Substituent-enhanced Intermolecular Catalytic Eneyne Metathesis for Efficient 1,3-Diene Synthesis

Kevin Basemann, Bradley M. Schmidt, Aaron D. Sadow*

Department of Chemistry, Iowa State University, Ames, IA 50011, United States

ABSTRACT. The appropriate reaction conditions for ruthenium-catalyzed ene-yne metathesis are substantially affected by the substituents and functional groups on the terminal alkyne reactant. We have identified that two distinct methods, utilizing a single precatalyst IMes(Cl)₂Ru(=CHC₆H₄O_iPr) (1; IMes = 1,3-dimesitylimidazol-2-ylidene), are needed to achieve high turnover numbers and good yields in ene-yne metathesis reactions of heteroatom-free or functionalized terminal alkynes and ethylene. The wide-ranging yields of 1,3-dienes from ene-yne metathesis of a series of terminal alkynes under a single set of benchmark conditions, namely 3 mol % 1, toluene, 75 °C, at 20 bar C₂H₄, identified groups of highly, moderately, or poorly performing alkynes. Studies of the effects of reaction conditions on yields, turnover numbers, and effective rates in reactions of alkynes from these groups lead to distinct optimized approaches for efficacious syntheses. Quantitative yields are obtained using 0.6 mol % 1, one fifth of a benchmark loading, in preparative scale experiments under conventional conditions, in which the highly efficient alkyne and 1 are mixed, followed by pressurization with ethylene. In

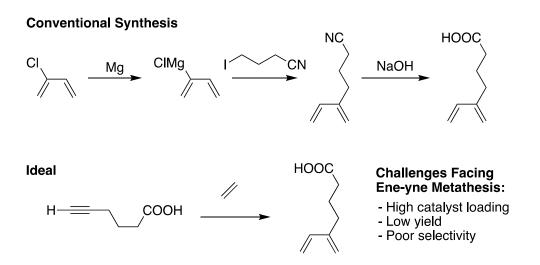
contrast, the metered addition method, in which a moderately or poorly performing alkyne and a solution of **1** are slowly and separately added to an ethylene-pressurized reaction vessel, can improve turnover numbers up to 1500% to access 2-substituted-1,3-diene containing carboxylic acids, carbonyls, amines, epoxides, or halides in a single step. Moreover, increased effective rates of reactions for functionalized alkynes under dilute conditions, and comparisons with heteroatom-free alkyne conversions, suggests that the former react more rapidly than the latter in ene-yne metathesis, but their transformations are also more sensitive to catalyst deactivation.

keywords: ene-yne metathesis, Hoveyda-Grubbs catalyst, 1,3-dienes, terminal alkynes, metered addition

Graphic for Table of Contents:

Heteroatom Alkyne Substituents

Enhance Ene-yne Metathesis Rates But Disable the Catalyst


Introduction

The versatile reactivity of 1,3-dienes in cycloadditions, hydrosilylation, hydroamination, and hydroalkoxylation,¹⁻⁵ as well as addition-polymerizations⁶⁻¹⁰ enables important chemical and materials syntheses.¹¹ Unfortunately, classical preparations of 1,3-dienes can be problematic, often requiring large excesses of reagents, involving hazardous reactants, and generating large quantities of byproducts. For example, reductions of 1,4-dihaloalkenes to give 1,3-dienes require super-stochiometric quantities of zinc, while chloroprene, synthesized via acetylene process, is limited by considerable safety concerns. Conventional syntheses are sufficiently limiting that Kumada-type cross coupling of enol phosphates and vinyl Grignard reagents, producing magnesium phosphate salt by-products, appears promising as a recently advanced approach,^{12, 13} especially given myriad challenges facing intermolecular ene-yne metathesis.

As a mild and atom-economical catalytic reaction to create new C–C bonds by combination of alkenes and alkynes,¹⁴ ene-yne metathesis could potentially provide 1,3-dienes at preparative scale from readily available reactants (see the representative example in Scheme 1). Moreover, intramolecular ene-yne metathesis reactions, catalyzed by ruthenium carbenes, efficiently give cyclic 1,3-dienes with high turnover numbers (TON = moles product/moles catalyst) and turnover frequencies, good stereo- and regio-selectivity for the desired product, and tolerance of Si–O, ester, halide, carboxylic acid, ether and amine functional groups present in the reactants.¹⁵⁻¹⁸ Contrasting these catalytic cyclizations, intermolecular ene-yne metathesis is underdeveloped in the context of sustainable syntheses of dienes. High catalyst loading (2.5-10 mol %), often required to overcome low yields and catalyst decomposition, leads to low TON and inefficient use of the precious ruthenium catalyst, limiting larger scale preparations.¹⁹⁻²⁵ The requirement of high catalyst loading may be exacerbated by reactive moieties such as peroxides,²⁶ resulting in

seemingly poorer tolerance of some functional groups.²⁷ In addition, complications from alkene metathesis and alkyne polymerization side reactions, and limited control over regioselectivity have impeded the broad application of intermolecular ene-yne metathesis in synthetic applications.²⁸

Scheme 1. Representative example of proposed synthesis of 1,3-dienes via intermolecular eneyne metathesis reactions compared to its conventional synthesis

