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The complexity of quantum states has become a key quantity of interest across various subfields of physics, from quantum com-
puting to the theory of black holes. The evolution of generic quantum systems can be modelled by considering a collection of
qubits subjected to sequences of random unitary gates. Here we investigate how the complexity of these random quantum cir-
cuits increases by considering how to construct a unitary operation from Haar-random two-qubit quantum gates. Implementing
the unitary operation exactly requires a minimal number of gates—this is the operation's exact circuit complexity. We prove
a conjecture that this complexity grows linearly, before saturating when the number of applied gates reaches a threshold that
grows exponentially with the number of qubits. Our proof overcomes difficulties in establishing lower bounds for the exact
circuit complexity by combining differential topology and elementary algebraic geometry with an inductive construction of

Clifford circuits.

omplexity is a pervasive concept at the intersection of com-

puter science, quantum computing, quantum many-body

systems and black hole physics. In general, complexity
quantifies the resources required to implement a computation. For
example, the complexity of a Boolean function can be defined as the
minimal number of gates, chosen from a given gate set, necessary
to evaluate the function. In quantum computing, the circuit model
provides a natural measure of complexity for pure states and uni-
taries: a unitary transformation’s quantum circuit complexity is the
size, measured with the number of gates, of the smallest circuit that
effects the unitary. Similarly, a pure state’s quantum circuit complex-
ity definable is the size of the smallest circuit that produces the state
from a product state.

Quantum circuit complexity, by quantifying the minimal size
of any circuit that implements a given unitary, is closely related to
computational notions of complexity. The latter quantify the dif-
ficulty of solving a given computational task with a quantum com-
puter and determine quantum complexity classes. Yet quantum
circuit complexity can subtly differ from computational notions of
quantum complexity: the computational notion depends on the dif-
ficulty of finding the circuit. In the following, we refer to quantum
circuit complexity as ‘quantum complexity’ for convenience.

Quantum complexity has risen to prominence recently due
to connections between gate complexity and holography in
high-energy physics, in the context of the anti-de-Sitter space/
conformal field theory (AdS/CFT) correspondence'~. In the bulk
theory, a wormhole’s volume grows steadily for exponentially long
times. By contrast, in boundary quantum theories, local observables
tend to thermalize much more quickly. This contrast is known as the
‘wormhole-growth paradox’™. It appears to contradict the AdS/CFT
correspondence, which postulates a mapping of physical operators
between the bulk theory and a quantum boundary theory. A resolu-
tion has been proposed in the ‘complexity equals volume’ conjec-
ture: the wormhole’s volume is conjectured to be dual not to a local
quantum observable, but to the boundary state’s quantum com-
plexity’. Similarly, the ‘complexity equals action’ conjecture posits

that a holographic state’s complexity is dual to a certain space-time
region’s action®.

A counting argument reveals that the vast majority of unitaries
have near-maximal complexities’. Yet lower-bounding the quantum
complexity is a long-standing open problem in quantum informa-
tion theory. The core difficulty is that the gates performed early in
a circuit may partially cancel with gates performed later. One can
rarely rule out the existence of a ‘shortcut, a seemingly unrelated
but smaller circuit that generates the same unitary. Consequently,
quantum-gate-synthesis algorithms, which decompose a given
unitary into gates, run for times exponential in the system size®.
Approaches to lower-bounding unitaries’ quantum complexities
include Nielsen’s geometric picture’ .

A key question in the study of quantum complexity is the follow-
ing. Consider constructing deeper and deeper circuits for an n-qubit
system, by applying random two-qubit gates. At what rate does the
circuit complexity increase? Brown and Susskind conjectured that
the complexity of quantum circuits generically grows linearly for an
exponentially long time*'. Intuitively, the conjecture is that most
circuits are fundamentally ‘incompressible’: no substantially shorter
quantum circuit effects the same unitary. Quantum complexity, if
it grows linearly with a generic circuits depth, strongly supports
the ‘complexity equals volume’ conjecture as a proposal to the
wormbhole-growth paradox'’. The conjecture therefore implies that
complexity growth is as generic as thermalization'>'® and operator
growth'”"* (the spreading of an initially local operator’s support in
the Heisenberg picture). However, in contrast to easily measurable
physical quantities, which thermalize rapidly, complexity grows for
an exponentially long time. Brown and Susskind have supported
their conjecture using Nielsen’s geometric approach (Fig. 1b)°'%.

