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Abstract— Employing mobile actuators and sensors for con-
trol and estimation of spatially distributed processes offers a
significant advantage over immobile actuators and sensors. In
addition to the control performance improvement, one also
comes across the economic advantages since fewer devices, if
allowed to be repositioned within a spatial domain, must be
employed. While simulation studies of mobile actuators report
superb controller performance, they are far from reality as
the mechanical constraints of the mobile platforms carrying
actuators and sensors have to satisfy motional constraints. Ter-
rain platforms cannot behave as point masses without inertia;
instead they must satisfy constraints which are adequately
represented as path-dependent reachability sets. When the
control algorithm commands a mobile platform to reposition
itself in a different spatial location within the spatial domain,
this does not occur instantaneously and for the most part the
motion is not omnidirectional. This constraint is combined with
a computationally feasible and suboptimal control policy with
mobile actuators to arrive at a numerically viable control and
guidance scheme. The feasible control decision comes from a
continuous-discrete control policy whereby the mobile platform
carrying the actuator is repositioned at discrete times and
dwells in a specific position for a certain time interval. Moving
to a subsequent spatial location and computing its associated
path over a physics-imposed time interval, a set of candidate
positions and paths is derived using a path-dependent reach-
ability set. Embedded into the path-dependent reachability
sets that dictate the mobile actuator repositioning, a scheme
is proposed to integrate collocated sensing measurements in
order to minimize costly state estimation schemes. The proposed
scheme is demonstrated with a 2D PDE having two sets of
collocated actuator-sensor pairs onboard mobile platforms.

I. INTRODUCTION

The idea of using mobile actuators and sensors for the
improvement of controllers and estimators for spatially dis-
tributed processes, is not new and can be traced back to
the 70’s [1], [2]. The earlier work [3] provides an account
in the various aspects of mobile controls for distributed
parameter systems. However, the practical aspects arising
from the incorporation of vehicle dynamics and the expensive
computational costs associated with implementing integrated
actuator guidance and control are not considered.

This paper takes on the earlier work [3] which uses realis-
tic motional constraints in the guidance of mobile actuators
used for the control of spatially distributed systems. Using
the motion constraints of the mobile platforms carrying the
actuating devices, it calculated the time-varying reachability
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sets, which consisted of the spatial points within the spatial
domain that can be reached by the platforms over a time
interval. The assumption was that a mobile platform can
travel to its new spatial position within a prescribed travel
time and reside in this position for a longer time while
dispensing the control signal to the spatially distributed
process. The decision to reposition a given actuator was
dictated by controller performance requirements. These were
based on the relaxation of the finite horizon LQR problem,
which resulted in a significant reduction in the computational
load. Instead of opting for an integrated actuator guidance
and control design, the suboptimal approach considered the
infinite horizon problem with an adjusted cost-to-go whereby
the lower time limit of the performance metric was replaced
by the new time instance. This avoided the backwards in
time solution to the Differential Riccati equation and the
associated guidance, and resulted in the solution to Algebraic
Riccati equations over the reachability sets. At the beginning
of a new time interval, the lower limit of the cost-to-go
was updated and which resulted in a different reachability
set. Then the search of the next spatial position that the
platform could relocated was dictated by the points that could
be reached within the prescribed travel time, namely the
reachability set. By parameterizing the ARE solutions by
points of the reachability set, a location-dependent optimal
cost was generated as a function of the solution to the ARE’s
and the value of the state at the beginning of the time interval.
Minimization of these location-parameterized optimal costs
resulted in the guidance of the mobile actuator platforms.

When the full state is not available, then the work [3]
can implement neither the controller signal nor the guidance.
Working within the confines of a real-time implementation
with reduced computational costs while respecting motion
constraints, this paper considers the use of sensors to provide
state information. To simplify the controller architecture,
a collocated actuator-sensor pairs are assumed and further,
static output feedback controllers are used to reduced further
the computational and implementational costs.