Nonetheless, the success of the intramolecular variant, the synthetically useful nature of metathesis reactions, 29 along with a driving need for sustainable, versatile diene synthesis have motivated studies to advance intermolecular ene-yne metathesis. $^{20, 21, 30-34}$ Kinetics provide considerably guidance. For example, zero-order dependence on terminal alkyne concentration (rate \propto [HCCR]⁰; R = CH(Me)OBz) and first-order dependence on internal alkyne concentration (rate \propto [HCCR']¹; R = CH₂OAc) reveals that these two species react via inequivalent mechanisms in reactions catalyzed by IMesCl₂Ru(=CHC₆H₄O*i*Pr) (1; IMes = 1,3-dimesitylimidazol-2-ylidene). Thus, preparative scale experiments should be guided by the

principle that terminal alkyne concentrations should not influence the performance of the catalyst. In addition, relative rates of reaction of the precatalyst and either ethylene³⁵ or alkyne, as a function of substitution and reaction conditions, could dramatically affect the catalyst activation process. Moreover, studies of the decomposition of the catalysts aid in identifying concentration dependences and the effects of specific functional groups.^{27, 36 37, 38} However, many of the rules governing the performance of many ene-yne reactions are not yet established, and anticipating behavior a priori is difficult, as exemplified by the acceleration of some transformations by ethylene, the simplest alkene, whereas other ene-yne metathesis reactions are inhibited by ethylene.³⁹⁻⁴¹

We sought to identify catalytic conditions for ene-yne metathesis that would be effective on a preparative scale, as well as frame the effects of reaction conditions in the context of proposed ene-yne metathesis mechanisms to provide useful general guidance for the synthesis of 2-functionalized butadienes from terminal alkynes and ethylene. In this study, we investigate Rucatalyzed ene-yne metathesis reactions of a series of terminal alkynes with ethylene to establish general strategies leading to high TON and high yield. TON is used as the metric for catalyst efficiency (we note that efficiency is typically defined as the ratio of output to input), used here as the amount of product formed to the amount of catalyst in the reactor after a specified time. Yield characterizes the efficiency of the alkyne itself in preparations of 2-butadienes. The reaction models from mechanistic studies described above, as well as examples of ene-yene metathesis of functional alkynes with high catalyst loading, ^{21, 22, 30} guided our initial choices of reaction conditions, but we quickly discovered unique responses of several alkynes. Nonetheless, a few conditions such as temperature, reactant concentrations, and addition procedures have outsized influence on catalytic performance leading to dramatically improved yields, TON after

fixed times, and functional group tolerance. Using a qualitative analysis of these observations from many alkynes, as well as considering the established mechanistic data for catalyst activation and deactivation, we have proposed molecular-based interpretations of the catalytic behavior. Using a single pre-catalyst, the method giving highly efficient ene-yne metathesis of ethylene and heteroatom-free alkynes is remarkably ineffective for functionalized alkynes, whereas optimal conditions for conversion of the latter alkynes give poor TON and poor yields for the former. Initial choices of conditions for previously untested alkynes may be guided by these empirical observations. The observed reactivity trends also lead to conclusions about the effects of functional groups on rates of ene-yne metathesis reactions.

Results

Benchmarking performance of 1 in ene-yne metathesis. The most studied catalysts for ene-yne metathesis are based on ruthenium carbenes. We chose to employ the second generation Hoveyda-Grubbs catalyst 1 to avoid the competing, inhibitory coordination of phosphine ligands, even though fewer studies utilize the 1 in ene-yne metathesis reactions compared to other ruthenium carbene catalysts and nitro-substituted analogues of 1 show higher reactivity in ring-closing ene-yne metathesis. Quantitative baseline screening experiments in a multi-well reactor system (Figure S1-S2) involved an array of 12 alkynes (0.25 M) mixed with 3 mol % 1 (0.0075 M) in toluene (4 mL), pressurized with ethylene (20 bar), and heated at 75 °C for 24 h (eq 1).

R
$$\longrightarrow$$
 H + C₂H₄ \longrightarrow toluene \longrightarrow Xa \longrightarrow 75 °C, 24 h \longrightarrow Xb \longrightarrow X = 2-14

The yields, which range from quantitative down to 0%, and TON highlight the finicky nature of these transformations (Table 1). For example, the significant variations in yields, even for reactants with similar functional groups (e.g., 3,3-dimethyl-1-butyne vs. 1-hexyne, or 4-pentynoic acid vs. 5-hexynoic acid), reveal the great substrate-dependent sensitivity of the catalysis that is not captured in studies on a single model substrate. From these experiments, the alkynes were grouped into highly-efficient (>75%), moderately-efficient (75–25%), and poorly-efficient classes (<25%) for the next phase of study, using much lower catalyst loading (0.6 mol %).

Table 1. Ene-yne metathesis of alkynes and ethylene grouped according to butadiene yield

Alkyne ^a	Yield (%) ^b	\mathbf{TON}^b				
Highly efficient alkynes						
2b	>99	33				
3a → 3b	82	27				
Br H Ab	76	25				
Moderately efficient alkynes						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59	20				
→ H → 6b	44	15				

H—————————————————————————————————————	26	9 c
Poorly performing	g alkynes	
HO_2C HO_2C Bb	21	7
HO_2C \longrightarrow HO_2H \bigcirc	5	2
0 N 0 10a 10b	1	0
0 11a ——H 11b	n.d. ^c	n.d. ^c
H_2N H_2	n.d. ^c	n.d. ^c
$\begin{array}{c c} & H_2N \\ \hline & & H \end{array} \longrightarrow \begin{array}{c} -NH_2 \\ \hline & 13a \end{array}$	n.d. ^c	n.d. ^c

^a Reaction conditions: 1 mmol alkyne, 3 mol % **1**, toluene (4 mL), C₂H₄ (20 bar), 75 °C, 325 rpm vortex mixing, 24 h in a multiwell reactor (array of 8 mL vials). ^b Yield and TON determined by GC-MS. ^c0.5 mmol dialkyne used, with 0.03 mmol **1** (3 mol % relative to alkyne, TON is defined by the number of ene-yne metathesis steps). ^c not detected

Highly efficient alkynes. Intermolecular ene-yne metathesis of the bulky and heteroatom-free alkyne 2a and ethylene is the most straightforward of the conversions. At a catalyst loading of 0.6 mol % 1, reaction of 2a and ethylene either at 35 °C and 40 bar of ethylene or at 75 °C and 10 bar of ethylene pressures reproducibly gives butadiene 2b in high yield (90 to >99%) and TON (150 to 167, the maximum possible at 0.6 mol % 1). That is, this transformation and its catalytic intermediates are insensitive to a wide range of reaction conditions, and this

transformation could not provide additional insight to guide improvements. In contrast, conversions of the other high- or moderate-yielding alkynes in Table 1 are sensitive to the temperature, ethylene pressure, concentration, and rate of catalyst and/or alkyne addition.

