). Fig. 1a shows the port mapping
for six such instructions. In this example: the 4OP of BSR has
a single port p; on which it can be issued; as for instruction
ADDSS, its 4OP can be issued on either pg or p;. Hence,
BSR has a throughput of one, that is, only one instruction
can be issued per cycle, whereas ADDSS has a throughput of
two: two different instances of ADDSS may be executed in
parallel by pg and p;. The throughput of the multiset K =
{aDDSS?, BSR}, more compactly denoted by ADDSS2BSR, is
therefore determined by the combined throughput of resources
po and p;. Indeed, in a steady state mode, the execution can
saturate both resources by repeating the pattern represented
in Fig 2a. In this case, there clearly does not exist any better
scheduling, and the corresponding execution time for K is
3 cycles for every 6 instructions, that is, an Instruction Per
Cycle (IPC) of 2. Now, if we consider the set ADDSS BSR?,
its throughput is limited by p;. Indeed, the optimal schedule
in that case would repeat the pattern represented in Fig 2b,
which requires 2 cycles for 3 instructions, that is, an IPC of
1.5. More generally, the maximum throughput of a multiset
on a tripartite port-mapping can be solved by expressing the
minimal scheduling problem as a flow problem.

po | p1
ADDSS | BSR po_ | m
ADDSS | BSR ADDSS | BSR
ADDSS | ADDSS 0 BSR

(a) ADDSS? BSR (b) ADDSS BSR?

Fig. 2: Disjunctive port assignment examples

The dual representation, advocated in this paper, corresponds
to a conjunctive bipartite resource mapping as illustrated in
Fig. 1b. In this mapping, an instruction such as ADDSS which
uses one out of two possible ports pg and p; will only use
the abstract resource rg; representing the combined load on
both ports, and will use neither ry nor ;. In this model, the
maximum throughput of r(; is the sum of the throughput of
po and p;, that is, 2 uses per cycle. Instructions that may
only be computed on pg will then use r¢ and ro;, along with
all other resources combining the use of py with other ports
such as rgg and rg16. Followingly, the average execution time
of a microkernel is computed as the maximum load over all
abstract resources, that is, their number of uses divided by
their throughput (see Sec. IV). One can prove (see [1]) the
strict equivalence between the two representations without
the need for any combinatorial explosion in the number of
combined resources. Because of this property, the trade-off
offered by the conjunctive formulation (more resources for a
simpler throughput computation) offers better overhaul solving
complexity that former disjunctive-based approaches for real
processors, hence the better scalability of Palmed. Indeed, in
practice, some combined resources are not needed (e.g. 716 in
our example) as their usage is already perfectly described by
the usage of individual resources (here, 1 and rg).

A key contribution of this paper is to provide a less
intricate two-level view, that can be constructed quicker than
previous works. Instead of representing the execution flow as
the traditional three-level “instructions decomposed as micro-
operations (micro-ops) executed by ports” model, we opt for
a direct “instructions use abstract resources” model. Whereas
an instruction is transformed into several micro-ops which in
turn may be executed by different compute units; our bipartite
model strictly uses every resource mapped to the instructions.
In other words, the or in the mapping graph are replaced
with and, which greatly simplifies throughput estimation. This
representation may also represent other bottlenecks such as
the instruction decoder or the reorder buffer as other abstract
resources. Note that this corresponds to the user view, where the
micro-ops and their execution paths are kept hidden inside the

109

processor. An important contribution of this paper is to provide
a constructive algorithm that provides a non-combinatorial
set of representative micro-benchmarks that can be used to
characterize all instructions of the architecture.

D. Palmed: Flow of Work

Fig. 3 overviews the major steps of Palmed, which are
extensively described in Sec. V. Our algorithm follows an
approach similar to the one developed by uops.info: its principle
is to first find a set of basic instructions producing only one
©OP and bound to one port.

This first step can be done on Intel CPUs by measuring
the ©OP per cycle on each port for each instruction through
performance counters.

Those basic instructions are then used to characterize the
port mapping of any general instruction by artificially saturating
one-by-one each individual port and measuring the effect on the
usage of the other ports. The challenge addressed by Palmed
is to find a mapping, even for architectures that do not have
such hardware counters.

This translates in two major hardships: firstly, in our case,
there is no predefined resources; secondly, there even is no
simple technique to find the number of ©OPs an instruction
decomposes into. As illustrated by Fig. 3 the algorithm of
Palmed is composed of three steps: 1. Find basic instructions;
2. Characterize a set of abstract resources (expressed as a core
mapping) and an associated set of saturating microkernels (a
single instruction might not be enough to saturate a resource);
3. Compute the resource usage of each other instruction with
respect to the core mapping.

As an example, let us go back to our example: instructions
using only pg, p1, or pg. On Intel’s Skylake microarchitecture,
there exists 754 benchmarkable instructions using only these
3 ports. Quadratic benchmarking — that is, measuring the
execution time of one benchmark per pair of instruction, leading
to a quadratic number of measures (567762) — allows us to
regroup those who have the same behavior together, leading
to only 9 classes of instructions. For each class, a single
instruction is used as a representative. Among those instructions,
two heuristics (described in sec V-A) select the set of basic
instructions, outputting DIVP S, BSR, JMP, JNLE, and ADDSS.

Fig. 1b shows the output of the Core Mapping stage in
Fig. 3, in bold. In practice, abstract resources are internally
named Ry, ..., R5. For convenience we renamed them to the
hardware execution ports they correspond to: for example, the
abstract resource 7g; corresponds to the combined use of port
po and p; for an optimal schedule.

