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Controlling PDEs with mobile actuators constrained over time-varying
reachability sets

Michael A. Demetriou

Abstract—The use of mobile actuators for the control of
spatially distributed systems governed by PDEs results in
both implementational and computational challenges. First it
requires the backward-in-time solution to the actuator guidance
and the backward-in-time solution to the control operator
Riccati equation. A way to address this computational challenge
is to consider a continuous-discrete alternative whereby the
mobile actuator is repositioned at discrete instances and resides
in a specific spatial location for a certain time interval. In order
to find optimal paths for a given time interval, a set of feasible
locations is derived using the reachability set. These reachability
sets are further constrained to take into account the time it takes
to travel to any spatial position with a prescribed maximum
velocity. The proposed hybrid continuous-discrete control and
actuator guidance is demonstrated for a 2D diffusion PDE that
uses no constraints and angular constraints on the actuator
motion.

I. INTRODUCTION

One of the earliest treatments of partial differential equa-
tions (PDEs) with moving actuators and sensors was the
work by Butkovskii and Pustyl’nikov in [1]. The idea was
to improve performance of controllers and estimators by
appropriately moving actuators and/or sensors. This gave rise
to the need for system theoretic aspects of controllability and
observability for PDEs with moving actuators/sensors, [2].

More recently, Lyapunov-based guidances for moving
actuators used for improving controller performance and
moving sensors for improving estimator performance were
presented in [3], [4], [5], [6]. The guidance was based on
stability arguments and repositioned the mobile actuator or
sensor so that the resulting error would converge to zero
faster. Optimality of the motion of a sensor in order to
improve the performance of a state estimator for a class
of PDEs was presented in [7], [8]. The associated mobile
actuator problem for the optimal control of PDEs can be
derived by duality using the results in [7], [8]. However, one
of the challenges is the computational costs associated with
the backwards-in-time integration of the actuator guidance
and the associated differential Riccati equation.

A computationally efficient way to circumvent the exces-
sive computational costs associated with backwards-in-time
integrations, is to consider suboptimal schemes whereby the
mobile actuator dynamics are incorporated in the decision
policy. A decision to reposition the mobile actuator is made
at an a priori defined time instant and the optimal location
is found via the minimization of an infinite horizon linear
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quadratic cost. The mobile actuator must then traverse to
a new position and reside for a given time interval. This
process is repeated for the next (sub)optimal position. The
benefit for this suboptimal policy it two-fold: (a) it allows
the computation of algebraic Riccati equations, as opposed
to differential Riccati equations, and (ii) provides a real-time
implementable policy by taking into account the time-varying
reachability sets defined by the mobile platform dynamics.
Optimization of the cost-to-go is now over a time varying
reachability set, as opposed to the entire spatial domain.
The above modifications are presented for a class of 2D
PDEs with the 2D kinematic equations serving as the motion
dynamics of a mobile platform carrying an actuator.

II. PROBLEM FORMULATION

Advection-diffusion PDEs, or more generally parabolic
PDEs, in 2D spatial domain can be used to model a wide
range of engineering applications; single species mass dis-
tribution (salinity, biological mass dispersion), temperature
distribution, multi-agent model interaction, etc. When con-
sidered over a 2D domain Q C R? with boundary 0%,

ox(t,€,y)
5, = 8w+ wiEa(), wa()u(r). (D)
In the above, x(¢,&,\) denotes the state at time # € R™ and
spatial coordinates y = (&,y) € Q. The spatial operator is
A= 3010 502+ 3 B0 22 .00
VARV~
and is assumed to be uniformly elliptic in ]0,7[xQ [9].
In the above, the spatial dimension is taken as n =2 and
the coefficients o, 3,y are uniformly Holder continuous over
10, T[xQ; a condition required for well-posedness [10], [11].
In fact, a further simplifying assumption is being made
in which the coefficients o,f,y are time invariant. The
spatial domain € is assumed to be simply connected, open,
bounded with sufficiently smooth boundary 0Q. The function
b(E,;E4(¢),Wa(?)) denotes the spatial distribution of the
actuator with x,(¢) = (§,(¢),y,(t)) € Q denoting its time-
varying centroid, and u its corresponding control signal. To
completely describe the PDE system, boundary and initial
conditions are required; mixed boundary conditions may be
assumed to represent a more general PDE system and thus
ox
1,6, = ) ) = 07 5 = Oa
H0v) =xEw). o =0 S
where dQy U dQ, = dQ is the smooth boundary and %
denotes the outward normal. However, in the remainder, it
will be taken that Dirichlet boundary conditions are assumed
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for ease of presentation and thus

