

1

2

3 Lack of inbreeding avoidance during mate selection

4 in migratory monarch butterflies

5

6

7 Scott M. Villa^{1*}, Kieran P. Kelly¹, Miles G. Hollimon², Karl J. Protil III¹,
8 and Jacobus C. de Roode¹

9

10

11 ¹ Department of Biology, Emory University, Atlanta, GA, USA

12 ² Department of Biology, Davidson College, Davidson, NC, USA

13

14

15 * Corresponding author: Scott M. Villa

16 **E-mail:** scott.villa@gmail.com

17 **Phone:** +1 303-518-4242

18 **Address:** O. Wayne Rollins Research Center, Department of Biology, Emory University,
19 1510 Clifton Rd. NE, Atlanta, Georgia, USA

20

21

22

23 **Abstract**

24 Inbreeding is generally thought to have negative consequences for organismal health.
25 However, despite the potential fitness effects, it remains surprisingly common among wild
26 populations. In many cases, the complex factors that underlie mating dynamics make
27 predicting whether individuals should or do avoid inbreeding quite challenging. One reason
28 inbreeding may persist among species is that the likelihood of encountering relatives can be
29 rare. Thus, even if inbreeding has severe consequences, selection to avoid mating with kin
30 will be weak in species that are highly dispersed. Here we investigated if migratory monarch
31 butterflies (*Danaus plexippus*), which are famous for their dispersal ability, actively avoid
32 inbreeding. We found that neither female nor male monarchs choose mates based on
33 relatedness. These results support the hypothesis that movement ecology can mask the
34 deleterious effects of inbreeding and relax selection for active inbreeding avoidance
35 behaviors. Overall, our data add to the growing list of studies showing that inbreeding
36 avoidance is not the behavioral “default” for most species. We also highlight the implications
37 that inbreeding may have on the declining populations of this iconic butterfly.

38

39 **Keywords:** mate choice, coercive mating, *Lepidoptera*, body size

40

41

42

43

44

45

46 **1. Introduction**

47 Inbreeding is an important phenomenon that influences the health of wild and captive
48 populations. In general, the negative consequences of mating and reproducing with related
49 individuals are well known (Crnokrak and Roff 1999; Charlesworth and Willis 2009;
50 Frankham 2010; Hedrick and Garcia-Dorado 2016). Inbreeding increases the likelihood that
51 individuals are homozygous for deleterious or lethal recessive alleles, which can reduce
52 individual fitness (Keller and Waller 2002; Hedrick and Garcia-Dorado 2016). This so-called
53 “inbreeding depression” can reduce the evolutionary potential for species to adapt to
54 changing environments and increase the risk of extinction (Hedrick and Kalinowski 2000;
55 Keller and Waller 2002; Reed et al. 2003; Frankham 2010; Reid and Keller 2010).

56 Animals have evolved numerous ways to reduce the likelihood of mating with related
57 individuals (Pusey and Wolf 1996; Blouin and Blouin 1988; Szulkin et al. 2013). Two
58 common avoidance strategies are sex-biased natal dispersal and mate choice. Sex-biased
59 natal dispersal is a passive strategy to avoid inbreeding, which uses physical separation of
60 related individuals to reduce contacts with kin (Pusey 1987; Handley and Perrin 2007). In
61 contrast, mate choice is an active inbreeding avoidance strategy where organisms distinguish
62 between related and unrelated individuals to avoid inbreeding-related fitness costs
63 (Andersson and Simmons 2006; Jones and Ratterman 2009). Kin recognition and mating
64 avoidance have been reported in many groups of animals including mammals (Milinski
65 2006), birds (Bonadonna and Sanz-Aguilar 2012), fishes (Fitzpatrick and Evans 2014) and
66 insects (Cannon 2020). Active and passive avoidance mechanisms can work both
67 independently and synergistically to play critical roles in determining species persistence.
68 However, in many cases, the complex factors that underlie species distributions and mating

69 dynamics make predicting whether individuals should or do avoid inbreeding challenging
70 (Kokko and Ots 2006; Pemberton 2008; Szulkin et al. 2013; de Boer et al. 2021; Pike et al.
71 2021).

72 Curiously, despite the negative consequences of inbreeding, recent meta-analyses
73 have found weak evidence for general inbreeding avoidance across species (de Boer et al.
74 2021; Pike et al. 2021). While some species, like long-tailed tits (*Aegithalos caudatus*),
75 actively avoid kin (Leedale et al. 2018), mating in other species, such as yellow-bellied toads
76 (*Bombina variegate*), is not influenced by relatedness (Cayuela et al. 2017). One potential
77 reason that inbreeding avoidance is not the behavioral “default” for most species is that the
78 risk of sexually interacting with kin is rare. Pike et al. (2021) highlight two criteria that need
79 to be met for inbreeding avoidance to evolve: 1) inbreeding needs to reduce fitness, and 2)
80 the risk of interacting with a related sexual partner is relatively high. The former criterion is
81 typically the focus of studies that presume inbreeding should be avoided. However, an
82 organism’s mobility and resulting probability of actually encountering relatives is often
83 overlooked. Thus, the general influence of inbreeding on mating behavior among systems
84 remains unclear.

85 Here we examine active inbreeding avoidance in monarch butterflies (*Danaus*
86 *plexippus*), a species famous for its mobility. Currently, very little is known about whether
87 and how monarchs avoid inbreeding. Previous studies have shown that inbreeding depression
88 in monarchs can be severe. Mongue et al. (2016) found that just a single round of full-sibling
89 inbreeding can reduce egg viability by 26% and offspring lifespan by roughly 10%. The
90 authors report similar drops in fitness after a second round of inbreeding as well. However,

91 despite these immediate consequences of inbreeding, monarchs are unlikely to interact with
92 close kin in the wild.

93 Monarchs are well known for their annual migration cycles (Gustafsson et al. 2015;
94 Reppert and de Roode 2018), where individuals in eastern North America can undergo a >
95 4000 km transcontinental journey from the eastern United States and southern Canada to
96 overwintering grounds in central Mexico (Urquhart and Urquhart 1978; Brower 1995).

97 Monarchs found west of the Rocky Mountains migrate shorter distances to overwinter along
98 the coast of California (Nagano et al. 1993; James et. al 2018), but still regularly travel up to
99 800 km from breeding grounds. This extreme movement ecology reduces the likelihood that
100 monarchs encounter close relatives and should presumably weaken selection to evolve
101 inbreeding avoidance mechanisms.

102 We conduct two captive mate-choice experiments, one designed to test female
103 inbreeding avoidance and the other designed to test male inbreeding avoidance. Caged
104 mating experiments have been critical for revealing the dynamics of mate choice in not only
105 monarchs (Mongue et al. 2015), but many other butterfly species (Canon 2020), including the
106 model *Bicyclus anynana* (Saccheri et al. 1996; Robertson et al. 2020). We hypothesize that
107 despite the extreme costs of inbreeding, monarchs should not have mechanisms to actively
108 avoiding mating with kin. Ultimately, we aim to test how dispersal ecology masks the
109 negative effects of inbreeding and relaxes selection for active inbreeding avoidance in this
110 iconic species.

111

112 **2. Methods**

113 *2.1 Monarch rearing*

114 All monarchs used in this study were descendants of wild-caught, eastern North
115 American migratory monarchs from Florida, Ohio, and Georgia. Monarchs were reared in
116 two batches. To generate the first batch, we mated four unique females to four unique males
117 to create four distinct lineages, each consisting of full siblings. Up to 200 offspring from each
118 mating pair were raised in a greenhouse at Emory University in Atlanta, GA under summer
119 light and temperature conditions (range: 23.5-39.6°C), during May and June of 2019. Rearing
120 time and environment ensured that monarchs remain reproductively active and do not exhibit
121 migratory behavior (Goehring and Oberhauser 2002; Green and Kronforst 2019; Tenger-
122 Trolander and Kronforst 2020). The monarchs from this first batch were used for the female
123 choice experiment (Figure 1a-c).

124 To generate the second batch, we again mated four unique females to four unique
125 males to create four more distinct lineages, each consisting of full siblings. Up to 200
126 offspring from each mating pair were raised in the same greenhouse, and again under
127 summer light and temperature conditions (range: 23.5-39.6°C), during September of 2019.
128 As with the first batch, rearing time and environment ensured that monarchs remain
129 reproductively active and do not exhibit migratory behavior (Goehring and Oberhauser 2002;
130 Green and Kronforst 2019; Tenger-Trolander and Kronforst 2020). The monarchs from this
131 second batch were used for the male choice experiment (Figure 1d-f).

132 All larvae in both batches were raised on the same host plant species, *Asclepias*
133 *incarnata*. Caterpillars were housed individually on plants that were surrounded by a clear
134 plastic tube (13 cm diameter x 57 cm height) with a netted covering. Upon eclosion from
135 pupae, all adults were weighed and checked for infection by the parasite *Ophryocystis*

136 *elektroscirrha* using established non-invasive methods (de Roode et al. 2007); only
137 uninfected individuals were used in mating trials.

138

139 *2.2 Experimental design*

140 *2.2.1 Overview*

141 The overall goal of our study was to test if monarchs display active inbreeding
142 avoidance when choosing mates. We conducted two experiments, one focused on female
143 choice and the other on male choice. Both experiments involved mating trials where we
144 placed three butterflies in 30 cm (diameter) x 30 cm (height) cylindrical mesh popup insect
145 cages (Carolina Biological Supply Company, Burlington, NC, USA). All cages were kept in
146 walk-in environmental chambers (Environmental Specialties, Inc., Raleigh, NC, USA) set to
147 a 14:10h light/dark cycle at 26°C and 50% relative humidity.