Brandio et al.”’ recently proved a key result about the growth of
quantum complexity under random circuits. The authors leveraged
the mathematical toolbox of t-designs, finite collections of unitar-
ies that approximate completely random unitaries. A f-design is a
probability distribution, over unitaries, whose first t moments equal
the Haar measure’s moments”~**. The Haar measure is the unique
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Fig. 1| The geometric approach to complexity provides a strong intuitive
and physical basis for the complexity growth conjecture that we prove.
a, The complexity has been conjectured to grow linearly under random
quantum circuits until times exponential in the number n of qubits”. b, The
blue region depicts part of the space of n-qubit unitaries. A unitary U has
a complexity that we define as the minimal number of two-qubit gates
necessary to effect U (green jagged path; each path segment represents

a gate). Nielsen's complexity®™, involved in ref. %, attributes a high metric
cost to directions associated with nonlocal operators. In this geometry, the
unitary’s complexity is the shortest path that connects 1 to U (red line).
Nielsen's geometry suggests the toolbox of differential geometry, avoiding
circuits’ discreteness. The circuit complexity upper-bounds Nielsen's
complexity; opposite bounds hold for approximate circuit complexity™.

unitarily invariant probability measure over a compact group.
Reference " proved that quantum complexity robustly grows poly-
nomially in a random circuit’s size. The complexity’s growth was
shown to be linear in the circuit’s size if the local Hilbert-space
dimension is large.

We prove that the complexity of a random circuit grows linearly
with time (with the number of gates applied). We consider unitar-
ies constructed from quantum circuits composed of Haar-random
two-qubit gates. The focus of our proof is the set of unitaries that
can be generated with a fixed arrangement of gates. We show that
this set’s dimension, which we call accessible dimension, serves
as a good proxy for the quantum complexity of almost every uni-
tary in the set. Our bound on the complexity holds for all random
circuits described above, with probability 1. Instead of invoking
unitary designs' or Nielsen’s geometric approach’"’, we employ
elementary aspects of differential topology and algebraic geometry,
combined with an inductive construction of Clifford circuits. The
latter are circuits that transform Pauli strings to Pauli strings up to
a phase®™.

This work is organized as follows. First, we introduce the set-up
and definitions. Second, we present the main result, the complex-
ity’s exponentially long linear growth. Third, we present a high-level
overview of the proof. The key mathematical steps follow, in the
Methods. Two corollaries follow: an extension to random arrange-
ments of gates and an extension to slightly imperfect gates. In the
Discussion we compare our results with known results and explain
our work’s implications for various subfields of quantum physics.
Finally, we discuss the opportunities engendered by this work.
In Supplementary Appendix A we review the elementary alge-
braic geometry required for the proof. Proof details are provided
in Supplementary Appendix B. We elaborate on states’ complexi-
ties in Supplementary Appendix C. We prove two corollaries in
Supplementary Appendices D and E. Finally, we compare notions of
circuit complexity in Supplementary Appendix E

Preliminaries. This work concerns a system of n qubits. For conve-
nience, we assume that # is even. We simplify tensor-product nota-
. k ®k .
tion as |0 > :=10)*", for k=1,2,...,n, and 1; denotes the k-qubit
identity operator. Let U;; denote a unitary gate that operates on
qubits j and k. Such gates need not couple the qubits together and
need not be geometrically local. An architecture is an arrangement

of some fixed number R of gates (Fig. 2a).
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Definition 1. (Architecture) An architecture is a directed acyclic
graph that contains R € Zsg vertices (gates). Two edges (qubits) enter
each vertex, and two edges exit.

