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Using a large-scale, experimentally captured 3D microstructure data set, we
implement the generative adversarial network (GAN) framework to learn and
generate 3D microstructures of solid oxide fuel cell electrodes. The generated
microstructures are visually, statistically, and topologically realistic, with
distributions of microstructural parameters, including volume fraction, par-
ticle size, surface area, tortuosity, and triple-phase boundary density, being
highly similar to those of the original microstructure. These results are com-
pared and contrasted with those from an established, grain-based generation
algorithm (DREAM.3D). Importantly, simulations of electrochemical perfor-
mance, using a locally resolved finite element model, demonstrate that the
GAN-generated microstructures closely match the performance distribution of
the original, while DREAM.3D leads to significant differences. The ability of
the generative machine learning model to recreate microstructures with high
fidelity suggests that the essence of complex microstructures may be captured
and represented in a compact and manipulatable form.

INTRODUCTION

As a component of integrated computational mate-
rials engineering (ICME), methods to generate real-
istic simulation volumes are essential for modeling
and simulating materials with complex microstruc-
tures.1 While obtaining microstructures experimen-
tally guarantees realistic simulation volumes, the
cost or difficulty of microstructural characterization
often limits the size or number of microstructures
that can be sampled, particularly in 3D. Thus, to
support computational design and performance sur-
veys, a common goal is to synthesize statistically
representative sets of microstructural realizations.2

A number of successful approaches have been devel-
oped, such as those based on n-point correlation
functions,3,4 ellipsoid packing,5,6 physical

descriptors,7 Gaussian random field,8 and Markov
random field.9 Bostanaband et al.10 provide an
extensive review of existing microstructure recon-
struction techniques. However, despite their suc-
cesses, most of them require assumptions about the
underlying structure and thus are often limited to
either binary (two-phase) microstructures, uniform
microstructures consisting of primitive/regular
geometries, or a combination of both; there is an
intrinsic limit of generality that prohibits the use of
these statistical methods for a wide range of hetero-
geneous, complex material systems.

In recent years, deep learning-based generative
models, such as variational autoencoders11 or gen-
erative adversarial networks (GANs),12 have
attracted the interests of materials scientists for
their potential in microstructure image genera-
tion.13–16 Relative to other reconstruction methods,
generative models based on deep convolutional(Received June 24, 2020; accepted October 28, 2020;
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neural networks make no assumption regarding the
underlying structure of the image data. Such mod-
els can therefore be vastly general. Additionally,
these models have the ability to learn the underly-
ing data distribution of their input data set. In other
words, a well-trained generative model can (theo-
retically) synthesize an infinite number of unique
microstructure realizations from the learned data
distribution at relatively trivial speeds and compute
costs.

Most generative models for microstructure focus
on 2D representations.13–17 For example, Yang
et al.,13 Cang et al.,14 and Singh et al.16 successfully
applied them to represent 2D binary (two-phase)
microstructure images. Iyer et al.15 explored the use
of a conditional GAN,18,19 and Fokina et al.17 used a
style-based GAN20 for capturing complex, multi-
phase, grayscale 2D microstructure images. There
is some prior work focused on 3D microstructure
representation: Mosser et al.21,22 utilized a GAN to
generate 3D porous media microstructures, includ-
ing from binary image information22 and from
uniform microstructures made of closely packed
spherical grains (i.e., simple or regular geome-
tries).21 Most recently, Gayon-Lombardo et al.23

applied GANs to generate 3D, three-phase
microstructural volumes with periodic boundary
conditions that permit tiling to arbitrary system
sizes and achieved good agreement with the target
structures. These initial works confirm the general
utility of generative models in representing
microstructures.