Although ene-yne metathesis of **3a** and ethylene is efficiently catalyzed by 0.6 mol % **1** under 5.1 mmol-scale batch conditions (eq 2), the TON of 138 is below the ideal value of 167 at this catalyst loading (Table 2, entry 1).

Based on the assumption that high alkyne and ruthenium concentrations accelerate catalyst deactivation, addition of alkyne and the ruthenium pre-catalyst to an ethylene-pressurized, preheated reactor using a syringe-pump was investigated (identified in this paper as meteredaddition in contrast with conventional conditions, in which catalyst and alkyne are mixed followed by addition of ethylene and heating). Metered-addition decreases the contact time of pre-catalyst and alkyne prior to initiation of the reaction and decreases the concentration of active ruthenium in the reactor (assuming short lifetime for the active catalyst). Instead, this metered-addition approach leads to lower TONs for ene-yne metathesis of 3a and ethylene over 100 mins (40 min of addition and 60 min after complete mixing of catalyst and reactant) compared to conventional conditions (90 mins of complete mixing). Although equivalent concentrations of reactants over the reaction times, needed for a perfect direct comparison of these two conditions, are not possible, an experiment with an even slower metered-addition of catalyst and alkyne (0.1 mL·min⁻¹; 200 min of addition, 60 min after complete mixing of catalyst and reactant) gives poorer yield than faster metered addition (0.5 mL min⁻¹). That is, this conversion does not benefit from metered addition. Finally, higher yields of the triene product

and higher TON are obtained with lower ethylene pressure in metered addition reactions. In fact, the highest yield (97%) and the highest TON (162) are obtained at lower ethylene pressure (10 bar) and higher temperature with conventional conditions.

Table 2. Ene-yne metathesis of 1-ethynylcyclohexene (3a) and ethylene

Entry	Temperature	Ethylene Pressure	Conditions	Yield	TON
1	75 °C	40 bar	conventional a	83%	138
2	75 °C	40 bar	metered addition b	48%	80
3	75 °C	20 bar	metered addition b	63%	105
4	75 °C	10 bar	metered addition b	83%	138
5 ^c	75 °C	10 bar	conventional a	97%	162

^a Conventional conditions: 1-ethynylcyclohex-1-ene and 0.6 mol % 1 are dissolved in toluene (20 mL). Reactor is pressurized with C₂H₄ and heated for 90 min. ^b Metered Addition: Reactor containing toluene (20 mL) is pressurized with C₂H₄. 1-ethynylcyclohex-1-ene and 0.6 mol % 1 dissolved in toluene are added at 0.5 mL/min and allowed to react for 60 min.

Moderately effective alkynes. The reaction of 1,7-octadiyne 7a and ethylene could provide the desirable bis(diene) product (7b) from two sequential ene-yne metathesis steps or form side products, depending on rates of cyclization versus reaction with ethylene. Under the baseline conditions, mixtures of 7b, diene-alkyne (7c), and a cyclized triene (7d) are obtained (eq 3). The mono-diene 7c was initially assumed to be an intermediate that could form either 7b or 7d as final products, with selectivity affected by temperature, ethylene pressure, or concentration of catalyst precursor 1 and/or 7a, with behavior following that of 2a or 3a.

The lower ethylene pressure conditions developed for 3a also give higher conversion of 7a (74%, corresponding to 196 individual ene-yne metathesis steps) than obtained from the baseline study (26%); however, selectivity for 7b is poor (Table 3). A few of the typical reaction parameters, including lower temperature, longer reaction times, or more concentrated reaction mixtures do not provide satisfactory selectivity for 7b. In contrast to the behavior of 3a, higher ethylene pressure (40 bar) increases the conversion of 7a (>95%) and the yield of 7b. The side product 7d, however, is formed with equivalent selectivity under low and high ethylene pressures, ruling out the initial mechanistic hypothesis that 7c is a common intermediate on the paths to 7b and 7d. Instead, metered addition of 7a and 1 (0.1 mL/min over 110 min) to the ethylene-pressurized and pre-heated reactor provides 7b and 7c in a 1:1 ratio, albeit with moderate alkyne conversion (58%), whereas 7d was not detected. Efficient (166 TON), high yielding and selective synthesis of the bis(diene) product (>95%) is accomplished with longer reaction time. In summary, higher ethylene pressure and temperature provide higher conversion of 7a and higher yield of 7b, while low concentrations of 7a and catalyst 1 give higher selectivity for 7b and 7c compared to 7d.

Table 3. Ene-yne metathesis of **7a** and ethylene, catalyzed by **1**

Temp.	Ethylene pressure	Conditions	Total Time	7a Conversion	7b	7c	7d
75	10 bar	conventional a	90 min	74%	31%	41%	28%
35	10 bar	conventional a	90 min	42%	19%	57%	24%
35	10 bar	conventional a	190 min	50%	22%	54%	24%
35	40 bar	conventional a	190 min	>95%	62%	12%	26%
35	40 bar	metered addition ^b	190 min	58%	52%	47%	n.d. ^c
35 ^d	40 bar	metered addition ^b	380 min	>95%	>95%	n.d.	n.d.

^a Conventional conditions:1,7-Octadiyne and **1** are dissolved in toluene (20 mL), C₂H₄ is added, and the reactor is heated for 90 min. ^b Metered addition: Reactor containing toluene (20 mL) and C₂H₄ is heated to reaction temperature, then toluene solutions of 1,7-octadiyne and **1** are added at 0.1 mL/min. ^c not detected by GC. ^d optimized condition.