This paper considers collocated actuator-sensor pairs on-
board mobile platforms and uses the time-varying reacha-
bility sets to reposition the platforms to their new spatial
locations. Avoiding full state information which was assumed
in [3] for both the controller and the platform guidance,
it harnesses the total energy of the closed-loop system to
compute location-dependent solutions to operator Lyapunov
equations. The minimization of these performance metrics
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provide, in an analog manner to [3], the repositioning of
these platforms using only sensor measurements.

The problem is formulated in Section II and the proposed
guidance policy based on the time-varying reachability sets
is presented in Section III. Numerical results are shown in
Section IV and conclusions follow in Section V.

II. PROBLEM FORMULATION

The parabolic PDE over a 2D domain Ω ⊂R
2 is given by

∂x(t,ξ,ψ)
∂t

=Ax(t,ξ,ψ)+
N

∑
i=1

bi(ξ,ψ;ξai(t),ψai(t))ui(t). (1)

The state is denoted by x(t,ξ,ψ) at time t ∈ R
+ and spatial

coordinates χ = (ξ,ψ) ∈ Ω. A finite number N of mobile
actuators with time-varying centroids (ξai(t),ψai(t)) ∈ Ω is
assumed to dispense the control signals to the spatially
distributed process. The state operator is given by

Aφ =
2

∑
i, j=1

αi j(t,χ)
∂2φ

∂χi∂χ j
+

2

∑
i=1

β(t,χ)
∂φ
∂χi

+ γ(t,χ)φ,

and is assumed to satisfy the minimum conditions for the
well-posedness of (1). These are the uniform ellipticity in the
cylinder (0,T )×Ω [4], [5], the uniform Hölder continuity
of the spatially and temporally varying coefficients α,β,γ
over the cylinder (0,T )×Ω and the square integrability of
the non-homogenous term represented by the input term
due to the mobile actuators. The spatial distribution of
the actuating devices is denoted by bi(ξ,ψ;ξai(t),ψai(t))
and describes the manner in which the actuating devices
are dispensing the control signal ui(t) to the process. For
simplicity, a further assumption is made regarding the spatial
domain, namely that Ω is simply connected, open, bounded
and with sufficiently smooth boundary ∂Ω. Finally, initial
and boundary conditions must be given. While all types
of boundary conditions are allowed, which for the case of
Neumann conditions it will enable the actuators to move
along the boundary, we have selected Dirichlet conditions
for simplicity. In the case of boundary actuators, they can
stay at the boundary or move in the interior of the spatial
domain. The proposed scheme allows for actuators to be at
the boundary as well. Thus we have the conditions

x(t0,ξ,ψ) = x0(ξ,ψ), x(t,ξ,ψ)
∣

∣

∣

(ξ,ψ)∈∂Ω
= 0. (2)

Following the earlier contribution on the full-state avail-
ability [3], we assume that the spatial distribution of the
actuating devices is given by the spatial Dirac delta functions.

Assumption 1 (actuator spatial distribution): The spatial
distribution of the actuating devices is that of a Dirac delta
function centered at the centroids

bi(ξ,ψ;ξai(t),ψai(t)) = δ(ξ−ξai)δ(ψ−ψai(t)), i = 1, . . . ,N.

If one has fixed actuators, namely all the centroids are
fixed with χai(t) = (ξai(t),ψai(t)) = (ξai,ψai), i = 1, . . . ,N,
for all t > 0, then a full state feedback controller based on the
LQR design can provide a desired controller performance. In
this case, the PDE in (1) and (2) must be placed in an abstract
form in terms of an evolution equation in a functional space.

The evolution equation in a Hilbert space X is given by

ẋ(t) = Ax(t)+B(χa)u(t)

u(t) = [u1(t), . . . ,uN(t)]T , x(t0) = x0,
(3)

where with a slight abuse of notation, x(t) = x(t, ·, ·) is used
to denote the state as an element of the abstract space X . The
state space X , a Hilbert space, serves as the interpolating
space for the reflexive Banach space V that is continuously
and densely embedded in X . The conjugate dual of V is
denoted V ∗. In this case, one has the Gelf’and triple space
V →֒ X →֒ V ∗ with both embeddings dense and continuous.
We have that the state operator A ∈ L(V ,V ∗), and the
input operator B ∈ L(U,V ∗), with U the input space, for
each fixed centroid χa in an admissible set of actuator
locations that ensure the operator pair (A ,B) is exponentially
stabilizable, [6].