x(t()?E.nW) = xo(&?“’)? x 20 =0. 2

A pointwise actuator is assumed here which reflects a
realistic and widely used actuator spatial distribution. Thus,
the following assumption is made.

Assumption 1: The actuator distribution is that of a spatial
Dirac delta function centered at y, () = (§,(¢), W, (¢)) with

b(E,W:8a(t), Wa(t)) = (8 —&a(1))8(W — Walr)).
When the actuator is fixed with (§,(¢),w,(?)) = (€4, Wa)
for all + > 0, one can resort to established results for
controller design. The PDE in (1), (2) in state space form is

X(1) = Ax(t) + B(xa)u(t)
x(to) =X
where the operator 4 : H} (Q) — H~'(Q) in weak form is

+/QB(§’W)V¢1(§»\I/)¢2(§\V) do
+ [ AE W06 w0 ) do,

for 01,0, € H} (Q), and the location-dependent input operator
B(+) : R' — H~1(Q) is given by

(B0 = [ BEV:Ew ()1 ¥) do

When the actuator centroid ¥, is such that the pair (4,B(x4))
is approximately controllable, [12], then one can obtain the
control signal that minimizes the infinite horizon cost

J(xo3t0) = /t (x(1), 01x(7)) 4+ Ryu? (1) dr. 4)
0
The solution to this optimization problem is given by
u(t) = =Ry 'B" (1) P(Xa) (1) )

where P(,) solves the location-parameterized Riccati oper-
ator equation

0= <A¢1 aP(Xa)¢2> + <P(Xa)¢l aA¢2>
—(P(Xa)B(Xa) (7-)B* (Xa)P(Xa)01,02) + (0101, 02),

for ¢1,02 € D(A). The above is conducive to optimization of
the actuator location, [13]. If there is a set ©,; of admis-
sible locations that ensures the solvability of the location-
parameterized Riccati equation (6), then the optimal is

X" =arg min (x(to),P(Xa)x(t0)). ™

a ad

3)

(6)

In the above, it is assumed that the actuator centroid y, € O,y
is fixed in space for all times ¢ > 7y and the set ©,; has
constant elements (fixed spatial locations).

When the actuator is to be repositioned within the domain
Q in an optimal way and/or the control cost (4) is over a
finite horizon, then one has to solve a differential Riccati

equation. The cost (4) is now over a finite time interval
T

J(xo:10) = /, x(1),01x(0)) + Rud(t)dt,  (8)

and when a fixed actuator location is to be selected for the
entire time interval [0, 7], one can then obtain it in a similar

fashion to (7); the difference now is that the Riccati operator
is the solution to the associated differential equation. The
optimal location is
xa" =arg min (x(to), P(to; xa)x(t0)) ©)
Xa€Oud
where the location-parameterized Riccati operator solves

—(P(t:%a)01,02) = (401, P(t:a)02)
+H(P(t;%a)01,402) +(0101,02)

—(P(t:%a)B(Xa) (7} )B* (Xa) P(: Xa) 01,02).
with terminal condition P(T;y,) = 0.

