
Employing mobile sensor density to approximate state feedback kernels
in static output feedback control of PDEs

Michael A. Demetriou

Abstract— This work considers the replacement of a full-
state feedback controller by a static output feedback controller
employing a finite number of point sensors. This is achieved by
the approximation of the feedback kernel associated with the
full state feedback operator. The feedback kernel is partitioned
into equiareal cells and an appropriately selected centroid
within each cell serves as the sensor location. This allows
one to approximate the inner product of the feedback kernel
and the full state by the finite weighted sum of static output
feedback measurements. By equating the feedback kernel with
the density of a hypothetical sensor network, the problem of
approximating the sensor density becomes that of partitioning
the sensor density using the proposed computational-geometry
based decomposition that is based on a modification of Cen-
troidal Voronoi Tessellations. When the control is considered
over a finite horizon and/or the actuator itself is repositioned
within the spatial domain, the resulting feedback kernel is
rendered time-varying. This requires its partitioning at each
time leading to mobile sensors within the spatial domain. Two
guidance policies are proposed: one uses the partitioning of the
kernel method at each time to find the optimal sensors thus
resulting in moving sensors. The other method uses the kernel
partitioning only at the initial time and subsequently uses the
sensor density as the initial condition for an advection PDE that
represents the evolution of the sensor density. This advection
PDE is solved for the velocity thereby providing the velocity of
the density of the sensor network. Projecting the sensor density
velocity onto the same partitioning used for the kernel provides
the sensor velocities. A numerical example of an advection
diffusion PDE is presented to provide an understanding of this
computational geometry based partitioning of feedback kernels.

I. INTRODUCTION

This paper examines an alternate to the implementation
of an observer-based feedback for the control of distributed
parameter systems. For a class of these systems, written as
evolution equations in a functional space, the state feedback
operator admits a kernel representation, [1]. The control
signal is then equal to the inner product of the feedback ker-
nel and the infinite dimensional system. This inner product
representation was used as a means to select sensor locations
using the following argumentation: since the feedback kernel
serves as a spatial weight in the inner product, then in the
spatial regions where the kernel is “larger”, it designates a
larger importance of the state and hence it provides a good
candidate for sensor placement. In fact this was explored in
a series of works in [2], [3], [4], [5].

Another effort exploring the use of the functional gain
(kernel) to help with the control design was examined in
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[6] where the kernel was partitioned into equiareal cells
using a modification of the Centroidal Voronoi Tessellations
(CVT) method, in which a sensor was placed in each cell. By
approximating the full state feedback controller, expressed as
the inner product of the kernel and the state, using static out-
put feedback, one opts to avoid the use of computationally-
intensive state estimators. This approximation aims at replac-
ing the inner product of the kernel and the state by a weighted
sum of the gains and the sate measurements, by minimizing
the error between the inner product (kernel and state) and the
weighted sum of sensor measurements. The earlier work [7],
[8] explore this inner product representation but used ad-hoc
methods for sensor placement.

In the event that a mobile actuator is implemented, or the
state operator is time-dependent, then the feedback kernel is
also time varying. In order to approximate this inner product
by a weighted sum of sensor measurements at each time,
one must allow the sensors to move throughout the spatial
domain. Thus one arrives at time-varying static gains and
moving sensors. At this stage, one is faced with the following
tasks: how to compute the gains and how to repositioned the
mobile sensors in the spatial domain, the best approximate
the inner produce of the kernel and the state.

This paper addresses the above questions by proposing two
different control approximation strategies. In the first one, the
modified CVT are applied at each time to partition the kernel
into ns equiareal cells and place a sensor in each. Then using
the volume of the cell under the feedback kernel, it computes
the corresponding static gain. This is implemented in each
time, thereby rendering both the feedback gains and the
sensor locations time varying. The other approach uses the
first method only for the initial time and uses the gas-kinetic-
based model first used in a series of works in [9], [10],
[11], [12] to represent the continuum of the agents (sensors)
for a macroscopic model in terms of the advection PDE
governing the sensor density. Once the initial deployment
of the sensors is obtained, then the kernel can be used as the
approximation of the sensor density and thus the advection
PDE for the density is used to propagate the mobile sensors
via the solution of the macroscopic velocity. The associated
time-varying static gains are computed in the same manner
as the first method utilizing the feedback kernel.