148 Mating trials were of two main types: mixed and same relatedness (Figure 1). In
149 mixed relatedness trials, the focal individual was simultaneously presented with one sibling
150 and one unrelated member of the opposite sex (Figure 1a,d). Hence, the focal subjects could
151 “choose” a mate based on relatedness. In same relatedness trials, focal individuals were also
152 simultaneously presented with two mating options. However, in these trials, the two mating
153 options were either both siblings of the opposite sex (Figure 1b,e) or both unrelated
154 individuals of the opposite sex (Figure 1c,f). Thus, focal subjects in these trials had only a
155 single choice with respect to mate relatedness. The all-sibling or all-unrelated trials were
156 critical for controlling the effect of mate encounter rate and operational sex ratio on mating
157 preferences. Typically, the sex ratio in mating trials differs between choice tests (2:1 sex
158 ratio, with the subject as the limited sex) and no-choice tests (1:1 sex ratio) (Dougherty

159 2020). Reducing no-choice trials to a 1:1 sex ratio can be problematic because the decision to
160 reject the only available option has to be weighed against perceived risk of going unmated. In
161 other words, focal subjects may choose to mate with an undesirable option simply because it
162 is better than not mating at all (Dougherty 2020). By exposing focal subjects to only a single
163 potential mate, traditional no-choice trials thus confound two aspects of the social
164 environment that could potentially influence the chooser's behavior (Dougherty 2020; de
165 Boer et al. 2021). We avoided this issue by maintaining a 2:1 sex ratio (with the focal subject
166 as the limited sex) in all trials. Thus, all focal subjects in our study experienced the same
167 mate encounter rates and operational sex ratios.

168

169 *2.2.2 Experiment details*

170 The first experiment was conducted in June of 2019 and focused on female mate
171 choice (Figure 1a-c). Mating trials contained one female and two male monarchs and
172 consisted of three types: mixed, all-sibling, and all-unrelated (Figure 1a-c). Prior to the start
173 of the experiment, the males in each cage were marked with a 0.25-inch blue or yellow
174 sticker placed on the ventral side of each wing for identification. The combination of stickers
175 provided a unique identifier for each male, and care was taken to randomize color
176 combinations within treatments and relatedness. Females were left unmarked. Mating trials
177 lasted approximately five days, during which monarchs were provided 10% honey water *ad*
178 *libitum* for food. All cages were spot-checked for matings every evening. This time was
179 chosen because sperm transfer in monarchs occur after dawn in mating pairs that initiated
180 copulation before dawn (Sväd and Wiklund 1988). Butterflies were allowed to mate as many
181 times as they could during the 5-day experiment. Additionally, a random subset of cages was

182 filmed continuously for the entire experiment using high-definition Owl AHD10-841-B
183 cameras. Cameras were equipped with infrared bulbs to film in complete darkness. All
184 cameras were hung approximately 30 cm above a cage and provided a clear recording 24
185 hours per day. These filmed cages allowed us to quantify mating behavior beyond the
186 evening spot-checks. Observers conducted spot-checks and scored the videos without
187 knowing how the males were related to the females.

188 The second experiment was conducted in October of 2019 and focused on male mate
189 choice (Figure 1d-f). The experimental design was the reciprocal of the female choice
190 experiment described above. Rearing and mating conditions ensured that all monarchs
191 developed and behaved as breeding-generation individuals (Goehring and Oberhauser 2002;
192 Green and Kronforst 2019; Tenger-Trolander and Kronforst 2020).

193

194 *2.3 Quantification of mating behavior*

195 Male monarchs forgo the chemical or visual courtship that is typical of most
196 butterflies and moths. Instead, it is generally believed that males use a coercive strategy,
197 where they grab females and take them to the ground to force them into copulation (Pliske
198 1975; Hill et al. 1976). However, despite this male-driven mating behavior, it remains largely
199 unclear which sex is actually “choosier.” Males presumably dictate choice by selecting which
200 females to force into copulation. But females counter male aggression by imposing their own
201 choice with varying degrees of resistance (Frey 1999; Solensky 2004; Solensky and
202 Oberhauser 2005; Agrawal 2017).

203 For both experiments, we quantified seven measures of mating performance. We
204 broke down monarch mating behavior into two stages: attempt stage and copulatory stage.

205 The attempt stage is defined as the precopulatory coercive behavior between males and
206 females (Solensky 2004). Attempts begin when males pounce on females to physically
207 coerce them into mating. Pouncing is easily distinguished from inadvertent contacts as the
208 monarchs fly around the cage. Females respond to these mating attempts with varying
209 degrees of resistance. Successful attempts end when the pair achieves copulation. An attempt
210 is unsuccessful when the male either gives up or the female escapes the male's grasp. The
211 attempt stage could only be quantified in the subset of cages that were filmed. Observers
212 watched video recordings and scored which two butterflies were involved in each attempt as
213 well as the total number, success rate (number of attempts that end in copulation out of total
214 attempts tried), and the length of all attempts that occurred in each cage. Mating attempts
215 were recorded up to the 5th day after monarchs were placed into cages.

216 Additionally, we also quantified multiple performance measures during the
217 copulatory stage. Copulation begins as soon as the male latches onto the distal tip of the
218 female's abdomen with his genitalic claspers (Solensky 2004; Brower et al. 2007).
219 Immediately following attachment, the pair positions themselves into a stereotypical
220 Lepidopteran mating posture where males and females face away from each other while the
221 tips of their abdomens remain joined. Copulations end as soon as the pair separates.

222 Unlike the attempt stage, we quantified the copulation stage using both spot-checking
223 and video recordings. Specifically, each cage was inspected once each evening between
224 19:00-20:00h to record which butterflies successfully mated. Monarchs only mate once per
225 day with peak mating activity starting around 16:00 and ending around 19:00h (Oberhauser
226 1988). All successfully mating pairs will be *in copula* by approximately 19:00h and no
227 additional mating activity happens at night. Pairs that are *in copula* after 19:00h will mate

228 through the evening and typically break up between 02:00-06:00h the following morning
229 (Sväd and Wiklund 1988). Thus, one evening check right before the lights turn off (20:00h)
230 is sufficient to quantify all mating events in the experiment. These nightly checks were used
231 to determine which butterflies were involved in the first mating as well as the total number of
232 times each butterfly copulated over the course of the experiment. Additionally, in the cages
233 that were filmed, observers could watch video recordings to quantify the length of all
234 copulations. Since mating typically lasts into the next morning, copulations were recorded up
235 to the 6th day after monarchs were placed into cages.

236

237 *2.4 Statistical analysis*

238 *2.4.1 Female choice experiment*

239 We analyzed female mating performance using a series of generalized linear mixed-
240 effects models (GLMM) in R v3.3.3 (R Core Team, 2016) with the ‘lme4’ package v.1.1e12
241 (Bates et al. 2014). All models had the same fixed effect structure. Specifically, we modeled
242 mating performance as a function of individual male relatedness (sibling vs. unrelated), trial
243 type (mixed vs. same relatedness) and their interaction. We also included both female mass
244 and her sexual size dimorphism (SSD) with each male as additional model factors to take into
245 account the morphological differences between the choices presented. Moreover, given the
246 physical nature of monarch coercive mating behavior, it seemed likely that body size would
247 play a role in the female’s ability to resist male advances. The intercept for all models was set
248 to the behavior quantified in trials where all three butterflies were unrelated (Figure 1c).

249 We modeled three aspects of attempt performance (Table 1a-c). First, we used a
250 GLMM with a Poisson distribution to predict the total number of attempts females received

251 by each male as the dependent measure while including both cage number and male lineage
252 as random effects. Random effects account for both the multiple attempt totals recorded for
253 each female (i.e., one total from each male) and the possible influence of genetic
254 compatibilities on monarch sexual selection (Mongue et al. 2015). Next, we used a GLMM
255 with binomial distribution and logit link function to predict the attempt acceptance rates
256 females had with each male as the dependent measure while including both cage number and
257 male lineage as random effects (to again account for both the multiple acceptance rates
258 recorded for each female and the possible influence of genetic compatibilities on monarch
259 sexual selection). The attempt acceptance rate is a 2-column variable that column binds
260 (using the command ‘cbind’) successful attempts and unsuccessful attempts with each male.
261 Finally, we used a GLMM with a gamma distribution and log link function to predict the
262 length of each attempt as the dependent measure while including male ID nested within cage
263 number as random effects (to account for repeated attempts between the same male and
264 female with a cage). The distribution that best fit the data for each of these models was
265 determined using the ‘fitdisplus’ package v.1.1e12 (Delignette-Muller & Dutang 2015).

266 We tested initial mate preference by restricting the analysis to the first mating
267 observed in the mixed relatedness cages. In this analysis, we treated the three monarchs in
268 each cage as an experimental unit. The first mating in each of the mixed trials was
269 determined by spot-checking. The proportion of sibling and unrelated males involved in first
270 matings was tested against a random 50-50 mate preference for relatedness using a Chi-
271 squared test with $\alpha = 0.05$.

272 We then ran three additional models further assessing copulation performance (Table
273 1d-f) in all trial types. First, we used a GLMM with binomial distribution and logit link

274 function to predict the female's probability of mating with each male as the dependent
275 measure while including cage number and male lineage as random effects (to account for
276 both multiple mating probabilities recorded for each female and possible influence of genetic
277 background on mating behavior). The probability of mating with a given male was recorded
278 as either a "mated" if the female copulated at least once with him, and "unmated" if she never
279 mated with him. Next, we used a GLMM with a Poisson distribution to predict the total
280 number of times females were observed copulating with each male as the dependent measure
281 while including both cage number and male lineage as random effects (to account for both
282 the multiple copulation totals of the female and possible influence of genetic background on
283 mating behavior). Finally, we used a GLMM with a gamma distribution and log link function
284 to model the length of each copulation as the dependent measure while including male ID
285 nested within cage number as a random effect (to account for repeated copulations between
286 the same male and female within a cage). The distribution that best fit the data for each of
287 these models was again determined using the 'fitdisplus' package v.1.1e12 (Delignette-
288 Muller & Dutang 2015).