Figure 2b,c illustrates example architectures governed by our
results.

o A brickwork is the architecture of any circuit formed as follows.
Apply a string of two-qubit gates: U, ,Q U, ,® ... ® U, _, .. Then
apply a staggered string of gates, as shown in Fig. 2b. Perform
this pair of steps T times in total, using possibly different gates
each time.

o A staircase is the architecture of any circuit formed as in Fig. 2c.
Apply a stepwise string of two-qubit gates: U, ,_,U,_, ,_,...U, .
Repeat this process T times, using possibly different gates
each time.

The total number of gates in the brickwork architecture, as in
the staircase architecture, is R=(n— 1) T. Our results extend to more
general architectures, for example, the architecture depicted in
Fig. 2a and architectures of non-nearest-neighbour gates. Circuits of
a given architecture can be formed randomly.

Definition 2. (Random quantum circuit) Let A denote an arbi-
trary architecture. A probability distribution can be induced over the
architecture-A circuits as follows: for each vertex in A, draw a gate
Haar-randomly from SU(4). Then contract the unitaries along the
edges of A. Each circuit so constructed is called a random quantum
circuit.

Implementing a unitary with the optimal gates, in the optimal
architecture, concretizes the notion of complexity.

Definition 3. (Exact circuit complexities) Let UeSU(2")
denote an n-qubit unitary. The (exact) circuit complexity Cu(U)
is the least number of two-qubit gates in any circuit that imple-
ments U. Similarly, let |y) denote a pure quantum state vector.
The (exact) state complexity Cstate(|y)) is the least number r of
two-qubit gates U,, U,, ..., U,, arranged in any architecture, such that
U, 0...U: |0") = |w).

We now define a backwards light cone, a concept that helps us
focus on sufficiently connected circuits. Consider creating two ver-
tical cuts in a circuit (dashed lines, Fig. 2). The gates between the
cuts form a block. We say that a block contains a backwards light
cone if some qubit ¢ links to each other qubit ' via a directed path
of gates (a path that may be unique to t'). The backwards light cone
consists of the gates in the paths.

Main result, linear growth of complexity in random quantum
circuits. Our main result is a lower bound on the complexities of
random unitaries and states. The bound holds with unit probability.

Theorem 1. (Linear growth of complexity) Let U denote a uni-
tary implemented by a random quantum circuit in an architecture
formed by concatenating T blocks of <L gates each, each block con-
taining a backwards light cone. The unitary’s circuit complexity is
lower-bounded as

Cu(U) 2 , (1)

W

R
9L
with unit probability, until the number of gates grows to T>4"—1.
The same bound holds for Cstate (U |0")), until T>2"+'—1.

The theorem governs all architectures that contain enough back-
wards light cones. The brickwork architecture forms a familiar spe-
cial case. Let us choose for a brickwork’s blocks to contain 2n of
the columns in Fig. 2b. Each block contains L=n(n—1) gates (in
the absence of periodic boundary conditions), yielding the lower
bound Cy(U) > %(%1) — %. Another familiar example is the stair-
case architecture. A staircase’s blocks can have the least L possible,
n—1, which yields the strongest bound.
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Fig. 2 | Our result relies on architectures and their backwards light cones. a, An architecture specifies how R two-qubit gates are arranged in an n-qubit
circuit. The gates need not be applied to neighbouring qubits, although they are depicted in this way for convenience. Our result involves blocks with

the following property: the block contains a qubit reachable from each other qubit via a path (red dashed line), possibly unique to the latter qubit, that
passes only through gates in the block. b, The brickwork architecture interlaces layers of gates on a one-dimensional (1D) chain. In a 1D architecture

with geometrically local gates, such as the brickwork architecture, each block has a backwards light cone (light red region) that touches the qubit chain’s
edges. In the brickwork architecture, a minimal backwards-light-cone-containing block consists of ~n? gates. ¢, The staircase architecture, too, acts on a 1D
qubit chain. The circuit consists of layers in which n—1 gates act on consecutive qubit pairs. A minimal backwards-light-cone-containing block consists of

n—1gates.
[SUM)R Contractl:m map
F
i G
UG, ... Us
Choices of

unitary gates

Architecture A Image U(A)

