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Self-Supervised Learning to Prove Equivalence
Between Programs via Semantics-Preserving

Rewrite Rules
Steve Kommrusch, Martin Monperrus, and Louis-Noël Pouchet

Abstract—We target the problem of automatically synthesizing proofs of semantic equivalence between two programs made of

sequences of statements. We represent programs using abstract syntax trees (AST), where a given set of semantics-preserving

rewrite rules can be applied on a specific AST pattern to generate a transformed and semantically equivalent program. In our system,

two programs are equivalent if there exists a sequence of application of these rewrite rules that leads to rewriting one program into the

other. We propose a neural network architecture based on a transformer model to generate proofs of equivalence between program

pairs. The system outputs a sequence of rewrites, and the validity of the sequence is simply checked by verifying it can be applied. If

no valid sequence is produced by the neural network, the system reports the programs as non-equivalent, ensuring by design no

programs may be incorrectly reported as equivalent. Our system is fully implemented for a given grammar. To efficiently train the

system to generate such sequences, we develop an original incremental training technique, named self-supervised sample selection.

We extensively study the effectiveness of this novel training approach on proofs of increasing complexity and length. Our system,

S4Eq, achieves 97% proof success on a curated dataset of 10,000 pairs of equivalent programs.

Index Terms—program equivalence, symbolic reasoning, self-supervised learning, machine learning.

✦

1 INTRODUCTION

D EEP neural networks have excelled at a variety of
classification, reinforcement learning, and sequence

generation tasks [1]. However, their stochastic nature com-
plicates the use of such networks in formal settings where
one requires a guarantee that the result produced is provably
correct, such as to assess semantic equivalence between
programs.

In this work proving program equivalence means deter-
mining whether two (symbolic) programs always produce
identical output if given the same input, for all possible
inputs. Program equivalence is a central problem in com-
puting [2]–[4]. The problem ranges from undecidable [5], to
trivial in the case of testing the equivalence of a program
with itself. Proving program equivalence is useful for e.g.
verifying compiler correctness [6], replacing code fragments
by more optimized ones [7], malicious software detection
[8] or automated student feedback [9]. In this work, we pro-
pose a machine learning framework for proving program
equivalence, named S4Eq.

S4Eq takes as input two programs and generates a
sequence of rewrite rules under a well-defined system
for equivalence using semantics-preserving rewrite rules
[10]. Our work studies programs represented as a list of
statements with straight-line control-flow, using multiple
variable types and complex mathematical expressions to
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compute values. S4Eq outputs a sequence of rewrite rules
which is then easily checked for validity. Therefore, only
valid sequences are outputted and the system guarantees no
false positives by design (no programs are stated equivalent
if they are not).

We target a challenging instance of the program equiv-
alence problem where the set of rewrite rules we consider
may fundamentally change the number and order of op-
erations in the program, such as factorization/distribution
or common sub-expression elimination. We design a novel
self-supervised learning technique, exploiting the ability of
our system to automatically synthesize valid new programs
and proofs. We initially train a model in a supervised man-
ner with synthetic data which has a broad distribution on
the use of rewrite rules. Then we propose a self-supervised
technique based on comparing results between broad and
narrow proof searches to incrementally train our model.
Rewrite rule sequences demonstrating equivalence found
by a quick, narrow search are not considered interesting
for further training; while sequences found by a broad
search indicate samples for which the model’s rewrite rule
selections could be improved. We name this procedure self-
supervised sample selection. We fully implement our learning
and inference models in the popular OpenNMT-py frame-
work [11], based on the transformer model.

To demonstrate the applicability of S4Eq on human-
written programs, we mined C functions on the popular
code hosting platform GitHub [12]. We collected 13,215
unique programs that we analyze for equivalence by S4Eq.
This shows that S4Eq can prove program equivalence using
various compilation and optimization transformations, such
as Common Sub-expression Elimination [13] that exist on
AST samples in the field. To summarize, we make the
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Prog A (source code):                                      (a)
y_diff = ( particles [ i ] . y_pos - particles [ j ] . y_pos ) ;

r = sqrt ( ( x_diff * x_diff ) + ( y_diff * y_diff ) ) ;

mass = particles [ j ] . mass ;

mass /= ( ( r + EPSILON ) * ( r + EPSILON ) 

* ( r + EPSILON ) ) ;

x_diff *= mass ;

y_diff *= mass ;

sumX += x_diff ;

sumY += y_diff ;

Prog B (source code):                                        (d)
distancey = y - src -> center_y ;

rij = sqrt ( distancex * distancex + distancey * distancey ) ;

cst_j = src -> center_mass * 1.0 / ( ( rij + E0 ) * ( rij + E0 ) 

* ( rij + E0 ) ) ;

cord_x = cst_j * distancex ;

cord_y = cst_j * distancey ;

Fx += cord_x ;

Fy += cord_y ;

Prog A (abstracted):      (b)
t1 = ( i1 - i2 ) ;

t2 = f1 ( ( i3 * i3 ) + ( t1 * t1 ) ) ;

t3 = i4 ;

t4 = t3 / ( ( t2 + i5 ) 

* ( t2 + i5 ) * ( t2 + i5 ) ) ;

t5 = i3 * t4 ;

t6 = t1 * t4 ;

o1 = i6 + t5 ;

o2 = i7 + t6 ;

Prog B (abstracted): (e)
t1 = i1 - i2 ;

t2 = f1 ( i3 * i3 + t1 * t1 ) ;

t3 = i4 * 1s / ( ( t2 + i5 )

* ( t2 + i5 ) * ( t2 + i5 ) ) ;

t4 = t3 * i3 ;

t5 = t3 * t1 ;

o1 = i6 + t4 ;

o2 = i7 + t5 ;

Prog A (prefix encoding of AST):      (c)
s28 = ( -s s01 s02 ) ;

s27 = ( u1s ( +s ( *s s03 s03 ) ( *s s28 s28 ) ) ) ;

s26 = s04 ;

s25 = ( /s s26 ( *s ( +s s27 s05 )

( *s ( +s s27 s05 ) ( +s s27 s05 ) ) ) ) ;

s24 = ( *s s03 s25 ) ;

s23 = ( *s s28 s25 ) ;

s30 === ( +s s06 s24 ) ;

s29 === ( +s s07 s23 ) ;

Prog B (prefix encoding of AST): (f)
s28 = ( -s s01 s02 ) ;

s27 = ( u1s ( +s ( *s s03 s03 ) ( *s s28 s28 ) ) ) ;

s26 = ( *s s04 ( /s 1s ( *s ( +s s27 s05 ) 

( *s ( +s s27 s05 ) ( +s s27 s05 ) ) ) ) ) ;

s25 = ( *s s26 s03 ) ;

s24 = ( *s s26 s28 ) ;

s30 === ( +s s06 s25 ) ;

s29 === ( +s s07 s24 ) ;

Equivalence Rewrite Rule Sequence: (g)
stm4 MultOne Nr 

stm4 Inline s26    stm3 Rename s26

stm3 DeleteStm stm4 Rename s25

stm5 Rename s24

stm4 Commute N 

stm3 NeutralOp Nr 

stm3 DivOne Nr 

stm3 FlipRight N 

stm5 Commute N

ProgInt after “stm3 Deletestm”:        (h)
s28 = ( -s s01 s02 ) ;

s27 = ( u1s ( +s ( *s s03 s03 ) ( *s s28 s28 ) ) ) ;

s25 = ( /s s04 ( *s 1s ( *s ( +s s27 s05 )

( *s ( +s s27 s05 ) ( +s s27 s05 ) ) ) ) ) ;

s24 = ( *s s03 s25 ) ;

s23 = ( *s s28 s25 ) ;

s30 === ( +s s06 s24 ) ;

s29 === ( +s s07 s23 ) ;

Fig. 1: Exemple of various program representations, and application of rewrite rules, in S4Eq.

following contributions:
• We present S4Eq, an end-to-end deep learning frame-

work to find equivalence proofs between two complex
program blocks. S4Eq produces a sequence of semantics-
preserving rewrite rules to transform one program into
the other, via successive rewrites. We consider rewrites
which support complex program transformations such as
Common Subexpression Elimination and computational
strength reduction. S4Eq emits a verified sequence of
rewrites, leading to no false positive by design.

• We design self-supervised sample selection, an original
training technique tailored to our problem domain. This
approach further improves the ability of the deep learning
system to find more complex proofs.

• We present extensive experimental results to validate
our approach, demonstrating our system can successfully
prove equivalence on both synthetic programs and pro-
grams derived from GitHub with up to 97% success. This
paves the way for unsupervised deployment to validate
correctness of transformations of program blocks (typical
in e.g. low-level compiler optimizations [14]), that are
typically unsupported by verification tools [15].

• We provide all our datasets to the community includ-
ing synthetic generation techniques for the problem of
program equivalence via rewrite rules, as well as the
programs built from the ASTs we mined from C functions
in GitHub [16].

2 PROBLEM STATEMENT

We now give the basics of a rewrite-rule based system to
prove equivalence between program blocks, the language
and rewrites we support, and we finally present theoretical
considerations and practical uses of our system.

2.1 Straight-line Programs

We target programs made of statements without explicit
control-flow instructions (that is, straight-line code [8], [17]).
Such programs may be the result of applying full unrolling
or flattening on loops ([18], [19]), or may simply occur
in human-written C code as exemplified in Fig. 1(a) and
Fig. 1(d).

Our system takes as input programs represented as
abstract syntax trees, or ASTs, using specific symbols for
input and output values, e.g., i1,i2,i3 and o1,o2 in

Fig. 1(b) and specific typed operator symbols, e.g. -s in
Fig. 1(c) to represent subtraction of scalars. We require a
program to behave as a pure function (no side effect) with a
single-entry and a single-exit (SESE), where the set of input
and output variable names is known, each distinct name
representing a different variable (no aliasing). Under those
assumptions, our system targets proving the equivalence of
two programs, represented with their ASTs. The process of
abstracting some source code to a safe AST-based represen-
tation for equivalence checking is outside the scope of our
paper, we assume this process is done beforehand.

For example, Fig. 1(a) and (d) are two actual source
code snippets mined from GitHub. The two straight-line
programs we generated from them in Fig. 1(b) and (e) do
not safely capture their exact semantics: live-in variables
of different names, e.g. xdiff and distancex, are both
translated to the same i3 symbol in the AST we extracted.
In a formal deployment setting, one shall ensure no aliasing
between symbols that are non-local to the programs (e.g.,
xdiff vs. distancex), and compute correspondence be-
tween live-in/live-out symbols of each program [20]. This
is simplified in cases where e.g. program B is an optimized
version of program A, and meant to fully replace A in some
larger programs: then by design A and B would always
be called with the exact same context. It reduces the entire
aliasing and matching problem to simply syntactic name
matching.