For the system in (1), (2), the spaces are identified by
X = L2(Ω), V =H1

0 (Ω) and V ∗ =H−1(Ω) with the Sobolev
spaces H1

0 (Ω),H−1(Ω) defined in [5]. The operators in weak
form are A : V → V ∗

〈Aφ,ψ〉=
∫

Ω
∇ · (α(ξ,ψ)∇φ1(ξ,ψ))φ2(ξ,ψ)dω

+

∫
Ω

β(ξ,ψ)∇φ1(ξ,ψ)φ2(ξ,ψ)dω

+
∫

Ω
γ(ξ,ψ)φ1(ξ,ψ)φ2(ξ,ψ)dω,

for φ1,φ2 ∈V ∗. The location-dependent input operator B(·) :
R

N → V ∗ is given by

〈B(χa)u,φ1〉=

∫
Ω

b(ξ,ψ;ξa,ψa)u(t)φ1(ξ,ψ)dω.

Different to the earlier work [3], to obtain the control signal
we can minimize the finite horizon performance index cost

J(x0; t0) = 〈x(T ),M1x(T )〉

+
∫ T

t0
〈x(τ),Q1x(τ)〉+uT (τ)R1u(τ)dτ.

(4)

The solution to this optimization problem is given by

u(t) =−R−1
1 B∗(χa)P (t;χa)x(t) (5)

where P (t;χa) solves the location-parameterized DRE

−〈Ṗ (t;χa)φ1,φ2〉= 〈Aφ1,P (χa)φ2〉+ 〈P (χa)φ1,Aφ2〉

−〈P (χa)B(χa)R
−1
1 B∗(χa)P (χa)φ1,φ2〉+ 〈Q1φ1,φ2〉,

(6)

for φ1,φ2 ∈ D(A) with D(A) denoting the domain of A , and
having terminal condition P (T ;χa) = M . The optimal value
of the performance index is

Jopt(x0; t0) = 〈x0,P (t0;χa)x0〉 (7)

and this can be used to obtain the optimal values of the
fixed-in-space actuators via

χopt
a = argmin〈x0,P (t0;χa)x0〉. (8)

When the actuators are desired to be repositioned within
the spatial domain, another layer of optimization is included
in the formulation of the control problem. The solution to the
optimal guidance of moving actuators of the system (3) with
a finite horizon cost (4) was summarized in [3] and which
included the actuator motion dynamics

χ̇ai(t) = Fχai(t)+υi(t), χai(0) ∈ Ω, (9)
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where υi(t) denotes the control signal for the ith mobile
platform carrying the ith actuator and the matrix F is the
state matrix for the motion dynamics.

This optimal guidance-plus-control solution requires the
backwards in time solution to the Operator Differential Ric-
cati Equation (6) and the actuator guidance. The backwards
in time integration and knowledge of the full state are the
two requirements that impede the real-time implementation
of the optimal control-and-actuator-guidance of advection
PDEs like (1) with mobile actuators. To alleviate some
of the computational burdens that hamper this real-time
implementation, two suboptimal policies are proposed:

1) Modify the performance index in (4) to

J(x0; tk) = 〈x(T ),M1x(T )〉+
∫ T

tk
〈x,Q1x〉+uT R1udτ,

which essentially changes the cost-to-go at dis-
crete time instances tk with tk+1 = tk + ∆t, k =
0,1, . . . ,n − 1. In each of the time subintervals
[t0,T ], [t1,T ], [t2,T ], . . . , [tn−1,T ], one solves the op-
erator DRE’s and then selects the optimal actuator
location for the interval [tk, tk+1] by optimizing the
performance index

Jopt(x(tk); tk) = 〈x(tk),P (tk;χa)x(tk)〉

via χopt
a = argmin〈x(tk),P (tk;χa)x(tk)〉. Thus, at the

beginning of a new subinterval tk, the actuator positions
change according to the above optimization and reside
in that position throughout each [tk, tk+1). This opti-
mization requires the solution to operator DREs in each
diminishing time interval [tk,T ]. While it takes into
consideration the delays due to the platform motion, it
requires the state x(tk) at each switch time tk.