Fig. 3 | The R-gate architecture A is associated with a contraction

map FA. FA maps a list of input gates (a point in [SU(4)1*) to an n-qubit
unitary U in SU(2"). The unitary results from substituting the gates into
the architecture. F* has an image U (A), which consists of the unitaries
implementable with the architecture. A has an accessible dimension, d,,
equal to the dimension of /(A). Our core technical result is that d, grows
linearly with R. To bridge this result to complexity, consider an arbitrary
architecture A’ formed from fewer gates than a constant fraction of R.
Such an architecture's accessible dimension satisfies d, <d,, as we show.
Therefore, every unitary in 2/(A) has a complexity linear in R, except for a
measure-0 set. The proof relies on algebraic geometry. A key concept is the
rank of F* at a point. The rank counts the local degrees of freedom in the
image (orange arrows).

High-level overview of the proof of Theorem 1. Consider fixing
an R-gate architecture A, then choosing the gates in the architec-
ture. The resulting circuit implements some n-qubit unitary. All the
unitaries implementable with A form a set ¢/(A) (compare Fig. 3).
Our proof relies on properties of /(A)—namely, on the number of
degrees of freedom in U/ (A). We define this number as the architec-
ture’s accessible dimension, dy = dim(U4/(A)) (Fig. 3. The following
section contains a formal definition; here, we provide intuition. As
the n-qubit unitaries form a space of dimension 4", d, € [0,4"]. The
greater the d,, the more space U/(A) fills in the set of n-qubit uni-
taries. Considering U/ (A) circumvents the intractability of calculat-
ing a unitary’s circuit complexity. To better understand the form of
U(A), we study the set’s dimension, which is the accessible dimen-
sion. Importantly, the accessible dimension enables us to compare
the sets U/(A) generated by different architectures. Distinct acces-
sible dimensions imply that the lower-dimensional set has measure
zero in the higher-dimensional set. As a proxy for quantum com-
plexity, the accessible dimension plays a role similar to t-designs
in refs. '**. Our first technical result lower-bounds the sufficiently
connected architecture’s accessible dimension.

Proposition 1. (Lower bound on accessible dimension) Let A,
denote an architecture formed by concatenating T blocks of <L gates
each, each block containing a backwards light cone. The architecture’s
accessible dimension is lower-bounded as

530

da, >T> =, 2)

qul -~

We can upper-bound d,, for an arbitrary architecture A, by
counting parameters. To synopsize the argument in Supplementary
Appendix B, 15 real parameters specify each two-qubit unitary.
Each qubit shared by two unitaries makes three parameters redun-
dant. Hence

ds <9R + 3n. (3)

The accessible dimension reaches its maximal value, 4", after a
number of gates exponential in n. Similarly, the circuit complex-
ity reaches its maximal value after exponentially many gates. This
parallel suggests d, as a proxy for the circuit complexity. The next
section justifies the use of d, as a proxy.

The proof of Theorem 1 revolves around the accessible dimen-
sion dy, of a certain R-gate architecture A;. The main idea is as fol-
lows. Let R’ be less than a linear fraction of R. More specifically,
let 9R'+3n < T=R/L. For every R’-gate architecture A’, das < da,
holds by a combination of equations (2) and (3). Consequently,
Supplementary Appendix B shows that {/(A’) has zero probabil-
ity in U(Ar), according to the measure in Definition 2. Therefore,
almost every unitary U € U(Ar) has a complexity greater than the
greatest possible R'. Inequality (1) follows.

Discussion

We have proven a prominent physics conjecture proposed by Brown
and Susskind for random quantum circuits*'*: a local random cir-
cuit’s quantum complexity grows linearly in the number of gates
until reaching a value exponential in the system size. To prove this
conjecture, we have introduced a technique for bounding complex-
ity. The proof rests on our connecting the quantum complexity
to the accessible dimension, the dimension of the set of unitaries
implementable with a given architecture (arrangement of gates).
Our core technical contribution is a lower bound on the accessible
dimension. The bound rests on techniques from differential topol-
ogy and algebraic geometry.