Therefore the contribution of thus work is summarized as
1) Present a control approximation scheme whereby an

idealized full state feedback controller is approximated
by the weighted sum of pointwise process measure-
ments resulting in a static output feedback controller.

2) Propose a modification of the Centroidal Voronoi
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Tessellation method to partition the feedback kernel
into ns equiareal cells and subsequently place a single
pointwise sensor in each of these cells

3) Compute the associated static gains for each time that
best approximate a full-state feedback controller.

4) Propose two guidance schemes for the spatial repo-
sitioning of the mobile sensors. One method applies
the above kernel decomposition and gain estimation
at each time. The other guidance uses only the initial
positioning of the sensors computed from the kernel
approximation at the initial time and uses the sensor
locations as the approximation of the sensor density
corresponding to a network of infinite number of point-
wise sensors at the initial time. The sensor velocities
are computed from the solution to the advection PDE
that describes the sensor density where the density is
substituted by the feedback kernel.

The problem of full state feedback control is presented in
Section II. The proposed method for the kernel partitioning
and the associated selection of static gains is demonstrated
in Section III. For the time-dependent kernel, the kernel
partitioning is applied in each time and the two sensor
guidances are presented Section IV. Simulation results are
presented in Section V and conclusions follow in Section VI.

II. PROBLEM FORMULATION

The spatially distributed processes under consideration are
represented by evolution equations in a Hilbert space X

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ in dom(A), (1)

where the state operator A ∈ L(V ,V ∗) and B ∈ L(U,V ∗) is
the input (control) operator. The control space is denoted by
the finite dimensional Euclidean space U. Since the input and
output operators are defined in different spaces, we define the
state space X , which is a Hilbert space as the interpolating
space and the reflexive Banach space V that is continuously
and densely embedded in X . The conjugate dual of V is
denoted V ∗. In this case, one has that V →֒ X →֒ V ∗ with
both embeddings dense and continuous.

It is assumed that in the ideal case, the full state is
available. Furthermore, either the state and input operators
are time-varying and/or a finite horizon LQR problem is
considered. For the simpler case, it is assumed that the input
operator is rendered time-varying via the spatial reposition-
ing of the actuator. The specifics of this actuator motion are
important only to the extend that they result in a time-varying
feedback gain. The derivation of the actuator guidance and
the computation of the associated full state feedback gain,
that is time-varying, are not considered in this paper.

For example, when a time-varying input operator B(t)
is assumed, then an LQR-based controller is derived by
minimizing the finite horizon linear quadratic functional

J =
∫ T

0
〈x(τ),Q x(τ)〉X +uT (τ)R−1u(τ) dτ+ 〈x(T ),M x(T )〉

(2)
subject to (1) with B substituted by its time varying version

B(t) The full state feedback control law is given by [13]

u f (t) =−K (t)x(t). (3)

The time-varying feedback gain operator K (t) : V → U is
derived from the Operator Differential Riccati Equation

−Ṗ = A∗P +PA −P B(t)R−1B∗(t)P +Q = 0, (4)

where the input operator is explicitly dependent on time in
order to emphasize that in systems with moving actuators it is
time varying. Equation (4) is supplemented with the terminal
condition P (T ) = M . The feedback operator is given by

K (t) = R−1B∗(t)P (t). (5)

As the full-state feedback (3) cannot be implemented, one
must seek alternative ways to realize it. The one adopted
here, essentially approximates the control (3) by a finite sum
of weighted measurements

us(t) =−
ns

∑
i=1

γi(t)yi(t) (6)

where yi(t), i = 1, . . . ,ns denotes the ns sensor measurements
and γi(t) are the corresponding time-varying gains.

To better understand the approximation of u f (t) in (3) by
us(t) in (6), we describe the sensor measurements given by

y(t) =









y1(t)
...

yns(t)









=









C1(t)x(t)
...

Cns(t)x(t)









= C (t)x(t). (7)

Therefore, the control approximation becomes

(K (t)−ΓC (t))x(t)≈ 0 (8)

The above is viewed in weak form in the appropriate space.
To improve the above approximation, one also allows the
sensor locations to be selected at each time in order to
minimize, in the appropriate sense, the above difference.

