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Abstract— This paper revisits the design of compensator-
based controller for a class of infinite dimensional systems.
In order to save computational time, a functional observer
is employed to reconstruct a functional of the state which
coincides with the full state feedback control signal. Such a
full-state feedback corresponds to an idealized case wherein
the state is available. Instead of reconstructing the entire
state via a state-observer and then use this state estimate
in a controller expression, a functional observer is used to
estimate the product of the state and the feedback operator,
thus resulting in a significant reduction in computational
load. This observer design is subsequently integrated with a
sensor selection in order to improve controller performance.
An appropriate metric is used to optimize the sensor location
resulting in improved performance of the functional observer-
based compensator. The integrated design is further extended to
include a controller with an unknown input functional observer.
The results are applied to 2D partial differential equations
and detailed numerical studies are included to provide an
appreciation in the significant savings in both operational and
computational costs.

I. INTRODUCTION

Most of the work on functional observers (FO) and
unknown input functional observers (UIFO) has been applied
to finite dimensional systems e.g. [1], [2], [3] and more re-
cently in the research monograph [4] and references therein.
Functional observers are observers that provide an estimate
not of the entire state of a dynamical system, but a functional
of the state. Such an estimate of a function of the state (linear
or nonlinear) can subsequently be used in lieu of a full-
state feedback controller and thus the functional observer in
this case will essentially provide an estimate of the full-state
feedback-based controller signal.

The benefit of using a functional observer to produce
the control signal is mainly computational. Normally, one
implements an observer-based feedback whereby the full
state feedback control gain matrix is designed as if the full
state were available. Then a state observer, based either
on Luenberger observer design of Kalman filter design, is
implemented to provide in real-time the estimate of the
state process. The last step involves the multiplication of
the feedback gain by the state estimate to realize the control
signal. Even in the time-invariant case where the controller
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and filter gains are constants, one still has to simulate a
state estimator in real time. When a functional observer is
utilized in place of an observer-based controller, then the
only system simulated is the state of the functional observer
which has dimension significantly lower than the dimension
of the dynamical system.

An unknown input observer aims at providing a state es-
timate of a dynamical process with disturbances by utilizing
the knowledge of the distribution matrix of the unknown dis-
turbance input (unknown input) [5]. If the distribution matrix
of the unknown disturbance input is known, this information
can be utilized in the observer design, via the solution to an
associated Sylvester equation, to ensure that regardless of the
presence of an unknown input, the estimation error converges
to zero asymptotically. This framework has been used in
fault detection by designing fault detection observers that are
sensitive to faults but are not affected by the unknown inputs
[6], [7], [8], [9]. An unknown input functional observer
combines the above two designs and produces an estimate
of a functional of the process state despite the presence of
unknown inputs (disturbances), [4].

The migration and extension of these observers to infinite
dimensional systems is rather scant. Early works [10], [11],
[12] extended FO and UIFO concepts to a class of partial dif-
ferential equations and provided an optimization scheme for
the selection of the best sensor location. A more systematic
approach to the use of Sylvester equations appearing in the
design of functional observer was considered in a sequence
of papers by Emirsajlow [13], [14], [15].

Combining the earlier results and allowing for a further
optimization of the sensor location, if one has the freedom
to select a sensor location, is considered here. The conditions
that require the realization of a functional observer (FO)
and an unknown input functional observer (UIFO) for a
class of infinite dimensional systems are presented and the
well-posedness of the associate observer (FO and UIFO)
are summarized. The use of the state of the functional
observer as a substitute of a full-state feedback controller
is also examined here along with the resulting closed-loop
stability. Such a compensator reveals the important benefit
of a functional observer in controller design which is more
prevalent in infinite dimensional systems. The use of an
observer-based feedback requires the implementation of the
finite dimensional representation of the state observer. With
the proposed use of functional observer as the control signal,
one has to only implement a significantly lower-dimensional
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system whose dimension is not dictated by numerical conver-
gence but by the dimension of the control signal; equivalently
this is the same as the rank of the input operator of the infinite
dimensional system.