Theorem 1 is a rigorous demonstration of the linear growth of
random qubit circuits’ complexities for exponentially long times.
The bound holds until the complexity reaches C.(U) = 2(4")—the
scaling, up to polynomial factors, of the greatest complexity achiev-
able by any n-qubit unitary”. One hurdle has stymied attempts to
prove that the quantum complexity of local random circuits grows
linearly: most physical properties (described with, for example,
local observables or correlation functions) reach fixed values in
times subexponential in the system size. One must progress beyond
such properties to prove that the complexity grows linearly at
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superpolynomial times. We overcome this hurdle by identifying the
accessible dimension as a proxy for the complexity.

Theorem 1 complements another rigorous insight about com-
plexity growth. In ref. *, the linear growth of complexity is proven in
the limit of large local dimension g and for a strong notion of quan-
tum circuit complexity, with help from ref. *. Furthermore, depth-T
random qubit circuits have complexities that scale as Q(T"!") until
T=exp(2(n)) (refs. ***). The complexity scales the same way for
other types of random unitary evolution, such as a continuous-time
evolution under a stochastically fluctuating Hamiltonian®'. Finally,
ref. ' addresses bounds on convergence to unitary designs*>*’-,
translating these bounds into results about circuit complexity.
Theorem 1 is neither stronger nor weaker than the results of ref. **,
which govern a more operational notion of complexity—how easily
UJ0™)(0"|U" can be distinguished from the maximally mixed state.

Our work is particularly relevant to the holographic context sur-
rounding the Brown-Susskind conjecture. There, random quantum
circuits are conjectured to serve as proxies for chaotic quantum
dynamics generated by local time-independent Hamiltonians™.
Reference ** has introduced this conjecture into black hole physics,
and ref. ! has discussed the conjecture in the context of holography.
A motivation for invoking random circuits is that random circuits
can be analysed more easily than time-independent Hamiltonian
dynamics. Time-independent Hamiltonian dynamics are believed
to be mimicked also by time-fluctuating Hamiltonians® and by
random ensembles of Hamiltonians. Furthermore, complexity par-
ticipates in analogies with thermodynamics, such as a second law of
quantum complexity’. Our techniques can be leveraged to construct
an associated resource theory of complexity™.

In the context of holography, the complexities of thermofield
double states have attracted recent interest"**~*. Thermofield double
states are pure bipartite quantum states for which each subsystem’s
reduced state is thermal. In the context of holography, thermofield
double states are dual to eternal black holes in anti-de-Sitter space™.
Such a black hole’s geometry consists of two sides connected by
a wormhole, or Einstein-Rosen bridge. The wormhole’s volume
grows for a time exponential in the number of degrees of freedom of
the boundary theory*. As discussed above, random quantum cir-
cuits are expected to capture the (presumed Hamiltonian) dynam-
ics behind the horizon. If they do, the growth of the wormholes
volume is conjectured to match the growth of the boundary state’s
complexity">*; both are expected to reach a value exponentially
large in the number of degrees of freedom. Our results govern the
random circuit that serves as a proxy for the dynamics behind the
horizon. That random circuit’s complexity, our results show strik-
ingly, indeed grows to exponentially large values. This conclusion
reinforces the evidence that quantum circuit complexity is the right
quantity with which to resolve the wormhole-growth paradox'.