(10)

III. OPTIMAL CONTROL AND MOBILE ACTUATOR
GUIDANCE

When the actuator is mobile, with the time-varying cen-
troid y,(#) having linear dynamics of the form

Xa(t) = Fa(t) +0(1),  %a(0) € Q, (11)
where v(#) denotes the controls for the mobile platform car-

rying the actuator and the matrix F captures the (linearized)
motion dynamics, then the cost to be optimized is now

T
Join) = [ ((0),00x(1) + Ru(m) de
' (12)
+ [ A @00a(®) +V (DR .
0
The optimal solution to the minimum of (12) is given in
terms of the adjoint states (p(¢),q(¢)) by

u(t) = —R7 ' p(t;a(t
{ () 11_1( Xa(t)) 13)
V(1) = —3R; q(1)
where the adjoint states (p(),q(¢)) satisfy
ap "
&=—ap-2
o=
p(T.&y) =0 (14
FT§=~q—20x%4(t) ~uVp
A=Xa(t)
Xa(T) =0

The use of the method of transportation isomorphism in [14]
is used to provide the existence of the solutions (14) to the
optimal control problem described by (1), (11), (12).
Remark 1: Similar to the fixed actuator case, one can ar-
rive at a location-parameterized operator Riccati differential
equation that must be solved backwards in time. As can be
observed from (14), the mobile actuator guidance law must
also be integrated backwards in time. This of course poses
an algorithmic and implementational challenge commanding
and committing prohibitively large computational resources.

IV. SUBOPTIMAL CONTROL AND MOBILE ACTUATOR
MOTION

In response to Remark 1, one may consider suboptimal
control and actuator guidance laws that are at the same time
real-time implementable with realistic computational costs.
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1) One can consider the optimal control problem (12) over
each of the smaller time intervals [f,7,]U[t;,]U... U
[ta—1,T]; in particular, one first solves (14) backwards
in time from ¢; to { and then propagates the state
x(t,&,y) in (1) and y,(¢) in (11) from #y to ;. Then
the optimal control problem is solved in the interval
[f1,22] by solving (14) backwards in time from 7, to #
and propagate the state x(¢,&, ) in (1) and y,(¢) in (11)
from ¢; to £p. This is repeated till the last subinterval
[tn—1,T]. This is suboptimal and still an open loop pol-
icy. However, because of the updated actuator locations
every (f;+1 —;) time units that change in response to
(9), a certain closed-loop performance can be argued.

2) An alternative to the suboptimal policy that considers
(13), (14) over smaller time intervals, is to consider a
policy that requires the solution to algebraic Riccati
equations (ARE) and additionally does not require
backwards-in-time integration of the mobile actuator
guidance. The computational costs is significantly re-
duced and a motion controller can be selected to
reposition the actuator to a desired spatial location.

The latter is detailed below as a first approach in address-
ing computationally efficient schemes for switching and/or
moving actuators.

A. Actuator switching/activation in [t;,t;y1] with discrete
time updates on the cost-to-go

The idea has been explored earlier and entails the use
of optimal static actuator in (7) with updated cost-to-go.
Initially, one considers the infinite horizon cost

oo

Jito) = [ (x(2),00x(%) + Rl (D) dn
0
and the optimal actuator location for the interval [f,eo[ is
o' —arg min (x(fo),P(xa)x(t0)), t € [to,o].
Xa€Oud

Now, at a later time ¢; = ¢y + 0t, one re-examines the optimal
location and considers the updated cost-to-go

Tt = [ (x(0), 01x(%) + Ru(x) dr.
|
The optimal actuator location for the interval [¢],co[ is now
Xgpt =arg min <x(t1)ﬂP(Xa)x(t1)>v te [t17°°['
Xaeead

The above procedure is continued for subsequent time inter-

vals and the cost-to-go is examined with a lower time limit

t;. At each time instant ¢;, the actuator is switched to a new
location according to

X' =arg_min (x(t;),P(xa)x(t:)), 1€ [ti, o[-
Xa€Oud

a

(15)

At every instant ¢#;, the infinite horizon problem is re-
evaluated with an updated cost-to-go which itself produces
a new actuator location according to (15). This switching
policy is suboptimal, but it is closer to being closed-loop.
Algorithm 1 summarizes this actuator switching policy.