The Core mapping also computes a set of saturating micro-
benchmarks that individually saturate each of the individual
abstract resource. Here, each basic instruction will constitute
by itself a saturating micro-benchmark: DIVPS will saturate
r9, BSR will saturate r;, JMP will saturate rg, ADDSS will
saturate rp;, and JNLE will saturate rog. Note that this is
not the case in general: we possibly need to combine several
basic instructions together to saturate a resource. Here, the
saturating micro-benchmark for resource ry14 is composed of

two basic instructions: ADDSS and JNLE. The last phase of
our algorithm will, for each of the 742 remaining instructions,
build a set of micro-benchmarks that combine the saturating
kernels with the instruction, and compute its mapping.

IV. THE BIPARTITE RESOURCE MAPPING

This section provides a formal presentation of the dual
conjunctive formulation used by Palmed.

Definition IV.1 (Microkernel). A microkernel K is an in-
finite loop made up of a finite multiset of instructions,
K = IJ¥'I5%% - I;)™ without dependencies between
instructions, o representing the number of repetition of the in-
struction K in the microbenchmark. The number of instructions
executed during one loop iteration is |K| =), ok ;.

In a classical disjunctive port mapping formalism, an

instruction ¢ from a microkernel K is assigned to a port
(resource r) that is compatible. The execution time of K
is determined by the resource which is used the most by its
instructions in a given such assignment, and depends on the
assignment picked, as presented in Sec III. Instead, we consider
a conjunctive port mapping:
Definition IV.2 (Conjunctive port mapping). A conjunctive
port mapping is a bipartite weighted graph (I,R,E, prr)
where: I represents the set of instructions;, R represents the
set of abstract resources, that has a (normalized) throughput of
1; E C I xR expresses the required use of abstract resources
for each instruction. An instruction i that uses a resource
r ((i,r) € E) always uses the same proportion (number of
cycles) pir € Q. If i does not use r, then p; , = 0.

Let K = I} IJ%% .. [0S be a microkernel. In a
steady state execution of K, for each loop iteration, instruction
i must use a resource r for (O’Kﬂ'pi’r) cycles. The number of
cycles required to execute one loop iteration is:

1K) = i Pir
(K) lgg(ZUK, p,>

iceK

One should observe that Def. IV.2 defines formally a
normalized version where throughputs of abstract resources
are set to 1. For the sake of clarity, the example in Sec. III was
considering non-normalized throughputs, that is, different than
1. Going from non-normalized (as in Fig. 1b) to normalized
form (as in Fig. 1c) simply relies in dividing the incoming
edges of a resource by the resource’s throughput before setting
its throughput to 1. For example, in the non-normalized form
VCVTT uses 2 times o1, which has a throughput of 2, leading
to a normalized pycyrr e, Of 1. Similarly, pappss,rge = 1/3.

Definition IV.3 (Throughput). The throughput K of a mi-
crokernel K is its instruction per cycle rate (IPC), defined
as:

Kl _

K= tK)

ZieK OK,i
maXreR ZieK OK,i* Pir

110

Basic
Instructions
selection
[§5.A1

Quadra

benchmarks

Core Mapping
\ [§5.B]

until
o convergence

LPy
[Alg. 3]

Classes of . maxcliquew
instructions * min <

* resource chrarcteristics
* saturating kernels

Basic instructions
Ip
@ saturating
L kernels

2
(BWP [Alg. 4])

T mapping

LP
Complete VAEZ, y
Mapping LPAUX(A) MDd@
[§5.C1 [Alg. 5] —

Fig. 3: High-level view of the algorithms of Palmed

Example: If K = ADDSS? BSR, as in Fig 2a,
t(K) = MaxX re{ry,ro1,7016} (2 X Pappss,r + szR,r)
= max <(7’1) 2x0+1,(ro1)

1.5
K=(2+1)/15=2

2 x % + %, (roie) 2 X

On K’ = ADDSS BSR?, as in Fig 2b, the same computation
gives t(K') = 2, the bottleneck being r1; hence, K’ = 3/2.
The mathematical definitions, the method to build a con-
junctive port mapping from a disjunctive one, and the abstract
resource and the equivalence proof can be found in [1].

V. COMPUTING RESOURCE MAPPING

As depicted in Fig. 3, our approach can be decomposed
into three different steps. Sec. V-A describes the selection
of basic instructions, a subset of instructions that map to as
few resources as possible. Sec. V-B describes the computation
of the core mapping for these basic instructions. The core
mapping stays fixed for the rest of the algorithm. Along with
the core mapping, we also select a saturating micro-benchmark
for each resource, called the saturating kernel. The saturating
kernel is made up of basic instructions that do not place a
heavy load on other resources. Sec. V-C describes how Palmed
uses the saturating kernels and the core mapping to deduce,
one by one, the resources used by the remaining instructions
of the targeted architecture.

A. Basic Instructions Selection

The first step of our algorithm trims the instruction set to
extract a minimal set of instructions for which the mapping
will be computed. As this (core) mapping will be reused later,
we need enough instructions to detect all resources, but the
more instructions we have, the longer the resolution of the
linear problem this mapping will take. We thus first apply two
simple filters that reduce the number of basic instructions, as
depicted in the first half of Algo. 1.