Our input language covers programs made of multiple
symbolic expressions using variables of different types,
operators, pure function calls, and neutral or absorbing
elements (e.g., 0, 1). We support both "vector" and "scalar"
types, as well as operators and functions that mix these
types. We support programs with single or multiple outputs
of varying types.

2.2 Transforming Programs with Rewrite Rules

We now outline how program transformations are repre-
sented in our system. Figure 1(c) and (f) display our actual
input program representations, which is strictly equivalent
to the programs in Fig. 1(b) and (e). We use a prefix encoding
of the AST to feed to our deep learning system presented
in later Sec. 3. The rewrite rules we use operate on this
representation. The parenthesis positioning in this encoding
allows for direct recognition of subtrees, and nodes of this
tree can be referenced to in the rewrite rules. For example,
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TABLE 1: The 23 rewrite rule categories considered by S4Eq. Specializing to different data types supported, 86 rewrite
rules are actually considered.

Rewrite Rule and Arguments Example or Description Rewrite Rule and Arguments Example or Description

SwapPrev Swap assign statements Inline VarID Replace VarID with its last assigned expression

UseVar VarID Replace expression with VarID NewTmp NodeID VarID Assign VarID to expression at NodeID

DeleteStm Delete assign stm Rename VarID Change assignment to VarID

AddZero NodeID ~v →(~0 + ~v), b→0+b SubZero NodeID ~v → (~v - ~0), b→b-0

MultOne NodeID ~v →(1×~v), b→1×b DivOne NodeID a → a/1

Cancel NodeID (~v − ~v)→ ~0,(b/b)→1 NeutralOp NodeID (~v - ~o) → ~v, 1×a→a

DoubleOp NodeID −(−~v) → ~v, 1/1/x→x AbsorbOp NodeID (~v×0)→ ~0, (b×0)→0

Commute NodeID (a + b) → (b + a) DistributeLeft NodeID (a + b)c → ac + bc

DistributeRight NodeID a(b + c) → ab + ac FactorLeft NodeID ab + ac → a(b+c)

FactorRight NodeID ac + bc → (a+b)c AssociativeLeft NodeID a(bc) → (ab)c

AssociativeRight NodeID (ab)c → a(bc), (ab)/c→a(b/c) FlipLeft NodeID -(~v - ~w) → ~w − ~v

FlipRight NodeID a/(b/c) → a(c/b)

ProgA in Fig. 1(c) is transformed into ProgB in (f) with the 11
step rewrite rule sequence shown in (g). Our general rewrite
rule syntax in this paper is:

stm# RuleName [NodeID] [VarID]

where stm# is the statement number in ProgA which should
have RuleName applied. NodeID optionally identifies the
node within the right hand side of the assignment statement,
and VarID is the optional name of the variable to use for
applying the rule. Precisely, NodeID is a description of the
path from the root of the statement to the node of interest,
e.g. Nr, which is our syntax to model the right child (r) of the
root expression node (N). Making the path explicit facilitates
learning representations independent of the program size.

For S4Eq we have manually specified the rewrite rules
summarized in Table 1. The 23 different rule groups dis-
played are specialized for each supported data type, lead-
ing to 86 distinct rules. Note we specifically focus on
rewrites that go beyond rescheduling operations: we con-
sider rewrites that alter the count and type of opera-
tions, such as factorization/distribution, as well as all rules
needed to implement symbolic common sub-expression
elimination (CSE) on the whole program via a composition
of more basic rewrites.

The system of rewrites is how equivalence has been
proven in prior work [21] and we use an identical formalism
in this paper. A rewrite rule is made of a tuple <P,R> where
P is a pattern, or subtree template, dictating when the rule
can be matched on a given subtree of the original AST. R
is a rewrite, another subtree template, with which the P

subtree is replaced when a successful match occured. To test
the validity of applying a rule to a node or subtree in the
original AST, we simply need to check the pattern P exists
at the expected position in the subtree, if so replacing it by
R is valid.

We now illustrate with an example. Taking the
fifth assignment in Fig. 1(c), s24 = (*s s03 s25).
We focus on the expression (*s s03 s25). The rule
Commute NodeID from Table 1 is specialized for
all applicable operators and types, in particular the
rule a ∗ b = b ∗ a for scalars is defined using
<P,R> with P =(*s <subtree-1> <subtree-2>) and
R =(*s <subtree-2> <subtree-1>). Stm5 Commute

N is a match: P =(*s <subtree-1> <subtree-2>)

matches (*s s03 s25) with <subtree-1> = s03 and
<subtree-2> = s25, the rewritten statement would be
(*s s25 s03). Stm5 Commute Nr is not a match, and
therefore an invalid rewrite: the path Nr indicates s03,
which is not matched by P . Similarly, Stm1 Commute N

is not a match, -s, the subtraction of scalars, differs from

*s, the multiplication of scalars. Stm2 Commute Nrr is a
match: P is found on (*s s28 s28).

2.3 Checking the Validity of a Sequence of Rewrites

Our definition of rewrite rules as <P,R> makes trivial the
process of checking the validity of a sequence S of rewrites
on program Prog, and is as follows. For each rewrite Si in
S, in increasing order of i, do: (a) check PSi

is matched
at the node specified in Si. If no, fail: the sequence is
invalid. If yes, (b) apply the rewrite PSi

→ RSi
at the node

specified in Prog to generate a new program Prog′. (c) Set
Prog = Prog′. Note this algorithm has essentially a low
polynomial worst-case time complexity (pattern size times
program size).

It follows our simple procedure to determine equiva-
lence between two programs P1, P2 and a candidate se-
quence S to rewrite P1 into P2. If the sequence is valid as
per the procedure above, and after all rewrites applied on
P1 the resulting program is syntactically identical to P2, then
the two programs are equivalent. Additional proofs can be
found in [21].

2.4 S4Eq in a Nutshell

Our system S4Eq operates as follows. For inference (testing
whether two programs are equivalent), a pair of programs
P1, P2 in prefix AST form is input to the system. A maximal
length l for the rewrite sequence is set. For no more than l

steps, the system (a) proposes a rewrite to be applied; (b)
its validity is verified, and if valid, the rewrite is applied to
P1, generating a new P1′ program, which becomes the P1
program tested for equivalence with P2 at the next step. If
at any point P1 is syntactically identical to P2, the system
outputs the full sequence and P1, P2 as equivalent. In all
other cases, the system outputs P1, P2 as non-equivalent.
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As extensively developed in Sec. 4.1 and later, for train-
ing, we take as input a grammar for the supported language,
and the rewrite rules as defined in Table 1. We fully automat-
ically generate new programs and proofs by simply iterating
on the grammar productions to generate programs, and
iterating on applicable rewrites on a program to generate
a pair of equivalent programs and one proof of equivalence
for them.

2.5 Problem Complexity

Given a pair of programs that fit our representation, de-
termining the existence (or absence) of a sequence of valid
rewrites to rewrite one program into another is NP-complete
[22]. Indeed, while some rewrites could be easily handled
with a kind of greedy application scheme, such as multOne
or Cancel, others immediately create combinatorial explo-
sion, such as Commute, and triggers the NP complexity.
Intuitively, to solve equivalence between a sequence of com-
mutative/distributive operators in polynomial time, some
sort of canonical representation should exist, and it should
not be more than polynomially bigger in size than the
original expression. Then one would first transform to this
canonical representation, and then perform a polynomial-
time check between the canonical representations of both
programs. While in very specific instances this representa-
tion may exist [23], our supported language goes beyond
these restricted scenarios and supports arbitrary expressions
made of scalars, vectors, etc. for which, to the best of our
knowledge, no canonical representation has been proposed.
By analogy to the Boolean Satisfiability problem, converting
to a conjunctive normal form could already lead to an
exponentially larger representation, leading to a worst-case
NP complexity [22].

Intuitively, we can view the program equivalence so-
lution space PES as a very large graph, where every
possible syntactically different program in the language is
represented by its own vertex v. Then, two vertices vi and vj
are connected by a labeled edge iff applying one particular
rewrite rule on a particular node of vi is valid, and leads
to producing the program vj . The edge is labeled by the
rewrite rule applied (as defined above). This graph is a
multigraph, as multiple different rewrites may connect the
same two programs. It also contains cycles, as a sequence
of rewrites can "undo" changes. Therefore, any two pro-
grams connected by a path in this graph are semantically
equivalent: the rewrite sequence is the set of labels along
the edges forming the path. Building the rewrite rule se-
quence S for ProgB ≡ S(ProgA) amounts to exposing
one path (out of possibly many) from ProgA to ProgB

in this graph when it exists, the path forming the proof of
equivalence. In this work we build a deep learning system
to learn a stochastic approximation of an iterative algorithm
to construct such feasible path when possible. In a nutshell,
we view program equivalence as a pathfinding problem in
PES, and train a neural model to find efficiently paths in
PES, only by sampling from PES at training time. Our
approach avoids entirely the need to craft smart exploration
heuristics for such large equivalence graph to make this
path-finding problem practical (akin to building tactics in
theorem provers): instead, the traversal heuristic is learned
automatically, without any user input, by deep learning.

As detailed in later Sec. 3, one fundamental contribution
of our work is to design a self-supervised incremental
training approach to address this pathfinding problem. It is
motivated by the fact that the in-practice complexity of prov-
ing equivalence may vastly differ between two problem in-
stances. Our system identifies instances that were not solved
well, builds a family of new problem instances derived from
it, and incrementally trains on those to improve its abilities
on complex cases. Implicitly, instances with high in-practice
complexity that are not solved well will be isolated and used
for refining the system’s capabilities.

2.6 Applications of Equivalence Proof Search

Our system proves equivalence between symbolic straight-
line programs. We have exemplified on a two-type language
with a standard operator mix, up to token renaming, which
covers instances of SIMDized functions, register-level code,
etc. As such, S4Eq can be used to address the verifica-
tion and certification of certain compiler optimizations [24].
While numerous approaches based on abstract interpreta-
tion address equivalence under reordering of operations, e.g.
[4], [25], [26], they typically cannot handle transformations
at the statement level. S4Eq can take blocks in two programs
and test them for equivalence, (re)discovering which state-
ment corresponds to which in the transformed program,
helping to address the well-known statement matching
problem. On the contrary, S4Eq can prove equivalent after
a full-unrolling of a code region, as is typical in high-
performance code generation [27], a fundamental problem
in compiler certification.

Another use case is the equivalence between linear
algebra formulas, as could typically be found in student
exercises. S4Eq is able solve all of the matrix expression
equivalence programs from 2 relevant Khan academy mod-
ules designed to test student’s knowledge of matrix algebra
[28].

3 S4EQ: DEEP LEARNING TO FIND REWRITE

RULE SEQUENCES

We propose to use a deep learning model to find rewrite rule
sequences which transform one program into a semantically
equivalent target program. The idea is to first learn from
correct rewrite sequences, and then learn to solve previously
unseen program equivalence problems.