In this article, we demonstrate that the GAN
framework with deep convolutional layers24 can
learn and generate grayscale, heterogeneous, com-
plex multiphase microstructures in 3D at a scale
appropriate for simulation of material properties.
Our model material is a three-phase commercial
solid oxide fuel cell (SOFC) anode, as shown in
Fig. 1. The original microstructure image data were
experimentally captured using a Xe plasma focused

ion beam combined with scanning electron micro-
scope (Xe PFIB-SEM)25,26 and represents the lar-
gest 3D volume of SOFC material characterized to
date. Although the microstructure consists of three
phases, we train our GAN model with the
microstructure data in grayscale (SEM signal)
format, without prior segmentation, to emphasize
and test the generality of the GAN framework. The
synthetic microstructures produced by the GAN
model are both visually and statistically realistic
when compared with the experimental microstruc-
ture and with microstructures synthesized by an
established, grain-based generation algorithm
(DREAM.3D).5,6 Importantly, simulations of elec-
trochemical performance, using a locally resolved
finite element model,27,28 demonstrate that the
GAN-generated microstructures closely match the
performance distribution of the real SOFC material.
The ability of the machine learning model to
recreate microstructures with high fidelity makes
it a valuable addition to the ICME tool set.

METHODS

Experimental Microstructure Data Set

As shown in Fig. 1, the SOFC anode microstruc-
ture is a three-phase, 3D composite of highly
interconnected yttria-stabilized zirconia (YSZ),
nickel (Ni), and pores. This material comprises
sintered grains with characteristic length scales on
the order of 0.5 lm and exhibits substantial vari-
ability in volume fractions over the length scale of
15 lm (or 30 times the characteristic length
scale).25,26 The extent and connectivity of triple-
phase boundaries (TPB), where YSZ, Ni, and pore
phases meet in a line junction, governs the perfor-
mance of the material. The TPB network topology is
complex and interconnected, necessitating a 3D
microstructural representation for accurate perfor-
mance modeling.

Fig. 1. Complex, multiphase microstructure of a commercial solid oxide fuel cell (SOFC) anode containing yttria-stabilized zirconia (YSZ, light
gray), nickel (Ni, dark gray), and pore phases (transparent). The 110! 124! 8 lm3 3D volume was obtained by PFIB-SEM; bright spots are
imaging artifacts. The inset shows an example 2D cross-section, imaged by SEM, where YSZ is bright gray, Ni is dark gray, and pores are black.
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The microstructure training data set originates
from the active anode layer of a commercial SOFC
sample supplied by Materials and Systems
Research, Inc. (Salt Lake City, UT), which was
imaged using PFIB-SEM as previously
described.25,26 The resulting microstructure datum
is a large-scale, 3D volumetric grayscale image
whose dimension is 1697! 1900! 124 voxels, or
110! 124! 8 lm3; thus, the voxel size is 65! 65!
65 nm3. Each phase images with a characteristic
grayscale intensity, and microscopy artifacts may
appear as well. Subvolumes of this microstructure
data set are randomly sampled during training
sessions.

DREAM.3D Synthetic Microstructures

As described elsewhere,26,29 synthetic microstruc-
tures were constructed using the DREAM.3D code
package6 (BlueQuartz Software, Springboro, OH),
which generates multiphase microstructures via an
ellipsoid packing scheme. The parameters specified
were phase fraction and the first and second
moments of the log-normal particle size distribu-
tion, which were chosen to match as closely as
possible the measured vales for each phase in the
anode microstructure. Forty distinct microstruc-
tures of 12:48! 12:48! 12:48 lm3 were first gener-
ated, and they were then split into octants to
produce 320 subvolumes of 6:24! 6:24! 6:24 lm3

(96! 96! 96 voxels).

WGAN Implementation

Convolutional neural networks (CNNs) are a class
of artificial neural networks particularly well suited
to image data and computer vision applications.30 In
its forward mode, a CNN takes in an image and
applies a series of signal processing steps (typically
filter convolutions, rectification operations, and
pooling or downsampling) to generate a compact
representation of the visual information contained
in the image, termed the feature vector. The feature
vector can then be used for a variety of image
processing tasks, including visual similarity and
classification.31 The architecture of the CNN,
including the type, number, order, and connectivity
of the operations, is user-defined, and the training
process attempts to optimize the many internal
variables for best performance.