289

290 *2.4.2 Male choice experiment*

291 We analyzed male mating performance the same way as the female choice
292 experiment described above (Table 2). The only analytical difference between the
293 experiments was how we modeled copulation lengths. Unlike the female choice experiment,
294 the copulation lengths in the male choice experiment were normally distributed. Thus, we
295 used a linear mixed effects model (LMM) to predict the length of each copulation as the

296 dependent measure while including female ID nested within cage number as a random effect
297 (Table 2f).

298

299 **3. Results**

300 *3.1 Female choice experiment*

301 The female choice experiment included a total of 69 mating trials. These consisted of
302 44 mixed relatedness trials and 25 same relatedness trials (13 cages contained all siblings and
303 12 cages contained all unrelated butterflies) (Figure 1a-c). Of these, 57% (25/44) of mixed
304 trials, 38% (5/13) of all sibling trials, and 50% (6/12) of all unrelated trials were filmed
305 continuously for the 5-day experiment.

306 Mating attempts were quantified from the 36 trials that were filmed. We first
307 analyzed the factors that influenced the total number of attempts the female received from
308 each male. On occasion, some females did not receive a single mating attempt from one or
309 both males in her cage. These zeros were included in the analysis. Thus, we recorded 72
310 attempt totals from 36 cages (i.e., two totals per cage). The number of attempts with a given
311 male ranged from zero to six. None of the factors tested significantly influenced how many
312 attempts a female received from a particular male (Figure 2a, Table 1a).

313 Next, we tested how male relatedness influenced female acceptance rates. Attempts
314 are considered accepted when they resulted in copulation. For each trial, observers would
315 determine the female's attempt acceptance rate with each of the two males. If a male never
316 attempted to mate with a female, then we could not calculate an acceptance rate. We obtained
317 53 success rates from the 36 trials that were filmed. In general, attempts were highly
318 successful (Figure 2b). Across all trials in this experiment, 86.4% (70/81) of attempts ended

319 in copulation. However, acceptance rates did not depend on male relatedness, trial type, or
320 their interaction (Figure 2b, Table 1b). Rates were, however, significantly influenced by body
321 size. Specifically, acceptance rates were positively correlated by both female mass ($P = 0.03$)
322 and her size relative to the male attempting to mate with her ($P = 0.01$) (Table 1b).

323 Finally, we analyzed factors affecting how long attempts lasted. This analysis
324 included both successful and unsuccessful attempts. Across all 36 filmed trials, we observed
325 81 total attempts that lasted between 0.4 – 30.3 minutes. None of the factors tested
326 significantly influenced how long attempts lasted (Figure 2c, Table 1c).

327 We further analyzed how relatedness affects mate preference by restricting our
328 analysis to the first mating observed in the mixed relatedness trials (Figure 1a). Observers
329 spot-checked each of the 44 mixed trials nightly for copulations. We found that 52.3%
330 (23/44) of first matings involved the sibling male and 47.7% (21/44) involved the unrelated
331 male. These proportions did not significantly deviate from random preference (Chi-squared
332 test; $\chi^2 = 0.09$, $df = 1$, $P = 0.76$). Moreover, we used spot-checks to also record which males
333 successfully mated at least once during the 5-day experiment. In this analysis, all 138 males
334 in the 69 trials were designated as either “mated” or “unmated”. None of the factors tested
335 significantly influenced whether or not a female copulated with a male (Figure 2d, Table 1d).

336 In addition, we tested if relatedness influenced how often females copulated with
337 each male by recording the number of times we saw each male *in copula* over the course of
338 five days. On occasion, males did not attempt to mate with the female. These zero copulation
339 totals were included in the analysis. Thus, we recorded 138 copulation totals from all 69
340 cages (i.e., two totals per cage). The number of copulation observations with a given male
341 ranged from zero to three. None of the factors tested significantly influenced how many times

342 females were observed *in copula* with a particular male (Figure 2e, Table 1e). Importantly,
343 among the 36 trials that were filmed, we found that the number of matings recorded from
344 spot-checking in each cage was identical to the number quantified from the corresponding
345 videos. This confirmed that we did not miss any matings by only checking cages a single
346 time per day, and that spot-checking was sufficient to accurately capture which monarchs
347 successfully mated.

348 Finally, we analyzed factors affecting how long copulations lasted. This analysis
349 could only include the 36 trials that were filmed. Across all trials, we measured the length of
350 70 copulation bouts that lasted between 8.8 – 63.6 continuous hours. None of the factors
351 tested significantly influenced how long copulations lasted (Figure 2f, Table 1f).

352

353 3.2 *Male choice experiment*

354 The male choice experiment included a total of 62 mating trials. These consisted of
355 36 mixed relatedness and 26 same relatedness trials (10 cages contained all siblings and 16
356 cages contained all unrelated butterflies) (Figure 1d-f). Of these, 64% (23/36) of mixed trials,
357 50% (5/10) of all sibling trials, and 50% (8/16) of all unrelated trials were filmed
358 continuously for five days. In 10 trials (7 mixed, 1 all-sibling, and 2 all-unrelated) we
359 observed no sexual behaviors among any of the butterflies during the entire experiment (i.e.
360 not a single mating attempt among the three butterflies). While it is unknown why these
361 monarchs showed no inclination to mate, these trials were designated as sexually unreceptive
362 and were removed from all subsequent analyses.

363 This experiment was analyzed similarly to the female choice experiment described
364 above. We tested how female relatedness influences three aspects of male attempt

365 performance. All attempt measures could only be quantified from the 26 trials that were
366 filmed. We first analyzed the factors that influenced the total number of attempts the males
367 directed toward each female over the course of five days. On occasion, one of the males
368 would not attempt to mate with one of the females. But since there was mating activity from
369 the other male in the cage, these zero attempt totals were included in the analysis. Thus, we
370 recorded 52 attempt totals from 26 cages (i.e., two totals per cage). The number of attempts
371 with a given female ranged from 0 to 12. None of the factors tested significantly influenced
372 significantly influenced the number of times males attempted to mate with a particular female
373 (Figure 3a, Table 2a).

374 Next, we tested how relatedness influenced the attempt success rates. For each trial,
375 observers would determine the male's attempt success rate with each of the two females. If a
376 male never attempted to mate with a female, then we could not calculate a rate. We obtained
377 43 success rates from the 26 trials that were filmed. In general, male attempts were
378 unsuccessful. Across all trials, only 18.3% (31/169) of attempts resulted in copulation. There
379 was no significant difference in success rates between siblings and unrelated females in either
380 the mixed or same relatedness trials (Figure 3b, Table 2b). Success rates were, however,
381 significantly influenced by body size where male mass was negatively correlated with
382 success rate ($P = 0.02$).

383 Finally, we analyzed factors affecting how long attempts lasted. This analysis
384 included both successful and unsuccessful attempts. Across all 26 trials, we observed 169
385 total attempts that lasted between 0.1 – 67.8 continuous minutes. There was a significant
386 difference in attempt length between all-sibling and all-unrelated trials (Figure 3c, Table 2c).
387 Mean attempt length was longer in all sibling trials than in all unrelated trials ($P < 0.001$).

388 However, within mixed trials, there was no significant difference in attempt length between
389 sibling and unrelated butterflies. Furthermore, there was a significant interaction between
390 female relatedness and trial type ($P = 0.005$). No aspects of body size significantly influenced
391 how long attempts lasted.

392 We further analyzed how relatedness affects mate preference by restricting our
393 analysis to the first mating observed in the mixed relatedness trials (Figure 1d). Observers
394 spot-checked each of 20 mixed trials nightly for copulations. We found that 45.0% (9/20) of
395 first matings involved the sibling male and 55.0% (11/20) involved the unrelated male. These
396 proportions did not significantly deviate from random mate preference (Chi-squared test; $\chi^2 =$
397 0.20, $df = 1$, $P = 0.65$). Moreover, we used spot-checks to also record whether or not each
398 female mated at least once during the 5-day experiment. In this analysis, all 104 females in
399 the 52 trials were designated as either “mated” or “unmated”. None of the factors tested
400 significantly influenced likelihood that a male copulated with a particular female (Figure 3d,
401 Table 2d).

402 In addition, we tested if relatedness influenced how often males copulated with each
403 female by recording the number of times we saw each female *in copula* over the course of
404 five days (Figure 3e, Table 2e). On occasion, males did not copulate with one or both females
405 in their cage. These zero copulation totals were included in the analysis. Thus, we recorded
406 104 copulation totals from all 52 cages (i.e., two totals per cage). The number of copulation
407 observations with a given female ranged from zero to three. The number of copulations
408 observed was not influenced by the relatedness between males and females. However, trial
409 type had a significant effect on the number of times males copulated with unrelated females
410 ($P = 0.04$). Specifically, males copulated more frequently with unrelated females in the

411 mixed trials than the all unrelated trials. No aspect of body size influenced the likelihood that
412 a male copulated with a particular female. Again, among the 26 trials that were filmed, we
413 found that the number of matings recorded from spot-checking in each cage was identical to
414 the number quantified from the corresponding videos.