Advantage: The actuator location optimization (15) is per-
formed over the admissible set ©,; and requires the solution
to the algebraic operator Riccati equations (6). At the onset

of a new time interval, one can use the set of algebraic Riccati
equations computed for the first interval to form the costs
(15) for subsequent times.

Disadvantage: This policy assumes that the actuating device
can hop at the discrete times #y,#,%,..., instantaneously.
Another way to view this is to assume an infinite number of
pointwise actuators within the set ©,; € Q with only one of
them kept active at all times while the remaining ones are
kept inactive (dormant). No consideration for the motion of
the mobile platform carrying the actuating devices is made.

Algorithm 1 Actuator switching in [#;,%;11[

1: initialize: Determine the set ®,; consisting of all lo-
cations that render the pairs (4,B(),)) approximately
controllable. Divide the interval [fp,T] into »n uniform
subintervals [t;,7;+1] with #; = o +i0¢ and & = (T —ty) /n.

2: iterate: i =0

3: loop

4:  minimize the location-parameterized cost-to-go

J()it) = [ (D), 01x(0) + Rl () dr,

5. select the actuator location for [f;,:+1[ using
X =arg min (x(4:), P(xa)x(4:))
Xﬂeead
with P(y,) the solution to the ARE
0= (491,P(Xa)02) + (P(Xa)01,492)
—(P(Xa)B(Xa) (7-)B* (Xa)P(Xa)01,02) + (0101, 02),

6:  fort € [tj,t;1[, switch to actuator with location "

and implement controller

u(t) = —Ry VB (2 P )x(0)
propagate (1) or (3) in the interval [¢;, 7|
if i <n—2 then

: i—i+1
10: goto 3
11:  else
12: terminate
13:  end if
14: end loop

B. Actuator guidance in [t;,t;11] with discrete time updates
on cost-to-go

In this case, the mobile actuator will have to move to its
new position at the beginning of a new interval [t;,7; + &t
according to motion dynamics of the form (11). However, in
most cases, the platform dynamics may involve more states
than the actuator centroid. A widely used motion dynamic
model for the 2D case involves the kinematic equations

Ea(t) = v(t) cos(84(1)),
Wa(t) = v(t)sin(64 (1)),

0.(1) = w,(1).
The control signals for (16) are the speed v(¢) and turning
rate o(z); often the speed is assumed constant and thus only

(16)
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the turning rate is the control signal. The mobile actuator
centroid is taken to be the output of the dynamical system

£4(0)
" 1 0 0
Yalt) = [ =) ]:[ wo | an
wi ] Lo o)y

With the inclusion of the vehicle motion dynamics, one
can derive the equivalent expression to (13), (14) for the
nonlinear motion dynamics (16).

Unlike the previous case of actuator switching using (15),
here it is expected for the single mobile actuator to reposition
itself within Q to a new location at the beginning of a new
time subinterval [¢;,7;1]. Since now the motion is constrained
by the kinematic equations (16), this repositioning cannot
occur instantaneously. The problems associated with the
inclusion of the motion dynamics of the actuator are:

1) The search for the new actuator position in (15) over
the set ©,; may require large computational time.
Searching over the large set ©,; may be time con-
suming and may even require more time to complete
than the duration of the time interval 7.1 —#;.

2) The search for the new actuator position in (15) over
the set ©,4, even if it is performed instantaneously
using a high-end processor, may produce a position
that is far away from the current actuator position
Xa(t;); the vehicle may simply be unable to reach the
new commanded position in the time interval #; | —¢;.

To address the above two challenges, one can restrict the
search over a subset of the admissible set ®,,; thus the
search (17) will be performed over a significantly smaller set
thereby rendering the optimization search real-time imple-
mentable. To address the second challenge above, one may
assume that the time it takes to go to a new commanded
actuator location within 2 while obeying (16), is significantly
less than the duration of any of the decision intervals ¢ — ;.