CNNs can also operate in reverse, taking in a
feature vector and transforming it into an image;
this is the same basic concept as an auto-encoder.32

As shown in Fig. 2, we use a variant of GAN called
the Wasserstein generative adversarial network
(WGAN).33 The model consists of two CNN compo-
nents: The generator, in reverse mode, creates
candidate images, which the critic, in forward mode,
attempts to output in an approximated measure of
dissimilarity (Wasserstein loss) between the syn-

thetic and the real batches of microstructure
images. Both networks participate in a feedback
loop, so the generator learns to make more convinc-
ing synthetic images, and the critic learns to better
tell apart synthetics from real. This training
dynamic eventually leads to realistic images gener-
ated by the generator.12,33 Although the distinction
of GAN and WGAN is important to some, in the
following sections, we will refer to our model as
GAN and WGAN interchangeably.

We implemented the WGAN model using the
Tensorflow platform34 with the Keras API (https://
keras.io/). The model architecture, given in Table I,
largely follows the work by Miyato et al.35 on
spectral normalization and is specifically based on
their standard architecture. However, for the gen-
erator, we used upsampling and convolutional lay-
ers, rather than standard deconvolutional
(transposed convolution) layers, to avoid potential
checkerboard artifacts.36 We used a public code
repository at https://github.com/IShengFang/Spectr
alNormalizationKeras to implement spectral nor-
malization applied to convolutional and dense lay-
ers in the critic network. The Adam optimizer32 was
used for training the model. Relevant hyperparam-
eters are shown in Table II.

During training, for each critic update, a batch of
subvolumes randomly sampled from the experimen-
tal 3D microstructure and a batch of 3D images
randomly generated from the generator are fed into
the critic network to compute the Wasserstein loss33

and the subsequent gradient update. The sampling
process involves cropping and symmetry operations
(rotation and mirror-flipping) of the cropped sub-
volumes to increase the perceived training data
variability for the critic. Note that performing such
symmetry operations will result in the GAN model
not being able to learn microstructural anisotropy.
The microstructure studied in this work does not
visually exhibit any strong anisotropy.

We trained the model in a distributed fashion
with 64 high-performing GPUs (Nvidia Tesla P100
PCIe) on a supercomputer (NETL Joule) using the
Horovod framework.37 The training took about 39 h,
or 32,565 iterations of generator update. Due to the
nature of the synchronous distributed training
model implemented by Horovod, the effective mini-
batch size is the original minibatch size multiplied
by the number of GPU workers, or 8! 64 ¼ 512.
Although Goyal et al.38 have shown that under
synchronous distributed training, the learning rate
can be scaled linearly with respect to the minibatch
size without accuracy loss for classification tasks
using ResNet-50,39 we have observed that the
WGAN training dynamic is highly sensitive to
adjustments made to the learning rate. Therefore,
we did not scale the learning rate in order to
preserve training stability.
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Segmentation

Experimental and GAN synthetic grayscale
microstructures were segmented into three phases
using a custom watershed-based segmentation code,
which could be implemented in a high-throughput
fashion; the major steps are as follows:

1. Sobel filters were applied to an input grayscale
image to approximate image gradients.

2. A 2D density map was generated, plotting the
grayscale intensity in voxels (x-axis) versus the
gradient between voxels (y-axis).

3. Three high-density regions in the density map
were then manually bounded to indicate what

Fig. 2. Schematic of the WGAN model. The generator transforms a random noise vector z into a 3D image, and the critic outputs the dissimilarity
metric (Wasserstein loss) between real and synthetic images. The real microstructural volume images are sampled from the experimental data,
and the synthetic images are generated by the generator network.

Table I. Architecture of the WGAN model for 3D microstructure generation

Layer Operation(s) Output dimensions Kernel size Stride Batch normalization Activation function

Generator: input = z 2 R100 # N ð0; 1Þ
Gin Dense reshape (6, 6, 6, 512) – – – Linear
G1 2! Upsample

Conv3D
(12, 12, 12, 256) 4 1 Yes ReLU

G2 2! Upsample
Conv3D

(24, 24, 24, 128) 4 1 Yes ReLU

G3 2! Upsample
Conv3D

(48, 48, 48, 64) 4 1 Yes ReLU

G4 2! Upsample
Conv3D

(96, 96, 96, 32) 4 1 Yes ReLU

G5 Conv3D (96, 96, 96, 1) 3 1 No Tanh
Critic: input = grayscale image x 2 R96!96!96!1