3.1 Overview of S4Eq

Prior work has shown that source code has patterns that
are similar to human language [29], and thus techniques
used in natural language processing can work on source
code as well, including deep learning [30]. Deep learning
has the ability to learn syntactic structure and expected
outputs related to programs. For S4Eq we aim to create
a deep learning model which, given 2 programs, will pre-
dict a sequence of rewrite rules which can formally prove
equivalence between the 2 programs.

For S4Eq we use the state of the art sequence-
to-sequence deep learning model known as the trans-
former model [31]. Because sequence-to-sequence models
are stochastic, they can be used to produce multiple answers
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Fig. 2: Transformer model used to predict rewrite rules given
2 input programs.

for the same query; this is called beam search. By using beam
search we can order rewrite rules proposed by the model. By
composing beam search recursively, we can construct proofs
which use heuristics learned by the model to guide proof
search.

In S4Eq, we devise an original training process specifi-
cally for the task of proving equivalence. The S4Eq training
process combines supervised and self-supervised learning
and does not require human labeling.

3.2 Transformer Model

The transformer sequence-to-sequence model is meant to
learn mappings between two sequences, typically of words
[31]. It is widely used in automated translation [32] and text
summarization [33]. Sequence-to-sequence models consists
of two parts, an encoder and a decoder. The encoder maps
the input sequence X = (x0, x1, ..., xn) to an intermediate
continuous representation H = (h0, h1, ..., hn), also known
as an embedding. Then, given H , the decoder generates the
output sequence Z = (z0, z1, ..., zm). The size of the input
and output sequences, n and m, can be different; and the
languages for X and Z can also use different vocabularies.
A sequence-to-sequence model is optimized on a training
dataset to maximize the conditional probability of p(Z | X),
which is equivalent to:

p(Z | X) = p(z0, z1, ..., zm | x0, x1, ..., xn)

=
m∏

i=0

p(zi | H, z0, z1, ..., zi−1)

For S4Eq, we introduce the input and output languages
for X and Z in Section 2. Subfigures 1(c) and 1(f) are
examples of such inputs. The output language for Z is
illustrated in subfigure 1(g). For input to the transformer,
we add a special token Y to separate the 2 programs, with
ProgA being input before ProgB. The input and output
languages are fully detailed in our GitHub repository [16].

In S4Eq, the transformer model we use is shown in
Figure 2. The yellow boxes represent the model’s learned
interpretation for the tokens in the input and output. Tokens

such as ’*s’ and ’=’ in the input language or ’stm3’ and ’Com-
mute’ in the output language have learned embeddings
used by the transformer model. The model accomplishes
context-dependent interpretation with multiple attention
layers which learn a complex representation for a program
node by learning which other nodes should be “attended
to” while creating the higher level representation.

In the transformer model, the encoder and decoder use
layers which provide an attention mechanism which relates
different positions of a single sequence in order to compute
a representation of the entire sequence. For example, the at-
tention layers provide a mechanism for information related
to the assignment of a variable to affect the representation
of other parts of the program where the variable is used.

Multi-head attention allows for the different heads to
learn different aspects of the data. For our problem of pro-
gram equivalence, the model is trained to produce correct
rewrite rules and hence all of the learnable functions are
learning representations useful for this task. To illustrate,
one of the heads may tend to build a representation for
addition and subtraction of vectors, while another head
might build a representation for multiplication and division
of scalars. What the heads learn is not constrained by the
architecture, so the true meaning of the heads at each layer
is not easily decipherable, but multi-head attention has been
shown by others and by our own ablation studies to be
valuable.

Figure 2 identifies ’N layers’ for both the encoder on the
left (which encodes the input programs to an intermediate
representation) and the decoder on the right (which decodes
the representation to produce the rewrite rule output). The
’N layer encoder’ is using self-attention in which the infor-
mation processed by a given layer is provided by the layer
below. A similar situation holds for the ’N layer decoder’,
however the H connection from the encoder layers to the
decoder layers allows the decoder to process information
from the decoder and encoder. The transformer model we
employ also includes residual and feed-forward sublayers
and a full description of the interactions within the model
can be read in the work by Vaswani et al. [34]. We used the
Adam optimizer [35] to adjust the weights in the network
based on the loss function between the target token expected
in the training sample and the result produced by the
current network.

The intermediate representation H encodes the complex
representations for each token of the input, in our case a
pair of programs. The decoder model will generate a first
output token based on H and then generate subsequent
tokens based on H and the previously output tokens. The
Softmax function normalizes the output of the final decoder
layer to a probability distribution:

Softmax(zi) =
ezi

∑K
j=1 e

zj
for z = (z1, ..., zK) ∈ R

K

The effect of the Softmax layer is to create an output that
can be interpreted as representing the probability that a
given token is correct, given the training the model has been
exposed to. As the output is generated, when the tokens
with the highest Softmax values are selected we create a
rewrite rule which represents the most likely next edge in
our path through the program space from ProgA to ProgB.
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Fig. 3: Proof search: Transformer model produces multiple rewrite rules at each step. Invalid rules are discarded, lexical
equivalence is checked, and up to i intermediate programs are used to produce new rules for the next search step.

3.3 Beam Search to Explore Multiple Possible Proofs

A typical approach when using sequence-to-sequence mod-
els is called “beam search”, it is the process of asking
the deep learning model to produce multiple answers for
the same question. As the network produces likely token
selections, the Softmax layer shown in Figure 2 is effec-
tively producing probabilities for each token. Using these
probabilities we can produce multi-token outputs sorted in
order based on the total probability the model assigns to the
sequences.

In S4Eq, we use this beam search to enumerate the
possible next rewrite rule to apply. Each proposal is then
checked for legality (whether the proposed rewrite rule
can indeed be applied at the given program location) and
novelty (the program resulting from the rule application
does not match a previously seen program for this search).
Figure 3 diagrams the system which receives ProgA and
ProgB and generates a verifiable proof of equivalence. A
rewrite rule includes the statement number, rule name,
possible statement node identifiers, and possible variable
identifiers. The validity of a rule is checked by first verifying
the statement number exists in ProgA. Then, if the rule does
not require a node ID (SwapPrev or DeleteStm) we check
if the liveness rules are followed - for SwapPrev neither
statement may make use of the variable assigned by the
other statement, and for DeleteStm the variable must not
be an output variable and must not be used in subsequent
statements. For rules requiring a NodeID the operators or
variables are checked for legality of the operation being
applied along with the possible variable ID produced for
use by the rule.

In addition to the rewrite rule beam, S4Eq uses a second
type of beam during the proof search. The idea is to feed the
network again based on the result of the application of the
previously suggested rewrite rules. We denote the number
of enumerated rewrite rules b. As the search advances, the
b outputs from the neural network all lead to potential
intermediate programs from which a search can continue.
After having checked for legality, we limit this potential
exponential growth in the search to at most configurable
i intermediate programs which may be explored at a given
proof step.

Consider a search where we set b to 3 and i to 2, as
diagrammed in Figure 3. When a transformation search
between 2 programs is attempted, at first there is only 1
sample (the original 2 programs to prove equivalent) fed
into the transformer model which will propose 3 rewrite

rules. Perhaps the first 2 are legal rewrite rules; both of these
are checked for equivalence to the ProgB goal and assuming
there is no match both will be fed into the transformer model
on the next step. This will produce 6 proposed rewrite rules.
If a rewrite rule would create an intermediate program that
is already being searched (for example commuting the same
node twice in a row) then the search process will not create
the duplicate intermediate program. In the figure, rewrite
rules which are illegal or create duplicate search programs
are marked with a red X. The search routine will select the
most likely proposed rule for each ProgInt/ProgB pair if it
legally creates a novel intermediate program.

As diagrammed, the ProgInt11/ProgB pair produces a
legal novel program which is used for the next step, but the
ProgInt12/ProgB pair’s 1st proposal is not usable. Since the
2nd proposal from the ProgInt11/ProgB pair is also not us-
able, the legal 2nd proposal from the ProgInt12/ProgB pair
is used. Our search will first try to use the 1st proposed rule
from each ProgInt/ProgB pair, then the 2nd, and so on until
the next i intermediate programs are created. We will limit
the intermediate programs that feed into the transformer to
i as the search is continued up to the rewrite rule sequence
step limit l (such as 25 steps). In rare cases, none of the
proposed rewrite rules for any of the intermediate programs
will produce a legal novel intermediate program and the
search will terminate before the step limit. In our example,
the 2nd rewrite rule proposed from the model when given
ProgInt12/ProgB to the transformer rewrites ProgInt12 into
the lexical equivalent of ProgB, and hence, a 2 step proof has
been found. ProgA is transformed into ProgB by applying
Rewrite Rule13 and then Rewrite Rule21.

3.4 Naming Conventions Used

Throughout this paper we make reference to various data
sets and and configuration parameters. As an aid to under-
standing our system and experiments, we summarize them
in Table 2 with a short description. Our Optim datasets
are abstractions from GitHub source C code as described
in Section 4.1.1.

3.5 Training Process

A key novelty of S4Eq lies is the way we train the neural
network. We devise an original training process which is
dedicated to the challenges of synthesizing equivalence
proofs. This training process involves three kinds of training
which we now present.
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TABLE 2: Variable and dataset names

Variable or set description Name

Beam search width produced by neural network b

Number of intermediate programs during search i

Easy intermediate program search count ieasy

Hard intermediate program search count ihard

Rewrite rule step limit for equivalence search l

Initial model trained only with supervised data M1

Models trained with unsupervised data M2−7

Baseline model fully trained with supervised data Q

Supervised equivalent program pairs S

(includes known rewrite rules between pairs)

Unsupervised equivalent program pairs U

Synthetically generated program pairs Synth+rules

(includes known rewrite rules between pairs)

Synthetically generated program pairs Synthval

for validating models (no rules included)

Synthetically generated program pairs Synthtrain

for training models (no rules included)

Synthetically generated program pairs Synthtest

for final testing of models (no rules included)

Code optimization pairs from human-written code Optimval

for validating models (no rules included)

Code optimization pairs from human-written code Optimtrain

for training models (no rules included)

Code optimization pairs from human-written code Optimtest

for final testing of models (no rules included)

Program pair abstractions from human-written code Human

Initial training set derived from Synth+rules T1

Incremental training set derived from proof attempts T2−7

on Synthtrain and Optimtrain

<Rewrite Rule Sequence>
Train Transformer

Model 0        M1

Supervised

T1 data with 

program pairs and 

their rewrite rules

Proof search with 

Transformer Model Mn

Search results

Found with ieasy

Found with ihard

Failed with ihard

Unsupervised

U: Dataset of 

equivalent program 

pairs

<ProgA/B sample>

<ProgA/B 

sample>

<Rewrite Rule Sequence>
Train Transformer

Model Mn Mn+1

Self-Supervised

Tn+1 data with 

program pairs and 

their rewrite rules

<ProgA/B sample>

Proof found with

ihard but not ieasy

Full proof failed, 

but a legal step 

used rare token

ihard proof is at least 2 steps 

shorter than ieasy and uses 

rare token or has many steps

+

Fig. 4: Self-Supervised Sample Selection: proof attempts
with i = ieasy and ihard intermediate programs are used
to incrementally train the model.