415 Finally, we analyzed factors affecting how long copulations lasted (Figure 3f, Table
416 2f). The data came from the 26 cages that were filmed. In 12 of these cages, males attempted
417 to mate but were never successful. Thus, the length of copulations was quantified in only 14
418 trials. Across these trials, we filmed a total of 31 copulation bouts. However, for 10 of these
419 matings, the camera cut out prior to the butterflies separating. This prevented us from
420 determining how long these particular bouts lasted, leaving a dataset that included 21
421 copulation bouts from 14 cages. Copulations lasted between 0.02 – 32.6 continuous hours
422 and none of the factors tested significantly influenced the length of time males copulated with
423 a particular female.

424

425 **4. Discussion**

426 Our results show that neither female nor male monarch butterflies actively avoid
427 inbreeding. In the female choice experiment, the first mating in the 44 mixed relatedness
428 trials (Figure 1a) was effectively random, where 52% chose their brother, and 48% chose the
429 unrelated male. Moreover, no aspects of mating performance (i.e., attempts and/or
430 copulations) in these mixed relatedness trials were significantly different between sibling or
431 unrelated pairs (Figure 2; Table 1). This was also true in the same relatedness trials (Figure
432 1b, c), where we found no significant differences in mating performance between cages with
433 only siblings and cages with only unrelated monarchs. (Figure 2; Table 1).

434 The lack of inbreeding avoidance was also clear when males were the focal sex
435 (Figure 1d-f). Again, the first mating in the 36 mixed relatedness trials (Figure 1d) indicate
436 random mate choice, where 45% chose their sister, and 55% chose the unrelated female.
437 Additionally, both within and among treatments, nearly all aspects of male mating
438 performance did not significantly differ when mating with sibling or unrelated females
439 (Figure 3, Table 2). The one exception was the influence of relatedness on mean attempt
440 time. Specifically, the length of attempts observed in the all-sibling cages was nearly six
441 times longer than the mixed or all-unrelated cages (Figure 3c; Table 2c). However, this
442 difference is largely attributed to two extreme attempts, where in two all-sibling cages we
443 observed males trying to coerce females into copulation for 46.2 and 64.9 continuous minutes
444 respectively. If these two attempts are removed from the analysis, there is no significant
445 difference in mean attempt length within or among trial types. Importantly, while these two
446 attempts were extreme, it does demonstrate the extent of sexual conflict between the sexes
447 and shows the lengths monarchs will go to try to either force a female into copulation or
448 resist a male's sexual advances.

449 Importantly, in both experiments we observed typical mating behaviors described
450 from both field and captive monarch studies (Hill 1976; Frey et al. 1998; Frey 1999;
451 Solensky 2004; Solensky and Oberhauser 2004; Brower et al. 2007). Even though our
452 monarchs were confined to small cages, their reduced fight capacity did not hamper their
453 ability or willingness to mate. Indeed, previous studies suggest that mating initiated with
454 aerial captures are quite infrequent. Instead, males are often observed initiating mating
455 attempts by pouncing on a stationary female (Falco 1998; Frey et al. 1998; Solensky 2004).
456 In our cages, aerial pursuits were all but impossible, but males could, and did, initiate

457 attempts by pouncing on females perching on the sides of the cages or feeding. When males
458 did engage in mating, they frequently took females to the ground, which is also typical of
459 wild monarchs (Solensky 2004; Brower et al. 2007). During the ground “wrestling” phase,
460 we observed females deploying the whole battery of resistance behaviors typically seen in
461 wild populations (Frey 1999; Solensky 2004; Brower et al. 2007).

462 The confined cages also did not influence the effort monarchs put into mating.
463 Coercive attempts across both our experiments lasted an average of 2.37 min (n = 250). This
464 mating effort was nearly identical to the 2.20 min (n = 273) average attempt observed in wild
465 populations (Solensky 2004). Moreover, most of the mating attempts observed across our two
466 experiments ended in failure. We observed males achieving copulation only 40% (101/250)
467 of the time. This is similar to both the 31% (85/273) success rates observed in previous
468 captive studies using larger (1.8 m³) outdoor cages (Solensky and Oberhauser 2004), as well
469 as the 30-40% success rates reported from wild overwintering populations (Van Hook 1993;
470 Frey 1999; Oberhauser and Frey 1999; Solensky 2004). Thus, the small cages used in our
471 experiments did not appear to significantly influence overall monarch mating behavior,
472 allowing us to analyze the effects of genetic relatedness in a controlled manner that
473 reproduces natural mating behaviors.

474 Our results indicate that selection for active inbreeding avoidance in monarchs has
475 been historically weak. The willingness to mate with kin is presumably due to monarchs'
476 reliance on other, more dispersal-based means of avoiding inbreeding. While in general
477 inbreeding depression can reduce the fitness of inbred individuals, in species with dispersal
478 strategies that limit interactions with kin or those found in large, panmictic populations, the
479 risk of inbreeding is too low to drive the evolution of sibling recognition mechanisms

480 (Szulkin et al. 2013; Duthie et al. 2016; Pike et al. 2021). The high mobility and historically
481 large population sizes of monarchs likely reduce the chances that related individuals interact
482 with each other. As soon as monarchs eclose, they typically disperse from their natal rearing
483 grounds in search of food and mates. In the most extreme cases, some eastern North
484 American monarchs disperse up to 4500 km from their eclosion site to overwintering grounds
485 in central Mexico (Gustafsson et al. 2015; Reppert and de Roode 2018). Indeed, one
486 presumed adaptive function of animal migration is to facilitate admixture of populations and
487 “reshuffle” the gene pool every year to reduce extensive inbreeding within populations
488 (Cresswell et al. 2011). Our data add to the growing number of studies suggesting inbreeding
489 avoidance among animals may not be as widespread as originally presumed (Szulkin et al.
490 2013; de Boer et al. 2021; Pike et al. 2021).

491 Although historically monarchs have faced little selective pressure to evolve active
492 inbreeding avoidance mechanisms, the negative consequences of mating with kin remain real
493 (Mongue et al. 2016). Inbreeding could become problematic given that in recent decades,
494 monarch populations throughout North America have undergone severe demographic
495 changes. Previous research suggests that habitat loss and global temperature fluctuations have
496 led to severe population collapse (Forister et al. 2021), at least in western North America.
497 Some estimates of western North American monarch populations have indicated declines
498 exceeding 99% (Pelton et al. 2019). Moreover, increasing global temperatures and planting
499 of non-native milkweed in the southern United States is thought to trigger migratory dropout,
500 where eastern North American monarchs forgo their journey to Mexico and instead establish
501 small, fragmented year-round breeding populations along the Gulf of Mexico and inland
502 Texas (Satterfield et al. 2015, 2018). Similarly, year-round breeding populations are forming

503 in southern California and the Californian Bay Area (Satterfield et al. 2016; James 2021).
504 This rapid population decline, coupled with increased population fragmentation, may
505 increase monarch vulnerability to inbreeding depression. The increased likelihood of mating
506 with relatives may be especially challenging for monarchs given that a single round of full-
507 sibling inbreeding is sufficient to significantly reduce egg viability and adult lifespan
508 (Mongue et al. 2016). Thus, monarchs that transition into pockets of sedentary, year-round
509 breeding populations may no longer be sheltered from inbreeding depression (Semmens et al.
510 2016).

511 Indeed, previous studies have shown how inbreeding depression can be particularly
512 problematic in fragmented populations (Schultz et al. 2020). A comprehensive field study of
513 the Glanville fritillary (*Melitaea cinxia*) in Finland found that as populations became small
514 and fragmented, individuals were increasingly forced to mate with kin. Without sufficient
515 emigration, inbreeding depression gradually led to the extinction of 7 of the 42 populations
516 originally sampled (Saccheri et al. 1998). Given the sudden behavioral shifts in movement
517 ecology (Semmens et al. 2016), monarchs could presumably face a similar fate. Interestingly,
518 monarchs have formed viable sedentary populations on islands around the world through
519 independent dispersal events from North America over the last few hundreds of years
520 (Zalucki and Clarke 2004; Zhan et al. 2014). This suggests that these populations have either
521 evolved inbreeding avoidance strategies, that the effects of inbreeding are not severe enough
522 to reduce population health, or that these populations have become more tolerant of
523 inbreeding depression (Kokko and Ots 2006). In some species the effects of inbreeding are
524 mitigated by moderate reductions in population size to purge deleterious alleles. Importantly,
525 previous studies show that these cyclic population declines do not appear to reduce genetic

526 variation enough to cause large drops in fitness (Waser et al. 1986; Facon et al. 2011;
527 Puurtinen 2011). Moreover, selection for inbreeding avoidance is rarely uniform within a
528 species and is instead often population- and context-specific (Pusey and Wolf 1996; Kell and
529 Waller 2002; Pizzari et al. 2004; Herfindal et al. 2014). Testing such differential selection in
530 monarchs would provide an important step in elucidating the potential consequences of the
531 increased inbreeding that will accompany the current shift from migratory to sedentary
532 lifestyles of North American monarchs.

533 While monarchs did not choose mates based on relatedness, our data do suggest that
534 some components of mating performance are influenced by monarch body size. Body size is
535 a fundamental trait that influences reproductive dynamics in a wide variety of organisms
536 (Hunt et al. 2008; Hunt and Sakaluk 2014). Size can be especially important in coercive
537 mating systems, which involves a physical struggle between males and females. In the female
538 choice experiment, attempt success rates were positively correlated with female mass. While
539 success rates were high in this experiment, this result was not simply because larger females
540 received more attempts. It is possible that larger females are more willing to mate because
541 they are less likely to get injured by a male. Alternatively, larger females can presumably
542 handle more spermatophores than smaller females, and thus may be more willing to accept
543 multiple mating attempts. In extreme cases, females can mate so much that accumulating
544 spermatophores can burst through the abdomen and kill them (Brower et al. 2007). Small
545 females should safeguard against this possibility and limit the number of times they accept
546 mating attempts. Interestingly, we also found that sexual size dimorphism in this experiment
547 was positively correlated with attempt success rate. Specifically, success rates were higher

548 with increasing size dimorphism between the female and male. This result suggest that
549 females may actually be more accepting of smaller males.