D1 ConvSN3D (48, 48, 48, 32) 3 1 No lReLU
ConvSN3D 4 2 No lReLU

D2 ConvSN3D (24, 24, 24, 64) 3 1 No lReLU
ConvSN3D 4 2 No lReLU

D3 ConvSN3D (12, 12, 12, 128) 3 1 No lReLU
ConvSN3D 4 2 No lReLU

D4 ConvSN3D (6, 6, 6, 256) 3 1 No lReLU
ConvSN3D 4 2 No lReLU

D5 ConvSN3D (6, 6, 6, 512) 3 1 No lReLU
Dout DenseSN (1) – – – Linear

All convolutional layers use the ‘‘same’’ padding.The slope for all leaky ReLU (lReLU) activations is 0.1.Upsample and Reshape operations
are not associated with kernel size, stride, batch normalization, and activation function.Batch normalization operation is applied after
activation function, not before.
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voxels would be selected for seeds in the water-
shed algorithm. For example, voxels with gra-
dients< 1 and intensity values< 40 would be
selected as seeds for phase 1. This manual step
was done once, incorporating the entire exper-
imental data set in the selection process. The
same bounds were then used for all 646 sub-
volumes during batch segmentation.

4. A watershed dilation algorithm was then ap-
plied using the three groups of voxel markers
determined above. The algorithm accounts for
image gradients while dilating/growing the
markers (seeds). The output of this step is a
segmented image with three phases. When
using the same groups of markers in the com-
mercial AVIZO package, statistically identical
results were produced, which we take as vali-
dation that the code operates as intended.

As described in our earlier works,40–42 custom in-
house Python codes were used to calculate relevant
microstructural properties for each subvolume,
including: volume fractions; the average and stan-
dard deviation of diameter from the volume-
weighted size distribution for each phase (based on
an inscribed sphere method); interfacial surface
area between each pair of phases; geometric tortu-
osity factors for each phase; and total and active
(connected) TPB densities. For each phase in each
subvolume, we also calculated the formation factor
Ki, which represents the ratio between the effective
and bulk diffusivity or conductivity in phase i. Here
we use the fairly common estimation for the forma-
tion factor as the ratio between the phase fraction
and geometric tortuosity factor: Ki ¼ hi=si.

41

Electrochemistry Simulations

Simulations of the electrochemical performance of
90 3D microstructures were performed, as described
previously.27,28 Briefly, the application
ERMINE—Electrochemical Reactions in

Microstructural Networks—was used, which is
instantiated within MOOSE, the open-source finite
element framework developed by Idaho National
Laboratory. Thirty subvolumes for each of the
original, GAN, and DREAM.3D microstructures
were subjected to the workflow described else-
where,28 including appending a 4.16 lm YSZ layer
as an electrolyte. Morphology-preserving
microstructural meshes were generated using a
commercial meshing software (Simpleware ScanIP
+ FE 7.0, Synopsys, Inc., Mountain View, CA) and
used as the simulation domains. All simulations
were carried out on the Joule supercomputer (Na-
tional Energy Technology Laboratory, Morgantown,
WV). One hundred twenty cores were used in
parallel for simulation of any subvolume, and
simulations of many individual subvolumes also
could be run in parallel on JOULE. The typical time
to complete a simulation for a single subvolume,
which involved simulations from 0 V to 0.4 V
overpotential, was approximately 12 min. The total
clock time for simulation of all 90 subvolumes was
less than an hour using Joule.

RESULTS AND DISCUSSION

Visual Similarity

The 3D geometry and topology of the three-phase
SOFC microstructure is highly complex and inter-
connected, which is by design to have good electro-
chemical performance.43–46 This complexity is
visually apparent in Fig. 3 (top). A rendering of
the whole 124! 110! 8 lm3 volume is given in
Fig. 3 (top left), as are 21 grayscale images of 6:24!
6:24! 6:24 lm3 volumes cropped from the original
(top right). The grayscale intensities in the exper-
imental data reflect phase contrast, with some
microscopy artifacts (e.g., charging). Three hundred
twenty-three volumes can be cropped without over-
lap from the experimental data, though the training
sets used here include overlaps and data
augmentation.