3.5.1 Initial Supervised Training

The typical technique for training sequence-to-sequence
models involves providing supervised training samples
which provide the target output paired with sample input.
S4Eq performs initial training using program pairs for
which a rewrite rule sequence is known between the two
programs ProgA and ProgB. The details of how to obtain
such a supervised dataset are discussed in Section 4.1. We
refer to this initial supervised dataset of program pairs and
their rewrite rules as T1, and the we refer to the initial model
trained with it as M1.

3.5.2 Incremental training with challenging proofs

After we have an initially trained model, we can use it to
attempt new proofs. Because a proposed rewrite sequence
between 2 programs can be checked automatically, we can
automatically verify the generated outputs and use them
to further optimize the model. At this point, to further
optimize the model, we don’t need to generate program pair
inputs with rewrite rule outputs in a supervised manner, but
only program pair inputs. In other words, this can be con-
sidered as self-supervision since the labeling is automated.

To be effective, the core challenge becomes to effectively
select new samples. Hence, we term this technique self-
supervised sample selection, and since our framework uses this
technique on the problem of program equivalence, we name
our framework S4Eq.

First, we need a dataset (or a data sample generator)
of known equivalent programs which does not include the
rewrite rule steps. We call this dataset U , for Unsupervised,
as the pairs do not have target rewrite rules associated with
them. Relative to the samples in T1, the looser restrictions
on the U dataset allows S4Eq to generalize to program
distributions and proof distributions which may be different
than those found in T1.

Figure 4 gives a complete overview of our training pro-
cess for the transformer models. As we show in Section 3.5.1,
we start with supervised training and produce model M1

using program pairs and their expected rules. Now we can
use model M1 to attempt proofs with known equivalent
programs in dataset U .

Our key idea is to focus on challenging problems for
the current model. Given an intermediate program limit,
we can say that the model can ’easily’ prove equivalence
if a small number of intermediate programs are available
at each search step (such as 1 or 2). In such a case, the
most likely rewrite rules proposed by the model are checked
for equivalence up to a given proof step limit, and if the
proof is found, then the model is already well trained for
the given problem. Our variable representing the number
of intermediate programs searched at each proof step is i

and the number of steps to search is l steps. To check for
’easy’ proofs, we search for a proof with i = ieasy where
ieasy is a small number. To check for ’challenging’ proofs,
we set i = ihard where ihard is a larger number (10 or
more), allowing the proof search to explore more possible
rewrite rule paths which are considered less likely to be
correct by the current model. We attempt to prove each
known-equivalent pair with i = ieasy and also i = ihard.
We define challenging proofs as those found with ihard but
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not ieasy . When proofs are attempted with model Mn, the
next training dataset (Tn+1) includes samples with proof
steps found with ihard but not ieasy ; thus, the model is more
likely to propose similar steps in the future.

In addition to including challenging proofs, if ihard
found a proof at least 2 steps shorter than the ieasy proof we
include that proof given certain conditions. We set the prob-
ability of including such proofs based on length in order to
bias the self-supervised samples to solve complex proofs.
Also, based on distributions discussed in Section 4.1.2, we
include the ihard proofs when they include rare output
tokens such as referring to higher statement numbers, or
deeper expressions nodes, or rare rewrite rule names.

After creating our initial training samples in T1, we
train on various model hyperparameter options and use
validation test sets to determine the model best suited for
continued training. During incremental training, the model
size parameters (number of layers, etc.) are constant but we
train with variations on initial learning rate and decay rate.
We then select the best model to continue training using
the same validation sets. These validation sets help prevent
catastrophic forgetting [36]. But additionally, if a model
becomes weaker at solving certain problems then problems
similar to those will get selected in the next iteration of the
training, again reducing catastrophic forgetting.

Boosting methods in which models weak in one part
of the problem distribution are boosted by other models
have been shown to reduce risk of overfitting [37] and we
anticipate that our methodology for incremental training
based on challenging proofs will similarly resist overfitting.

3.5.3 Incremental training with rare tokens

If some input or output tokens are not yet well understood
by a given model Mn, it is because the training datasets so
far do not have sufficient samples demonstrating the use of
those tokens. To overcome this problem, we propose another
kind of incremental training based on rare tokens. The core
idea is to oversample those proofs and rewrite rules that
involve rare tokens. Even when a full proof search fails,
when a rare output token is used legally by a single rewrite
rule step in the proof, we keep it in the training dataset. This
type of training improves the model representation for the
rare token and the situations in which it should be applied
and is based on the hindsight experience replay concept [38].

Consider again Figure 3 and a case where a required
rewrite rule to prove ProgA equal to ProgB was, for exam-
ple, stm2 Commute Nlrll. The node Nlrll is an exam-
ple of a node ID which specifies the 5th level of the AST for
statement 2. If there haven’t been sufficient training samples
with Nlrll then the model may not have a good internal
representation for when the node should be produced by
the final Softmax layer of the transformer model and the
proof might fail. However, if, for example, RewriteRule25
was stm2 AssociativeLeft Nlrll and this was a le-
gal application of AssociativeLeft then the pair with
ProgInt12 and ProgInt22 can be proven equal by applying
RewriteRule25. If Nlrll is a rare token, this sample can be
included in the next training dataset and this will improve
the model’s representation for this rare token in order to
improve use of this token after incremental training.

4 EXPERIMENTATION

We now describe our experiments to assess S4Eq. We start
by carefully devising two datasets for training and evaluat-
ing our system.

4.1 Dataset Generation

We devise two separate datasets with different properties.
First, we wish to evaluate our algorithm broadly on code
optimizations of human-written programs from open source
C functions found on GitHub, we call this dataset Optim.
Second, we develop a process to create synthetic program
pairs based on applying rewrite rules, we call this dataset
Synth.

4.1.1 Equivalent program pairs from GitHub

We want to have a dataset representative of developer code
with straight-line programs matching our grammar. For
this, we use an existing dataset of C programs mined from
GitHub suitable for machine learning [39].

We process these C functions to find sequences of as-
sign statements that correspond to our straight-line pro-
gram grammar. We search for C snippets of mathematical
computations, with at least 2 assignments, at least one
multiply or divide statement, and require at least 1 tem-
porary variable is used in an output variable. To create
program abstractions (a process similar to function out-
lining [40]), we collapse complex data structure accesses
into an intermediate variable. For example, C code of
the form delta = ca->tcp_cwnd - cwnd ; max_cnt

= cwnd / delta ; will be abstracted to t1 = i1 -

i2 ; o1 = i2 / t1 ;. Two complete examples of ab-
stracted programs are shown in subfigures 1(b) and 1(e).

Algorithm 1: GenerateKnownEqual

Input : Tokenized C Functions from GitHub: F
Output: Prefix encoded equivalent pairs created

using code optimizations Optim

1 Optim← ∅ {Compiler equivalence program pairs}
2 S ←FindSourcePrograms(F ) {Possible programs}
3 foreach s in S do
4 s̃←Abstraction(s) {Abstractions of source code}
5 s̃cse ←CommonSubexpressionElimination(s̃)
6 s̃str ←StrengthReduction(s̃cse)
7 s̃reuse ←VariableReuse(s̃str)
8 p←Encode(s̃) {Encode into prefix format}
9 pcse ←Encode(s̃cse)

10 pstr ←Encode(s̃str)
11 preuse ←Encode(s̃reuse)
12 prules ←Rules(preuse) {Probabilistic application

of rewrite rules}
13 if CheckLimits(p, pcse, pstr, preuse, prules) then
14 Optim←

Optim+MixPairs(p, pcse, pstr, preuse, prules)
15 end
16 end

Algorithm 1 provides an overview of the process we
use. After finding source GitHub programs and abstract-
ing them, we perform 3 high-level compilation steps on
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the abstracted C code: common subexpression elimination,
strength reduction, and variable reuse. For training sample
generation, Encode will transform abstracted C code into
the prefix encoding of the AST. Encode will randomly
reassign scalar variable IDs to temporary variables with
each iteration of the foreach loop; so t1 may be assigned
to s03 for one program and s25 for another program.
The goal of the random assignment by Encode is to help
with generalization. The high-level compilation steps utilize
many of the 23 rewrite rules shown in Table 1, but in order
to ensure all rewrite rules are represented in Optim, we call
the Rules function on preuse (the encoded program after all
compilation steps) which may apply one or more rewrite
rules to create prules. The Rules function is used heavily in
Section 4.1.2 and is discussed further there. The CheckLimits
function ensures that our samples meet the model limits1.

Using these rules, the dataset Optim derived from C
functions from Github eventually contains 49,664 unique
known equivalent program pairs for our experimentation.
Note this approach does fully preserve the shape of the
AST of the original GitHub C code snippet. It does not
however preserve names, since we rename all distinct vari-
ables/array accesses to a unique and canonical name for that
program. For example, particles[i].y_pos becomes i1
in the generated program, while y is i1 in Fig. 1.

4.1.2 Synthetic equivalent program pairs

As we discuss in Section 3.5, we need to create an initial
training set with broad distribution on the input and output
tokens necessary for our problem of proving programs
equivalent. We create legal input programs by probabilis-
tically applying production rules from a grammar which
defines our target program space. This approach allows us
to create arbitrarily large amounts of training data.

Algorithm 2: GenerateRewrites

Input : Probabilistic grammar: G, Number of
samples desired: n

Output: Prefix encoded equivalent program pairs
with rules Synth+rules

1 Synth+rules ← ∅ {Rewrite rule equivalence
program pairs}

2 while samples in R < n do
3 pA ←GenerateProgA(G) {Probabilistic

production rule generation}
4 pB ←Rules(Rules(Rules(pA))) {3 passes over pA

with probabilistic application of rewrite rules}
5 if CheckLimits(pA, pB) then

6 Synth+rules ← Synth+rules+(pA, pB , rules)
7 end
8 end

Algorithm 2 shows the synthesis algorithm. Our pro-
gram grammar defines a program as made up of a series of
assign statements which assign scalar and vector variables
to complex mathematical expressions. Our program gener-
ation process starts by creating assignment statements for

1. We limit each program to 20 statements, at most 100 AST nodes, at
most 30 scalar variables, an expression depth of 5 levels of parenthesis
(expression AST depth of 6), and at most 2 outputs.