Outlook

Our main result governs exact circuit complexity. In Supplementary
Corollary 2, we generalize the result to a slightly robust notion of
circuit complexity. There, the complexity depends on our toler-
ance of the error in the implemented unitary. Yet, the error toler-
ance can be uncontrollably small. The main challenge in extending
our results to approximate complexity is that the accessible dimen-
sion crudely characterizes the set of unitaries implementable with
a given architecture. Consider attempting to enlarge this set to
include all the n-qubit unitaries that lie close to the set in some
norm. The enlarged set’s dimension is 4". The reason for this is that
the enlargement happens in all directions of SU(2"). Therefore, our
argument does not work as for the exact complexity. Extending
our results to approximations therefore offers an opportunity for
future work. Approximations may also illuminate random circuits
as instruments for identifying quantum advantages**’; they would
show that a polynomial-size quantum circuit cannot be compressed
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substantially while achieving a good approximation. These observa-
tions motivate an uplifting of the present work to robust notions of
quantum circuit complexity allowing for implementation errors in
the distinguishability of states or channels*' (see, for example, ref. °).
A possible uplifting might look as follows. Let A denote an R-gate
architecture, and let A’ denote an R’-gate architecture. Suppose that
the accessible dimensions obey d,. < d,. A unitary implemented with
A has no chance of occupying the set U(A’), which has a smaller
dimension than U/ (A). Consider enlarging U/ (A’) to include the uni-
taries that lie e-close, for some ¢ > 0. If /(A’) is sufficiently smooth
and well-behaved, we expect the enlarged set’s volume, intersected
with U(A), to scale as ~e% %, Furthermore, suppose that unitar-
ies implemented with A are distributed sufficiently evenly in U/(A)
(rather than being concentrated close to Z/(A")). All the unitaries
in U(A) except a small fraction ~e%~%" could not lie in U/(A”).
We expect, therefore, that all the unitaries in ¢/(A) except a fraction
~e%4~9x have e-approximate complexities greater than R’.

A related opportunity is a proof that Nielsen’s geometric com-
plexity measure grows linearly under random circuits. Such a
proof probably requires a more refined characterization of U/(A)
than its dimension. The quantum complexity in Theorem 1 does
not lower-bound Nielsen’s complexity. Hence our main results
do not immediately imply a similar bound for Nielsen’s complex-
ity. However, proving the approximate circuit complexity’s linear
growth would suffice to lower-bound Nielsen’s complexity because
of the known inequalities between Nielsen’s complexity and the cir-
cuit complexity (Fig. 1b; for example, ref. '?).

We expect our machinery based on geometry”" and proper-
ties of the Clifford””**** group to be applicable to random processes
that more closely reflect a variety of systems that are studied in the
many-body physics community. Examples include randomly fluc-
tuating dynamics®, which implement random quantum circuits
when Trotterized, and thermofield double states undergoing ran-
dom ‘shocks™**!. Additionally, hybrid circuits—random unitary
circuits punctuated by intermediate measurements—have recently
attracted much interest’>*, as the amount of entanglement present
in such systems appears to undergo phase transitions induced by
the rate at which they are measured. A generalization of the acces-
sible dimension to such systems might reveal to what extent cir-
cuit complexity, as a measure of entanglement in deep dynamics,
undergoes similar phase transitions. We hope that the present work,
by innovating machinery for addressing complexity, stimulates
further quantitative studies of holography, scrambling and chaotic
quantum dynamics.
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Methods

Having overviewed the proof at a high level, here we fill in the key mathematics.
Three points need clarifying. First, we must rigorously define the accessible
dimension, or the dimension of Z/(A), which is not a manifold. Second, we must
prove Proposition 1. Finally, we must elucidate steps in the proof of Theorem 1.
We address these points using the toolbox of algebraic geometry. We associate with
every R-gate architecture A a contraction map F*: SU(4)® — SU(2"). This function
maps a list of gates to an n-qubit unitary. The unitary results from substituting the
gates into the architecture A (Fig. 3). The map contracts every edge (qubit) shared
by two vertices (gates) in A.

The image of F* is the set 1/ (A) of unitaries implementable with the
architecture A. U (A) is a semialgebraic set, consisting of the solutions to a
finite set of polynomial equations and inequalities over the real numbers
(Supplementary Appendix A provides a review). That ¢/(A) is a semialgebraic
set follows from the Tarski-Seidenberg principle, a deep result in semialgebraic
geometry (Supplementary Appendix A). A semialgebraic set’s dimension quantifies
the degrees of freedom needed to describe the set locally. More precisely, a
semialgebraic set decomposes into manifolds. The greatest dimension of any
such manifold equals the semialgebraic set’s dimension. The dimension
of U(A) is the architecture A’s accessible dimension. More restricted than a
semialgebraic set is an algebraic set, which consists of the solutions to a finite
set of polynomial equations.