Table II. Model hyperparameters

Symbol Description Value

a Learning rate for both generator and critic (initial) 0.00005
a Learning rate for both generator and critic (after 27 epochs) 0.00001
a Learning rate for both generator and critic (after 78 epochs) 0.000005
a Learning rate for both generator and critic (after 147 epochs) 0.000001
b1 First decay rate for Adam optimizer 0.1
b2 Second decay rate for Adam optimizer 0.9
ndis Number of critic update(s) per generator update 1
cBN Batch normalization momentum term 0.8

Here, one epoch is equivalent to the critic trained over 100,000 images.
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Upon sufficient training, the generator component
of the GAN model produces microstructures that
visually capture the complexity of the original with
striking fidelity. Twenty-one rendered grayscale
images produced by the generator are given in
Fig. 3 (bottom right). The generator can, in theory,
create an infinite number of unique microstructure
volumes, and indeed all 21 generated volumes appear
to be different. While the GAN-generated structures
and original data look very similar, close inspection
reveals that the original volumes display more vari-
ability than do the generated volumes. For example,
some original volumes show strong SEM surface-
charging artifacts (which appear as bright white
regions), yet the generated volumes contain few or
none of these artifacts. This is consistent with
observations that GANs tend to reproduce less
variation than the data used to train them;47,48 they
learn the average structure more readily than the
outliers. Nevertheless, the GAN microstructures
appear similar to those in the original distribution.

Figure 4 offers a deeper visual comparison
between the original (top group) and GAN-gener-
ated (middle group) microstructures. Four volumes
of each are shown in the left column, and six slices
(2D images) from them are shown as grayscale
images in the middle column. The 2D slices clarify
that the anode microstructures consist of three
grayscale intensities, corresponding to the three
component phases: pores (black), nickel (gray), and
yttria-stabilized zirconia (bright gray or white).
Similarly, the GAN-generated microstructures dis-
play three grayscale intensities, and the morphol-
ogy visually resembles that of the original
microstructure. Close visual inspection again

uncovers some differences. The end slices (e.g., slice
0) of the generated volumes are blurrier. Also, the
finer features of the original volumes contain
sharper angles, which are less common in the
GAN-synthetic volumes. These visual discrepancies
indicate that there is still room to improve the GAN
implementation, should more precise similarity be
required.

In prior work,26,28,29 we used an ellipsoid packing
method built into the DREAM.3D software to create
microstructures approximating the original PFIB
data sets. The DREAM.3D microstructures are gen-
erated as segmented data, having three voxel values
(colors); examples are shown inFig. 4 (bottomgroup).
Visually, the GAN-synthetic morphology resembles
the original more closely than the DREAM.3D-syn-
thetic morphology does. For example, compared to
the DREAM.3D synthetics, the original structures
and the GAN synthetics have greater phase connec-
tivity and less agglomeration of the solid (gray)
phases. This is not surprising, considering that
DREAM.3D input was limited to phase fraction and
the first and second moments of the log-normal
particle size distribution. While it is possible that
the DREAM.3D structures could be improved by
iterative optimization or specifying additional
microstructural parameters, important aspects of
microstructural topology, including clustering and
connectivity, are constrained by the ellipsoid packing
scheme and are not directly tunable.

Statistical Similarity

The microstructural parameters that are known
to impact electrochemical properties in three-phase

Fig. 3. Volume-renderings of representative microstructures cropped from the original experimental data (top) or generated by the trained
generator using random noise vector inputs (bottom). Visual similarity between the two sets of images is notable. The cropped/generated
volumes have the dimensions of 96! 96! 96 voxels, with voxel sizes of 65! 65! 65 nm3. Therefore, the cropped volumes have physical
dimensions of 6:24! 6:24! 6:24 lm3.
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electrodes include volume fractions, particle sizes,
tortuosity factors, and formation factors (volume
fraction/tortuosity factor) for each phase as well as
surface area for each pair of phases, and TPB
density. These distributions are shown in Fig. 5 for
the original (blue), GAN-synthetic (orange), and
DREAM.3D-synthetic (green) microstructure vol-
umes, and the mean and standard deviation of each
distribution are tabulated in Table III. It was shown
previously that these parameters can vary signifi-
cantly across the electrode and between phases,26,29

as supported by the distributions of the original
data in Fig. 5. It is impressive that the mean values
for the GAN-synthetic volumes match the original
volumes within a standard deviation and that there
is a very high degree of overlap for each of the 16
distributions shown in Fig. 5. The GAN has clearly
learned the underlying distributions of features
inherent in the original microstructural volumes.