In order to use the proposed computational geometry
method, it is assumed that the feedback gain K (t) admits a
kernel representation. To better appreciate this, we consider
the 1D advection PDE, which falls under the proposed class
of systems (1). Thus, we have

∂x
∂t
(t,ξ) =

∂
∂ξ

(

a(ξ)
∂x
∂ξ

(t,ξ)
)

+b(ξ, t)u(t)

y(t) =









y1(t)
...

yns(t)









=















∫ ℓ

0
c1(ξ,ξ1(t))x(t,ξ)dξ

...∫ ℓ

0
cns(ξ,ξns(t))x(t,ξ)dξ















,

(9)

with boundary conditions x(t,0) = x(t, ℓ) = 0 and initial
condition x(0,ξ) = x0(ξ). The parameter a(ξ) is the thermal
diffusivity and b(ξ, t) denotes the spatial distribution of the
mobile actuator. Since we also allow the sensors to move,
they are parameterized by their time-varying centroid (spatial
location) and thus their spatial distribution is denoted by
ci(ξ,ξi(t)), i= 1, . . . ,ns, where ξi(t), i= 1, . . . ,ns denote their
time-varying centroids. In relation to the spaces associated
with (1), the state space is X = L2(0, ℓ) with V = H1

0 (0, ℓ).
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Similar to the earlier work in [6], we assume that the
sensing devices are identical, and that they differ in their
spatial location, as dictated by their centroids ξi(t). Thus,
we adopt the uniform notation

ci(ξ,ξi(t)) = c(ξ,ξi(t)), i = 1, . . . ,ns.

The control law (3) for the PDE in (8) takes the form

u f (t) =−
∫ ℓ

0
k(t,ξ)x(t,ξ)dξ. (10)

The approximation (8) now takes the form∫ ℓ

0
k(t,ξ)x(t,ξ)dξ ≈

ns

∑
i=1

γi(t)yi(t). (11)

Involving the spatial distribution of the sensors, it becomes∫ ℓ

0
k(t,ξ)x(t,ξ)dξ ≈

ns

∑
i=1

γi(t)
∫ ℓ

0
c(ξ,ξi(t))x(t,ξ)dξ. (12)

This of course, is enforced in weak form and for a test
function φ ∈ H1

0 (0, ℓ) we have to minimize the Euclidean
norm of the difference of the control signals

min
φ∈H1

0 (0,ℓ)

∣

∣

∣

∣

∣

∫ ℓ

0

(

k(t,ξ)−
ns

∑
i=1

γi(t)c(ξ,ξi(t))
)

φ(ξ)dξ

∣

∣

∣

∣

∣

2

(13)

The optimization (13) will produce, for each time t ∈ [0,T ],
the optimal sensor locations ξi and the associated static
feedback gain γi, i = 1, . . . ,ns.

The question that arises from the optimization (13) is how
to best approximate the feedback kernel k(t,ξ) in each time
t by the static output feedback in (12). The idea considered
here is to partition the kernel k(t,ξ) with respect to the spatial
domain Ω so that each partition will carry the same level
of control authority. In each of those ns partitions, a single
sensor will be placed via the sensor centroid ξi and one must
only find what is the corresponding static gain γi.

The kernel-based partitioning will form the first part of
the above optimization. Once this is achieved and a single
sensor is placed within each of these partitions, the second
part of the optimization will yield the static gains.

III. KERNEL-BASED PARTITIONING

Here, a simple example of a constant control signal, which
is formed as the L2(0, ℓ) inner product of the kernel k(ξ) and
state x(ξ) is considered. The kernel and state are selected as

k(ξ) = 2e−10(ξ−0.1)2
sin(πξ), x(ξ) = 2e−10(ξ−0.9)2

sin(πξ),

and are depicted in Figure 1. One is interested in evaluating
their inner product ∫ ℓ

0
k(ξ)x(ξ)dξ.

In particular, one is interested in approximating this integral∫ ℓ

0
k(ξ)x(ξ)dξ ≈

ns

∑
i=1

γi

∫ ℓ

0
δ(ξ−ξi)x(ξ)dξ =

ns

∑
i=1

γix(ξi). (14)

This is interpreted as approximating the inner product by
the weighted sum of the state evaluated at the pointwise
sensor locations; here the sensors have a spatial distribution
equal to the Dirac delta function centered at the sensor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1.2

Fig. 1. Kernel k(ξ), state x(ξ) and the integrand k(ξ)x(ξ) in the inner
product 〈k,x〉= ∫ ℓ

0 k(ξ)x(ξ)dξ. The area under the integrand k(ξ)x(ξ) is the
value of the integral 〈k,x〉.

centroids ξi. Once the sensor centroids are computed (using
the proposed modified CVT partitioning) then the weights γi

can be obtained via a couple of methods presented here.