Just as the contraction map’s image will prove useful, so will the map’s rank,
defined as follows. Let x=(U,, U,, ..., Uy) € SU(4)** denote an input into F*, such
that the U; denote two-qubit gates. The map’s rank at x is the rank of a matrix that
approximates F* linearly around x (the rank of the map’s Jacobian at x). The rank is
low at x if perturbing x can influence the n-qubit unitary only along few directions
in SU(2").

Crucially, we prove that F* has the same rank throughout the domain, except
on a measure-zero set, where F* has a lesser rank. The greater, ‘dominating’ rank is
the dimension of 1/ (A). To formalize this result, let E, denote the locus of points at
which F* has a rank of r>0. Let E., = |, _,E,» denote the set of points where F*
has a lesser rank. Let r,,,, denote the maximum rank achieved by F* at any point x.
We prove the following lemma in Supplementary Appendix B, using the dimension
theory of real algebraic sets.

Lemma 1. (Low-rank locus) The low-rank locus E.,, _is an algebraic set of measure
0 and so is closed (in the Lie-group topology). Equivalently, E, _is an open set of
measure 1. Consequently, d,=r,,,,.

Lemma 1 guarantees that the contraction map’s rank equals the accessible
dimension d, almost everywhere in U/ (A).

We now turn to the proof of Proposition 1. The rank r of F* at each point x
lower-bounds r,,,,,, by definition. Consider an architecture A, of T blocks,
each containing a backwards light cone. We identify an x at which r is lower-
bounded by a quantity that grows linearly with R (the number of gates in the
architecture A;). We demonstrate the point’s existence by constructing circuits
from Clifford gates.

Consider a choice x = (Uj, Uy, ..., Ug) = (U) of unitary gates Perturbing
a U; amounts to appending an mﬁmtemmal unitary: U — Uj = *“HU;. The
H denotes a two-qubit Hermitian operator and ¢ € R H can be written as a
linear combination of two-qubit Pauli strings S,. (An n-qubit Pauli string is a
tensor product of n single-site operators, each of which is a Pauli operator [X, Y
or Z] or the identity, 1,. The 4" n-qubit Pauli strings form a basis for the space
of n-qubit Hermitian operators.) Consider perturbing each gate U, using a
combination of all 15 nontrivial two-qubit Pauli strings (Supplementary Fig. 4a):
x=(U; ) — X = (exp(i Zk L€ kSk) U; )] wherein €j; € R. The perturbation
X > X causes a perturbation U = FA7(x) + U = F*7(X) of the image under
FA7_ The latter perturbation is, to first order, am U\ €x=0- This derivative can be
expressed as the original circuit with the Pauli string S, inserted immediately after
the gate U, (Supplementary Fig. 4b).

The rank of FA" at x is the number of parameters ¢, needed to parameterize a
general perturbation of U = FA7 (x) within the image set U (Ar). To lower-bound
the rank of F*" at a point x, we need only show that >r parameters €;, perturb
F*7(x) in independent directions. To do so, we express the derlvatwe as

e, F'7 (%) ] ey =0 = KiuF*" (x), 4)

where K;; denotes a Hermitian operator (Supplementary Fig. 4c). K results from
conjugating Sy, the Pauli string inserted into the circuit after gate U, with the later
gates. The physical significance of K, follows from perturbing the gate U; in the
direction S by an infinitesimal amount ¢;;. The image FAT(x)is consequently
perturbed, in SU(2"), in the direction Kbk