A. Contributions

The contributions of this paper are as follows
1) Extend the FO and UIFO designs to a class of infinite

dimensional systems.
2) Provide the well-posedness of the FO and UIFO when

the state of the observer is used as a controller.
3) Develop a sensor optimization scheme to find the best

sensor locations for FO and UIFO.
4) Demonstrate on a 2D diffusion PDE.
Section II presents a review of the finite dimensional FO

and UIFO design. Section III describes the proposed FO
for PDEs and its implementation as a compensator along
with a sensor optimization scheme. Similarly, Section IV
describes the proposed UIFO for DPS and its implementation
as a compensator along with a sensor optimization scheme.
Section V includes the numerical results for various cases
and Section VI concludes the paper with a brief summary of
the contributions and future work.

II. REVIEW OF FINITE DIMENSIONAL RESULTS

Consider the finite dimensional system

ẋ(t) = Ax(t)+Bu(t), (1a)

y(t) =Cx(t), (1b)

z(t) = Kx(t), (1c)

where x∈R
n is the process state vector, u∈R

m is the control
vector, y ∈ R

p is the output measurement vector and z ∈ R
r

is the state functional that is desired to be estimated; the
dimension of z is r ≤ n. When r = n with K = In, or more
generally when rank(K) = n, then the problem reverts to the
standard state estimator.

A. Functional Observer

The proposed functional observer, as taken from Darouach
[2] is given by

ẇ(t) = Nw(t)+ Jy(t)+Hu(t), (2a)

ẑ(t) = w(t)+Ey(t). (2b)

The enabling conditions are given by

PA−NP− JC = 0r×n, (3)

H = PB (4)

with P = K −EC. Central to the stability of the functional
observer is the estimation error

e(t) = z(t)− ẑ(t)

= Kx(t)− ẑ(t)

= Px(t)−w(t)

(5)

Using the above, the estimation error dynamics are

ė(t) = Ne(t)+(PA−NP− JC)x(t)+(PB−H)u(t),

= Ne(t),
(6)

where the r× r matrix N is designed to be Hurwitz.
When r = m and K is designed to be a state feedback gain

with A+BK Hurwitz, then the compensator

u(t) = ẑ(t), (7)

results in the closed-loop system

ẋ(t) = Ax(t)+Bu(t)

= Ax(t)+Bẑ(t)

= (A+BK)x(t)−Be(t).

Closed loop stability is examined for the augmented system

d
dt

[
x(t)

e(t)

]
=

[
(A+BK) −B

0r×n N

][
x(t)

e(t)

]
. (8)

The spectrum of the augmented state matrix consist of
the spectra of σ(A+BK)∪σ(N). Since both matrices are
Hurwitz, then (8) is exponentially stable, [4].

B. Unknown Input Functional Observer

Now consider

ẋ(t) = Ax(t)+Bu(t)+Fd(t), (9a)

y(t) =Cx(t), (9b)

z(t) = Kx(t), (9c)

where d ∈ R
q denotes the unknown disturbance signal and

F is the known n× q disturbance distribution matrix. The
goal is to design an UIFO that will estimate z despite the
presence of the disturbance signal d. The proposed UIFO is
also given by (2) where now one imposes

PA−NP− JC = 0r×n, H = PB, PF = 0r×q. (10)

Similar to (5), the estimation error is governed by

ė(t) = Ne(t)+(PA−NP− JC)x(t)+(PB−H)u(t)

+PFd(t).
(11)

When the conditions in (10) are satisfied, then (11) becomes
ė = Ne which establishes the exponential convergence of
e to zero. When the estimated functional ẑ is used as a
compensator, then the closed-loop system becomes

d
dt

[
x(t)

e(t)

]
=

[
(A+BK) −B

0r×n N

][
x(t)

e(t)

]
+

[
F

0r×q

]
d(t)

(12)
Closed-loop stability can be established when additional
conditions on d are imposed, e.g. d ∈ L2, [16], [4].

Remark 1: When the unknown input d is present but its
distribution F is unknown, then the FO-based controller will
result in a closed-loop system given by

d
dt

[
x(t)

e(t)

]
=

[
(A+BK) −B

0r×n N

][
x(t)

e(t)

]
+

[
F

PF

]
d(t).