Poor yielding alkynes. Intermolecular ene-yne metathesis of glycidal propargyl ether **11a** and ethylene (eq 4) employed metered addition of catalyst **1** to overcome the undetectably low conversion under the baseline conditions in Table 1.

Investigations using metered catalyst addition reveal that high catalyst TON comes at the expense of yield. Experiments with lower total amount of catalyst afford higher efficiency, for example, 1 or 0.01 mol % 1 afford TON of 98 and 370, respectively; however, the former provides >98% yield whereas the latter affords only 3.7% yield. Investigation of a range of concentrations of 1 and 11a reveal that highest TON is obtained with the lowest concentrations of both 11a and 1 (Table 4). Although these catalytically efficient conditions are not practical for

synthesis because catalytic yield and theoretical yields are low, the results suggest that lower concentrations accessed through metered addition and/or dilute reaction conditions could provide both high TON and high yield. For example, metered addition of 1 improves both TON and yield two-fold, and metered addition of both 1 and 11a gives a three-fold improvement. Slower metered addition of 1 and 11a, as well as slightly higher loading provides a reasonable compromise of optimal yield and TON. This idea proves useful for ene-yne metathesis of ethylene with 11a as well as the other poor-yielding functionalized alkynes.

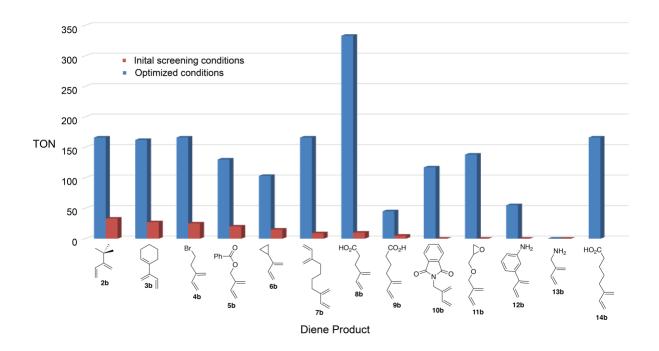
Table 4. Ene-yne metathesis of glycidal propargyl ether (11a) and ethylene

[11a] ₀ (M)	[1] ₀ (mM) (mol%)	Method ^a	% Yield ^b	TON
0.37	3.7 (1)	A	>98 (4.46 mmol); 66% ^c	98
0.37	0.037 (0.01)	A	3.7 (0.16 mmol)	370
0.37	0.37 (0.1)	В	7.4 (0.33 mmol)	74
0.37	0.37 (0.1)	A	14 (0.62 mmol)	140
0.37	0.37 (0.1)	С	23 (1.03 mmol)	230
0.42	2.52 (0.6)	D	83 (4.15 mmol)	138

^aReaction Conditions: **A**: The reactor was charged with **11a** (12 mL) solution, then the reactor was sealed, pressurized with ethylene (40 bar) and heated (75 °C). Catalyst **1** (as a solution in toluene, 12 mL) was added into the pressurized reactor at a rate of 0.5 mL/min over 24 min, and the mixture was stirred for 60 min. **B**: *Conventional conditions*. The reactor was charged with **11a** (12 mL in toluene) and **1** (12 mL in toluene). The reactor was sealed, pressurized with ethylene (40 bar), and heated to 75 °C for 124 min. **C**: Toluene (2 mL) was added to the (empty) reactor, which was sealed, pressurized with ethylene (40 bar) and heated to 75 °C. Solutions of **11a** (11 mL) and **1** (11 mL) were each added at a rate of 0.5 mL/min over 22 min to the reactor. **D**: The reactor was pressurized with ethylene (40 bar) and heated to 75 °C. **11a** (12 mL in toluene) and **1** (12 mL in toluene) were added at a rate of 0.1 mL/min over 110 min. ^b GC yield. ^c Isolated yield.

These metered addition methods are also critical for conversions of pentynoic acid **8a** (eq 5), improving the TON from 7 to 78.

Unfortunately, the yields are poor at ca. 8%. Lower temperature and slower metered addition of 1 and 8a (0.1 mL/min) give a small increase in yield and TON (Table 5). Remarkably, a positive non-linear response to increased catalyst loading from 0.1 to 0.3 mol % gives higher yield (74%) and increased TON (250), and full conversion and the maximum potential TON are obtained with 0.6 mol % 1. Further diluted reaction mixtures, by adding toluene (20 mL) to the reactor prior to initiating the catalysis, give quantitative conversion at 0.3 mol % catalyst, corresponding to a TON of 333 and 99% yield.


Table 5. Ene-yne metathesis of pentynoic acid (8a) and ethylene^a

Temperature	mol %	Addition Rate (mL/min.)	Addition Time (min.)	% Yield ^c	TON
75 °C	0.1	0.5	22	7.8	78
35 °C	0.1	0.5	22	10	100
35 °C	0.1	0.1	110	17	170
35 °C	0.3	0.1	110	74	250
35 °C	0.6	0.1	110	>99 (78.3) ^d	167
35 °C ^b	0.3	0.1	110	>99% (72.3) ^d	333

^aPentynoic acid (0.5 g) and 0.1 mol % **1**, added concurrently to a preheated and C_2H_4 -pressurized reactor; theoretical [product] = 0.21 M, theoretical yield = 5.1 mmol. ^b Reactor

contained 20 mL toluene prior to pressurizing with ethylene. ^cDetermined by GC-MS. ^dIsolated yield.

The optimization of reaction conditions for the ene-yne metathesis affords up to a 10-fold reduction in catalyst loading, compared to the original conditions in Table 1, while providing quantitative yields (illustrated in Figure 1). In three examples with a single pre-catalyst, the reactions are improved from no detectable products to providing the diene product on preparative scale. This increase in catalyst efficiency (Table S5) is evaluated by taking the difference in TON between optimized and the baseline in Table 1 (improved TON) that ranges from 40 to >300 or as percentage.