Low-IPC: If @ < 1 (measured with a microbenchmark
repeating only a), then a is not consider as a candidate for
basic instructions. Assuming every physical resource to have a
throughput of 1, such instructions use one resource more than
once. However, these low-IPC instructions are still mapped at
the very last step of Palmed (see Sec. V-C).

Then, we compute, for every remaining pair of instruction
(a,b), the throughput of the microkernel a®b®. This set of
benchmarks is called quadratic benchmarks (see Fig. 3) as their
number is quadratic with respect to the number of instructions.
These quadratic benchmarks are later reused in each of the
following heuristics. L

Equivalent classes: If Vp, a@pP = bbpP then keep only
a or b. The second filter removes duplicates, that is, if two
instructions behave similarly with regard to the evaluation
used for our basic instruction selection, then one of them
can be ignored. Obviously, on a real machine, despite all the
crucial efforts to remove execution hazards, measured IPC
never perfectly match and the correct criteria for selecting a
representative instruction for duplicates should approximate the
equality test Vp, a@pP ~ bPpP. The construction of equivalence
classes and associated representative instruction in this context
uses hierarchical clustering [26].

1 Function Select_basic_insts(Z,n)

2 IF = I;

// Remove low-IPC; compute eq. classes
3 foreach a € Zr do

ifa<1l—ecthen Zp :=1p 7{&} ;

5 if 3b € I, Vp € I, a®pP = bbpP then
6 ‘ IF = IF — {a}

// Select very basic instructions
7 foreach a € Zr do
8 ‘ Djla] := {b €ZIp,a"b’ = a+5}

9 let a <yp b &

0 (IDjlall > [DjiE]]) v (IDjlal| = IDjlE)| A > B);
1 Zvs := 0;

12 for a € I in <yp order do

13 if Zyg C DJ[CL} then Zyg :=Zyp U {a} ;

14 if |Zv g| = n then return Zp := Zy B;

// Select most greedier instructions
15 Tur = 0;

16 for a € Tr in < greedier order do

17 Iur = Iyr U {CL};

18 if |Zv g U Zyr| = n then return Zp := Zyg U Zyr;
19 return Zp := Zyp U Tyr;

Algorithm 1: Set of basic instructions Zp

Once low IPC instruction duplicates have been removed, the
selection relies on two criteria (cf Algo. 1):
« Very basic instructions: Instructions a and b are con-
sidered disjoint if a®® = @+ b. The set of very basic
instructions is defined as a maximal clique of disjoint

111

1 Function Core_mapping(Zp)

// Characterize resources

2 K:= U(a,b)ezg, astb {a, a®h’, aMb};

3 do

4 G := Shape_Mapping(K,Zvg,Zmr)); // LP:

5 Koew := UreR {HiEIBa Pz;bzeiz} - K

6 K=KU ’Cnew;

7 until K., = 0;

s G := Mapping(K, G) ; // LPs
// Find saturating kernels

9 foreach r € R do

10 sat[r] :== K € K s.t. pk,» = 1 minimizing cons(K);

1 for i € Zp s.t. i ¢ sat[r] do

12 | K:=KU{Ku(i,r)};

13 return K, sat, G;

Algorithm 2: Core mapping and saturating kernels

1 Function Shape_mapping(K,Zve,Zmr)
2 Solve
3 V(i,r) €I xR, pir €{0,1};
4 Vi eIVB,min'rET\’,17pi,r+zjeIVB\{i} Pj,r = 0;
5 Vi € Iyp, maXreRr Pir + D Pir = 1+ {7 X
i});
6 foreach k € K s.1.
{i% € k s.t. cycles(i®) = cycles(k)} = 0 do
7 | maxrer gy pir = [{i € K};
8 foreach k ¢ IC s.1.
{i% € k s.t. cycles(i®) = cycles(k)} # 0 do
9 Vi® € k s.t. cycles(:®) = cycles(k)
10 minyer 1 — pir + Zjek,j#i pir =05
11 Minimize ZiEIB maxreRr Pi,r;
12 return (Z, R, {pi.});

Algorithm 3: LP: Shape of core mapping

=]

unction Mapping(IC,G)

Solve Bipartite Weight Problem
7 := instructions(K);
(pir)z,R := edges(G);
V(i,r) €EZ xR, 0 < pir €[0,1];
V(K,r) € KX R,

PKr = (ZieI UK,ipi,r) x K/ (Ziel' UK,i);

V(K,r) e KX R, prr < 1;
VK € K, Sk = maxrer pK,r;
Minimize) (1 — Sk);
11 return (Z, R, {pi,r});

Algorithm 4: LPy: Bipartite Weight Problem (BWP), used in LP2 and
LPaux

- RN R 7 I OV S

-
<

1 Ip := select_basic_insts(Z,n);

2 K,sat, G := Core_mapping(Zp);

3 foreach inst € 7 do

K= UreR K (inst,r);

7 :=1Ip U{inst};

Solve Find a solution to the following problem
VT S R’ 0 S pinsr,r;
V(K7 T) €K x R: Pk,r =

(Cieroxipin) X k) (e 0x.i):

9 V(K,1) e KX R, prr <1

10 VK € K, Sk = maxrecr pK,r;

11 Minimize), o (1 — Sk);

Algorithm 5: LPayx: Complete resource mapping

- Y A

instructions. This captures instructions that maps to a
single resource. Indeed, two instructions that do not share
any resource will have their IPC additive, thus belonging
to the maximum clique of our graph.

o Most greedier instructions: Instruction a is considered
more greedier than b (a <greedier D) if Vp,anﬁ > bgpﬁ.
This relation defines a pre-order, and we select the n most
greedier instructions.