V. MAIN RESULTS: SUBOPTIMAL CONTROL AND MOBILE
ACTUATOR MOTION CONSTRAINED OVER TIME-VARYING
REACHABILITY SETS

The duration #;;| — ¢ that an actuator resides at a given
spatial location Y, (¢) for ¢ € [t;,#; + &t[, is termed the resi-
dence time; assuming that all time subintervals are uniform
with duration 8¢, then the residence time f,.4 satisfies

lres = tiy1 —ti = .

Thus one can express the beginning of a new subinterval as
T—t

- (18)
tres

At the beginning of a new interval #;, the actuator must move
to its new commanded position while obeying (16) in a travel
time #,4ye; that is significantly less than the residence time
tres. Thus one imposes

t; =ty + itres, i=1,...,

1, Vi

Uravel <K lres- (19)

Because of the time constraint the actuator has to reposition
itself, the set of actuator locations that can be traversed within
tyraver time units is characterized by the points that are within

a distance Vf;,q,¢ from the current position y,(¢;) where v is
the maximum speed in equation (16)

&(t) = &a(t:) + (Vturaver) cos(8(2))

W(t) = Wa(ti) + (Virraver) sin(8(2))
where the angle is 0,(¢;) —mt < 0(¢) < 0,(¢;) + 7. This imme-
diately defines the time-varying reachability set

Ry(t) = Ous 1 { (€ .0) :

(&, w) satisfy (20), ~m < 0(r) <n

The reachability set R,(#;) consists of all the spatial points
within ©,, that can be reached by the mobile actuator from
the current location y,(¢) = (&,(¢), W, (¢;)) within the time
span fqe. Figure la depicts the reachability region (21)
which is a circle centered at the current actuator location
Xa(t)) = (Ea(ti),Wa(t;)). When searching for the actuator
location in [#;,#1[, one optimizes (15) over R, (#;).

(20)

21)

When there is an angle constraint, namely the mobile
actuator can traverse a distance V- f;4, from the current
Xa(t:)) = (E4(t:), Wa(2;) but has an angular constraint +A8 with
AB < m, the circular region now becomes a sector defined
by 0(¢) € [0,(t;) — AB,0,(¢;) + AB] with

€ = &u(ti) + (Vtiraver) cos(8(2))

. (22)
Y= Wa(ti) + (V[tmvel) Sll’l(e(t))
and the reachability region is
Ro(15) = Oua 1 { (£:.0) : (& W) satisfy (22),
(23)

0.(t)) — A8 < 0(r) < 0,(t) +Ae}

Figure 1b depicts the reachability region (22) with A@ = 30°.
The region is constrained to the interior of the arc.

Finally, one may consider the case where there is a
constraint in the angular rate as well. In this case, there is
time required for turning to an angle A® given by

28] (24)

turn =

which then leaves (4,4ve; — tyrn) time units to travel. The
possible points in the sector that can now be reached are

é = &a (ti) + V(ttravel - tturn) COS(G(I))

. (25)
V=V, (ti) + V<ttravel - tturn) Sln(e(t))
and the reachability region is now given by
Re(t) = ©ua N { (E1,0) : (&) satisfy (25),
(26)

ea(ti) — A0 S 0 S ea(ti) +Ae? |A9| S (Dtturn}

Figure lc depicts the reachability region (25) that includes
both angle and angular rate constraints. The angular rate
constraints result in a significantly smaller region than in
Figure 1b since now the mobile platform has to execute the
turn within #,,, time units, leaving only #,qve; — trurn time
units for traversing.

Algorithm 2 summarizes the proposed actuator guidance
with the search restricted over the time varying reachability

sets Ry(ti), Ro(t;) or Re(ti).
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(c) angle and angular rate constraint case.
Fig. 1: Reachability regions R (#): (a) the interior of circle;
(b) the interior of sector defined by [0 —30°,8+30°]; (c) the
interior of segment defined by [0 —30°,6 +307].