The product k(ξ)x(ξ) (orange line) in Figure 1 is the
integrand and whose area will yield the value of the inner
product. This area will be approximated by the pointwise
values of x(ξ) and some weights that are related to the
partitioning of k(ξ). As the kernel carries the information
where the state is “more”important, then it also serves as
the density of a continuum of sensors in the expansion∫ ℓ

0
k(ξ)x(ξ)dξ =

∞

∑
i=1

k(ξi)x(ξi).

It is easily seen above that in the spatial regions where k(ξi)
is larger, then the weight in the expansion should be higher.
Therefore, sensors should be placed in spatial regions where
the value of the kernel is larger. This forms the theoretical
cornerstone of the work undertaken in this paper.

A. Kernel partitioning and sensor position selection

Here, the spatial domain Ω = [0,1] is partitioned into ns

cells that have the same area under the kernel. The CVT
method is modified as follows. This procedure is similar to
the one presented in [6] and is summarized below.

1) Partition the spatial domain Ω in ns cells Ii ∈ Ω with
Ii ∩ I j = /0 and

⋃ns
i=1 I i = Ω so that at each cell Ii, the

area of the kernel k(ξ) satisfies∫
Ii

k(ξ)dξ =

∫
Ω k(ξ)dξ

ns
=

(

A
ns

)

, i = 1, . . . ,ns. (15)

2) Place a sensor ξi in each cell Ii, using again the
proposed method in step #1 which ensures that the
sensor location ξi in cell Ii is such that it subsequently
divides the cell into two subcells Ii = I a

i ∪I b
i of equal

areas of the kernel, with each being equal to 0.5A/ns.
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Fig. 2. Normalized kernel k(ξ) and normalized areal function A(ξ). The
domain Ω is partitioned (grid generation) into ns = 8 equiareal cells Ii with∫

Ii
k(ξ)dξ = 1

ns

∫ 1
0 k(ξ)dξ. The cell coordinates (grid points) are found as

the abscissae points on the normalized areal function A(ξ) having ordinates
0.125,0.250,0.375,0.500,0.625,0.770,0.875 given by i/ns, i = 1, . . . ,ns.

For i = 1, . . . ,ns, the sensor location are found via

ξi :
∫

I a
i (ξi)

k(ξ)dξ =
∫

I b
i (ξi)

k(ξ)dξ =
1
2

∫
Ii

k(ξ)dξ. (16)

For the 1D case, there is a graphical method that enables
one to easily compute the sensor locations. First, define the
normalized kernel k(ξ) and the normalized area function
under the kernel as follows

k(ξ) =
k(ξ)

max
ξ∈Ω

k(ξ)
, A(ξ) =

A(ξ)
A(ℓ)

, A(ξ) =
∫ ξ

0
k(ξ)dξ. (17)

Please note that A(ℓ) = A is the total area under the kernel
and thus A(ξ) represents the fraction of the area under the
kernel up to point ξ; it is easily seen that A(ℓ) = 1.

To locate the cells (intervals) Ii using the area function
A(ξ), all is needed it so identify the ordinate points i/ns

of A(ξ). The corresponding abscissae points in the graph of
A(ξ) will immediately yield the spatial points that partition
the spatial domain Ω into ns equiareal cells. It turns out that
one does not really need to find the grid points in the 1D
case. The reason is that each equiareal cell must subsequently
be partitioned into two subcells of equal areas. These points
that partition each cell are found via

ξi :
∫ ξi

0
k(ξ)dξ =

(2i−1)
2

A
ns
, i = 1, . . . ,ns. (18)

Figure 2 depicts the normalized kernel k(ξ) and the normal-
ized areal function A(ξ). The A(ξ) axis (red) is decomposed,
via a uniform grid, into ns = 8 cells with the grid points
given by the ordinates i/ns, i = 1, . . . ,ns. The corresponding
abscissae points immediately give the grid points on the
spatial variable axis that decompose the normalized kernel
k(ξ) into ns cells of equal area.

It should be noted that the grid on the ξ axis is not
uniform since they decompose the area function k(ξ) into
cells (intervals) of equal area. However the strength of
this approach is that the vertical axis (the A(ξ)-axis is
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=0.535

Fig. 3. Kernel k(ξ) and the associated equiareal cells with the correspond-
ing sensor locations.

divided into ns cells using a uniform grid. Simply put, the
normalized areal function A(ξ) axis uses a uniform grid and
the corresponding abscissae points provide the non-uniform
grid points where the normalized kernel k(ξ) is decomposed
into cells of equal areas!