B. Core Mapping

The core mapping phase as described in Alg. 2 is decom-
posed in two steps. The objective of the first step is to build
the shape of the resource mapping from the basic instructions,
containing all visible resources and possible edges. In the
second step, Palmed computes the values of the edges and
outputs a saturating benchmark for every detected resource.
Similarly to Abel and Reinecke’s work [4], these benchmarks
are reused as an indicator of the usage of their resource in the
complete mapping phase (Sec. V-C).

Both of these steps use linear programming to build step-
by-step a mapping that reflects accurately the measured IPC
of a set of microkernels KC, and are detailed in the following
two paragraphs.

Characterize resources (LP;): The goal of the first
step is to find the shape of the resource mapping, that is, the
number of resources needed and the possible edges from core
instructions to resources. For this, Palmed solves the following
Integer Linear Programming (ILP) problem, formalized in
Alg. 3, repeated until no new benchmark is added:

Objective function: Minimize the number of resources.

Constraints: From the following seed of microkernels:

1) a € 7 alone;

2) a®b®, as this benchmark has and IPC of @ + b if @ and
b are independents or if their common resources are not
dominantly used.

3) a™b (with M = 4 in practice — see [1] for detailed
justification) to avoid the convergence of the solver to
a simpler solution with fewer resources.

We derive the following constraints (in the order of Alg. 3):

— Each very basic instruction as defined in Sec. V-A is
linked to at least one resource unused by other very basic
instructions (line 4).

— For each greedier instruction 7 as defined in Sec. V-A, there
exists at least one resource common to ¢ and to all other
instructions a for which iia@ # i+ @ (line 5). This relation
corresponds to the negation of the disjoint relation defined
in Sec. V-A, that we note .

— For all other microkernels: 1) every instruction identified
as saturating (that is, instructions for which the execution
time of the microkernel is equal to its execution time) maps
to at least a resource unused by other instructions of the
microkernel (line 7); 2) if no saturating instruction is found,
then there exists a resource shared by every instruction of
the benchmark (line 10).

The enrichment is done as follows: for each resource found,
we add a benchmark composed of every instruction using it

112

with a multiplicity of their IPC, splitting it in case of undesired
merges. Once convergence has been reached, we expect most
of existing resources and edges to be discovered: Palmed passes
to the (LP2) step to compute the value of the edges.

Bipartite Weight Problem (BWP) and Core Mapping
(LP2): The BWP is formalized in Alg. 4, and aims at finding
the correct values of the edges found during the LP;. Using the
notations from Def. IV.2: p; . € Q7 expresses the proportional
usage of the resource r by instruction i, and K the average
number of instructions executed each cycle when K is executed
by the CPU. The proportion of a resource r that is used is
thus pg, = K - (Ziel’ JK,ipm) / (Ziel O'K’Z'), bounded by
its throughput (pg,» < p, = 1). One of the resources must
be the limiting factor, that is, 3r, pg, = 1. However, we
authorise sub-saturation of the resources, acknowledging our
model does not predict accurately every microkernel, and we
note Sk = max, pi,» < 1. We also restrict the possible edges
to the ones output by the LP;. These constraints form our
linear problem minimizing the sum of predictions error, that
is D (1 —Sk).

Once the mapping has been computed, for every resource
r, a saturating kernel sat[r] is chosen among all saturating
microbenchmarks of the LPy (K s.t. pg, = 1, at least one
necessarily exists by construction) as the one that has minimum

consumption:
E Pir
i€Z, TeR

cons(K) =

C. Complete Mapping (LPayx)

In the last step, corresponding to Algo. 5, an optimization
problem is solved for each remaining instruction. The for-
mulation of the new optimization problem is very similar to
the BWP, except that the resources and the edges of the core
mapping computed previously are frozen. The presence or
absence of an edge from the to-be-mapped instruction ¢ to a
resource r is constrained by using K, (i,7) = i*sat[r]L*s"]
in the set of microbenchmarks, with L = 4 in practise. The
idea is to force the saturation of r by charging it with saz[r],
hence expressing the usage of r by 3.

VI. EVALUATION

Our evaluation section compares throughput accuracy on
assembly microkernels extracted from two benchmarks suites:
the SPECrate version of SPECint2017 [7] and Polybench [27].

We compare Palmed against the native execution, along with
the predictions of four existing tools: IACA [17], PMEvo [29],
Ilvm-mca [33] and the port mapping deduced from uops.info’s
work [4].

Our evaluation is performed on two architectures: the SKL-
SP is an Intel Xeon Silver 4114 CPU at 2.20 GHz, using
Debian, Linux kernel 4.19 and PAPI 6.0.0.1 to collect the
execution time in cycles for each microbenchmarks, restraining
to non-AVX-512 instructions. The ZEN is an AMD EPYC
7401P CPU at 2 GHz with a similar software setup. For
each of these two architectures, the number of generated
microbenchmarks, resources found and mapped instructions
are gathered in Table II.