Figure 1. TON with optimized ene-yne metathesis conditions versus initial screening conditions for 13 terminal alkynes and ethylene.

Discussion

Higher catalytic TON, rates, and yields are accessed in ene-yne metathesis reactions of a wide range of terminal alkynes by matching the alkyne substrate to appropriate reaction conditions (Table 6). Importantly, two methods emerge. In *conventional conditions*, catalyst and alkyne are premixed in the unconditioned reactor, which is subsequently heated to elevated temperatures (75 °C) and ethylene is introduced at a moderate 10 bar. In *metered addition*, the reactor is preconditioned at 35 °C with ethylene at 40 bar and solvent, and then the alkyne and catalyst are added slowly, separately, and concurrently. Conventional conditions are effective for conversion of *tert*-butyl-substituted 2a, cyclohexenyl-substituted 3a, and cyclopropyl-containing 6a. In contrast, the optimal performance of 1 in conversions of alkynyl acid 8a and epoxide 11a, halide-containing 4a, heptynoic acid (14a), benzoate 5a, and phthalimide 10a generally benefit from metered addition. The conversions of the latter group of alkynes are much poorer under conventional conditions. For example, yield of 4a is 75% poorer under conventional conditions than metered addition. Likewise, the yields obtained using the former group of alkynes in ene-yne metathesis are poorer under metered addition.

Table 6. Substrate-specific conditions for improved ene-yne metathesis

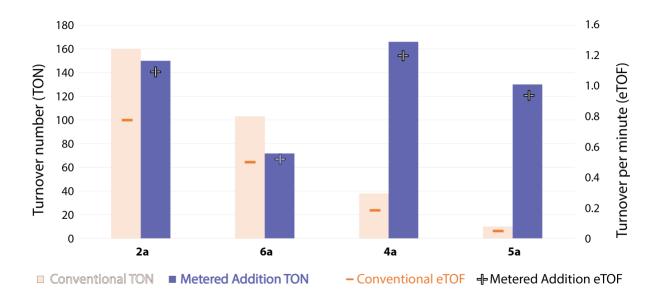
		Conventional con	nditions	Metered Addition	ı
	Addition method	Ethylene added to alkyne and catalyst		Alkyne and catalyst added to ethylene-pressurized reactor	
	Pressure	10 bar		40 bar	
	Temperature	75 °C		35 °C	
Alkyne		Yield (%)	TON	Yield (%)	TON
2a	<u>=</u> H	96	160	90	150
66	≣—H a	62	103	43	71.7
Br—	———Н 4а	23	38.3	>99	>166
Ph O	— — —Н 5а	6	10	78	130
0 N 10a	≠0 H	12	20	32	53.3

Likely, steric hinderance of encumbered alkynes leading to slower ene-yne metathesis³² is not responsible for the observed method-dependent catalytic performance. Although increased rates at the higher concentrations of conventional conditions could be most noticeable for the conversion of hindered alkynes, the most sterically bulky substrate **2a** reacts similarly and quantitatively using either method. That is, the presumed slower rate for the bulky alkyne does

not necessitate conventional reaction conditions for high turnovers. Moreover, some less hindered alkynes, such cyclohexenyl alkyne **3a** and cyclopropylalkyne **6a** provided higher yields under conventional conditions, whereas other unhindered alkynes such as 5-bromopentyne **4a** and benzoate **5a**, afford dienes in higher yield under metered addition conditions.

Ethylene is postulated to inhibit ene-yne metathesis reactions by formation of non-productive ruthenacyclobutane species, 42 which presumably would be favored at higher effective ethylene concentrations. Alternatively, ethylene reacts with the benzylidene pre-catalyst as well as the postulated ruthenium vinylalkylidene catalytic intermediate, presumably faster at higher ethylene pressures. These processes depend on the form of the active catalyst, which likely varies based on the individual alkyne substrate. Thus, the effects of ethylene concentration will likely vary depending on the alkyne. Conventional conditions (run at higher temperature and low ethylene pressure) lead to a smaller effective concentration of ethylene. On the other hand, metered addition leads to a larger excess of ethylene. (As a caveat to evaluating the effects of ethylene pressure by comparison of conventional and metered addition, the conclusions must be tempered because of other changes in catalyst and alkyne concentration and temperature.) Cyclohexene-yl alkyne 3a gives lower yields at higher ethylene pressures, with otherwise identical reaction conditions. This effect of ethylene pressure on the reaction of 3a is observed for both conventional conditions and metered addition. In contrast, bromo-alkyne 4a, propargyl benzoate 5a, and phthalimido alkyne 10a give excellent yields of diene products under metered addition conditions.

The cascade conversion of diyne 7a provides an interesting opportunity to investigate the effects of ethylene pressure, in that the diene-alkyne 7c intermediate could react via an intramolecular cyclization to give the triene 7d, or with ethylene to give the targeted bis-diene


7b. One might expect that the yield of **7b** would increase with higher ethylene pressure, which would require increased conversion of **7a** to **7c**. Conversion of **7a** and the ratio of **7b**:**7c** both increase at higher ethylene pressures, as predicted.

One also might expect that the subsequent reaction of intermediate 7c to give 7b or 7d would favor 7b at higher ethylene pressure. Unexpectedly, the ratio of (7b + 7c):7d is not affected by ethylene pressure, suggesting that the free diene-alkyne intermediate 7c leads only to 7b, and not to 7d. Higher conversion with higher ethylene pressure indicates that the rate controlling steps are affected by ethylene pressure, while the chemo selectivity is barely affected by ethylene pressure; thus, these two aspects of the transformation are separate. Instead, metered addition increases selectivity for 7b. As discussed next, most functional-group containing alkynes also afford products in higher yields under metered addition. Thus, we suggest that the pendent alkyne in this dialkyne substrate behaves as a functional group on the pathway to 7b.