We choose for the gates U, to be Clifford operators. The Clifford operators
are the operators that map the Pauli strings to the Pauli strings, to within a phase,
via conjugation. For every Clifford operator C and Pauli operator P, CPC' equals
a phase times a Pauli string by definition of the Clifford group. As a result, the
operators Kj; are Pauli strings (up to a phase). Two Pauli strings are linearly
independent if and only if they differ. For Clifford circuits, therefore, we can easily
verify whether perturbations of x cause independent perturbation directions in
SU(2"): we need only show that the resulting operators K;; are distinct.
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We apply that fact to prove Proposition 1, using the following observation.
Consider any Pauli string P and any backwards-light-cone-containing block of any
architecture. We can insert Clifford gates into the block such that two operations
are equivalent: (1) operating on the input qubits with P before the extended block
and (2) operating with the extended block, then with a one-qubit Z. Supplementary
Fig. 4d depicts the equivalence, which follows from the structure of backwards light
cones. We can iteratively construct a Clifford unitary that reduces the Pauli string’s
weight until producing a single-qubit operator. See Supplementary Appendix B
for details.

We now prove Proposition 1 by recursion. Consider an R’-gate architecture
A formed from T’ < 4n— 1 blocks, each containing a backwards light cone
and each of <L gates. Assume that there exists a list x" of Clifford gates, which
can be slotted into Ay, such that F*+' has a rank >T" at x'. Consider appending
a backwards-light-cone-containing block to A;.. The resulting architecture
corresponds to a contraction map whose rank is >7" + 1.

By assumption, we can perturb x’ such that its image, F*' (x'), is perturbed
in >T’ independent directions in SU(2"). These directions can be represented
by Pauli operators K; , ,whereinm =1, 2, ..., T', by equation (4). Let
P denote any Pauli operator absent from { K } We can append to A, a
backwards-light-cone-containing block, formmg an architecture A, ,, of T'+1
backwards light cones. We design the new block from Clifford gates such that two
operations are equivalent: (1) applying P to the input qubits before the extended
blocks and (2) applying the extended block, then a single-site Z. We denote by x”
the list of gates in x” augmented with the gates in the extended block. Conjugating
the KJ/ &, With the new block yields operators K) Jform=1,2..,T.

They represent the directions in which the image FA 7+ (x'")is perturbed by

the original perturbations of A;.. The K]’ «,, are still linearly independent Pauli
operators. Also, the K] , and the single-site Z form an independent set, because
Pis not in {K’ T Meanwhile, the single-site Z is a direction in which the last
blocks final gate ‘can be perturbed. The operators K, . k,» augmented with the
single-site Z, therefore span T' + 1 independent directions alon, F§ which F*7/+: x'")
can be perturbed. Therefore, T' + 1lower-bounds the rank of

We apply the above argument recursively, starting from an archltecture that
contains no gates. The following result emerges: consider any architecture A; that
consists of T backwards-light-cone-containing blocks. At some point x, the map
F7 has a rank lower-bounded by T. Lemma 1 ensures that the same bound
applies to dy,.

To conclude the proof of Theorem 1, we address an architecture A’ whose
accessible dimension satisfies d,, < d,,. Consider sampling a random circuit
with the architecture A;. We must show that the circuit has a zero probability
of implementing a unitary in /(A”). To prove this claim, we invoke the
constant-rank theorem: consider any map whose rank is constant locally—in
any open neighbourhood of any point in the domain. In that neighbourhood,
the map is equivalent to a projector, up to a diffeomorphism. We can apply the
constant-rank theorem to the contraction map: FA7 has a constant rank throughout
E,_, by Lemma 1. Therefore, FAT acts locally as a projector throughout E, —and
so throughout SU(4)*%, except on a measure-0 region, by Lemma 1. Consider
mapping an image back, through a projector, to a pre-image. Suppose that the
image forms a subset of dimension lower than the whole range’s dimension. The
backward mapping just adds degrees of freedom to the image. Therefore, the
pre-image locally has a dimension less than the domain’s dimension. Hence the
pre-image is of measure 0 in the domain. We use the unitary group’s compactness
to elevate this local statement to the global statement in Theorem 1.
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