A. Calibration of the Model

The port mapping is computed using the algorithm presented
in Section V using a list of x86 instructions extracted from
Intel’s XED [11]. We discard instructions which cannot be
instrumented in practice, such as instruction modifying the
control flow (as our microbenchmark generator cannot handle
non-trivial control flow in the instrumented instructions),
privileged instructions, along with instructions whose IPC
is lower than 0.05, as they do not present any interest for
performance prediction of throughput-limited microkernels.
While benchmarking memory instructions, we ensure that every
access hits the L1 cache to avoid cache-related bottlenecks,
which are out of Palmed’s scope. Due to the complexity of the
x86 instruction set, we separate the SSE and AVX instructions
from the “base ISA”: we apply separately the heuristics of
Sec. 1 before gathering all selected instructions in a single
combined basic instructions’ set as described in Fig. 3.

We also forbid benchmarks combining different extensions
(e.g. SSE+AVX). Indeed, combinations of several vector
extensions of different width are known to cause extra latency,
that is, a sort of dependency from one instruction to the other
(two consecutive SSE instructions would not be penalized,
whereas one SSE and one AVX will). This violates our
assumption that the relative order of instruction does not matter,
and in practice we observed a significant degradation of the
mapping without this mitigation.

Because of variations in the real-world measurements, we
constrain the error rate to 0.05 for the micro-benchmark
coefficient, meaning that the number of repetitions of an
instruction inside its microkernel differs by at most 5% from
what the algorithm requires. For example, a benchmark a®b®
with @ = 0.06 and b = 1 will be rounded to a'b?°. Note
that in the BWP defined in Algorithm 4, we use the rounded
coefficients and not the ideal ones. The IPC is also rounded
accordingly. Note that our microbenchmark generator is pre-
constrained with these limitations; therefore we did not evaluate
Palmed with another measurement back-end — although we
expect similar results as we ensured to have reproducible
execution times.

B. Throughput Estimations

To evaluate Palmed, the same microkernel is run:
(1) natively on each CPU, with the IPC measured with
CPU_CLK_UNHALTED; (2) using our mapping with abstract
resources corresponding to the actual machine, as described
in Section VI-A; (3) using Abel’s work (uops.info) [4], by
running a conjunctive mapping with exact compatibility and
approximating the execution time by the port with the highest
usage; (4) using PMEvo [29], ignoring any instruction not
supported by its provided mapping; (5) using IACA [17], by
inserting assembly markers around the kernel and running the
tool; (6) using llvm-mca [33], by inserting markers in the
assembly code generated by our back-end and running the tool
with this assembly.

Unlike PMEvo and llvm-mca, UOPS and IACA do not
support the ZENT1 architecture; hence the absence of data.

113

Palmed uops.info PMEvo TIACA llvm-mca
~ 20 = 2.0 2.0 20— 20— 107
Ao o
=) 15 P 15 e 15 ' 15 15 .
N 2 i = [V i -d 108
o 1.0¢ -G-.I..ﬁ 1.0+—= | 1.0+ 1.0+ ...-I-L 1.0+—=
o |
a = 0.5 0.5] i 0.5 0.5 0.5 5
A 10
3 v %% 3 a R T B R T B L T R T T
2.0 2.0 2.0 2.0 2.0
= 10°
(% % 1.5 B 1.5 i 1.5 L 1.5 1.5 7
= ; - ; i ; 1 ; 1,] 105
2 : 39 e rils,
=2 1.0{—=& '#* 10— == 1.0/ et 1o 1.0/ 10t
%‘ 05 05 . 05 i 05 05 10°
~ 0.0 p) 4 0.0) 4 0.0) 4 0.0) 4 0.0) 4 102
~ 20— 20— 20 == 107
o
=) 15 15 15 5
[o\| ey 3 b 10°
&) 1.0{ = qﬁq 1.0 1.0 -J-‘h ‘
= 0.5 . 0.5 0.5 " -
- 10°
o A
Zz N .05 2 4 0.05 2 4 005 2 2 6
= 2.0 2.0 2.0
N 5 2 o
15 5 15 15
g L HE -
1.0 i S | s 1.0 i 10— =fpde iy | "
= A 8l o Ty 10
= 0.5 e | =| - 0.5 -ty 0.5 - 10°
s
= 00, 3 i 6 native IPC 005 3 i 6 005 3 4 6 102

(a) IPC prediction profile heatmaps — predictions closer to the red line are more accurate. Predicted IPC ratio (Y) against native IPC (X)

(b) Translation block coverage (Cov.), root-mean-square error on IPC predictions (Err.) and Kendall’s tau correlation coefficient (7x) compared to native execution

PMD uops.info PMEvo TACA llvm-mca
Cov. Erm TK Cov. Err. TK Cov. Err TK Cov. Err. TK Cov. Err TK
Unit @ & 1) ® ® 1) ® % 1) @ (B (1) B (% (1)
SKL-SP SPEC2017 | N/A 7.8 0.90 999 403 0.71 | 71.3 28.1 047 | 100.0 87 080 | 968 20.1 0.73
Polybench | N/A 244 0.78 | 1000 681 029 | 668 46.7 0.14 | 100.0 151 0.67 | 995 153 0.65
ZENI1 SPEC2017 | N/A 299 0.68 N/A NA NA | 713 365 043 N/A~ N/A N/A | 968 334 075
Polybench | N/A 32,6 0.46 N/A N/A NA | 668 385 0.11 N/A N/A NA [995 286 040

Fig. 4: Accuracy of IPC predictions compared to native execution of Palmed versus uops.info, PMEvo, IACA and llvm-mca on SPEC CPU2017 and PolyBench/C

4.2

The microkernels are extracted from two well-known
benchmark suites: SPECInt2017 [7] and Polybench [27]. For
Polybench, we used QEMU [2] to gather the translation blocks
executed at runtime along with their number of executions. For
SPEC, we used static binary analysis tools to extract the basic
blocks along with performance counters statistics in order to
recover the performance-critical section of the code, as the cost
of running an emulator was too high to reproduce Polybench’s
setup. Overall these two benchmark suites generate thousands
of basic blocks, and for each we use the various methods above
to display the predicted performance of a microkernel made of
the same instruction mix that is occurring in that basic block.
This evaluation approach allows to generate a high variety of
realistic instruction mixes (e.g., combining SIMD and address
calculations for numerical kernels like in Polybench).