Two general trends distinguish ene-yne metathesis reactions of functionalized alkynes from simpler alkynes. First, premixing functionalized alkyne and pre-catalyst gives the lowest catalyst performance, metered addition of either functional alkyne or pre-catalyst is always better than premixed conditions, and metered addition of both catalyst and alkyne leads to the highest catalyst efficiency. Alkyne conversions that benefit most from metered addition are those that contain heteroatomic or coordinating functional groups (e.g., carbonyl groups, epoxides, halides, and amines). These results suggest that the functional groups on these alkynes limit the activation of the pre-catalyst, presumably involving the coordination chemistry of the ruthenium complex.

Second, higher yields and TONs are achieved with slower metered addition than faster addition. An expected effect of metered addition conditions is that the ene-yne metathesis

reactions would have lower apparent rates resulting from the inhibiting effects of the higher ethylene concentration, lower catalyst concentration (over at least part of the experiment), and potentially lower alkyne concentrations (even if the rate has a zero-order dependence on alkyne, it is required as a limiting reactant for turnovers to occur). This expectation proved to be false through several observations. First, and most telling, the catalytic reactions all benefit from dilution, both under conventional conditions or through metered addition, and with both classes of alkyne consistently improving catalytic turnovers under otherwise identical reaction conditions and times (see Figure 2, and Table S3 for concentration studies of 11a). Second, although heteroatom-free alkynes give fewer turnovers under metered addition compared to conventional conditions at equivalent reaction times, the estimated turnover frequency (eTOF) is higher with metered addition; here, eTOF is defined as turnover numbers per reaction time, normalized to account for the changing catalyst concentration, at partial conversion. The functionalized alkynes exhibit larger increases in TON and eTOF in comparison to conventional conditions, again in contrast to the expectations of deleterious kinetic effects from metered addition. These large increases are partly attributed to increased active catalyst lifetime, with catalyst decomposition via bimolecular pathways⁴² being more sensitive to concentration effects than the catalytic reaction itself, as well as the more effective catalyst activation noted above. In addition, the low effective alkyne concentration of metered addition can limit alkyne oligomerization reactions.44

Figure 2. Average TON/min (eTOF) is higher using metered addition. Estimated turnover frequency (eTOF) is defined as turnover numbers per reaction time, normalized to account for the changing catalyst concentration, at partial conversion.

The enhanced rate of ene-yne metathesis for functionalized alkynes could also involve their coordination to ruthenium, for example to displace ethylene from the ruthenacyclobutane (presumed) off-cycle catalytic resting state and facilitate formation of the ruthenacyclobutene intermediate. The largest improvement in turnover numbers and yields from the initial benchmark conditions to metered addition conditions are observed for the alkynes with more strongly coordinating functional groups (i.e., the carboxylic acids and amines improved much more than esters or halides). That is, our analysis suggests that the groups on the alkyne inhibit conversion via precatalyst deactivation and increase rates by coordination to the active species or resting state. Second, the hydrocarbon chain length separating carboxylic acid and alkyne functionalities dramatically impact the yield and TON (pentynoic acid > heptynoic acid >> hexvnoic acid: Table 7). This stark difference in reactivity provides further support for

coordination of the functional group, and suggests the phenomenon is, at least in part, intramolecular. For example, these results suggest that the functional groups, at least in some cases, provide a benefit by enhancing the reaction rate.

Table 7. Chain length effects on ene-yne metathesis yield under metered addition

=	OH 1 (0.3-0.6 mol ethylene (40 b) Toluene, 35 °	$\frac{\text{par}}{}$
n	1 (mol %)	Yield (%)
1	0.3	>99
2	0.6	27
3	0.3	74

Conclusions

Synthesis of a series of 2-substituted-1,3-dienes containing a wide range of moieties is accomplished with ene-yne cross metathesis. Appropriate matching of reaction conditions and terminal alkyne leads to large improvements of yield and TON with the second generation Hoveyda-Grubbs precatalyst. This matching of conditions and comparisons of yield and TON response to reaction conditions lead to mechanistic insights with important reactivity implications, including increased rates in the presence of coordinating groups. That conclusion is

counter to initial expectations, since functional groups such as phthalimides, epoxides, and carboxylic acids inhibit ene-yne metathesis in our baseline experiments.

A 400% improvement in catalyst TON was achieved through the optimization of the reaction conditions for *t*BuCCH, the best performing alkyne from our initial screening studies, even in experiments increased to preparative scale. TON improvements exceeding 4,000% from our screening conditions were achieved with alkynes that performed poorly in the initial screen. Catalyst loadings, approximately an order of magnitude lower than those typically employed in synthetic applications of ene-yne cross metathesis reactions, provide good to excellent yields of 1,3-dienes. This work also presents the first published account of ruthenium carbene catalyzed ene-yne cross metathesis with unprotected carboxylic acids and primary amines in the substrates.

Two general conclusions come from these investigations. First, lowering the concentration of catalyst and alkyne in the reaction, by dilution, metered addition, or both (or with lower amounts of catalyst) improves turnover numbers and often increases rate of the catalysis. Because rates are presumed (and in some cases shown)³² to be directly proportional to ruthenium concentration, this observation likely relates to the amount of active catalyst available. Thus, precatalyst activation and catalyst deactivation processes dominate apparent catalyst performance. In this regard, many of the other ruthenium metathesis catalysts may show further improved performance in ene-yne metathesis for specific alkynes.⁴⁵ The results of our study imply, however, that careful optimization of conditions would still likely be needed for effective use of new catalysts. Second, the beneficial effect of lower concentration is much greater in the presence of functional-group containing alkynes than hydrocarbon-substituted alkynes. The precatalyst activation, activated catalytic species, and catalyst decomposition are manipulated through reaction conditions to markedly improve catalytic performance; however, identifying

relative importance of each of these distinct aspects, which are unique to each alkyne, will require further investigation involving detailed mechanistic (kinetic and modeling) experiments.