The sensor locations and the corresponding cells are
depicted in Figure 3 for the function k(ξ).

B. Kernel-based gains γi in (14)

Two different methods are summarized for the calculation
of the gains γi that best approximate (14). The first one is
taken from [6] and is presented first.

The kernel is assumed to admit an expansion

k(ξ) =
N

∑
j=1

k jφ j(ξ), ∀φ j ∈ H1
0 (0,1). (19)

This is replaced in the approximation (14). Since this should
be valid for all functions φ(ξ), then (14) is considered with
x(ξ) replaced by a test function φ ∈ H1

0 (0,1). We then have
that the finite dimensional representation of (14) with x(ξ)
replaced by a test function is

∫ 1

0

N

∑
j=1

k jφ j(ξ)φ(ξ)dξ ≈
ns

∑
i=1

γi

∫
Ii

c(ξi)φ(ξ)dξ.

Since it is true for all test functions φ∈H1
0 (0,1) then it is true

for all (trial) functions φm(ξ). When the above is evaluated
for all trial functions and with the spatial distribution of the
sensors replaced by the Dirac delta functions, one arrives at

∫ 1

0

N

∑
j=1

k jφ j(ξ)φm(ξ)dξ ≈
ns

∑
i=1

γi

∫
Ii

δ(ξ−ξi)φm(ξ)dξ

for all test functions φm ∈ H1
0 (0,1), m = 1, . . . ,N. This in

matrix form is written as

Mκ = Φ(ξs)Γ (20)
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where the N ×N mass matrix M is given by

[M] jm =
∫ 1

0
φ j(ξ)φm(ξ)dξ, k,m = 1, . . . ,N.

The vector of the kernel coefficients κ and the vector of the
static gains are given by

Γ =
[

γ1 . . . γns

]T
, κ =

[

k1 . . . kN
]T

.

Finally, the N × ns regressor matrix Φ(ξs) which relates to
the observability matrix

Φ(ξξξs) =















∫
I1

c(ξ1)φ1(ξ)dξ . . .
∫

Ins

c(ξns)φ1(ξ)dξ

...
. . .

...∫
I1

c(ξ1)φN(ξ)dξ . . .
∫

Ins

c(ξns)φN(ξ)dξ















,

which for the case of pointwise sensors simplifies to

Φ(ξξξs) =









φ1(ξ1) . . . φ1(ξns)

...
. . .

...

φN(ξ1) . . . φN(ξns)









.

Since the approximation (20) is not exact, but has an error
in the right hand side, then a least squares method is used
to solve for Γ; the L2(RN) norm of the error in (20) is

Γ =
(

ΦT (ξξξs)Φ(ξξξs)
)−1 ΦT (ξξξs)(Mκ). (21)

Equation (21) requires the coefficients of the approximation
to the kernel k(ξ) and the regression matrix that is the finite
dimensional representation of the observability matrix. This
is computed by evaluating the N test functions at the ns

sensor locations. As part of the solvability of the least squares
method, one must require that Φ(ξξξs) has rank ns. This can
be ensured either by selecting the sensor locations in each
cell Ii that would yield the requisite rank condition, or by
appropriately selecting the test functions used in the finite
dimensional approximation (19).

The second approach to compute the gains γi in (14) once
the sensor locations are obtained via the proposed modified
CVT method, is based on the average height of each cell
that produces the same area as each cell. It is given by

γi =

(

A
ns

)

1
meas(Ii)

, i = 1, . . . ,ns. (22)

For the 1D case, this simplifies to

γi =

(

A
ns

)

1
δξi

i = 1, . . . ,ns, (23)

where δξi is the length of the ith interval (cell). Please note
that the intervals δξi are not uniform, thereby resulting in
different gains γi.

As a demonstration, consider the two graphs of k(ξ) and
x(ξ) depicted in Figure 1 over the interval [ξ1,ξ2]. Figure 4
depicts the shaded area under the curve k(ξ)x(ξ). Numerical
integration yields∫ ξ2

ξ1

k(ξ)x(ξ)dξ≈ k(ξav)x(ξav)(ξ2 −ξ1)= x(ξav)
∫ ξ2

ξ1

k(ξ)dξ.