Fig. 4 synthesizes our results in two pieces. First, Fig. 4a
displays the results as a heatmap for each basic block,
comparing the predicted throughput with the measured one.
A dark area at coordinate (x,y) means that the selected tool

has a prediction accuracy of y for a significant number of
microkernels with a real IPC of =z.

Then, Table 4b synthesizes, for each tool, its error rate,
aggregated over all the basic blocks of the test suite using a
Root-Mean-Square method:

Weighti IPCi,tool - IPCi,native ?
Errrums, tool ; Zj weightj (1PC; naive)

We also provide Kendall’s 7 coefficient [19], a measure of
the rank correlation of a predictor — that is, for each pair of
basic blocks, whether a predictor predicted correctly which
block had the higher IPC. The coefficient varies between —1
(full anti-correlation) and 1 (full correlation).

The same table also provides a coverage metric, with respect
to Palmed. This metric characterizes the proportion of basic
blocks supported by Palmed that the tool was able to process.
Note that the ability to process a basic block varies from
tool to tool: some work in degraded mode when meeting

114

instructions they cannot handle, some will crash on the basic
block. For PMEvo, we ignored any instruction not supported
by their mapping — degrading the quality of the result; hence, a
plain error is a basic block in which no single instruction was
supported. Although it would be fairer to other tools to measure
absolute coverage — that is, the proportion of basic blocks
supported by the tool, regardless of what Palmed supports —,
technical limitations prevented us from doing so: running the
various tools requires our back-end to generate assembly code,
which can only be done for the instructions it supports.

TABLE II: MAIN FEATURES OF THE OBTAINED MAPPINGS

Machine \ SKL-SP \ ZEN1
Pr . 2x Intel Xeon | AMD EPYC
0cesso Silver 4114 7401P
Cores 20 24
Benchmarking time 8h 6h
LP solving time 2h 2h
Overall time 10h 8h
Gen. microbenchmarks ~ 1,000,000 ~ 1,000,000
Resources found 17 17
uops’ inst. supported 3313 1104
Instructions mapped 2586 2596

We compare the number of instructions supported by Palmed
with the ones supported by uops.info as a baseline. As uops
supports only partially AMD’s architecture (providing only
throughput and latencies, but no usable port mapping), less
than half the instructions supported by our tool are present for
this target. Contrarily, on SKL-SP, uops supports the AVX-512
extension, therefore leading to a more complete set of supported
instructions. PMEvo’s mapping behaves poorly in terms of
coverage (see Fig. 4b), failing to support all instructions in more
than 25 % of the basic blocks on any benchmark and processor
tested. This behavior is due to our different compilation options,
as PMEvo’s supported instructions are directly collected from
their SPEC2017 binaries. As a consequence, both MSE and
Kendall’s tau values are lower than other tools as those
unsupported instructions are treated as if they took no resource
at all on our IPC estimates.

Moreover, Palmed requires 2h of solving time (see Tbl. II)
to map about 2500 instructions. This is between one half
(SKL-SP) and one eighth (Zen) of PMEvo’s solving time [4],
demonstrating the scalability of Palmed with respect to the
number of instructions.

In Fig. 4, we observe that Palmed performs significantly
better than uops.info and PMEvo on both platforms. On
Skylake, it outperforms all other tested tools in terms of
Kendall’s tau, and compares well with TACA and LLVM-
MCA, archiving sub-10 % mean square error rate on SPEC2017.
However, those two last tools use manual expertise and are
tailored for a platform, whereas our tool is fully automated
and generic.

On Zenl, Palmed is comparable to LLVM-MCA, but
shows a greater error rate than on Intel. This is due to
the internal organization of the Zen microarchitecture, which

uses a separated pipeline for integer/control flow and floating
point/vector operations. As Palmed tries to minimize the
number of resources, this separation is not properly detected,
leading to IPC predictions lower than the actual value as seen
on the heatmaps on Fig. 4a.

More generally, IACA, uops.info and LLVM-MCA tend
to over-estimate the IPC, which is due to their port-based
approach: bottlenecks coming from neither ports nor front-end
limitations are not taken into account, leading to higher IPC
estimations for microkernels where other resources are bottle-
necking. Contrarily, benchmarking-based approaches (Palmed
and PMEvo) present both under and over approximations as
they are based on real-life execution, where all bottlenecks are
present. Note that Palmed, IACA, LLVM-MCA (Zenl only)
and PMEvo (Zen only) also express the front-end bottleneck:
the limit on the maximal number of instructions being decoding
in one cycle (no over-approximation of microkernels with high
IPC), that is, a maximal IPC of 4 on SKL-SP and 5 for Zenl.
Therefore, we expect Palmed (and PMEvo) to have maximal
error rate on benchmarks with few instructions, case in which
some undetected / wrongly detected common resource will
have higher importance, whereas LLVM-MCA, uops.info and
TACA will tend to be more fragile on long microkernels with
possible non-port related resources — especially memory ones.