ASSOCIATED CONTENT

AUTHOR INFORMATION

Corresponding Author

*sadow@iastate.edu

Supporting Information.

The following files are available free of charge.

Experimental methods, tables containing additional optimization data, and catalytic products (PDF)

ACKNOWLEDGMENT

The authors gratefully thank the National Science Foundation (CHE-1900393) for financial support.

REFERENCES

- 1. Zhou, J.; Hartwig, J. F., Intermolecular, Catalytic Asymmetric Hydroamination of Bicyclic Alkenes and Dienes in High Yield and Enantioselectivity. *J. Am. Chem. Soc.* **2008**, *130*, 12220-12221.
- 2. McNeill, E.; Ritter, T., 1,4-Functionalization of 1,3-Dienes With Low-Valent Iron Catalysts. *Acc. Chem. Res.* **2015**, *48*, 2330-2343.
- 3. Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J. F., A General Nickel-Catalyzed Hydroamination of 1,3-Dienes by Alkylamines: Catalyst Selection, Scope, and Mechanism. *J. Am. Chem. Soc.* **2002**, *124*, 3669-3679.
- 4. Szudkowska-Frątczak, J.; Marciniec, B.; Hreczycho, G.; Kubicki, M.; Pawluć, P., Ruthenium-Catalyzed Silylation of 1,3-Butadienes with Vinylsilanes. *Org. Lett.* **2015**, *17*, 2366-2369.

- 5. Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J., Enantioselective C-H Crotylation of Primary Alcohols via Hydrohydroxyalkylation of Butadiene. *Science* **2012**, *336*, 324-327.
- 6. Friebe, L.; Nuyken, O.; Obrecht, W.; Fischbach, A.; Anwander, R., Neodymium based Ziegler catalysts fundamental chemistry. In *Adv. Polymer Sci.* Nuyken, O., Ed. Springer: Berlin, 2006; 287 p.
- 7. Leicht, H.; Göttker-Schnetmann, I.; Mecking, S., Synergetic Effect of Monomer Functional Group Coordination in Catalytic Insertion Polymerization. *J. Am. Chem. Soc.* **2017**, *139*, 6823-6826.
- 8. Leicht, H.; Bauer, J.; Göttker-Schnetmann, I.; Mecking, S., Heterotelechelic and In-Chain Polar Functionalized Stereoregular Poly(dienes). *Macromol.* **2018**, *51*, 763-770.
- 9. Leicht, H.; Göttker-Schnetmann, I.; Mecking, S., Stereoselective Copolymerization of Butadiene and Functionalized 1,3-Dienes. *ACS Macro Letters* **2016**, *5*, 777-780.
- 10. Yao, C.; Liu, N.; Long, S.; Wu, C.; Cui, D., Highly cis-1,4-selective coordination polymerization of polar 2-(4-methoxyphenyl)-1,3-butadiene and copolymerization with isoprene using a β-diketiminato yttrium bis(alkyl) complex. *Polymer Chemistry* **2016,** 7, 1264-1270.
- 11. Grub, J.; Löser, E., Butadiene. In *Ullmann's Encyclopedia of Industrial Chemistry*, Wiley: 2011; Vol. 6, pp 381-396.
- 12. Fiorito, D.; Folliet, S.; Liu, Y.; Mazet, C., A General Nickel-Catalyzed Kumada Vinylation for the Preparation of 2-Substituted 1,3-Dienes. *ACS Catal.* **2018**, *8*, 1392-1398.
- 13. Fiorito, D.; Simon, M.; Thomas, C. M.; Mazet, C., Access to Highly Stereodefined 1,4-cis-Polydienes by a [Ni/Mg] Orthogonal Tandem Catalytic Polymerization. *J. Am. Chem. Soc.* **2021**, *143*, 13401-13407.
- 14. Diver, S. T.; Giessert, A. J., Enyne Metathesis (Enyne Bond Reorganization). *Chem. Rev.* **2004**, *104*, 1317-1382.
- 15. Li, J.; Lee, D., Enyne Metathesis. *Handbook of Metathesis* **2015**, 381-444.
- 16. Deiters, A.; Martin, S. F., Synthesis of Oxygen- and Nitrogen-Containing Heterocycles by Ring-Closing Metathesis. *Chem. Rev.* **2004**, *104*, 2199-2238.
- 17. Mori, M., Ene-Yne Metathesis. *Handbook of Metathesis* **2003**, 176-204.
- 18. Hansen, E. C.; Lee, D., Ring Closing Enyne Metathesis: Control over Mode Selectivity and Stereoselectivity. *J. Am. Chem. Soc.* **2004**, *126*, 15074-15080.
- 19. Trotus, I.-T.; Zimmermann, T.; Duyckaerts, N.; Geboers, J.; Schuth, F., Butadiene from acetylene-ethylene cross-metathesis. *Chem. Commun.* **2015**, *51*, 7124-7127.
- 20. Kinoshita, A.; Sakakibara, N.; Mori, M., Novel 1,3-Diene Synthesis from Alkyne and Ethylene by Ruthenium-Catalyzed Enyne Metathesis. *J. Am. Chem. Soc.* **1997**, *119*, 12388-12389.
- 21. Smulik, J. A.; Diver, S. T., Expanded Scope in Ethylene–Alkyne Cross-Metathesis: Coordinating Heteroatom Functionality at the Propargylic Position. *Org. Lett.* **2000,** *2*, 2271-2274.
- 22. Smulik, J. A.; Giessert, A. J.; Diver, S. T., Ethylene metathesis of sulfur-containing alkynes. *Tetrahedron Lett.* **2002**, *43*, 209-211.
- 23. Amoroso, D.; Yap, G. P. A.; Fogg, D. E., Deactivation of Ruthenium Metathesis Catalysts via Facile Formation of Face-Bridged Dimers. *Organometallics* **2002**, *21*, 3335-3343.
- 24. Ulman, M.; Grubbs, R. H., Ruthenium Carbene-Based Olefin Metathesis Initiators: Catalyst Decomposition and Longevity. *J. Org. Chem.* **1999**, *64*, 7202-7207.