Prog A (prefix encoding of AST):   (a)
v26 = ( -v v27 ( h5v v27 v27 ) ) ; 

v27 = ( +v ( -v 0v 0v ) ( -v 0v v26 ) ) ; 

s21 = ( u4s ( is s01 ) ) ; 

s01 = ( ns ( ns s21 ) ) ; 

v08 === ( *v ( -s s21 s01 ) ( -v v26 v26 ) ) ; 

s26 === ( h4s v26 ( nv v27 ) ) ;

Prog B (prefix encoding of AST): (b)
v26 = ( -v v27 ( h5v v27 v27 ) ) ; 

v08 === 0v ; 

v27 = ( -v 0v v26 ) ; 

s26 === ( h4s v26 ( nv v27 ) ) ;

Rewrite Rule         (c)

Sequence:
stm2 AssociativeLeft N 

stm5 Cancel Nr 

stm5 AbsorbOp N 

stm4 DeleteStm

stm2 NeutralOp Nll

stm3 SwapPrev

stm4 SwapPrev

stm2 DeleteStm

stm3 NeutralOp Nl

Inputs:    v27, s01

Outputs: v08, s26

Fig. 5: Equivalence proven between 2 multi-statement pro-
grams generated synthetically. The equivalence proof is 9
steps long involving expression and statement rules.

the output variable(s). Then a subset of the variables used
in the expression may have earlier assign statements added.
This process continues adding assign statements randomly
to the beginning of the program.

Variables which are used but never assigned are con-
sidered program inputs. For example, in the program “c
= b + a; d = c * a + b;”; a and b are inputs, d is
an output, and c is a temporary variable. Subfigure 5(a)
shows an example ProgA generated using our algorithm. It
includes 6 statements and produces one vector output v08
and one scalar output s26 identified with === tokens.

Rules In order to create training samples with known
paths between equivalent programs, after creating a pro-
gram we randomly apply legal rewrite rules to the start
program. For example, Figure 5(c) shows the rewrite rules
randomly selected which transform ProgA in subfigure (a)
into ProgB in subfigure (b).

Synthetic distribution Figure 6 diagrams the distribution
of samples generated by Algorithm 2 with a plot of the num-
ber of AST nodes in ProgA and the number of rewrite rules
used to generate ProgB in the sample. When GenerateProgA
generates a program with more AST nodes, more rewrite
rules are found by invoking of Rules function. We limit the
number of AST nodes to 100, as shown in the distribution,
but the number of rewrite rule steps is not strictly limited
and we have some cases with over 40 steps between ProgA
and ProgB (not shown in figure).

Certain rewrite rules, such as Commute, tend to be
applicable to many nodes in a program AST, while others,
such as FactorLeft, require rarer patterns in order to be
legally applied. We adjust the likelihood of rewrite rules
being applied to help balance the likelihood a proof will use
any given rewrite rule. All 23 rules shown in Table 1 will
occur in our synthetic dataset. Because the Commute rule
can be applied to a large number of operators in our AST,
we limit the likelihood it will be applied to about 9% per
location with the result that 60.2% of the proofs use it for
generating ProgB. Conversely, given our random program
generation process, FactorLeft and FactorRight are
not so likely to be applicable, so we bias the application so
that about 65% of the AST nodes which would allow these
rules have them applied which results in 7.1% and 7.2% of
proofs using these rules.

For algorithm 2 the probabilistic grammar expansion
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Fig. 6: Distribution of proof length for synthetic program
equivalence dataset Synth+rules.

used in GenerateProgA is tuned so as to create a range of
program sizes. We skew the generation to prefer creation
of programs with large AST node counts which have either
many statements or deep expressions and rely on Check-
Limits to insure programs outside our transformer model
ranges are pruned out. For the T1 initial training dataset,
we create 150,000 equivalent program pairs; given that the
average pair takes multiple rewrite rules to transform, we
create 640,000 rewrite rule steps from these pairs for training
the M1 model.

Finally we note our set is made of about 90% of programs
where at least one live-in symbol is used in computing some
output, ensuring a high (but not exclusive) representation
of "useful" programs where dead code elimination can-
not trivially solve their equivalence. Dependencies between
statements are produced during program generation, by
forcing to reuse a variable previously written in a prior
statement in the currently synthesized expression statement.

4.2 Experimental setup of incremental training

Recall from Section 3.5 that the model initially trained on
synthetic programs with target rewrite rules is labeled M1.
We train our initial model M1 for 100,000 steps, which is
5 epochs of our 640,000 sample T1 dataset (after dividing
by our effective batch size of 32). As per Figure 4, M7 has
gone through 6 iterations of incremental training beyond
the initial M1 model. In order to validate partially trained
models during training, we create Synthval and Optimval,
which are each 1,000 equivalent program pairs randomly
sampled from the Synth and Optim datasets. The success
of the intermediate models on proving equivalences in
Synthval and Optimval is used to select the model to use
in the next step of incremental training.

Figure 7 diagrams how the algorithms introduced in
Sections 4.1.1 and 4.1.2 are used along with self-supervised
sample selection introduced in Section 3.5 to create training
samples T1−7 to train our models.

For self-supervised sample selection, after training M1

with T1 we want to create training data which insures we
continue improving performance on the synthetic dataset
Synth but also learn to solve equivalent programs in Optim.
Referring to Figure 4, we create the unsupervised set of
program pairs U at each iterative learning step by selecting

GenerateKnownEqual GenerateRewrites

Optimtrain

Training pairs

for each Mn

Optimval

Validation set for 

Mn selection

Optimtest

Test set for M7

evaluation

Synthval

Validation set for 

Mn selection

Synthtest

Test set for M7

evaluation

Synth+rules

Pairs+rules for 

M1 training

T1

Supervised 

training

Proof attempts create 

self-supervised 

samples

T2-7

Self-supervised 

training

Synthtrain

Training pairs 

for each Mn

Fig. 7: Generation of program equivalence datasets used for
model training and evaluation.

60,000 equivalent pairs from Synth and 40,000 equivalent
pairs from Optim.

In order to attempt to prove equal the program pairs
in U , we chose ieasy = 2 for the “easy” beam width as a
beam width of only 1 can fail with a single misstep and we
wanted to allow recovery from that case. Due to machine
time constraints, we chose ihard = 20 for the “hard” beam
width and s = 25 for the maximum number of proof steps
to search. From this data, we create Tn for use in training
model Mn.

During incremental training, we train 4 model versions
(we vary the learning rates) for 50,000 steps with the new Tn

training dataset. Similar to early stopping techniques [41],
we use our validation datasets to select the best performing
model during incremental training. We save the model
every 10,000 training steps and select Mn as the model with
the highest total proofs found in the 2,000 test samples when
Synthval and Optimval are combined. Our final iteration is
selected when both Synthval and Optimval have improved
performance by 1% or less when training the next model.
For our experiments, this is M7.

4.3 Research Questions

In this section, we describe our research questions for S4Eq

and the protocol methodologies for evaluating them.
Our research questions are:

• RQ1: How effective is S4Eq on the synthetic test
dataset?

• RQ2: How useful is incremental learning with self-
supervised sample selection in improving S4Eq’s
model?
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• RQ3: To what extent does our model generalize outside
the training data?

For RQ1 we create a 10,000 sample test dataset
drawn from the synthetic programs Synth which we call
Synthtest. For RQ2 we create a 10,000 sample test dataset
drawn from Optim which we call Optimtest. The samples
in the test datasets do not overlap with any samples used
for training nor with the validation datasets Synthval and
Optimval. To more broadly understand the system behavior,
in both RQ1 and RQ2 we analyze subsets of Synthtest and
Optimtest based on characteristics of the rewrite sequence
which transforms the first program in the sample into the
second. Of the 23 rewrite rules shown in Table 1, Rename
is the one which occurs the least in our initial T1 training
data as it is least used when synthetically creating program
pairs in Synth (552 out of 10,000 samples in Synthtest use
it), so we report on the subset of proofs which use Rename
to observe the system behavior on this group. Newtmp is
the rule which improves most between M1 and M7 in the
Optimtest test set - improving from 545 proofs found by
M1 to 2,277 proofs found by M7 so we also report based
on this rule. The DistributeLeft rule is the one most
improved on between M1 and M7 when attempting proofs
in the Synthtest test set - improving from 796 proofs found
by M1 and 1,771 proofs found by M7. Proofs that use these 3
rewrite rules will tend to be longer proofs (longer proofs are
more likely to use any given rewrite rule), so we also include
a rule category which is subtractive. We report on proofs
which do not include any statement rules (i.e., they don’t
use SwapPrev, Usevar, Inline, Newtmp, DeleteStm, or
Rename), which also allows for comparisons with our prior
work [42]. Because our hindsight methodology focuses on
NodeIDs at depth 5 of the AST (and these are individually
our least common tokens), we report on proofs which use
such an identifier. Our last 2 proof subsets are based on the
length of the rewrite rule sequence used to transform ProgA
to ProgB in the sample - we report on proofs of 1-10 steps as
a group as well as proofs of 11 steps or more.

We perform all our experiments on systems with 12
Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz CPU cores and
NVIDIA GeForce GTX 1060 6GB for GPU compute. Our
model is based on the transformer model implemented in
OpenNMT-py. Proof searches for incremental model train-
ing may use up to 30 systems in parallel.

4.3.1 Methodology for RQ1

To evaluate the effectiveness of S4Eq on finding rewrite rule
sequences for the program pairs selected from the synthetic
program dataset Synth, we analyze the distribution of pro-
grams and rewrite rules included in Synth and present data
on the success rate for proving various subsets of the test
dataset Synthtest. Our goal is to understand if our system
is unable to perform well on any of our selected subsets of
Synthtest (i.e., solve at less than a 90% success rate).

4.3.2 Methodology for RQ2

Our incremental training approach is able to learn to solve
proofs for which the supervised proof sequence is not
provided during sample generation. To determine how well
self-supervised sample selection improves the quality of the

S4Eq model, we study the 10,000 sample Optimtest dataset
drawn from Optim alongside our rewrite rule test dataset
Synthtest.

In addition to our golden model M7, which is trained
using self-supervised sample selection, we create a model
for comparison called Q which is trained in a more tradi-
tional way. Q is trained for the same number of training
steps as M7 but it continues training on the T1 dataset from
the M1 model in a supervised manner. To align with our
Mn training protocol, we train multiple models from M1

with varying learning rates and select the strongest model
using the Synthval and Optimval datasets. We will evaluate
the ability of our models to prove the known equivalent
program pairs in Optimval in order to determine if self-
supervised sample selection adds value to our model.

4.3.3 Methodology for RQ3

We explore the ability of S4Eq to generalize using 2 dif-
ferent methods. The first method focuses on using the
sample generation algorithm 2 for Synth with different
hyperparameters to create programs outside of the training
distribution. The second method relates to actual use cases
for program equivalence and focuses on finding equivalent
programs from within different GitHub C functions. This
search could be viewed as a demonstration of the system
to find semantic equivalence for a variety of uses, such as
identifying opportunities for library calls [43], or grouping
student submissions into semantically equal groups for
grading [9], etc.