VII. CONCLUSION

We presented Palmed which automatically builds a resource
mapping for CPU instructions. This allows to model not only
execution port usage, but also other limiting resources, such as
the front-end or the reorder buffer. We presented an end-to-end
approach to enable the mapping of thousands of instructions
in a few hours, including microbenchmarking time. Our key
contributions include the mathematically rigorous formulation
of the port mapping problem as solving iteratively linear
programs, enabling an incremental and scalable approach to
handling thousands of instructions. We provided a method to
automatically generate microbenchmarks saturating specific
resources, alleviating the need for statistical sampling. We
demonstrated on one Intel and one AMD high-performance
CPUs that Palmed generates automatically practical port
mappings that compare favorably with state-of-the-art systems
like IACA and uops.info that either use performance counters
or manual expertise.

ACKNOWLEDGMENTS

The works have been funded by ECSEL-JU under the
program ECSEL-Innovation Actions-2018 (ECSEL-IA) for
research project CPS4EU (ID-826276) in the area Cyber-
Physical Systems. This work was also supported in part by the
U.S. National Science Foundation award CCF-1750399.

REFERENCES

[1] [Online]. Available: https://www.dropbox.com/s/zvsnj4wsx0fj775/PMD-
full.pdf?dl=0

[2] “QEMU: the FAST! processor emulator,” https://www.qemu.org.

[3] A. Abel and J. Reineke, “nanoBench: A low-overhead tool for running
microbenchmarks on x86 systems,” arXiv e-prints, vol. abs/1911.03282,
2019. [Online]. Available: http://arxiv.org/abs/1911.03282

115

[4]

[5]
[6]

[7

—

[8

=

[9]

[10]

(11]

[12]

[13

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

, “uops.info: Characterizing latency, throughput, and port usage
of instructions on intel microarchitectures,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019,
1. Bahar, M. Herlihy, E. Witchel, and A. R. Lebeck, Eds. New
York, NY, USA: ACM, April 2019, pp. 673—-686. [Online]. Available:
https://doi.org/10.1145/3297858.3304062

, “Accurate throughput prediction of basic blocks on recent intel
microarchitectures,” 2021.

J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A
manycore simulator with application-level+ simulation and detailed
microarchitecture modeling,” in 2012 IEEE International Symposium
on Performance Analysis of Systems and Software. Austin, TX, USA:
IEEE Computer Society, April 2013, pp. 74-85. [Online]. Available:
https://doi.org/10.1109/ISPASS.2013.6557148

J. Bucek, K. Lange, and J. von Kistowski, “SPEC CPU2017:
Next-generation compute benchmark,” in Companion of the 2018
ACM/SPEC International Conference on Performance Engineering,
ICPE 2018, K. Wolter, W. J. Knottenbelt, A. van Hoorn, and
M. Nambiar, Eds. ACM, April 2018, pp. 41-42. [Online]. Available:
https://doi.org/10.1145/3185768.3185771

C. Chatelet, C. Courbet, O. Sykora, and N. Paglieri. Google
exegesis. [Online]. Available: https://llvm.org/docs/CommandGuide/llvim-
exegesis.html

C. L. Coleman and J. W. Davidson, “Automatic memory hierarchy
characterization,” in 2001 IEEE International Symposium on Performance
Analysis of Systems and Software. ISPASS., 2001, pp. 103-110.

I. Corporation. Intel 64 and ia-32 architectures optimization reference
manual. [Online]. Available: https://www.intel.com/content/dam/doc/
manual/64-ia-32-architectures-optimization-manual.pdf

Intel x86 encoder decoder (intel xed). [Online]. Available:
https://github.com/intelxed/xed

L. Djoudi, J. Noudohouenou, and W. Jalby, “The design and architecture
of MAQAOAdvisor: A live tuning guide,” in Proceedings of the 15th
International Conference on High Performance Computing, ser. HIPC
2008, P. Sadayappan, M. Parashar, R. Badrinath, and V. K. Prasanna,
Eds., vol. 5374. Berlin, Heidelberg: Springer-Verlag, December 2008, pp.
42-56. [Online]. Available: https://doi.org/10.1007/978-3-540-89894-8_8
A. Fog. (2020) Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for intel, AMD and VIA CPUs.
[Online]. Available: http://www.agner.org/optimize/instruction_tables.pdf
F. Franchetti, T. M. Low, D. Popovici, R. M. Veras, D. G.
Spampinato, J. R. Johnson, M. Piischel, J. C. Hoe, and J. M. F.
Moura, “SPIRAL: Extreme performance portability,” Proceedings of
the IEEE, vol. 106, no. 11, pp. 1935-1968, 2018. [Online]. Available:
https://doi.org/10.1109/JPROC.2018.2873289

T. Granlund. (2017) Instruction latencies and throughput for AMD and
intel x86 processors. [Online]. Available: https://gmplib.org/~tege/x86-
timing.pdf

J. Hammer, J. Eitzinger, G. Hager, and G. Wellein, “Kerncraft: A tool
for analytic performance modeling of loop kernels,” in Tools for High
Performance Computing 2016, vol. abs/1702.04653. Cham: Springer
International Publishing, 2017, pp. 1-22.