2) An improvement to the above, considers the infinite
horizon problem and changes the lower time limit at
each time instance tk. Thus one considers at each new
time instance tk the infinite horizon performance index

J(xtk ; tk) =
∫ ∞

tk
〈x(τ),Q1x(τ)〉+uT (τ)R1u(τ)dτ.

The optimal value is given by

Jopt(x(tk); tk) = 〈x(tk),S(χa)x(tk)〉

where S(χa) solves the operator ARE

0 = 〈Aφ1,S(χa)φ2〉+ 〈S(χa)φ1,Aφ2〉

−〈S(χa)B(χa)R
−1
1 B∗(χa)S(χa)φ1,φ2〉+ 〈Q1φ1,φ2〉,

Thus, at the beginning of each time interval [tk, tk+1)
one repositions the actuators via

χopt,k
a = argmin〈x(tk),S(χa)x(tk)〉.

While this is a significant improvement to the previous
case, in terms of the computational load that only
require solution to operator ARE’s instead of operator
DRE’s, it still requires the state x(tk) at each time
instance to realize the optimization. Additionally, it
requires the full state at each time in each time subin-
terval [tk, tk+1) in order to realize the control signal

uopt,k(t) =−R−1
1 B∗(χopt,k

a )S(χopt,k
a )x(t), t ∈ [tk, tk+1).

The second option was considered in [3] for a single actuator.
The above accounts for multiple actuators, but is still infea-
sible since it requires access to the state x(t). However, the
guidance scheme presented in [3] allowed for actuator guid-
ance (continuous motion) in each time subinterval [tk, tk+1)
combined with discrete time updates on the cost-to-go.

The case of static feedback with actuator guidance that
takes into account the motional constraints is presented in
the next section and constitutes the main result in this paper.

III. SUBOPTIMAL STATIC OUTPUT FEEDBACK CONTROL

AND ACTUATOR GUIDANCE WITH ACTUATOR MOTION

CONSTRAINED OVER TIME VARYING REACHABILITY SETS

We first consider the platform kinematics given by

ξ̇ai(t) = vi(t)cos(θai(t)),

ψ̇ai(t) = vi(t)sin(θai(t)),

θ̇ai(t) = ωai(t),

(10)

for i = 1, . . . ,N, where vi(t) and ωai(t) are the speed and
turning rate for each mobile platform. While both the speed
and turning rate are the control signals, for simplicity it is
assumed that the speeds of the actuator platforms are constant
and only the turning rates are used as the control signals.

As argued in [3], the repositioning of each platform at
the beginning of each time subinterval [tk, tk+1) cannot occur
instantaneously and may not be able to solve the operator
Riccati (algebraic or differential) for every single candidate
position in Ω. Instead, one considers the motional constraints
and searches for the new actuator position in each time
subinterval, over the current reachability set for each actuator
platform. In a given time subinterval, an actuator platform
can only traverse to a region surrounding its current position,
which is defined as its time varying reachability set.

The residence time tres, i.e the duration tk+1 − tk that an
actuator platform resides at a given spatial location χa(t) for
t ∈ [ti, ti +∆t[, satisfies

tres = tk+1 − tk = ∆t.

This assumes that all time subintervals are uniform with
duration ∆t. One can easily express the beginning of a new
subinterval via tk = t0 + ktres, k = 1, . . . , T−t0

tres
−1.

The requirement is: at the beginning tk of each subinterval
[tk, tk + tres), the actuator platforms must move to their new
commanded positions while obeying the kinematics (10) in a
travel time ttravel that is significantly less than the residence
time tres. The additional requirement is that ttravel ≪ tres.