The estimation error in this case is governed by

ė(t) = Ne(t)+PFd(t)

and may not converge to zero. If the additional assumption
d ∈ L2 is made, then the convergence may not be exponential.
In both the FO and UIFO cases with ẑ used as the estimate
of z = u, one arrives at a reduced order compensator since
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the traditional observer-based feedback has order n while the
FO or UIFO-based compensator has order equal to the rank
of the input matrix, m.

III. PROBLEM FORMULATION: FO FOR INFINITE

DIMENSIONAL SYSTEMS

The above functional observers (FO and UIFO) are ex-
tended for a class of infinite dimensional systems and the
estimated z is subsequently used in lieu of the full state
feedback controller, i.e. use u(t) = ẑ(t) instead of u(t) =
Kx(t). When the counterpart of (3), (4) or (10) that enable
the realization of the functional observer can be satisfied
with different output operators C, then one may proceed with
sensor optimization.

Let X and U be Hilbert spaces. Assume that A : D(A)→X
generates a C0-semigroup on X and B : U = R

m → X is a
bounded operator of rank m. If (A,B) is feedback stabilizable,
then K can be solved from a feedback Algebraic Riccati
equation such that A+BK generates an exponentially stable
C0-semigroup on X (cf. p. 485 Theorem 3.1 [17]). In this
case K : X → R

m is bounded, the state z ∈ R
m, and N is a

m×m dimensional matrix. Further assume that F ∈ L(X ), a
bounded operator on X , and d ∈ L2(0,∞;X ).

The infinite dimensional counterpart of (1) is given by

ẋ(t) = Ax(t)+Bu(t)+Fd(t), x(0) ∈ D(A),

y(t) =Cx(t),

z(t) = Kx(t).

(13)

If the operator F is not known, one may still design a
functional observer that will ensure the error e(t)= z(t)− ẑ(t)
will converge to zero in the appropriate norm. The functional
observer that estimates z(t) = Kx(t) in (13) is given by

ẇ(t) = Nw(t)+ Jy(t)+Hu(t),

ẑ(t) = w(t)+Ey(t).
(14)

To obtain a system similar to (8), one must assume that the
derivative of the output satisfies

ẏ(t) =Cẋ(t). (15)

This condition is only found in infinite dimensional systems
since one does not always have that d

dt (Cx(t)) = C
(

d
dt x

)
.

Combining (13),(14) and using (15) one arrives at

d
dt

[
x(t)

e(t)

]
=

[
A 0

0 N

][
x(t)

e(t)

]

+

[
B

0r×m

]
u(t)+

[
F

PF

]
d(t).

(16)

When the control signal is taken at u(t) = ẑ(t) with r = m,
then (16) becomes

d
dt

[
x(t)

e(t)

]
=

[
A+BK −B

0 N

][
x(t)

e(t)

]

+

[
F

PF

]
d(t).

(17)

Both the open loop (16) and closed-loop (17) systems require
the solution to the operator equalities

PA−NP = JC, PB = H, (18)

where the solution to the Sylvester operator equation P :
X → R

r, J is an r× q matrix, H is an r×m matrix and E
is an r×q matrix. If the control is selected as the estimated
functional u(t) = ẑ(t), then r = m.

Lemma 1: If the pair (A,B) is feedback stabilizable, the
output y(t) satisfies (15), d ∈ L2(0,∞;X ) and the Sylvester
equation (18) is satisfied, then the FO in (16) is well-posed
and for u ∈ L2(0,∞;Rm) the state x is bounded with

lim
t→∞

|e(t)|Rr = 0.

Further, if the controller is selected as u(t) = ẑ(t), then the
closed-loop system (17) is well-posed and

lim
t→∞

‖x(t)‖= 0, lim
t→∞

|e(t)|Rm = 0. (19)

Proof The state operator

A =

[
(A+BK) −B

0 N

]
(20)

generates an exponentially stable C0 semigroup on X ×R
m

since N is Hurwitz and A+BK generates an exponentially
stable C0 semigroup, [18]. Using the fact that d ∈ L2(0,∞;X ),
then the perturbed system (17) is stable leading to (19). ✷

A. Sensor optimization and design of Functional Observer

Now parameterizing the output measurement operator C
in terms of sensor location ξ ∈ R

l , then N solved from the
Sylvester equation (18) can be also parameterized by ξ.