With regards to the kernel partitioning, the above area
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Fig. 4. Numerical approximation of the area under the curve k(ξ)x(ξ) over
the interval [ξ1,ξ2]. The shaded area k(ξav)x(ξav)(ξ2 − ξ1) is equivalently
approximated by x(ξav)

∫ ξ2
ξ1

k(ξ)dξ.

approximation yields the approximation of the area under
the curve k(ξ)x(ξ) over a cell Ii as follows∫

Ii
k(ξ)x(ξ)dξ ≈ x(ξi)

∫
Ii

k(ξ)dξ.

This shows that the inner product over a cell is approximated
by the value of the state at the point ξi) (output) multiplied
by the area of the kernel over the cell and which in turn
shows that the static feedback gains are given by (23). It
should be noted that for the uniform grid case, the static
gains simplify to γi = k(ξi).

IV. MAIN RESULTS

Once the feedback kernel is partitioned into ns cells and
a pointwise sensor is placed in each cell, then either of the
two methods presented in Section III-B can be used to obtain
the associated static gains. This can be used to time-varying
feedback kernels at each time. Thus (14) becomes∫ ℓ

0
k(t,ξ)x(t,ξ)dξ ≈

ns

∑
i=1

γi(t)
∫ ℓ

0
c(ξ,ξi)x(t,ξ)dξ.

For the case of pointwise in space sensor distributions (i.e.
spatial delta functions) it simplifies to∫ ℓ

0
k(t,ξ)x(t,ξ)dξ ≈

ns

∑
i=1

γi(t)
∫ ℓ

0
δ(ξ−ξi)x(t,ξ)dξ

=
ns

∑
i=1

γi(t)x(t,ξi(t)).

The state evaluated at the sensor locations is x(t,ξi(t)) and
represents the output of each mobile sensor since

yi(t) =
∫ ℓ

0
δ(ξ−ξi(t)x(t,ξ)dξ = x(t,ξi(t)).

The static gains γi(t) are dependent on the now time varying
kernel and are thus time varying as well.

If at each time, the procedure presented in Section III
is applied, then the sensor locations will be changing, thus
leading to moving sensors. This is essentially a kernel-
partitioning based guidance.
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An alternate method is also examined. Assuming a contin-
uum of pointwise sensors is used to approximate k(t,ξ), then
the feedback kernel can be thought of as the sensor density.
Such a density is governed by the advection PDE

∂ρ
∂t

+
∂
∂ξ

(vρ) = 0 (24)

with Dirichlet boundary conditions ρ(t,0) = ρ(t, ℓ) and an
initial sensor density ρ(0,ξ) = ρ0(ξ).

Ideally, one would like to select v(t,ξ) of the sensor
density so that at each time it matches the sensor location
and static gains that best approximate the feedback kernel.
However, since it is the kernel that is being approximated,
then one can use the kernel as the sensor density and instead
of solving for the sensor locations at each time, can solve
for the sensor velocities. To do so, one must first use the
method in Section III to obtain the initial sensor density
(initial sensor locations) and then substitute the kernel k(t,ξ)
in the above advection PDE in order to obtain the velocity
v(t,ξ). Since one does not have an infinite number of sensors,
but rather a finite number ns is used to decompose the kernel,
then the same decomposition can be used to decompose the
velocity v(t,ξ) in order to find the velocity of each cell
and thus the velocity of each sensor. Possible issues with
uniqueness of the velocity v in (24) may arise due to the
fact that the kernel may be related to the density modulo
a constant k(t,ξ) ∼ ρ(t,ξ)+constant, thus requiring one to
consider a quotient space for (24). Another issue arising
is the fact that a separate velocity equation along with an
equation for the equilibrium speed variance which accounts
for pressure terms, as was presented in [10], is required. For
the 1D case, one may ignore the velocity and speed variance
equations and only consider (24), but must make additional
assumptions to ensure the uniqueness of v(t,ξ).