550 Curiously, we saw a similar relationship in the male choice experiment. When cages
551 contained one male and two females, male size was negatively correlated with attempt
552 success rate. In other words, larger males were less likely to achieve copulation during a
553 given attempt. Indeed, the top 25% largest males in this experiment had only a 7% (2/29)
554 attempt success rate. How can the largest males not be successful in a coercive mating
555 system? One possibility is that in some scenarios, females may have preferred smaller males.
556 This again may be due to the female's aversion to injury while copulating. Regardless, our
557 data suggest that body size plays a role in monarch mating dynamics and may females have
558 more control over mating outcomes than previously realized. Future studies should
559 manipulate male and female monarch body size to further identify its influence on mate
560 choice.

561 Finally, our experiments suggest that monarch mating behavior is affected by the
562 operational sex ratio in mating cages, a phenomenon reported from multiple butterfly species
563 (Puurtinen 2011; Cannon 2020; Holveck et al. 2015; Westerman et al. 2014; Westerman et al.
564 2019). In our first experiment, when all mating trials consisted of two males and a single
565 female, we observed mating in every single cage. Most butterflies were observed copulating
566 at least once, including 100% (69/69) of females and 68% (94/138) of males. Once *in copula*,
567 pairs remained together for an average (\pm se) of 22.8 ± 11.6 hours. This high volume of
568 mating was largely due to the high acceptance rates by females. Across all trials, 86% (70/81)
569 of attempts resulted in copulation, which is more than twice as likely as the 30-40%
570 acceptance rates observed in wild populations (Solensky 2004). Of the females that were

571 filmed, 69% (25/36) received two or fewer mating attempts over the course of five days, and
572 only three females were subject to more than four attempts. Moreover, despite high
573 acceptance rates, 64% (44/69) of the females still mated with only one of the two males in the
574 cage, suggesting more complicated choice dynamics that may include some aspects of male-
575 male competition. These data suggest that while mating in this experiment was plentiful, high
576 success rates were not simply due to females being “worn down” by persistent coercion by
577 the two males in a confined space. Rather, male-biased sex ratios appear to make females less
578 choosy, a phenomenon also reported in the model butterfly *Bicyclus anynana* (Holveck et al.
579 2015).

580 In contrast to the mating successes observed in the female choice experiment, nearly
581 all measures of mating performance plummeted when the operational sex ratio shifted to two
582 females and one male per cage. In this experiment, only 18% (31/169) of all attempts ended
583 in copulation. This resulted in most of the butterflies going unmated. Across this experiment
584 only 58% (30/52) of males and 36% (37/104) of females were observed copulating. These
585 totals do not include the 10 cages that were removed from the analysis because we observed
586 no mating-related behaviors during the entire experiment. Not only were the butterflies in this
587 experiment less likely to mate, but copulation bouts lasted an average (\pm se) of 12.8 ± 6.5
588 hours, which was 44% shorter than in the female choice experiment. This reduction in
589 copulation time likely reflects that, unlike the female choice experiment described above, the
590 single male per cage does not have to deploy mate-guarding tactics to deny a competing male
591 access to the female. The fact that males did not spend nearly as long *in copula* makes it all
592 the more puzzling that they did not achieve more copulations. A 2:1 female biased sex ratio
593 should have provided an ideal scenario to maximize male mating performance. The females,

594 which are presented with only a single option to mate with, would presumably be more
595 willing to mate to avoid the risk of going unmated. Likewise, the singleton males, who do not
596 have to compete with other males for mates, have unlimited access to both females confined
597 to a cage. However, very few males actually achieved copulation with both the females in
598 their cage. Of the 56 males analyzed, 7 mated with both females, 23 mated with only one
599 female, and 22 failed to mate with either female. The inability to achieve copulation was not
600 through lack of trying. The males that were filmed conducted an average (\pm se) of 6.5 ± 0.9
601 attempts over the 5-day experiment, nearly three times higher than the males in the female
602 choice experiment. These results compliment previous work showing how butterflies can
603 change their mating behavior in response to social context (Westerman et al. 2014;
604 Westerman et al. 2019). Like many previous monarch studies, we show that females were
605 especially successful at rejecting males (Van Hook 1993; Frey 1999; Oberhauser and Frey
606 1999; Solensky 2004; Solensky and Oberhauser 2004). Moreover, our fine-scale behavioral
607 analysis provides additional evidence that females may be more in control of the coercive
608 mating attempts than previously realized.

609 Overall, we conducted the most comprehensive tests of monarch inbreeding
610 avoidance to date. Our data show that North American migratory monarchs, like many
611 butterflies, readily mate with kin. This study can also be added to the growing list of results
612 showcasing animals that do not avoid inbreeding, which further questions its role in the
613 evolutionary trajectories of populations (Robertson et al. 2020; Pike et al. 2021). Our study is
614 consistent with previous work suggesting active inbreeding avoidance should not be
615 considered the default state within populations, but only evolves under particular ecological
616 scenarios (Pike et al. 2021). Since monarchs have historically experienced relaxed selection

617 to actively avoid mating with kin, they may be particularly vulnerable to inbreeding
618 depression during sharp population declines and increasing population fragmentation. This
619 study highlights another possible threat to the persistence of this iconic butterfly.

620

621 **Declarations of interest:** none.

622

623 **Acknowledgements:** We thank Ella Zhao, Joselyne Chavez and Erik Edwards for help
624 growing plants and raising monarchs, and Ania Majewska and Sonia Altizer for
625 providing wild-caught monarchs for this project. SMV was supported by Emory
626 University, an Institutional Research and Academic Career Development Award
627 (IRACDA), and the Fellowships in Research and Science Teaching (FIRST) postdoctoral
628 program.

629

630 **Funding:** This work was supported by both a National Institutes of Health K12 grant
631 (GM00680), National Science Foundation grant (IOS-1922720) to JdR, and the SURE
632 program at Emory.

633

634

635

636

637

638

639 **References**

640 Agrawal AA. 2017. Monarchs and milkweed: a migrating butterfly, a poisonous plant, and
641 their remarkable story of coevolution. Princeton, NJ: Princeton University Press.

642

643 Andersson M, Simmons LW. 2006. Sexual selection and mate choice. *Trends Ecol Evol.*
644 21:296-302.

645

646 Bates D, Maechler M. 2010. lme4: Linear mixed-effects models using S4 classes. R Package
647 Version 0.999375-999335. <http://CRAN.R-project.org/package=lme4>.

648

649 Blouin SF, Blouin M. 1988. Inbreeding avoidance behaviors. *Trends Ecol Evol.* 3:230-233.

650

651 Bonadonna F, Sanz-Aguilar A. 2012. Kin recognition and inbreeding avoidance in wild
652 birds: the first evidence for individual kin-related odour recognition. *Anim Behav.*
653 84:509-513.

654

655 Brower LP. 1995. Understanding and misunderstanding the migration of the monarch
656 butterfly (Nymphalidae) in North America: 1857-1995. *J Lepid Soc.* 49:304-385.

657

658

659 Brower LP, Oberhauser KS, Boppré M, Brower AVZ, Vane-Wright RI. 2007. Monarch sex:
660 ancient rites, or recent wrongs? *Antenna* 31:12-18.

661

662 Cannon RJC. 2020. Courtship and mating in butterflies. Wallingford, UK: CABI.

663

664 Cayuela H, Léna JP, Lengagne T, Kaufmann B, Mondy N, Konecny L, Dumet A, Vienney A,

665 Joly P. 2017. Relatedness predicts male mating success in a pond-breeding amphibian.

666 Amin Behav. 130:251-261.

667

668 Charlesworth D, Willis JH. 2009. Fundamental concepts in genetics: the genetics of

669 inbreeding depression. Nat Rev Genet. 10:783-796.

670

671 Cresswell KA, Satterthwaite H, Sword GA. 2011. Understanding the evolution of migration

672 through empirical examples. In: Milner-Gulland EJ, Fryxell JM, Sinclair ARE, editors.

673 Animal migration: A synthesis. Oxford, UK: Oxford University Press. p 7-16.

674

675 Crnokrak P, Roff DA. 1999. Inbreeding depression in the wild. Heredity. 83:260-270.

676

677 de Boer RA, Vega-Trejo R, Kotrschal A, Fitzpatrick JL. 2021. Meta-analytic evidence that

678 animals rarely avoid inbreeding. Nat Ecol Evol. <https://doi.org/10.1038/s41559-021-01453-9>.

680

681 de Roode JC, Gold LR, Altizer S. 2007. Virulence determinants in a natural butterfly-parasite

682 system. Parasitol. 134:657-668.

683

684 Delignette-Muller ML, Dutang C. 2015. fitdistrplus: An R package for fitting distributions. J
685 Stat Soft. 64:1-34. <https://www.jstatsoft.org/v64/i04/>.

686

687 Dougherty LR. 2020. Designing mate choice experiments. Biol Rev. 95:759-781.

688

689 Duthie AB, Bocedi G, Reid JM. 2016. When does female multiple mating evolve to adjust
690 inbreeding? Effects of inbreeding depression, direct costs, mating constraints, and
691 polyandry as a threshold trait. Evolution. 70:1927-1943.