I. Hirsh and G. S. Intel® architecture code analyzer. [Online]. Available:
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
instlatx64. x86, x64 instruction latency, memory latency and cpuid
dumps. [Online]. Available: http://instlatx64.atw.hu/

M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81-93, 1938.

C. Lattner and V. S. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in 2nd IEEE/ACM
International Symposium on Code Generation and Optimization (CGO
2004). San Jose, CA, USA: IEEE Computer Society, March 2004, pp.
75-88. [Online]. Available: https://doi.org/10.1109/CG0.2004.1281665
J. Laukemann, J. Hammert, J. Hofmann, G. Hager, and G. Wellein,
“Automated instruction stream throughput prediction for intel and
AMD microarchitectures,” in 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS). Dallas, TX, USA: IEEE Computer Society, ACM, November
2018, pp. 121-131.

G. H. Loh, S. Subramaniam, and Y. Xie, ‘Zesto: A cycle-level
simulator for highly detailed microarchitecture exploration,” in
IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS 2009. Boston, Massachusetts, USA: IEEE

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

116

Computer Society, April 2009, pp. 53-64. Available:
https://doi.org/10.1109/ISPASS.2009.4919638

J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, S. Bharadwaj, G. Black,
G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrilléon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, M. Fariborz, A. F. Farahani,
P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass, B. Hanindhito,
A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera, M. Horsnell,
S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones, M. Jung,
S. Kannoth, H. Khaleghzadeh, Y. Kodama, T. Krishna, T. Marinelli,
C. Menard, A. Mondelli, T. Miick, O. Naji, K. Nathella, H. Nguyen,
N. Nikoleris, L. E. Olson, M. S. Orr, B. Pham, P. Prieto, T. Reddy,
A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D.
Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish,
I. Vougioukas, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon,
and E. F. Zulian, “The gem5 simulator: Version 20.0+,” 2020. [Online].
Available: https://arxiv.org/abs/2007.03152

G. Marin, J. J. Dongarra, and D. Terpstra, “MIAMI: A framework
for application performance diagnosis,” in 2014 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS
2014. Monterey, CA, USA: IEEE Computer Society, March 2014,
pp. 158-168. [Online]. Available: https://doi.org/10.1109/ISPASS.2014.
6844480

C. Mendis, A. Renda, S. P. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, portable and fast basic block throughput estimation using deep
neural networks,” in Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. Long
Beach, California, USA: PMLR, June 2019, pp. 4505-4515. [Online].
Available: http://proceedings.mlr.press/v97/mendis19a.html

F. Nielsen, Hierarchical Clustering, 02 2016, pp. 195-211.

L.-N. Pouchet and T. Yuki, “PolyBench/C: The polyhedral benchmark
suite, version 4.2,” 2016, http://polybench.sf.net.

G. C. Project. (1987) GNU compiler collection (gcc). [Online]. Available:
https://gcc.gnu.org/

F. Ritter and S. Hack, “Pmevo: portable inference of port mappings for
out-of-order processors by evolutionary optimization,” in Proceedings
of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2020, A. F. Donaldson
and E. Torlak, Eds. New York, USA: ACM, June 2020, pp. 608—622.
[Online]. Available: https://doi.org/10.1145/3385412.3385995

A. C. Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and G. Lartigue,
“CQA: A code quality analyzer tool at binary level,” in 21st International
Conference on High Performance Computing, HiPC 2014. Goa, India:
IEEE Computer Society, December 2014, pp. 1-10. [Online]. Available:
https://doi.org/10.1109/HiPC.2014.7116904

, “CQA: A code quality analyzer tool at binary level,” in 217st
International Conference on High Performance Computing, HiPC 2014.
Goa, India: IEEE Computer Society, December 2014, pp. 1-10. [Online].
Available: https://doi.org/10.1109/HiPC.2014.7116904

D. Sanchez and C. Kozyrakis, “ZSim: fast and accurate microarchitectural
simulation of thousand-core systems,” in 40th Annual International
Symposium on Computer Architecture, (ISCA’13), A. Mendelson, Ed.
New York, NY, USA: ACM, June 2013, pp. 475-486. [Online].
Available: https://doi.org/10.1145/2485922.2485963

Sony Corporation and L. Project. LLVM machine code analyzer.
[Online]. Available: https://llvm.org/docs/CommandGuide/llvm-mca.html
C. Topper. (2018, Mar.) Update to the Illvm scheduling
model for intel sandy bridge, haswell, broadwell, and
skylake processors. [Online]. Available: https://github.com/llvi/llvm-
project/commit/cdfcf8ecda8065fda495d73ed16277668b3b56dc

J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
39th International Conference on Parallel Processing (ICPP) Workshops
2010, W. Lee and X. Yuan, Eds. San Diego, California, USA: IEEE
Computer Society, September 2010, pp. 207-216. [Online]. Available:
https://doi.org/10.1109/ICPPW.2010.38

S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65-76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

M. T. Yourst, “PTLsim: A cycle accurate full system x86-64
microarchitectural simulator,” in 2007 IEEE International Symposium on
Performance Analysis of Systems and Software. San Jose, California,

[Online].

USA: IEEE Computer Society, April 2007, pp. 23-34. [Online]. for rapidly instantiating BLAS functionality,” ACM Transactions on
Available: https://doi.org/10.1109/ISPASS.2007.363733 Mathematical Software, vol. 41, no. 3, June 2015. [Online]. Available:
[38] F. G. V. Zee and R. A. van de Geijn, “BLIS: a framework https://doi.org/10.1145/2764454

117