Let the operator (20) be parameterized by ξ

A(ξ) =

[
(A+BK) −B

0 N(ξ)

]
. (21)

with domain D(A(ξ)) = D(A)×R
m → X ×R

m. Note that if
ξ is chosen such that σp(N(ξ)) ⊂ C

−, then A(ξ) generates
an exponentially stable C0-semigroup on X ×R

m. Further let

~x =

[
x

e

]
, F (ξ) =

[
F

P(ξ)F

]
.

The closed-loop system becomes

~̇x(t) = A(ξ)~x(t)+F (ξ)d(t). (22)

The objective is to choose the sensor location to determine
C and hence N, such that

sup
~x0∈X ,‖~x0‖2=1

J(~x0) =
∫ ∞

0
‖D~x(ξ)‖2

2 dt (23)

is minimized, where D ∈ L(X ) is a weight operator. Note
that in this case,

sup
~x0∈X ,‖~x0‖2=1

J(~x0) = sup
~x0∈X ,‖~x0‖2=1

(P (ξ)~x0,~x0).

Here P (ξ) satisfies the ξ-parameterized Lyapunov equation

P (ξ)A(ξ)+A∗(ξ)P (ξ)+D∗D = 0. (24)
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As a result, the optimal sensor location is given by

ξ = inf
ξ∈Rl

‖P (ξ)‖1, (25)

where ‖ · ‖1 stands for the nuclear norm, i.e., ‖P‖1 =
trace(

√
P ∗P ). However, the robustness of the sensor location

is not guaranteed with unknown disturbance distribution F .
At this case, one has to assume a “worst” distribution of
disturbance as was considered in [19], [20], [21] or if F
is known, to incorporate this knowledge in the functional
observer design and the subsequent sensor optimization.

IV. PROBLEM FORMULATION: UIFO FOR INFINITE

DIMENSIONAL SYSTEMS

When one has knowledge of the distribution of distur-
bances, via the operator F , then the conditions for the
solvability of the unknown input functional observer become

PA−NP = JC, PB = H, PF = 0. (26)

The general UIFO, which is the counterpart to (16), is
given by

~̇x(t) =

[
A 0

0 N

]
~x(t)+

[
B

0r×m

]
u(t)+

[
F

0

]
d(t). (27)

When the control signal is taken as u(t) = ẑ(t) with r = m,
then (27) becomes

~̇x(t) =

[
A+BK −B

0 N

]
~x(t)+

[
F

0

]
d(t). (28)

Comparing (17) (unknown F) and (28) (known F), one
notices that PF = 0 is enforced via (26) and thus the input
distribution operator can be used in the sensor optimization.

The convergence and well-posedness results in Lemma 1
for (27) and (28) extend to this case. Due to the similarities
in the arguments, the proof is omitted.

A. Sensor optimization and design of Unknown Input Func-
tional Observer

In this case, the closed-loop ξ-parameterized system (28)
is given by (cf. (22))

~̇x(t) = A(ξ)~x(t)+Gd(t) (29)

where

G =

[
F

0

]
.

With F being known, the sensor location is chosen such that

sup
~x0∈X ,‖~x0‖2=1

sup
d∈X

J(~x0,d)=
∫ ∞

0

(
‖D~x(ξ)‖2

2−γ2‖d‖2
2

)
dt (30)

is minimized, where parameter γ > 0. If γ is chosen properly,
then there exists a unique solution to (29), and

sup
~x0∈X ,‖~x0‖2=1

sup
d∈X

J(~x0,d) = sup
~x0∈X ,‖~x0‖2=1

(S~x0,~x0).