692

693 Facon B, Hufbauer RA, Tayeh A, Loiseau A, Lombaert E, Vitalis R, Guillemaud T,
694 Lundgren JG, Estoup A. 2011. Inbreeding depression is purged in the invasive insect
695 *Harmonia axyridis*. Curr Biol. 21:424-427.

696

697 Falco LR. 1998. Variation in male courtship behaviors of the monarch butterfly (*Danaus*
698 *plexippus* L.) at central California overwintering sites. MS thesis. Polytechnic State
699 University, San Luis Obispo, CA, USA.

700

701 Fitzpatrick JL, Evans JP. 2014. Postcopulatory inbreeding avoidance in guppies. J Evol Biol.
702 27:2585-2594.

703

704 Forister ML, Halsch CA, Nice CC, Fordyce JA, Dilts TE, Oliver JC, Prudic KL, Shapiro
705 AM, Wilson JK, Glassberg J. 2021. Fewer butterflies seen by community scientists

706 across the warming and drying landscapes of the American West. *Science*. 371:1042-
707 1045.

708

709 Frankham R. 2010. Inbreeding in the wild really does matter. *Heredity*. 104:124.

710

711 Frey D. 1999 Resistance to mating by female monarch butterflies. In: Hoth J, Merino L,
712 Oberhauser K, Pisanty I, Price S, Wilkinson T, editors. North American conference on
713 the monarch butterfly. Montreal, Canada: Commission for Environmental Cooperation. p
714 79-87.

715

716 Frey D, Leong KLH, Peffer E, Smidt R, Oberhauser K. 1998. Mating patterns of
717 overwintering monarch butterflies (*Danaus plexippus* L.) in California. *J Lepid Soc*.
718 52:84-97.

719

720 Goehring L, Oberhauser KS. 2002. Effects of photoperiod, temperature, and host plant age on
721 induction of reproductive diapause and development time in *Danaus plexippus*. *Ecol*
722 *Entomol*. 27:674.685.

723

724 Green II DA, Kronforst MR. 2019. Monarch butterflies use an environmentally sensitive,
725 internal timer to control overwintering dynamics. *Mol Ecol*. 28:3642-3655.

726

727 Gustafsson KM, Agrawal AA, Lewenstein BV, Wolf SA. 2015. The monarch butterfly
728 through time and space: the social construction of an icon. *BioScience*. 65:612-622.

729

730 Handley LJL, Perrin N. 2007. Advances in our understanding of mammalian sex-biased

731 dispersal. *Mol Ecol*. 16:1559-1578.

732

733 Hedrick PW, Garcia-Dorado A. 2016. Understanding inbreeding depression, purging, and

734 genetic rescue. *Trends Ecol Evol*. 31:940-952.

735

736 Hedrick PW, Kalinowski ST. 2000. Inbreeding depression in conservation biology. *Ann Rev*

737 *Ecol Syst*. 31:139-162.

738

739 Herfindal I, Haanes H, Røed KH, Solberg EJ, Markussen SS, Heim M, Sæther B. 2014.

740 Population properties affect inbreeding avoidance in moose. *Biol Lett*. 10:20140786.

741

742 Hill Jr HF, Wenner AM, Wells PH. 1976. Reproductive behavior in an overwintering

743 aggregation of monarch butterflies. *Amer Mid Nat*. 95:10-19.

744

745 Holveck M-J, Gauthier A-L, Nieberding CM. 2015. Dense, small and male-biased cages

746 exacerbate male-male competition and reduce female choosiness in *Bicyclus anynana*.

747 *Anim Behav*. 104:229-245.

748

749 Hunt J, Breuker CJ, Sadowski JA, Moore AJ. 2008) Male-male competition, female mate

750 choice and their interaction: determining total sexual selection. *J Evol Biol*. 22:13-26.

751

752

753 Hunt J, Sakaluk SK. 2014. Mate choice. In: Shuker DM, Simmons LW, editors. The
754 evolution of insect mating systems. Oxford, UK: Oxford University Press. p. 129-158.

755

756 James DG. 2021. Western North American monarchs: spiraling into oblivion or adapting to a
757 changing environment? *Anim Migr.* 8:19-26.

758

759 James DG, James TS, Seymour L, Kappen L, Russell T, Harryman B, Bly C. 2018. Citizen
760 scientist tagging reveals destinations of migrating monarch butterflies, *Danaus plexippus*
761 (L.) from the Pacific Northwest. *J Lepid Soc.* 72:127-144.

762

763 Jones AG, Ratterman NL. 2009. Mate choice and sexual selection: what have we learned
764 since Darwin? *PNAS.* 106:10001-10008.

765

766 Keller LF, Waller DM. 2002. Inbreeding effects in wild populations. *Trends Eco Evol.* 17:19-
767 23.

768

769 Kokko H, Ots I. 2006. When not to avoid inbreeding. *Evolution.* 60:467-475.

770

771 Leedale AE, Sharp SP, Simeoni M, Robinson EJH, Harchwell BJ. 2018. Fine-scale genetic
772 structure and helping decisions in a cooperatively breeding bird. *Mol Ecol.* 27:1714-
773 1726.

774

775 Milinski M. 2006. The major histocompatibility complex, sexual selection, and mate choice.

776 *Ann Rev Eco Evol Syst.* 37:159-186.

777

778 Mongue AJ, Ahmad MA, Tsai MV, de Roode JC. 2015. Testing for cryptic female choice in

779 monarch butterflies. *Behav Ecol.* 26:386-395.

780

781 Mongue AJ, Tsai MV, Wayne ML, de Roode JC. 2016. Inbreeding depression in monarch

782 butterflies. *J Insect Conserv.* 20:477-483.

783

784 Nagano CD, Sakai WH, Malcolm SB, Cockrell BJ, Donahue JP, Brower LP. 1993. Spring

785 migration of monarch butterflies in California. In: Zalucki MP, editor. *Biology and*

786 *conservation of the monarch butterfly.* Los Angeles, CA: Natural History Museum of Los

787 Angeles County. p. 217-232.

788

789 Oberhauser KS. 1988. Male monarch butterfly spermatophore mass and mating strategies.

790 *Anim Behav.* 36:1384-1388.

791

792 Oberhauser K, Frey D. 1999. Coercive mating by overwintering male monarch butterflies. In:

793 Hoth J, Merino L, Oberhauser K, Pisanty I, Price S, Wilkinson T, editors. *North*

794 *American conference on the monarch butterfly.* Montreal, Canada: Commission for

795 *Environmental Cooperation.* p 67-78.

796

797

798 Pelton EM, Schultz CB, Jepsen SJ, Black SH, Crone EE. 2019. Western monarch population
799 plummets: Status, probable causes, and recommended conservation actions. *Frontiers*
800 *Ecol Evol.* 7:258.

801

802 Pemberton JM 2008. Wild pedigrees: the way forward. *Proc R Soc B.* 275: 613-621.

803

804 Pike VL, Cornwallis CK, Griffin AS. 2021. Why don't all animals avoid inbreeding? *Proc R*
805 *Soc B.* 288:20211045

806

807 Pizzari T, Lovlie H, Cornwallis CK. 2004. Sex-specific, counteracting responses to
808 inbreeding in a bird. *Proc R Soc Lond B.* 271:2115-2121.

809

810 Pliske TE. 1975. Courtship behavior of the monarch butterfly, *Danaus plexippus* L. *Ann*
811 *Meeting Entomol Soc Amer.* 68:143-151.

812

813 Pusey AE. 1987. Sex-biased dispersal and inbreeding avoidance in birds and mammals.
814 *Trends Ecol Evol.* 2:295-299.

815

816 Pusey A, Wolf M. 1996. Inbreeding avoidance in animals. *Trends Ecol Evol.* 11:201-206.

817

818 Puurtinen, M. (2011). Mate choice for optimal (k)inbreeding. *Evolution.* 65: 1501-1505.

819

820 R Development Core Team. 2016. R: A Language and Environment for Statistical
821 Computing. R Foundation for Statistical Computing, Vienna, Austria.

822

823 Reed DH, Lowe EH, Briscoe DA, Frankham R. 2003. Inbreeding and extinction: effects of
824 rate of inbreeding. *Conserv Genet*. 4:405-410.

825

826 Reid JM, Keller LF. 2010. Correlated inbreeding among relatives: occurrence, magnitude,
827 and implications. *Evolution*. 64:973-985.

828

829 Reppert SM, de Roode JC. 2018. Demystifying monarch butterfly migration. *Curr Biol*. 28:
830 R1009-R1022.

831

832 Roberston DN, Sullivan TJ, Westerman EL. 2020. Lack of sibling avoidance during mate
833 selection in the butterfly *Bicyclus anynana*.
834 <https://doi.org/10.1016/j.beproc.2020.104062>.

835

836 Saccheri IJ, Brakefield PM, Nichols RA. 1996. Severe inbreeding depression and rapid
837 fitness rebound in the butterfly *Bicyclus anynana* (Satyridae). *Evolution*. 50:2000-2013.

838

839 Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I. 1998. Inbreeding and
840 extinction in a butterfly metapopulation. *Nature*. 392:491-494.

841

842 Satterfield DA, Maerz JC, Hunter MD, Flockhart DT, Hobson KA, Norris DR, Streit H, de
843 Roode JC, Altizer S. 2018. Migratory monarchs that encounter resident monarchs show
844 life-history differences and higher rates of parasite infection. *Ecol Lett.* 21:1670-1680.

845

846 Satterfield DA, Maerz JC, Altizer S. 2015. Loss of migratory behaviour increases infection
847 risk for a butterfly host. *Proc R Soc B.* 282:20141734.