Regarding the first method, we use algorithm 2 to create
programs with exactly 3 outputs and 101 to 120 AST nodes.
Recall that in training we limit Synth and Optim to include
only 1 or 2 output programs with up to 100 AST nodes.
We test our golden model on this dataset to determine if it
has overfit the training data or if can solve problems from
outside the training distribution.

Regarding the second method, the FindSourcePrograms
routine in algorithm 1 finds 13,215 unique multi-statement
program blocks from GitHub. No pair of these programs
are lexically equivalent and hence at least one rewrite rule
step will be required for S4Eq to prove equivalence. As we
are interested in comparing the more complex programs
in this set, we select only programs with at least 30 AST
nodes resulting in a set of 4,600 programs. We then group
the programs and test all pairs of programs which have
the same number of inputs, outputs, and functions. This
results in 152,874 unique pairs of programs to check for
equivalence. Since we search in both directions for each pair,
our full GitHub test set Human has 305,748 program pairs
to attempt equivalence proofs on.

4.4 Experimental Results

4.4.1 RQ1: Effectiveness on Synthetic Test Dataset

In this research question, we aim to show the breadth of
program pairs and rewrite rule sequences in our synthetic
dataset and to demonstrate the effectiveness of our M7

golden model. Table 3 details the performance of a variety
of subsets of our 10,000 pair synthetic test dataset Synthtest.
Each cell in the table gives the passing rate and sample
counts for each subset. Here the passing rate means the
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TABLE 3: Success rate for subsets of test dataset Synthtest.
Each entry includes tuned passing percentage and sample
count within Synthtest.

Maximum

Functions Expression Nodes

Rewrite Rules ALL 3 or more Depth 4-6 30-100

Whole dataset 98%(10000) 98%(6390) 97%(3340) 98%(9470)

Rename 97%(552) 97%(354) 95%(74) 97%(546)

Newtmp 94%(844) 94%(591) 93%(477) 94%(828)

DistributeLeft 96%(2273) 95%(1650) 95%(1524) 96%(2214)

No statement rules 99%(4923) 98%(3208) 98%(2312) 99%(4524)

NodeID at depth 5 92%(533) 92%(429) 92%(506) 92%(522)

Rewrite steps 1-10 99%(8253) 99%(5066) 99%(2269) 99%(7725)

Rewrite steps 11+ 94%(1747) 93%(1324) 92%(1071) 94%(1745)

percentage of program pairs proven equivalent with an ap-
propriate sequence of rewrite rules (recall that all program
pairs in Synth are equivalent by construction). The first
data row gives the effectiveness over the whole dataset.
The other rows in the table provide data on subsets of
the sample based on the rewrite rules used to generate
the ProgB in the sample given the synthetically generated
ProgB. A full description of the rows is given in Section 4.3.
Orthogonal to the rewrite rules used to generate ProgB, the
columns explore subsets of interest for the original ProgA in
the sample. The first column provides data for all samples
which conform to the rewrite rule subset given by the rows.
The 2nd column shows results for the 6,390 samples that
used at least 3 functions in ProgA. The 3rd column shows
results for the 3,340 samples where ProgA starts with an
expression of depth 4-6 (note that a NodeID at depth 5 is
used in 533 samples given any ProgA but only 506 samples
when ProgA started with a deep expression; this is due
to some rewrite rules, such as MultOne, adding depth to
the original ProgA). The final column provides data on the
larger programs from the dataset (and the size corresponds
to the program sizes considered in RQ3).

In the upper left data cell in Table 3, we find that of the
10,000 samples in Synthtest, M7 was able to find a rewrite
rule sequence from ProgA to ProgB for 98% of them, which
is arguably very high. We see that some subsets of Synthtest

performed better than this overall result, such as cases
where ProgA to ProgB proofs contain 1-10 rewrite rule steps
(99% effectiveness). Other subsets performed worse, such as
proving samples where a depth 5 NodeID was use to create
ProgB. In general we see that program pairs generated with
shorter rewrite rule sequences are more easily proven equal
than longer ones, corresponding to the intuition that shorter
proofs are easier to find. In the table, there are 5 subsets
tied for the poorest result of 92% success: all 4 subsets with
NodeID at depth 5, and cases where ProgA has a deep
expression and generating ProgB used over 10 rewrite rule
steps. These results show that S4Eq is challenged by deeply
nested expressions and long proofs, however it still achieves
over 90% success.

Table 3 also shows that S4Eq well handles rare tokens.
The output token least represented in our 640,000 samples
in T1 is Nrlrr, used in only 278 samples. Nrlrr is one of
16 tokens used to indicate that a rule should be applied to
a depth 5 node; all 15 of the other such tokens make up
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Fig. 8: Performance metrics on Optimval through training
process. M7 is the final golden model used for experiments,
Q is purely supervised training on the T1 training data.

the 15 other least commonly used tokens in the T1 output
group. During self-supervised training, we compensate for
this rarity to increase the number of such samples in T2−7.
As we show with the “NodeID at depth 5” row in Table 3,
our fully trained model has learned to use these tokens
effectively.

Our synthetic ProgA algorithm given in algorithm 2 is
designed to insure a relatively balanced use of input tokens
in T1 for training. This works well, because the least used
input token is one of the 5 tokens representing functions
which receive 2 scalars and produce a vector output (f4v)
with 43,458 of the 640,000 samples using it. Table 3 shows
that those programs using at least 3 functions are proven
well by S4Eq.

Answer to RQ1: S4Eq is effective on the Synth dataset,
achieving over 90% successful proofs on all subsets
analyzed. S4Eq handles well both rare input tokens
used in the programs to be analyzed (such as func-
tion names) and rare output tokens (such as depth 5
NodeIDs).

4.4.2 RQ2: Incremental Training Benefit

In order to show how the an initial model improves with
self-supervised sample selection, we compare S4Eq training
up to model M7 against a model trained only on the
supervised training set T1. For this comparison, we study
the Optimval and Optimtest datasets derived from GitHub
program compilation steps since these include program
pairs which can be proven equal using our rewrite rules.
In Figure 8, the orange squares indicate the percentage
of proofs found on the Optimval dataset as the model
trains only in a supervised manner on T1 (the initial su-
pervised training set of synthetic programs with known
rewrite rules). The blue circles represent training with self-
supervised sample selection. With traditional training, we
see the best performance of the Q model on Optimval occurs
at 340,000 total training steps (S4Eq had trained to M6

after that many steps). This result is significantly below the
performance S4Eq achieves. The significant improvement
of S4Eq on the Optimval dataset demonstrates the benefits
on our incremental training procedure.

After training from 340,000 steps to 380,000 steps, Q

decreased performance on the GitHub compiled test dataset.
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This indicates that Q was starting to overfit on the dis-
tribution for Synth and the latest learnings were not as
applicable to the Optim problems. On the contrary, since
self-supervised sample selection generates new training
samples, S4Eq is able to avoid overfitting and continues
to improve the overall model’s ability to find proofs on the
Optimval dataset.

Also, we note that Q was able to slightly outperform
M7 on the Synthval dataset (98.96% pass versus 98.44%, not
shown in the figure) which shows that the T1 dataset had
sufficient samples to train for the problem distribution in
Synthval.

TABLE 4: Performance of M1, Q, and M7 models on the
10,000 Optimtest test pairs based on GitHub code. The self-
selected samples in T2−7 are biased to areas where M1

is weak, ultimately allowing M7 to outperform Q in all
categories.

Sample or Proof T1 T2−7 M1 Q M7

Sequence Used Samples Samples Proved Proved Proved

Any rewrite rule 640,000 714,332 4,866 7,531 9,688

Rename 5,267 54,925 2,591 4,791 6,315

Newtmp 7,706 33,053 545 810 2,277

DistributeLeft 30,029 24,243 526 649 774

No statement rules 506,217 479,637 968 1,109 1,111

NodeID at depth 5 5,969 35,842 18 91 323

Rewrite steps 1-10 367,976 336,344 4,690 7,329 8,997

Rewrite steps 11+ 272,024 377,988 176 202 691

Table 4 shows the benefit of training with samples that
are sampled from challenging proofs. The first row of the
table summarizes the total number of samples available in
T1 used to train M1 and Q, the total number of samples
in T2−7 used to train incrementally up to M7, and the total
proofs in the 10,000 sample GitHub test dataset Optimtest

found by the models M1, Q and M7. For example, in the
upper right corner we show that there were 9,688 (out
of 10,000) GitHub program pairs for which proofs were
found by the best model M7. Different subsets of these 9,688
proofs are shown in later rows regarding the rewrite rules
needed to prove the GitHub program compilation cases. The
2nd-4th rows introduce the mechanism through which self-
supervised sample selection most benefits the model. For
the Rename rewrite rule, we see that, of the 9,688 samples
proven equal by M7, 6,315 of them used Rename for at least
one step, but M1 only used Rename in 2,591 of its proofs
(less than half of the M7 usage). We can see that from the T1

and T2−7 columns that self-supervised selection recognized
that M1 was weak in this area (implying searches with
ieasy rarely found the proof) but was able to augment the
training data with more samples using the Rename rule
(implying searches with ihard were able to provide example
successes). We can see that model Q, which continued
training only with T1 samples, did not learn this rule as
well as M7. We see a similar effect for the Newtmp rule;
2,277 proofs used this rule for M7, but only 545 used it for
M1. We see that T2−7 included more of these samples to
help improve the model. As a counterexample, we see that
DistributeLeft is used in 774 successful proofs of the
high-performing M7 model, and in 526 of the proofs for
the initial M1 model. Given that M7 was able to solve 97%
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Fig. 9: Proofs found on test set Optimtest. The length charted
is the proof length found with the tuned model M7, with the
unproven cases shown as unknown step count.

of the problems in Optimtest, M1 had already solved over
two thirds of these cases which implies T2−7 only needed to
contain certain cases of DistributeLeft where the model
was still challenged in order to improve the model. In this
way, self-supervised sample selection provides new training
samples to improve the areas in which the model is weak.

Table 4 also includes ’NodeID at depth 5’, which indi-
cates a rewrite rule was used on an AST node at depth
5 of an expression. Since we use NodeIDs to identify rule
application positions, there are 25−1 = 16 different IDs
needed to correctly locate a given instance. Fewer than
1% of T1 samples (5969) include a depth 5 node, which
correlates with poor base model performance (18 cases
proven). However, part of our incremental training data are
the hindsight steps which use a depth 5 node. Consequently,
the performance increases to 323 found proofs, meaning that
the self-supervised training greatly improves the results.

Self-supervised sample selection also improves perfor-
mance on long proofs by increasing the number of samples
from such proofs. The last 2 rows of Table 4 report on the
number of rewrite rule steps required by the 3 different
models to prove pairs equivalent. The last column shows
us that M7 successfully used long proofs for 691 samples,
while M1 only found 176 long proofs. Indeed, we also see
that T2−7 contained more samples from long proofs than
T1 to help the model improve this category, explaining this
difference.