Algorithm 2 Actuator guidance in [f;,;41]

1: initialize: Determine the set ©,; consisting of all lo-
cations that render the pairs (4,B(y,)) approximately
controllable. Divide the interval [tp,T] into n uniform
subintervals [;,7;1] with #; = £y +i6t and &t = (T —to) /n.

2: iterate: i =0

3: loop

4:  minimize the location-parameterized cost-to-go

Je(t);0) = /t (x(1), 01x(7)) + Ry () d,
5. select the actuator location for [f;,4:+[ using

X =arg min (x(t;), P(xa)x(t:))
ER (1)

a i

with P(y,) the solution to
0= (491, P(%a)92) + (P(xa)01,492)
~(P(ta)B(Xa) (7;)B" (Xa) P(Xa)01,02) + (0101,02),

6:  fort € [t;,t;11], move to actuator location " within

the reachability set ® (¢;) and implement controller
u(t) = =Ry B (ra? ") Pt (1)

propagate (1) or (3) in the interval [¢;, ¢
if i <n—2 then

: i+—i+1
10: goto 3
11:  else
12: terminate
13:  end if
14: end loop

VI. NUMERICAL STUDIES

The PDE (2) with Q = [0,Ly]U[0,Ly] = [0,100]U [0, 60]
and o.= 0.1, =v=0 is considered. Initial conditions were
set as xo(&,y) = 10*E3y (Ly — £)3(Ly — y)?. A Galerkin-
based finite dimensional approximation scheme using n, =
26,n, = 16 linear elements was used to approximate (1).

The duration that a given actuator would reside in a
particular location was selected as ¢, =4 s while a travel
time was selected as #,4,e; = 0.1%.s = 0.4. The speed in (16)
was set to v(¢) = 25m/s. The initial actuator location was
selected as x,(t0) = (&4(t0),Wa(to)) = (0.312Lx,0.123Ly).
The LQR cost values were selected as Q) = 10/ and R| =
0.01. The closed-loop system was numerically integrated
using the Matlab ode solver ode45 over the interval [0, 100]s.

Algorithm 2 was implemented with the reachability set
given by R,(¢) in (21) (circle in Figure 1a) and by Ry(¢;)
in (23) (sector in Figure 1b). As expected the guidance
over different reachability sets produced a different actuator
trajectory. Figure 2 depicts the trajectory where the instan-
taneous reachability set is a circle and Figure 3 depicts the
trajectory where the instantaneous reachability set is a sector.

As a comparison of the performance of the mobile ac-
tuator, a fixed-in-space actuator was selected at the spatial
location of the initial position of the moving actuator, i.e.
at (0.312Lx,0.123Ly). The evolution of the state L, norm
is depicted for the case of a fixed actuator and a moving
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Fig. 2: Moving actuator trajectory including the reachability
set (circle) shown at the penultimate switch time; yellow cir-
cle () designates the penultimate actuator location ¥, (#,—2),
blue asterix (%) denotes the final location 7, (#,—) and the
green circle (o) denotes the initial location ¥, (¢).
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Fig. 3: Moving actuator trajectory including the reachability
set (segment) shown at the penultimate switch time; yel-
low circle () designates the penultimate actuator location
Ya(tn—2), blue asterix () denotes the final location y,(z,-1)
and the green circle (o) denotes the initial location y, ().

actuator using the reachability set ®R,(#;) in Figure 4. As
expected, the case of a moving actuator outperforms the case
of a fixed actuator. Similar results are obtained when the
reachability set is selected as R.(#;)

VII. CONCLUSIONS

A suboptimal policy for the repositioning of a mobile
actuator was presented as a means to address the compu-
tational costs associated with optimal policies that require
the backwards-in-time integration of actuator guidances and
Riccati equations needed for the control signals.

Evolution of state L , horm
80 T T T T T

mobile
70 immobile | -

60

50

40

30

20

0 . . . ; n
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Fig. 4: Evolution of the L, state norm using the proposed
actuator guidance (blue) and using a fixed actuator (red).
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