Here S(ξ) satisfies the filter Riccati equation (cf. (24))

S(ξ)A(ξ)+A∗(ξ)S(ξ)+D∗D =−γ−2GG∗. (31)

The optimal sensor location is again given by

ξ = inf
ξ∈Rl

‖S(ξ)‖1. (32)

Remark 2: Note that the min-max problem (30) is of
non-definite quadratic cost, which is related to H∞-robust,
state feedback stabilization problem. For infinite dimensional
systems, it is shown in [22, Chp. 6] that there exists a critical
γc ≥ 0 such that if γ > γc, then the existence of a unique
positive definite solution to the Riccati equation (31) is
guaranteed. However, the maximization problem over the
disturbances d does not have a finite solution if 0 < γ < γc.

Remark 3: The knowledge of the distribution of distur-
bances operator F affects the integrated design of functional
observer and sensor optimization twofold: When F is known,
then the functional observer can utilize the information so
that the equation for the error z(t)− ẑ(t) in (17) with F
unknown

ė(t) = Ne(t)+PFd(t),

can have an exponential convergence as seen in its counter-
part from (28)

ė(t) = Ne(t).

Additionally, when F is known, then the UIFO enforces
PF = 0 in (26) and thus the ξ-parameterized closed-loop
system (29) can use the knowledge of F to find the optimal
sensor location that yields a closed-loop system that is robust
with respect to the disturbances.

V. NUMERICAL RESULTS

We consider the diffusion PDE over the 2D domain
[0,Lχ]× [0,Lψ] = [0,100]× [0,60]m

∂x(t,χ,ψ)
∂t

= a

(
∂2x(t,χ,ψ)

∂χ2 +
∂2x(t,χ,ψ)

∂ψ2

)

+b(χ,ψ)u(t)+ f (χ,ψ)d(t)
with Dirichlet boundary conditions and measurements

y(t) =
∫ Lχ

0

∫ Lψ

0
δ(χ−χs)δ(ψ−ψs)x(t,χ,ψ)dψdχ.

The spatial distribution of the controller was selected as
b(χ,ψ) = δ(χ− 0.5Lχ)δ(ψ− 0.5Lψ), the diffusivity was set
to a = 10, and the spatial distribution of the unknown input
was selected as

f (χ,ψ) = 100χψ(Lχ −χ)3(Lψ −ψ)3.

Both the actuator and sensor distribution functions, selected
as the spatial Dirac delta functions, do not result in bounded
operators. However to numerically realize these functions,
the boxcar function

δ(χ−χs)≈
{

1
2ε if χs − ε ≤ χ ≤ χs + ε

0 otherwise

was used, which ensures that the associated operators are
bounded. The initial conditions was selected as

x(0,χ,ψ) = 104
(

χ
Lχ

)3( ψ
Lψ

)3(
1− χ

Lχ

)3(
1− ψ

Lψ

)3

.
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case
∫ T

0
‖x(t)‖2 dt

full state u(t) = Kx(t) 140.23

UIFO optimal sensor u(t) = ẑ(t) 165.88

UIFO non-optimal sensor u(t) = ẑ(t) 682.26

TABLE I

CLOSED-LOOP SYSTEM STATE NORM.

The optimal gain K was designed using an LQR controller
design that minimized∫ ∞

0
〈x(τ),Qx(τ)〉+uT (τ)Ru(τ)dτ,

with Q = 10I,R = 0.01.
To simulate the above PDE, a Galerkin-based finite ele-

ment scheme was used with nχ = 26 linear elements in the χ
direction and nψ = 16 linear elements in the ψ direction.
The spatial integrals were numerically evaluated using a
composite two-point Gauss-Legendre quadrature rule, [23].
The resulting semidiscrete system was numerically inte-
grated in the time interval [0,100]s using the Matlab ode
solver ode23s. The integrated UIFO and sensor optimization
scheme was used with the knowledge of f (χ,ψ). However,
to simplify the numerical simulations, the closed-loop system
(28) was simulated with d = 0.

The optimization scheme produced an optimal sensor loca-
tion at (65.67,20.61). As a non-optimal sensor, the locations
was selected as the one that enabled the UIFO but yielded
the largest value of ‖S(ξ)‖1 and which placed the sensor at
(18.20,4.85).