- 25. Schrodi, Y., Mechanisms of Olefin Metathesis Catalyst Decomposition and Methods of Catalyst Reactivation. *Handbook of Metathesis* **2015**, 323-342.
- 26. Jana, A.; Grela, K., Mild Functionalization of Tetraoxane Derivatives via Olefin Metathesis: Compatibility of Ruthenium Alkylidene Catalysts with Peroxides. *Org. Lett.* **2017**, *19*, 520-523.
- 27. Dinger, M. B.; Mol, J. C., Degradation of the First-Generation Grubbs Metathesis Catalyst with Primary Alcohols, Water, and Oxygen. Formation and Catalytic Activity of Ruthenium(II) Monocarbonyl Species. *Organometallics* **2003**, *22*, 1089-1095.
- 28. Hansen, E. C.; Lee, D., Search for Solutions to the Reactivity and Selectivity Problems in Enyne Metathesis. *Acc. Chem. Res.* **2006**, *39*, 509-519.
- 29. Fürstner, A.; Larionov, O.; Flügge, S., What is Amphidinolide V? Report on a Likely Conquest. *Angew. Chem. Int. Ed.* **2007**, *46*, 5545-5548.
- 30. Smulik, J. A.; Diver, S. T., Terminal Alkyne–Ethylene Cross-Metathesis: Reaction of 1-Substituted Propargyl Esters at Elevated Ethylene Pressure. *J. Org. Chem.* **2000**, *65*, 1788-1792.
- 31. Marshall, J. E.; Keister, J. B.; Diver, S. T., Mechanism of Intermolecular Ene-yne Metathesis Promoted by the Grubbs First-Generation Catalyst: An Alternative Entry Point to Catalysis. *Organometallics* **2011**, *30*, 1319-1321.
- 32. Griffiths, J. R.; Keister, J. B.; Diver, S. T., From Resting State to the Steady State: Mechanistic Studies of Ene–Yne Metathesis Promoted by the Hoveyda Complex. *J. Am. Chem. Soc.* **2016**, *138*, 5380-5391.
- 33. Kim, M.; Park, S.; Maifeld, S. V.; Lee, D., Regio- and Stereoselective Enyne Cross Metathesis of Silylated Internal Alkynes. *J. Am. Chem. Soc.* **2004**, *126*, 10242-10243.
- 34. Le Ravalec, V.; Dupé, A.; Fischmeister, C.; Bruneau, C., Improving Sustainability in Ene—Yne Cross-Metathesis for Transformation of Unsaturated Fatty Esters. *ChemSusChem* **2010**, *3*, 1291-1297.
- 35. Peschek, N.; Wannowius, K.-J.; Plenio, H., The Initiation Reaction of Hoveyda–Grubbs Complexes with Ethene. *ACS Catal.* **2019**, *9*, 951-959.
- 36. Hong, S. H.; Wenzel, A. G.; Salguero, T. T.; Day, M. W.; Grubbs, R. H., Decomposition of Ruthenium Olefin Metathesis Catalysts. *J. Am. Chem. Soc.* **2007**, *129*, 7961-7968.
- 37. Bailey, G. A.; Foscato, M.; Higman, C. S.; Day, C. S.; Jensen, V. R.; Fogg, D. E., Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts. *J. Am. Chem. Soc.* **2018**, *140*, 6931-6944.
- 38. Blanco, C. O.; Sims, J.; Nascimento, D. L.; Goudreault, A. Y.; Steinmann, S. N.; Michel, C.; Fogg, D. E., The Impact of Water on Ru-Catalyzed Olefin Metathesis: Potent Deactivating Effects Even at Low Water Concentrations. *ACS Catal.* **2021**, *11*, 893-899.
- 39. Mori, M.; Sakakibara, N.; Kinoshita, A., Remarkable Effect of Ethylene Gas in the Intramolecular Enyne Metathesis of Terminal Alkynes. *J. Org. Chem.* **1998**, *63*, 6082-6083.
- 40. Lloyd-Jones, G. C.; Margue, R. G.; de Vries, J. G., Rate Enhancement by Ethylene in the Ru-Catalyzed Ring-Closing Metathesis of Enynes: Evidence for an "Ene-then-Yne" Pathway that Diverts through a Second Catalytic Cycle. *Angew. Chem. Int. Ed.* **2005**, *44*, 7442-7447.
- 41. Grotevendt, A. G. D.; Lummiss, J. A. M.; Mastronardi, M. L.; Fogg, D. E., Ethylene-Promoted versus Ethylene-Free Enyne Metathesis. *J. Am. Chem. Soc.* **2011**, *133*, 15918-15921.

- 42. Gregg, T. M.; Keister, J. B.; Diver, S. T., Inhibitory Effect of Ethylene in Ene–Yne Metathesis: The Case for Ruthenacyclobutane Resting States. *J. Am. Chem. Soc.* **2013**, *135*, 16777-16780.
- 43. Michrowska, A.; Bujok, R.; Harutyunyan, S.; Sashuk, V.; Dolgonos, G.; Grela, K., Nitro-Substituted Hoveyda-Grubbs Ruthenium Carbenes: Enhancement of Catalyst Activity through Electronic Activation. *J. Am. Chem. Soc.* **2004**, *126*, 9318-9325.
- 44. Gratia, S.; Mosesohn, K.; Diver, S. T., Highly Selective Ring Expansion of Bicyclo[3.1.0]hexenes. *Org. Lett.* **2016**, *18*, 5320-5323.
- 45. Vougioukalakis, G. C.; Grubbs, R. H., Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. *Chem. Rev.* **2010**, *110*, 1746-1787.