848

849 Satterfield DA, Villablanca FX, Maerz JC, Altizer S. 2016. Migratory monarchs wintering in
850 California experience low infection risk compared to monarchs breeding year-round on
851 non-native milkweed. *Integrat Compar Biol.* 56:343-352.

852

853 Schultz AJ, Cristescu RH, Hanger J, Loader J, de Villiers D, Frère, CH. 2020. Inbreeding and
854 disease avoidance in a free-ranging koala population. *Mol Ecol.* 29:2416-2430.

855

856 Semmens BX, Semmens DJ, Thogmartin WE, Wiederholt R, López-Hoffman L,
857 Diffendorfer JE, Pleasants JM, Oberhauser KS, Taylor OR. 2016. Quasi-extinction risk
858 and population targets for the Eastern, migratory population of monarch butterflies
859 (*Danaus plexippus*). *Sci Reports.* 6:23265.

860

861 Solensky MJ. 2004. The effect of behavior and ecology on male mating success in
862 overwintering monarch butterflies (*Danaus plexippus*). *J Insect Behav.* 17:723-743.

863

864 Solensky M, Oberhauser K. 2004. Behavioral and genetic components of male mating

865 success in monarchs. In: Oberhauser K, Solensky M, editors. *The monarch butterfly:*

866 *biology and conservation*. Ithaca, NY: Cornell University Press. p. 61-68.

867

868

869 Svärd L, Wiklund C. 1988. Prolonged mating in the monarch butterfly *Danaus plexippus* and

870 nightfall as a cue for sperm transfer. *Oikos*. p. 351-354.

871

872 Szulkin M, Stopher KV, Pemberton JM, Reid JM. 2013. Inbreeding avoidance, tolerance, or

873 preference in animals? *Trends Ecol Evol*. 28:205-211.

874

875

876 Tenger-Trolander A, Kronfrost MR. 2020. Migration behaviour of commercial monarchs

877 reared outdoors and wild-derived monarchs reared indoors. *Proc R Soc B*. 287:20201326.

878

879 Urquhart FA, Urquhart NR. 1978. Autumnal migration routes of the eastern population of the

880 monarch butterfly (*Danaus p. plexippus* L.; Danaidae; Lepidoptera) in North America to

881 the overwintering site in the Neovolcanic Plateau of Mexico. *Can J Zool*. 56:1759-1764.

882

883 Van Hook T. 1993. Non-random mating in monarch butterflies overwintering in Mexico. In:

884 Malcolm S, Zalucki M, editors. *Biology and Conservation of the Monarch Butterfly*. Los

885 Angeles, CA: Natural History Museum of Los Angeles County, Science Series 38. p. 49-

886 60.

887

888 Waser PM, Austad SN, Keane B. 1986. When should animals tolerate inbreeding? *Am Nat.*
889 128:529-537.

890

891

892 Westerman EL, Antonson N, Kreutzmann S, Peterson A, Pineda K, Kronforst MR, Olson-
893 Manning CF. 2019. Behaviour before beauty: signal weighting during mate selection in
894 the butterfly *Papilio polytes*. *Ethol.* 125:565-574.

895

896 Westerman EL, Drucker CB, Monteiro A. 2014. Male and female mating behavior is
897 dependent on social context in the butterfly *Bicyclus anynana*. *J Insect Behav.* 27:478-
898 495.

899

900 Zalucki MP, Clarke AR. 2004. Monarchs across the Pacific: the Columbus hypothesis
901 revisited. *Biol J Linn Soc.* 82:111-121.

902

903 Zhan S, Zhang W, Niitepold K, Hsu J, Haeger JF, Zalucki MP, Altizer S, de Roode JC,
904 Reppert SM, Kronforst MR. 2014. The genetics of monarch butterfly migration and
905 warning colouration. *Nature.* 514: 317-321.

906

907

908

909

910 **Tables**

911 **Table 1.** Summary of mixed models from the female choice experiment. The intercept for all
 912 models was set the mating performance in trials where all three butterflies were unrelated
 913 (Figure 1c). We modeled six measures of mating performance as a function of male
 914 relatedness (sibling vs. unrelated), trial type (mixed vs. same relatedness) and their
 915 interaction. We included both female mass and her sexual size dimorphism (SSD) with each
 916 male as additional factors. See Methods for details on random effect structure.

	Behavioral measure	Fixed effects	Estimate	Std. Error	Test value	P value
a. GLMM n = 72 obs. from 36 cages	Number of attempts	Intercept	1.49	1.49	1.00	0.32
		Relatedness	-0.43	0.45	-0.96	0.34
		Trial type	-0.23	0.33	-0.70	0.49
		Female mass	-2.20	2.94	-0.75	0.45
		<u>SSD</u>	-0.02	0.01	-1.87	<u>0.06</u>
		Relatedness x Trial type	0.69	0.52	1.32	0.19
b. GLMM n = 53 obs. from 36 cages	Attempt success rate	Intercept	-11.58	5.45	-2.12	0.03
		Relatedness	21.27	9072.27	0.00	1.00
		Trial type	1.58	1.45	1.09	0.28
		Female mass	26.15	11.67	2.24	0.03
		<u>SSD</u>	0.15	0.06	2.78	0.01
		Relatedness x Trial type	-22.71	9072.27	-0.00	1.00
c. GLMM n = 81 obs. from 36 cages	Length of attempts	Intercept	0.97	1.52	0.64	0.52
		Relatedness	-0.08	0.48	-0.17	0.86
		Trial type	-0.07	0.37	-0.19	0.85
		Female mass	-0.01	3.05	-0.00	1.00
		SSD	-1.15	1.00	-1.15	0.25
		Relatedness x Trial type	-0.09	0.57	-0.15	0.88
d. GLMM n = 138 obs. from 69 cages	Probability of copulating	Intercept	1.72	2.59	0.66	0.51
		Relatedness	-0.92	0.69	-1.33	0.18
		Trial type	0.03	0.65	0.05	0.96
		Female mass	-0.55	5.02	-0.11	0.91
		SSD	-0.02	0.02	-1.12	0.26
		Relatedness x Trial type	0.39	0.86	0.45	0.65
e. GLMM n = 138 obs. from 69 cages	Number of copulations	Intercept	0.43	0.86	0.50	0.62
		Relatedness	-0.09	0.27	-0.35	0.73
		Trial type	0.08	0.23	0.33	0.74
		Female mass	-0.50	1.64	-0.30	0.76
		<u>SSD</u>	-0.01	0.00	-1.81	<u>0.07</u>
		Relatedness x Trial type	0.02	0.33	0.05	0.96
f. GLMM n = 70 obs. from 36 cages	Length of copulations	Intercept	3.12	0.76	4.12	<0.001
		<u>Relatedness</u>	0.40	0.23	1.72	<u>0.09</u>
		Trial type	0.23	0.18	1.27	0.20
		Female mass	-0.70	1.51	-0.46	0.64
		SSD	0.57	0.49	1.15	0.25
		Relatedness x Trial type	-0.37	0.27	-1.35	0.18

Underlined values indicate $0.05 < P < 0.10$; **Bold values** indicate $P < 0.05$

917 **Table 2.** Summary of mixed models from the male choice experiment. The intercept for all
 918 models was set the mating performance in trials where all three butterflies were unrelated
 919 (Figure 1f). We modeled six measures of mating performance as a function of female
 920 relatedness (sibling vs. unrelated), trial type (mixed vs. same relatedness) and their
 921 interaction. We included both male mass and his sexual size dimorphism (SSD) with each
 922 female as additional factors. See Methods for details on random effect structure.

Behavioral measure	Fixed effects	Estimate	Std. Error	Test value	P value
a. Number of attempts GLMM n = 52 obs. from 26 cages	Intercept	1.32	1.05	1.26	0.21
	Relatedness	0.34	0.48	0.72	0.47
	Trial type	-0.52	0.39	-1.34	0.18
	Male mass	-0.22	2.27	-0.10	0.92
	SSD	-0.01	0.00	-1.12	0.26
	Relatedness x Trial type	0.06	0.52	0.11	0.91
b. Attempt success rate GLMM n = 43 obs. from 26 cages	Intercept	2.26	1.80	1.26	0.21
	Relatedness	0.34	0.83	0.42	0.68
	<u>Trial type</u>	1.23	0.71	1.74	<u>0.08</u>
	Male mass	-9.92	4.22	-2.35	0.02
	SSD	0.01	0.01	0.71	0.48
	Relatedness x Trial type	-0.59	0.98	-0.60	0.55
c. Length of attempts GLMM n = 169 obs. from 26 cages	Intercept	1.32	0.93	1.42	0.16
	Relatedness	1.42	0.36	3.91	<0.001
	Trial type	-0.14	0.36	-0.38	0.70
	Male mass	-2.68	2.05	-1.31	0.19
	SSD	0.88	0.55	1.58	0.11
	Relatedness x Trial type	-1.38	0.49	-2.80	0.005
d. Probability of copulating GLMM n = 104 obs. from 52 cages	Intercept	0.58	1.55	0.38	0.71
	Relatedness	0.03	0.72	0.04	0.97
	<u>Trial type</u>	1.15	0.62	1.86	<u>0.06</u>
	Male mass	-3.74	3.21	-1.16	0.24
	SSD	0.01	0.01	0.68	0.50
	Relatedness x Trial type	-0.68	0.92	-0.74	0.46
e. Number of copulations GLMM n = 104 obs. from 52 cages	Intercept	0.03	1.01	0.02	0.98
	Relatedness	0.01	0.52	0.02	0.98
	<u>Trial type</u>	0.81	0.40	2.02	0.04
	Male mass	-2.67	2.13	-1.25	0.21
	SSD	0.01	0.01	0.97	0.33
	Relatedness x Trial type	-0.52	0.64	-0.82	0.41
f. Length of copulations LMM n = 21 obs. from 14 cages	Intercept	28.64	9.20	3.11	0.006
	Relatedness	-5.97	4.58	-1.30	0.21
	Trial type	-1.84	3.64	-0.51	0.62
	Male mass	-25.47	22.73	-1.12	0.28
	SSD	-3.15	6.83	-0.46	0.65
	Relatedness x Trial type	1.67	5.11	0.33	0.75