In order to provide more insight into how S4Eq handles
and reacts to challenging proofs, we now discuss the first
proofs searched for with M1 to create T2 which was used
to train M2 and also the last proofs searched for by M6 to
create T7 used to train M7. Recall that our Optimval model
evaluations are done with i = 10, and the proof searches
done for self-supervised sample selection bracket this value
(the searches use ieasy = 2 and ihard = 20). M1 was able to
solve 49.5% of the Optimval samples; from the unsupervised
program pairs M1 attempted for T2 generation, M1 solved
45.0% of them with ieasy and 60.6% with ihard. Additionally,
for 8.7% of the pairs proven with ieasy , the proof found
with ihard was at least 2 steps shorter. After training with
the 126,630 single-step samples generated for T2, M2 was
able to solve 80.5% of the Optimval samples. Similarly, M6

was able to solve 96.3% of the Optimval samples; it solved
94.2% of the unsupervised samples with ieasy and 97.4%
with ihard. After training with 83,045 samples in T7, M7

was able to solve 96.6% of the Optimval samples. Note that
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Fig. 10: Proofs found on test sets Synthtest and Optimtest

plotted for varying statement and AST node counts. In all
cases the performance of S4Eq closely tracks the dataset
distribution.

while the absolute difference between ieasy and ihard was
over 15% for M1 but just over 3% for M6, the total number
of single-step samples in T1 was less than double the count
in T7; this is an effect of the challenging proofs increasing
in step count as the models train, as indicated by Figure 9.
While fewer proofs using ieasy fail with the later model, the
lengths of the proofs which do fail tend to be longer.

The details on long proofs shown with Figure 9 demon-
strate another benefit of self-supervised sample selection.
Recall that M1 can only prove 176 samples equivalent with
a proof over 10 steps. Of the 691 samples that M7 solves
with over 10 steps, M1 only solves 23 of them. The other 153
samples for which M1 found a long proof are still proven
by M7, but in 10 steps or fewer. Figure 9 shows the benefit
of self-supervised sample selection on the performance of
proofs of increasing length in the Optimtest dataset. Here
we see that proofs which M7 proved with only 1-3 steps
were solved with over 50% success by M1; yet proofs that
M7 found with over 10 steps were rarely solved by M1.

We now assess the ability of self-supervised sample
selection to avoid catastrophic forgetting by analyzing the
samples which M1, Q, and M7 are able to prove. Of the 4,866
samples that M1 is able to prove equivalent, ALL of them are
included in the 9,688 samples that M7 proves after training
based on self-supervised sample selection. However, only
4,774 of them are included in the 7,531 which Q proves -
Q ’forgot’ how to prove 92 samples that the M1 model it
trained from had proven. This shows clearly the benefit of self-
supervised sample selection for avoiding catastrophic forgetting.

Answer to RQ2: Compared to supervised training,
using self-supervised sample selection improved per-
formance on our target dataset from 75% success (su-
pervised training) to 97% success (S4Eq’s novel self-
supervised training). Self-supervised sample selection
does focus on areas where the model needed the most
improvement by selecting the most interesting new
training samples.

4.4.3 RQ3: Generalization Ability

A concern with machine learning is that it may learn to
perform well within the samples on which it is trained
but not generalize well to unseen problems that humans
would consider related. We asses this risk by presenting
data on how well S4Eq has generalized beyond its training
distribution.

Let us first discuss the differences in the distribution
of programs and rewrite rules between Synth and Optim.

Q  Human 

S4Eq Human 

Fig. 11: M7 searched 305,748 program pairs based on
human-written GitHub functions and found 82 equivalent
pairs. This chart shows the percentage of these 82 cases
found as S4Eq trains and as Q trains (Q trains only on T1

data).

Figure 10 shows the histograms of the number of assign
staments and tokens in ProgA for Synth and Optim. We
see the human-written code in Optim shown as the green
distribution tends to have many samples with fewer than
5 statements and fewer than 50 tokens, while the synthetic
code shown as the grey distribution was designed to create
more complex programs and hence has ProgAs with more
statements and more AST nodes. This clearly shows a dif-
ferent distribution. The red areas show the proofs which are
not found. The thinness of the red area showing that there is
no obvious weakness on any area of the ProgA distribution.
The rewrite rules needed to prove equivalence also varies
between Synth and Optim: 49% of the proofs for samples
in Synthtest are solved without rewrite rules related to
statements while less than 12% of proofs on the Optimtest

dataset could be solved without these rules (compare the
“No statement rules” rows from tables 3 and 4). Taken
together, these data show that S4Eq has generalized well
over 2 different datasets.

In order to show S4Eq can generalize outside its train-
ing domain, we used algorithm 2 with CheckLimits and
GenerateProgA adjusted such that we created test samples
with 101-120 AST nodes and 3 outputs, which is outside the
initial training distribution. Recall that on Synth (with up
to 100 AST nodes and 1 or 2 outputs), S4Eq achieves 98%
success on the Synthtest test set. Now, on programs with
101-120 AST nodes and 3 outputs it is still able to prove
60% of the program pairs equivalent, showing that S4Eq

can generalize to larger examples.

For our final evidence of generalization, we present
equivalences found between human-written programs on
GitHub. Of the 305,748 program pairs in Human, we found
82 provable cases of equivalence. Figure 1 shows an example
of proven equivalence of GitHub samples. Figure 11 illus-
trates the generalization of S4Eq to this problem as training
progresses by showing the percentage of the 82 proofs found
by M1 through M7. The figure also shows the performance
of Q (which only trains on T1 sampled from Synth) on the
same 82 proofs. We see that after 150,000 training steps M2

and Q perform about equally well but ultimately Q plateaus
with just over 70% of the proofs found at 340,000 steps.
Like Figure 8 on Optimtest data, Q seems to start overfitting
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Percent proofs found

Model description Synthval Optimval

M7 (Golden model) 98% 97%

M1 (Golden model before incremental training) 66% 50%

Faster learning rate (0.0002 vs 0.0001 in M1) 2% 1%

Slower learning rate (0.00005 vs 0.0001 in M1) 49% 35%

Fewer transformer layers (6 vs 8 in M1) 56% 23%

Limit language to scalars (vs scalars+vectors in M1) 63%* 40%

Linear algebra expressions only (and 50 AST node limit vs 100 in M1) 99%* 9%

TABLE 5: S4Eq ablation study. With the exception of the ’Golden model’, results are shown with only initial base training
of the model. The synthetic datasets for the last 2 rows were regenerated based on the modified language grammar.

on the T1 data after 340,000 steps and does not generalize
well to different problem areas. However, we see that S4Eq

continued to improve on the Human test set from M6 to
M7 showing it has generalized to the problem of finding
equivalence between human-written programs well.

Answer to RQ3: S4Eq is able to generalize to problem
domains outside its initial supervised training dataset.
S4Eq is able to solve 60% of synthetic programs that
are outside of any training data it was presented with.
Furthermore, it is able to progressively generalize to
find up to 82 proofs of equivalence in the golden
human-written samples from GitHub.

4.5 Ablation Study

Table 5 illustrates some of the model variations we explored.
Except for the golden model, all of the results are reported
only after initial training using the appropriate synthetic
dataset. All of the models are also evaluated on the GitHub
dataset.

The faster learning rate shown in Table 5 has poor results
presumably due to known risks of divergence with large
learning rates. We studied this result further by attempting
to do an iteration with self-supervised sample selection
using the poor proof success. As discussed in Section 4.4.2,
self-supervised sample selection requires that sufficient ex-
amples of the input and output tokens are provided for
successful incremental training. For example, using the M1

that led to our golden model, the T2 dataset had 126,630
samples for use during training, 11,737 of which used the
Rename rule. For the high learning rate model, since even
the i=20 search had poor success, its T2 only had 1,482 sam-
ples in it and NONE included a successful use of Rename.
Hence, unlike our golden model, incremental training on
the high learning rate model did not significantly improve
performance on Synthval nor Optimval. We see also that a
slower learning rate produced a slightly worse result than
our M1 result, hence we selected M1 for our S4Eq training
base.

We tested our transformer model with different numbers
of attention layers, as well as different numbers of attention
heads and hidden feature sizes. We show a typical result of
these searches with only 6 attention layers. This parameter
had a small loss for the Synthval success, but did not
generalize as well to the Optimval dataset and hence it was
not pursued further.

TABLE 6: Results for 10,000 pairs in Optimtest as proof
search parameters are varied. Parameters for M7 are shown
in bold.

Proofs Time Proofs Time

l i b Found (sec) l i b Found (sec)

50 1 1 87.7% 831 50 10 2 96.1% 4177

50 10 5 96.9% 8964 50 10 10 96.9% 13723

50 2 5 95.1% 2428 50 20 5 97.2% 15823

40 10 5 96.8% 8288 60 10 5 96.9% 9720

The last 2 rows of Table 5 explore training models on
alternate language grammars. For 2 these cases only the
synthetic proofs found column indicates the number of
proofs found for the synthetic dataset which aligns with
the model description. Perhaps surprisingly we see that a
language with only scalar variables and operators performs
worse than M1 (which has both scalars and vectors) on both
its own synthetic validation set as well as on Optimval. One
possible explanation for the weakness on both the synthetic
validation set with only scalars and the compiled GitHub
programs in Optimval, which only use scalars, is that the
existence of vectors in the training set helps the attention
layers in the model generalize better to complex uses of
the rewrite rules. The final row of the ablation study shows
results for a language which has only a single statement
with up to 50 AST nodes, but matrixes, vectors, and scalars
are supported. We see strong success on a synthetic dataset
with the same features, but this model does poorly on the
GitHub compiled equivalence checks. When compared with
prior work on a similar dataset [42] this row demonstrates
that for our problem of program equivalence the transformer
model outperforms a well tuned graph-to-sequence model which
itself was found to outperform a bidirectional RNN sequence-to-
sequence model.

In addition to the hyperparameters related to model
selection and model training, S4Eq usage relies on pa-
rameters related to equivalence proof search. The three
main parameters are b (neural beam width), i (intermediate
programs), and l (search step limit), they all affect both
search success and search time as shown in Table 6. The
entry with i = 1 and b = 1 gives a sense for the quality of
our final model: taking a single proposed rewrite rule from
the neural network with only a single intermediate program



16

still finds 87.7% of the proofs for the pairs from Optimtest

when searching for s = 50 steps. This result shows that
a significant majority of rules produced by the model are
useful for the equivalence proof. Also of note, we show
the proof success rate for M7 when s = 50, b = 5, but
i is set to 2, 10, and 20. This shows the performance and
time results for ieasy = 2 and ihard = 20 as well as our
search i setting of i = 10. In particular, if we continued with
self-supervised sample selection, 2.1% of proofs are found
with ihard but not ieasy , allowing for continued proofs on
which to improve the model. The other entries in the table
show that we selected our proof search parameters near the
point where further time did not significantly improve the
percentage of proofs found.