V. NUMERICAL EXAMPLES

An advection-diffusion PDE, similar to the one in (9)

xt(t,ξ) =
(

a(ξ)xξ(t,ξ)
)

ξ +a2xξ(t,ξ)

+a3x(t,ξ)+b(ξ, t)u(t)
was considered for the simulation study. The domain was
selected as Ω= [0,1] and a spline-based Galerkin approxima-
tion scheme was used to produce a semi-discretized system
of linear differential equations. Additionally, the approxima-
tion scheme selected ensured that exponential stabilizability
is preserved [14], [15]. The requisite spatial integrals re-
quired for the numerical computation of the matrix represen-
tation of the PDE in (9) were computed using a composite
two-point Gauss-Legendre quadrature rule [16]. The finite
dimensional state space model resulting from the Galerkin
approximation was subsequently integrated using the stiff
ODE solver from the Matlabr ODE library, routine ode23s,
a 4th order Runge-Kutta scheme. The Galerkin scheme used
80 linear spline elements with the parameters set to

a(ξ) = 5×10−3

(

e−g/2
√

2πσ
+1+3sin(3πξ)(sin2(ξ− 1

4
)

)

,
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Fig. 5. Initial normalized feedback kernel k(0,ξ) and normalized areal
function along with the kernel partitioning and associated sensor locations.

σ= ℓ/18, g= ( ξ−µ
σ )2, µ= 0.75ℓ, a2 =−5×10−2, a3 =−3×

10−3. The mobile actuator spatial distribution was selected as
the boxcar function b(ξ,ξa(t)) = 1 if ξ ∈ [ξa(t)− ε

2 ,ξa(t)+
ε
2 ], ε = ℓ/20, and zero otherwise, with a moving centroid
whose path was governed by

ξa(t) = 0.5

(

1−0.9sin(2π
2(t − ti)
(t − ti)

)

and x(0,ξ) = 20sin(π(1−ξ))e−7(ξ−1)2
.

For the solution to the operator Riccati equation (4), the
LQR parameters in (2) were selected as Q = I and R= 10−2.
Finally, the sensor distributions were assumed to be spatial
delta functions with c(ξi(t)) = δ(ξ−ξi(t)), i= 1, . . . ,ns = 12.

The optimal full state feedback was found via the solution
to the operator Riccati equation over the time interval [0,12]s.
Subsequently, the feedback kernel k(t,ξ) was computed and
stored. At the initial time t0 = 0, the procedure summarized in
Section III was implemented to find the initial sensor location
(and distribution) and the associated static feedback gain.

Figure 5 depicts the initial normalized feedback kernel
along with the normalized areal function used in order to
obtain the kernel decomposition. The initial feedback kernel
was partitioned into ns = 12 equiareal cells. The sensor
distribution corresponding to the sensor placement at the
initial time t0 = 0 is presented in Figure 6.

The temporal repositioning of the ns sensors was im-
plemented with the successive application of the kernel
partitioning described in Section III-A, and the derivation
of the time varying gains was realized via the successive
application of (23).

While the approximation of the full state feedback by
static output feedback cannot surpass the performance of the
full state feedback controller as demonstrated in Figure 7,
it nonetheless provide an inexpensive alternative. Indeed,
Table I tabulates the L2(0,T ) norm for the state norm and
the control effort. it is observed that for a comparable
performance, the static output feedback that utilized a mobile
sensor network results in a significantly lower control effort.
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Fig. 6. Sensor locations for initial time and corresponding sensor
distribution ρ(0,ξ).
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Fig. 7. Evolution of state L2 norm.

VI. CONCLUSIONS

A computational geometry method was employed to ap-
proximate the full state control signal for a class of spatially
distributed systems by the weighted sum of pointwise process
measurements resulting in static output feedback control. The
approximation used a modification of the Centroidal Voronoi
Tessellations to partition the feedback kernel associated with
a feedback operator into equiareal cells. The approximation
of the full state control signal produced both the sensor
locations for placing the sensors and the associated static
gains. Extending to the time varying kernels, resulted in
both time varying gains and time varying sensor locations.
The latter rendered the sensors mobile and which required
the guidance of the associated sensor network. Two differ-
ent sensor guidance schemes were presented; the first one

case
∫ T

0
‖x(t)‖2 dt

∫ T

0
u2(t)dt

full state 2.70949 52.3224

output feedback 3.79239 38.7987

TABLE I

STATE AND CONTROL ENERGY.

implemented the kernel partitioning at each time, thereby
producing the requisite sensor repositioning at each time.
The second one used the proposed kernel partitioning only
at the initial time and subsequently used the advection partial
differential equation modeling the sensor density to extract
the sensor density velocity, thus propagating the mobile
sensors over the spatial domain. A numerical study was
provided to highlight the aspects of the proposed scheme.

Real-time implementability of the proposed kernel parti-
tioning is a concern and will be addressed in a forthcoming
work by the author.
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