For each actuator platform, the set of locations that can be
traversed over the travel time ttravel is described by the spatial
points that are within a distance vittravel from the current
position χai(tk). Taking into account the dynamics (10) for
each mobile platform, we have that the possible locations of
each platform over the interval [tk, tk+1) are given by

ξi(t) = ξai(ti)+(vttravel)cos(θi(t))

ψi(t) = ψai(ti)+(vttravel)sin(θi(t))
i = 1, . . . ,N, (11)

where the angle θi(t) for each platform satisfies θai(tk)−π≤
θi(t) ≤ θai(tk) + π, i = 1, . . . ,N. This of course assumes
that there are no angle constraints and that each mobile
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platform can traverse during the time subinterval [tk, tk+1)
at any point in the circle centered at the current position
χai(tk) = (ξai(tk),ψai(t)) with radius vttravel .

Prior to the definition of the reachability sets for each
of the actuator platforms, we provide the definition of the
admissible set of locations for each platform.

Definition 1 (admissible sets): The set of admissible can-
didate locations for each platform Θi

ad , i = 1, . . . ,N is the set
of points within the spatial domain Ω such that a parameter-
ized operator Riccati or Lyapunov equation is solvable.

Equipped with the admissible set of points for each plat-
form, we can now proceed with the time varying reachability
sets for each platform.

Definition 2 (Reachability sets): The reachability set for
each platform is given by

Rai(tk) = Θi
ad ∩

{

(ξi,ψi,θi) :

(ξi,ψi) satisfy (11), −π ≤ θi(t)≤ π
}

It should be noted that in the case of no angular constraints,
the reachability sets consist of all spatial points in the
admissible sets Θi

ad that are within the circle of radius
vttravel from the current location χai(tk). If there are angular
constraints of the form ±∆θ with ∆θ≪ π, then each actuator
platform can travel a distance v · ttravel from its position
χai(tk) = (ξai(tk),ψai(tk) with the circular regions now be-
coming sectors given by θi(t) ∈ [θai(tk)−∆θ,θai(tk)+∆θ].
In this case, the reachability sets are reduced and given by

Rbi(tk) = Θi
ad ∩

{

(ξi,ψi,θi) : (ξi,ψi) satisfy (11),

θai(tk)−∆θ ≤ θ(t)≤ θai(tk)+∆θ
}

.

There is another reachability set that was considered in [3]
and which included both angular and angular rate constraints.
The time required by an actuator platform to turn by an angle
∆θ is given by tturn = |∆θ|

ω . This constraint leaves (ttravel −
tturn) time units to travel. In this case, the spatial points in
the time-varying sector that can be travelled over the time
interval [tk, tk+1) are

ξi(t) = ξai(tk)+ v(ttravel − tturn)cos(θi(t))

ψi(t) = ψai(tk)+ v(ttravel − tturn)sin(θi(t)).
(12)

The reachability set is further reduced and is given by

Rci(tk) = Θi
ad ∩

{

(ξi,ψi,θi) : (ξi,ψi) satisfy (12),

θai(tk)−∆θ ≤ θi ≤ θai(tk)+∆θ, |∆θ| ≤ ω tturn

}

.

One obviously has Rci(tk) ⊆ Rbi(tk) ⊆ Rai(tk), ∀tk, ∀i =
1, . . . ,N. Figure 1a depicts the reachability set Rai(tk) which
is a circle centered at the current actuator location χai(tk) =
(ξai(tk),ψai(tk)). Figure 1b depicts the reachability set Rbi(tk)
with ∆θ = 30o. The spatial region in this case is restricted
to the interior of the arc.

Once the equations of motion and the associated reachabil-
ity sets are provided, one must design the controller and the
actuator guidance for each actuator platform. Since a static
output feedback gain is to be considered, then an expression
for the output signals must be provided. To simplify further
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(a) no angle constraint case.
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(b) angle constraint case.