The evolution of the L2 state norm for the case of a
full-state feedback controller u(t) = Kx(t), the case of an
UIFO based controller u(t) = ẑ(t) with an optimal sensor
and an UIFO based controller u(t) = ẑ(t) with a non-optimal
sensor are depicted in Figure 1. It is observed that when
the sensor is optimized, then the performance of the UIFO-
based controller is comparable to the full-state controller. The
difference in terms of information is that the ideal case of
a full-state controller requires the entire infinite dimensional
state, whereas the UIFO-based controller requires a single
scalar output measurement and the integration of the scalar
state of the UIFO.

Comparing the performance of the optimal versus the
non-optimal sensor location of the UIFO-based controller is
depicted in Figure 2. At the two different time instances of
t = 25s and t = 75s, the spatial distribution of the state is
shown. The positive effects of the optimal sensor location are
highlighted, where one can observe the significant difference
of the amplitude for the two cases. Finally, the performance
of the UIFO in reconstructing the functional Kx(t) is shown
in Figure 3. The functional estimate ẑ(t) converges, as shown
theoretically, to the true functional Kx(t) exponentially.

The performance of the UIFO-based controller is also
summarized in Table I where the energy norm in the interval
[0,100]s is presented for the three cases.

0 10 20 30 40 50 60 70 80 90 100
0

20
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60

80

100

120

140

Fig. 1. Evolution of the L2 state norm using the functional observer output
for control u(t) = ẑ(t) with an optimal sensor (blue), the functional observer
output for control u(t) = ẑ(t) with a non-optimal sensor (red) and the system
with the full state feedback controller u(t) = Kx(t) (black).

Fig. 2. Spatial distribution of the state x(t,χ,ψ) at different time instances
using the optimal sensor (left) and the non-optimal sensor (right).

VI. CONCLUSION

This paper examined the use of functional observer output
as a substitute to a full-state feedback for a class of infinite
dimensional systems. This has a significant impact on the
computational costs for the implementation of the controller.
While in the traditional approach of an observer-based con-
troller one has to realize and implement a finite dimensional
approximation of the full-order observer with a dimension
that is dictated by numerical stability and convergence, the
proposed functional observer-based controller has dimension
equal to the rank of the input operator.

When a disturbance input is not present, the functional
observer output can be used in lieu of a full state con-
troller and when certain conditions are satisfied, then the
resulting closed-loop system is shown to be exponentially
stable. Adding another level of performance improvement,
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Fig. 3. Evolution of the functional z = Kx and its estimate ẑ(t).

the sensor location optimization was presented. By using an
appropriate metric of the resulting closed-loop system, the
resulting sensor optimization produced the optimal sensor
location that resulted in the smallest state energy. With the as-
sumption of nuclearity of a location-parameterized Lyapunov
operator, the optimal sensor location was computed via
the minimization of the trace of the location-parameterized
solution to a operator Lyapunov equation.

When an unknown disturbance input is present in the sys-
tem, but distribution operator is known, then this knowledge
was used to extend the Unknown Input Functional Observer
to the infinite dimensional case. When similar algebraic
conditions were satisfied, including an operator Sylvester
equation, were satisfied, the resulting UIFO output was used
as a substitute to the control signal and the closed-loop
system was also shown to be well-posed with controller
performance similar to the full-state feedback. A sensor
optimization scheme was also presented for the case of
an unknown input with known distribution operator. The
optimization metric in this case was expressed in terms of a
location-parameterized filter operator Riccati equation (H∞).
The resulting optimal sensor resulted in a closed-loop system
with robustness with respect to unknown disturbance inputs.

Extensive numerical studies involving a diffusion PDE in
two spatial dimensions was considered and which provided
insights on the performance of an UIFO-based controller
with optimal sensor. Such a controller performance was
comparable to a full-state feedback.

Possible extensions to the FO and UIFO based controller
with sensor optimization include the case of unbounded
input and output operators. This along with the case of joint
actuator-and-sensor selection for both FO and UIFO for a
class of infinite dimensional systems are currently considered
by the authors and will appear in a forthcoming publication.
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