Underlined values indicate $0.05 < P < 0.10$; **Bold values** indicate $P < 0.05$

923

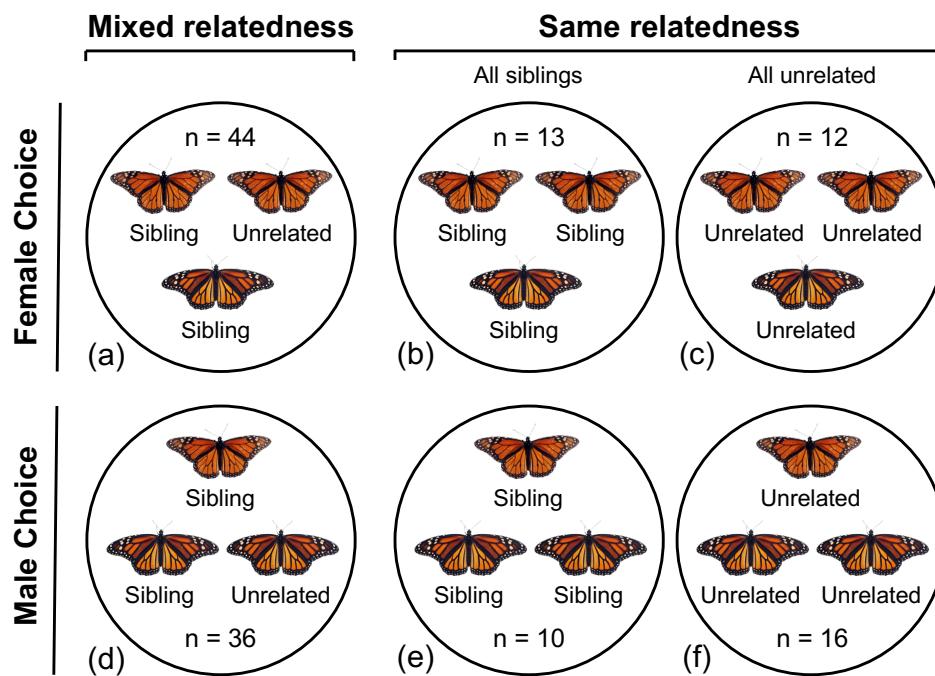
924 **Figure captions**

925 **Figure 1.** Experimental design. We conducted two experiments to test the role of relatedness
926 on both female (a-c) and male (d-f) mate choice. For each experiment, there were three types
927 of choice trials: mixed, all sibling, and all unrelated. See text for details. For all trial
928 schematics (a-f), males are on top, and females are on bottom.

929

930 **Figure 2.** Results for the female choice experiment. For each panel (a-f), the x-axis refers to
931 the trial type. In mixed relatedness trials (Figure 1a), females are presented simultaneously
932 with one sibling male and one unrelated male. In same relatedness trials, females are
933 presented with either two sibling males (Figure 1b) or two unrelated males (Figure 1c). Light
934 points/bars indicate the mating performance when the female engaged with a sibling, and
935 dark points/bars indicate the mating performance when she engaged with an unrelated male.
936 The fractions on top of the bars of panel (d) indicate the number of males that copulated out
937 of the total that were presented to the females. See Table 1 for mixed model results from each
938 panel.

939


940 **Figure 3.** Results for the male choice experiment. For each panel (a-f), the x-axis refers to
941 the trial type. In mixed relatedness trials (Figure 1d), males are presented simultaneously
942 with one sibling female and one unrelated female. In same relatedness trials, males are
943 presented with either two sibling females (Figure 1e) or two unrelated females (Figure 1f).
944 Light points/bars indicate the mating performance when the male engaged a sibling, and dark
945 points/bars indicate the mating performance when he engaged an unrelated female. The
946 fractions on top of the bars of panel (d) indicate the number of females that copulated out of

947 the total that were presented to the males. See Table 2 for mixed model results from each
948 panel.

949

950 **Figures**

951 **Figure 1**

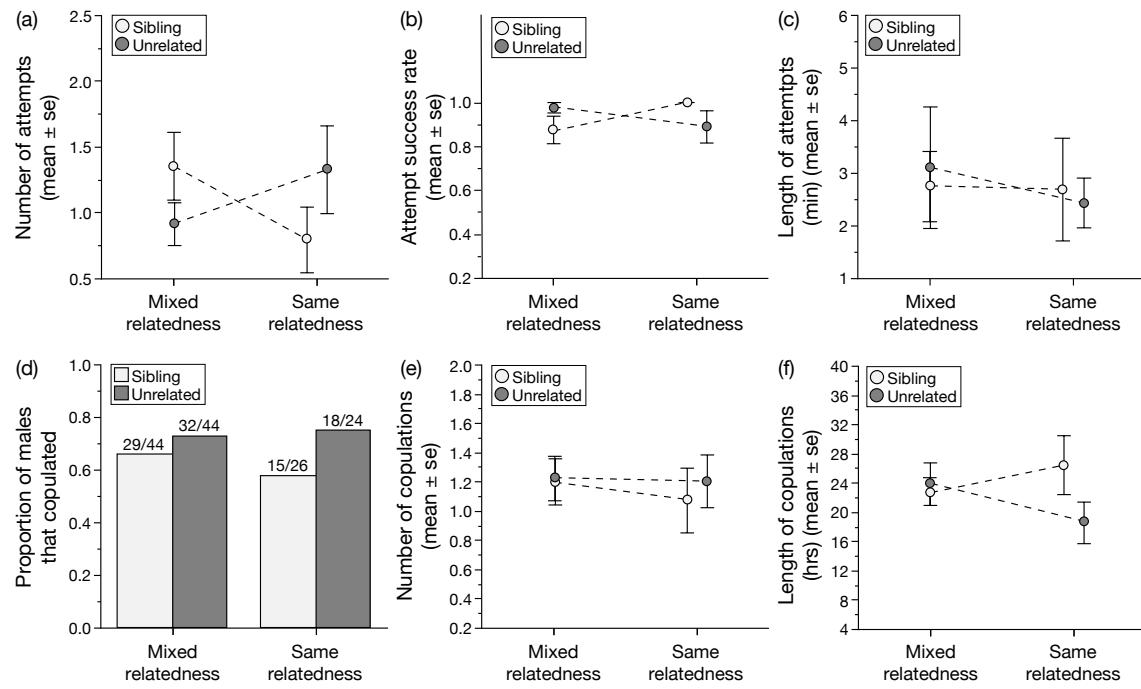
952

953

954

955

956


957

958

959

960

961 **Figure 2**

962

963

964

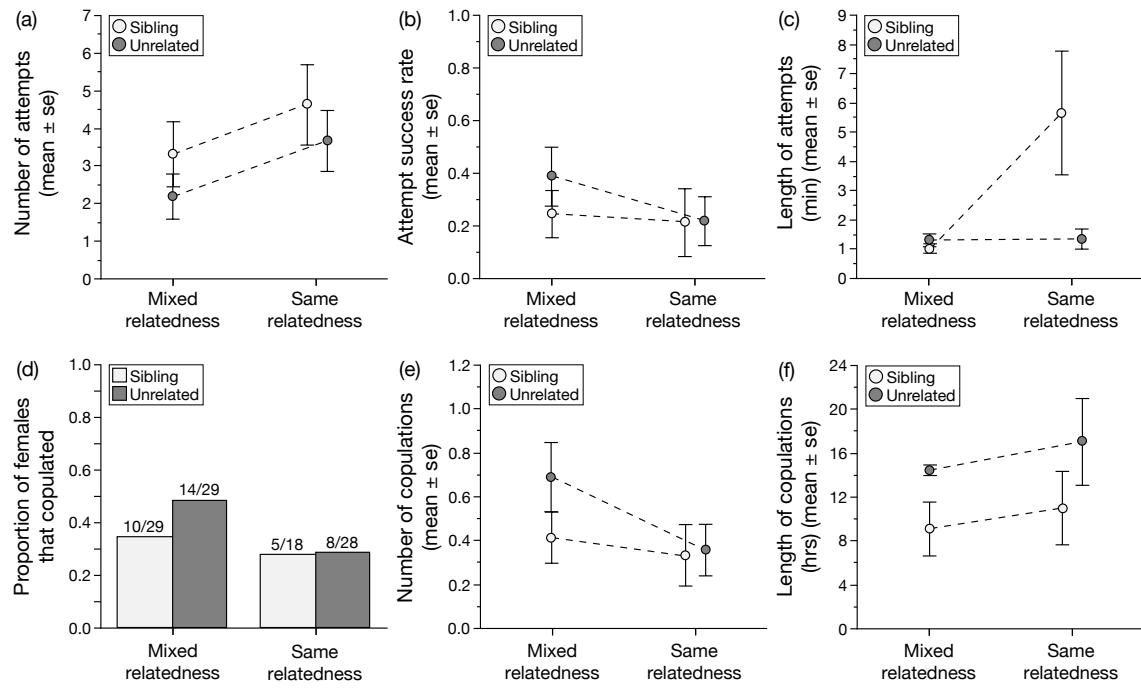
965

966

967

968

969


970

971

972

973

974

Figure 3