Fig. 1: Reachability regions R (ti): (a) the interior of circle;
(b) the interior of sector defined by [θ−30o,θ+30o].

the controller design, it is assumed that sensors are collocated
to the actuators onboard the mobile platforms. Thus the
output of each sensor is given by

yi(t) = B∗(χai(t))x(t), i = 1, . . . ,N. (13)

With regards to the PDE in (1), the measurements are

yi(t) =
∫

Ω
bi(ξ,ψ;ξai(t),ψai(t))x(t,ξ,ψ)dω. (14)

In the particular case of a spatial Dirac delta function
bi(ξ,ψ;ξai(t),ψai(t)) = δ(ξ− ξai(t))δ(ψ−ψai(t)), then the
sensor measurements are given by

yi(t) = x(t,ξai(t),ψai(t)), i = 1, . . . ,N. (15)

The proposed static feedback controllers take the form

ui(t) =−
N

∑
j=1

Γi jy j(t), i = 1, . . . ,N. (16)

The proposed control (16) requires only the output mea-
surements yi(t). A careful examination of (16) reveals that
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it imposes a heavy communication burden amongst the N
mobile platforms that have to share (transmit) their own
measurements with the remaining platforms. Certainly, an
optimal static feedback gain Γi j can be calculated by the
infinite dimensional analogue of the optimal static feedback
design first presented in [7], and which entails the iterative
solution of Riccati and Lyapunov equations. This however
does not take into account the communication topology
between the mobile platforms. An optimization scheme for
computing both the gains and minimizing the communication
links was proposed in [8], but that would not apply here,
since the actuator are moving at the beginning of each time
interval [tk, tk+1). Presumably, one can extend to the time
varying case by solving coupled operator differential Lya-
punov and differential Riccati equations. That, also, would
not work as it would require a large computational load.
While not considered here, one can select for simplicity an
adaptive scheme to update the gains using available signals
as was first presented in [9].

For simplicity, the static controllers considered in this
paper are given by

ui(t) =−Γiiyi(t), i = 1, . . . ,N. (17)

In other words, a completely decentralized controller with
a complete loss of inter-agent communication is considered.
Further, a uniform gain is assumed for all platforms and all
time intervals with Γii = γ. Since now the controllers are

u(t) =−Γy(t), (18)

with Γ= γIN , then one must now provide the last requirement
of spatial repositioning (guidance) of the actuator platforms.
The closed-loop system is given by

ẋ(t) = (A −B(χa(t))ΓB∗(χa(t)))x(t). (19)

A suitable metric is the energy-to-go given by

J(tk;(χa)) =
∫ ∞

tk
〈x(τ),M x(τ)〉dτ, (20)

and whose value is given by

Jopt(tk;χa) = 〈x(tk),Σ(χa)x(tk)〉. (21)

The optimal value (21) can be used to find the actuator loca-
tions for each subinterval [tk, tk+1), but it requires access to
the state x(tk). A final assumption is made on the nuclearity
of the Lyapunov operator Σ(χa) and thus the optimal value,
parameterized by the actuator locations χa, is given by

Jopt(tk;(χa)) = trace(Σ(χa)) . (22)

The Lyapunov operator satisfies the Lyapunov equation

(A −B(χa(t))ΓB∗(χa(t)))
∗ Σ(χa)

+Σ(χa)(A −B(χa(t))ΓB∗(χa(t))) =−M
(23)

Having presented all three parts of the output feedback
control and guidance of actuators-sensors onboard mobile
platforms, we summarize all steps in Algorithm 1. Based
on the motional constraints of the mobile platforms, all
three reachability sets Ra(tk), Rb(tk) or Rc(tk) can be used.
Algorithm 1 reflects this choice via the generic notation
R�(tk) for any of the three reachability sets.

Algorithm 1 Actuator-sensor guidance in [tk, tk+1[

1: initialize: Determine the set of admissible actuator lo-
cations Θad that render the location-parameterized oper-
ators (A ,B(χa)) approximately controllable.

2: initialize: Select ∆t based on hardware and processor
requirements. Divide [t0,T ] into n uniform subintervals
[tk, tk+1] with tk = t0 + k∆t and ∆t = (T − t0)/n.