This ablation study does not include the full breadth of
models and language representations we explored. For our
transformer interface, we tested input variations (such as
using infix instead of prefix or including statement num-
bers in the input) and output variations (such as different
rewrite rule syntax including left/right path listing to iden-
tify expression nodes and also outputting the full rewrite
sequence as a single long output). We also tested sequence-
to-sequence RNN and graph-to-sequence models on early
versions of our language [42], and we explored transformer
model parameters guided by OpenAI’s work on neural
language model scaling [44]. In the end the parameters for
our golden model performed best overall in these studies.

4.6 Execution time

Table 7 shows the machine hours needed for the key steps
related to M7 training and usage. For some steps we use up
to 30 machines in parallel as indicated in Section 4.3. This
table shows that while our proof search for self-supervised
sample selection takes time, it does not double the model
creation time for M7 relative to a model trained with tradi-
tional hyperparameter searches such as Q. Also of note is
that almost all of the Human pairs are not equal, and the
average search time per pair with a 50-step limit takes about
9 seconds. Meanwhile, as seen in Table 6, the equivalent
pairs in Optimtest only take about 0.9 seconds per pair to
search on average because once the proof is found the search
terminates.

5 DISCUSSION

5.1 Impact of Supervised Training

We now discuss qualitative insights related to the datasets
and models. We first note how well the Q model tracked
M2 on the problem of finding human-written equivalences
in GitHub. This is a signal that further training with the
supervised data may be an efficient path to a quality model.
Indeed, Figure 8 shows the Q model plateauing only after
340,000 iterations. We suspect that the optimal time to pause
supervised training and generate self-supervised samples is
before the supervised model plateaus. That would allow for
model weights which have not yet been committed to the
fully trained result to be available for adjustment with the
self-supervised samples. However, for our problem, it may
well have been more efficient to train M1 for 200,000 steps
instead of only 100,000.

TABLE 7: Execution time statistics on S4Eq tasks. Machine
hours are approximate as the systems are pre-emptable by
students.

Approx

Machine

Task Description Hours

Train 16 M1 candidates with varying hyperparameters 375

Search for easy and hard proofs on total of 600,000 540

equivalent pairs with models M1 through M6

Train 4 candidates each for models M2 through M7 270

with varying learning rates and learning rate decays

Total to create M7 with self-supervised sample selection 1185

Total to create Q with only supervised samples 645

Search 305,748 mostly unequal abstractions of 775

human-written code on M7 with b = 5, i = 10, s = 50

5.2 Threats to validity

We now discuss the threats to validity for our work. A first
concern is the general time required to generate iterative
training samples. While we did not seek to optimize this
procedure, it is bound to consume compute resources which
could potentially be used for further model training. If the
full training distribution is available with supervised sam-
ples, then it may be that self-supervised sample selection
would have minimal benefit. However, the ability of self-
supervised sample selection to find proofs even shorter than
the supervised proof provided may yield benefit if explored
directly. Our work did not directly study the benefit of self-
supervised sample selection on a single dataset; it studied
the ability to extend a model into a problem domain which
did not provide a ground truth for supervised learning.
This leads to a second threat to validity: with moderate
effort our code optimizations done to produce training
samples for Optimtrain could have generated rewrite rules
for supervised learning. In cases where such a process could
be done, then even extending to a new problem domain is
reduced to the problem of training a model with supervised
samples. A third area for concern with our work would
be how well it will generalize to more complex languages.
Indeed, our prior work has shown that increasing program
size and language complexity reduces accuracy of the model
[42]. Such explorations are of keen interest for future work.

The language we studied was a subset of the full C
language syntax. A more complete equivalence proof on the
C language would have to account for recursively verifying
functions called (AddMatrix might be called by 2 code
sequences from different projects, but the code would not
be equivalent unless the function was too), loop transforma-
tions (loop unrolling or nested loop reordering), as well as
pointer and array referencing.

Within the prefix encoding of AST language, we define
a set of rewrite rules and claim that our system guarantees
no false positives by design. A threat to this claim would
be an incorrect implementation of our semantics-preserving
rewrite rules and the validity checks done before they are
applied (for example, if we had a bug in which Com-
mute was allowed on scalar subtraction). Indeed, during
development we found and fixed bugs of this type as we
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investigated why certain proofs were generated. While there
is a risk here, our experience is that the risk is low now
that we have reached high levels of accuracy and reviewed
many proofs. The risk that non-equivalent programs would
be identified as equal is hence zero conceptually, but not
necessarily zero in practice.

6 RELATED WORK

6.1 Static Program Equivalence

Algorithms for proving program equivalence restricted to
specific classes of programs have been developed [45]–[48].
These approaches are typically restricted to proving the
equivalence of different schedules of operations, possibly
via abstract interpretation [49], [50] or even dynamically
[26]. Popular techniques also involve symbolic execution
to compare program behavior [43], [51]. The problem of
program equivalence we target may be solved by other
brute-force (or heuristical) approaches, where a problem is
solved by pathfinding. This includes theorem provers [52],
[53], which handle inference of axiomatic proofs. Program
rewrite systems have been heavily investigated, [10], [54]–
[59]. While semantics-preserving rewrite systems for pro-
gram equivalence have been studied [60]–[63], our contribu-
tion recognizes this compositional formalism is well suited
to deep learning sequence generator systems. The merits
of stochastic search to accelerate such systems has been
demonstrated [64]–[66]. The novelty of our work is to de-
velop carefully crafted sequence generator neural networks
to automatically learn an efficient pathfinding heuristic for
this problem.

EqBench [67] proposes a test suite of 147 pairs of equiv-
alent C/Java programs. As they include if-conditionals, it is
not immediately usable with S4Eq. In contrast, we mine and
build tens of thousands of equivalent program pairs, using
a richer set of rewrite rules for expressions and functions.
Our complete dataset, including the samples extracted from
GitHub, is publicly available as a program equivalence test
suite [16], providing a rich suite complementing EqBench’s.

6.2 Incremental and Transfer Learning

For incremental learning in S4Eq, we use an "instance incre-
mental scenario" in that for our problem we keep the output
vocabulary constant while creating new data for incremental
learning model updates [68]. Ye et al. discuss using an
output verification process (in their case compilation and
test for program repair) to adjust the loss function in later
training iterations [69]; our approach is related in that we
test outputs but instead of adjusting the training loss we
create new training samples which helps to generalize the
model to a different problem domain.

To the best of our knowledge, there are only a few
works that use transfer learning in the software engineering
domain, and none of them use it for generating equivalence
proofs. Recently, Ding has done a comprehensive study on
applying transfer learning on different software engineering
problems [70], such as code documentation generation and
source code summarization. He found that transfer learning
improves performance on all problems, especially when the
dataset is tiny and could be easily overfitted. In our work,

we deploy transfer learning on program equivalence proofs
and show that it also improves generalization.

Huang, Zhou, and Chin used transfer learning to avoid
the problem of having a small dataset for the error type
classification task [71]. They trained a Transformer model on
the small dataset and achieved 7.1% accuracy. When train-
ing first on a bigger source dataset and tuning afterward on
the small dataset, they reached 69.1% accuracy. However,
they do not develop self-supervised sample selection, and
implement a limited analysis of transfer learning. In our
work, we develop a form of transfer learning for program
equivalence, and carefully analyze its merits and limitations,
reaching 97% accuracy on our dataset.

6.3 Symbolic Mathematics Using Machine Learning

Hussein et al. [72] develop a system which learns to apply
a set of inequality axioms and derived lemmas using a
reinforcement learning model with a feed-forward neural
network. A challenge of using reinforcement learning is
the determination of a feasible reward function from the
environment and the resulting training time. HOList [73],
[74] is a system that can interact with a large rule set to
score tactics in the search for a proof but faces compute
time limitations when training a reinforcement learning net-
work for theorem proving. Unlike their model, we output
both the tactic (rewrite rule) as well as the location to
apply it (eliminating the need to score various premises
individually). Similar to recent work on using transform-
ers to propose actions [75], our network has learned the
rewrite rules (actions on a program) which are most likely
to transform the program into the target program. Our
work aims at laying the foundation for program equivalence
proofs by studying a language subset that includes multiple
computation statements and maintains a high accuracy. Our
approach to synthetic data modeling is similar to Lample
et al. [76], who randomly create representative symbolic
equations to develop a deep learning sequence-to-sequence
transformer model which can perform symbolic integration.
They note that their system requires an external framework
to guarantee validity. Similarly, work by Mali et al. [77]
reasons on mathematical problems but produces outputs
which are not guaranteed correct. Our system outputs a
verifiable reasoning that is straightforward to check for
correctness, guaranteeing no false positive and the correct
handling of all true negatives.

A Deep Reinforcement Learning Approach to First-
Order Logic Theorem Proving [78] provides the theorem
prover the allowed axioms as input to the model. In contrast,
we produce the rewrite rules as a sequence. As it is a
reinforcement learning model, they create training iterations
as proof rewards improve with better models, while our
approach creates incremental samples specifically chosen
through beam search to improve output by providing a
correct output for a proof the model currently is challenged
by.

6.4 Program Analysis using Machine Learning

Numerous prior works have employed (deep) machine
learning for program analysis [79]–[84]. PHOG [85] presents
a probabilistic grammar to predict node types in an AST.
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Program repair approaches, [30], [81] are deployed to au-
tomatically repair bugs in a program. Wang et al. [86]
learn to extract the rules for Tomita grammars [87] with
recurrent neural networks. The learned network weights are
processed to create a verifiable deterministic finite automata
representation of the learned grammar. This work demon-
strates that deterministic grammars can be learned with
neural networks, which we rely on. Recent work by Rabin
et al. [88] shows that neural networks (in their case GGNNs)
learn more general representations of semantically equiva-
lent programs than code2vec [80], which creates code repre-
sentations using AST paths. Bui et al. [89] show that using
semantics preserving transformation can improve machine
learning on code, and continue the work with a study on
using self-supervised learning to create similar embeddings
for semantically equivalent code [90]. Allamanis et al. [91]
trains a bug repair neural network by using self-supervision.
The model learns to repair artificially created bugs using
rewrite rules on non-buggy code. We use beam search to
identify model weaknesses and target learning to generate
the transformations that prove semantic equivalence.

7 CONCLUSION

We introduced S4Eq, an end-to-end deep learning frame-
work to find equivalence proofs between two complex
program blocks. S4Eq emits a verified sequence of rewrites
from one program to another when successful. We have de-
signed self-supervised sample selection, an original training
technique tailored to our problem domain. This approach
further improved the ability of the deep learning system
to find more complex proofs, with up to 97% success on
our synthetic and GitHub-constructed evaluation sets. All
our datasets are made available to the community, including
synthetic generation techniques for the problem of program
equivalence via rewrite rules, as well as the programs built
from the ASTs we mined in C functions from GitHub.
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