3: initialize: Select γ in the control laws u(t) =−γINy(t).
4: iterate: k = 0
5: loop
6: minimize the location-parameterized cost-to-go

J(x(tk); tk) =
∫ ∞

tk
〈x(τ),M x(τ)〉dτ,

associated with the closed-loop system

ẋ(t) =
(

A −B(χopt,tk
a )ΓB∗(χopt,tk

a )
)

x(t)

7: select the actuator locations for [tk, tk+1[ using

χopt,tk
a = arg min

χa∈R (ti)
trace(Σ(χa))

where Σ(χa) is the solution to the Lyapunov equation

(A −B(χa(t))ΓB∗(χa(t)))
∗ Σ(χa)

+Σ(χa)(A −B(χa(t))ΓB∗(χa(t))) =−M

8: for t ∈ [tk, tk+1[, using (11) move to actuator location
χopt,tk

a within the appropriate reachability set R�(tk)
and implement controller

u(t) =−ΓB∗(χopt,tk
a )x(t) =−Γy(t)

9: propagate (1) in the subinterval [tk, tk+1[
10: if k ≤ n−2 then
11: k ← k+1
12: goto 4
13: else
14: terminate
15: end if
16: end loop

IV. NUMERICAL STUDIES

We consider the PDE in (1) with the spatial domain
given by the rectangle Ω= [0,LX ]∪ [0,LY ] = [0,100]∪ [0,60].
For ease of implementation, the parameters in the elliptic
operator were assumed constant α= 0.1,β= γ= 0. For initial
conditions the function x0(ξ,ψ) = 104(ξ/LX )

3(ψ/LY )
3(1−

(ξ/LX ))
3(1 − (ψ/LY ))

3 was selected. A total of N = 2
collocated actuators-sensors were considered.

To simulate (1) and the controller (18), a finite dimensional
approximation scheme based on Galerkin methods was used
with nx = 26,ny = 16 linear elements. The approximation
scheme ensured that exponential stabilizability is preserved
[10], [11]. The spatial integrals required for the numerical
computation of the matrix representation of the PDE in (1)
were computed using a composite two-point Gauss-Legendre
quadrature rule [12]. The finite dimensional state space
model resulting from the Galerkin approximation of (1) was
integrated using the stiff ODE solver from the Matlabr ODE
library, routine ode23s, a 4th order Runge-Kutta scheme.
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In the numerical studies, the circle-based Rai(tk) and
sector-based Rbi(tk) reachability sets were considered. Fig-
ure 2(a) depicts the actuator-sensor trajectories along with
the circle reachability set at the penultimate time. Figure 2(b)
depicts the actuator-sensor trajectories corresponding to the
sector reachability set. From these two figures, it can be
observed that the actuator-sensor trajectories are different
for different reachability sets. The controller performance
when the mobile actuator-sensor pairs move over a circle
versus a sector reachability sets is presented in Figure 3,
which depicts the evolution of the L2 state norm. The use
of a circle reachability set has a slight advantage over the
sector reachability set. Both of course perform better when
the actuator-sensor pairs are fixed in space, positioned at the
same location as the initial position of the mobile actuators.

(a) circular reachability set.
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Fig. 2: Mobile actuator trajectories including the reachability
set shown at the penultimate switch time; yellow circles
(◦) designate the penultimate actuator locations χa1(tn−2)
and χa2(tn−2), blue asterix (∗) denotes the final locations
χa1(tn−1), χa2(tn−1), and the green circle (◦) and cyan circle
(◦) denote the initial location χa1(t0), χa2(t0).

V. CONCLUSIONS

A guidance policy for collocated mobile actuator-sensor
using realistic motional constraints was presented. The con-
straints incorporated platform kinematics with restrictions on
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Fig. 3: Evolution of the L2 state norm using the actuator
guidance with circular reachability set (blue), with sector
reachability set (red) and using fixed actuators (orange).

the set of spatial points that each platform can visit over
a time interval and which were dictated by time-varying
reachability sets. To simplify the computational require-
ments a static controller was selected and which provided
realistic control architectures. The proposed guidance and
control scheme was demonstrated on a 2D PDE. An im-
mediate extension involves the information sharing between
the actuator-sensor pairs and their modified guidance for
collision avoidance and performance improvement.
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