The DREAM.3D-synthetics, on the other hand, do
not match the original data as well as the GAN-
synthetics do; for metrics shown in Fig. 5a, b, c, d,

Fig. 4. Comparison of original (top), GAN-synthetic (middle), and DREAM.3D-synthetic (bottom) microstructures. Four random volumes (left
column) for each category were sampled, and six 2D slices are shown for each, either in grayscale (center column) or segmented/labeled format
(right column). The original microstructures consist of three phases: pores (black), nickel (gray), and yttria-stabilized zirconia (bright gray or
white). For the original and GAN structures, segmentation of grayscale images was performed as a post-processing step. DREAM.3D generates
microstructures with labeled fields, which are segmented by definition.
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Fig. 5. Histograms of original (blue), GAN-synthetic (orange), and DREAM.3D-synthetic (green) microstructure volumes with respect to 3D
microstructural metrics: (a) volume fraction of each phase, (b) mean particle size for each phase, (c) tortuosity factor for each phase, (d)
interfacial surface area between each pair of phases, (e) formation factor for each phase, and (f) total triple phase boundary (TPB) density. Phase
1 indicates pores; phase 2 is Ni; phase 3 is yttria-stabilized zirconia (YSZ). These statistics are based on 323 original (cropped without overlap),
323 GAN-synthetic, and 320 DREAM.3D-synthetic microstructure volumes of the same size. The curves show kernel density estimations (Color
figure online).

Table III. Mean l and standard deviation r for the distributions of microstructural metrics for the original,
GAN-generated, and DREAM.3D-constructed volumes

Microstructural metric
Original GAN DREAM.3D

l& r l& r l& r

Volume fraction
Pore 0:21& 0:02 0:22& 0:02 0:22& 0:01
Ni 0:37& 0:01 0:36& 0:01 0:32& 0:03
YSZ 0:42& 0:02 0:42& 0:01 0:46& 0:02

Particle size (lm)
Pore 0:51& 0:06 0:50& 0:02 0:45& 0:01
Ni 0:55& 0:01 0:55& 0:01 0:74& 0:12
YSZ 0:50& 0:02 0:50& 0:02 0:55& 0:01

Tortuosity factor
Pore 2:30& 0:61 2:29& 0:55 2:05& 0:40
Ni 1:22& 0:03 1:23& 0:04 1:49& 0:20
YSZ 1:12& 0:06 1:11& 0:02 1:10& 0:02

Interfacial area (um2/lm3)
Pore-Ni 0:55& 0:03 0:54& 0:03 0:56& 0:04
Pore-YSZ 0:87& 0:05 0:89& 0:06 1:07& 0:09
Ni-YSZ 1:82& 0:05 1:79& 0:07 1:36& 0:07

Formation factor
Pore 0:10& 0:03 0:10& 0:02 0:11& 0:02
Ni 0:30& 0:02 0:29& 0:02 0:22& 0:04
YSZ 0:37& 0:02 0:38& 0:02 0:42& 0:03

TPB density (lm/lm3) 3:16& 0:20 3:06& 0:23 2:92& 0:20
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and e, one or more DREAM.3D distributions have
significant mismatch or very little overlap with the
original distribution. DREAM.3D’s methodology
targets count-weighted particle statistics rather
than the volume-weighted statistics presented here,
which could contribute to some of the discrepancy
seen here. Additionally, the ellipsoid packing con-
struction algorithm constrains the topology of the
resulting structures. The measured size distribu-
tions from the original data could also be missing Ni-
Ni and YSZ-YSZ grain boundaries, which are not
detected by the data collection technique; this could
be another cause of discrepancies between the mea-
sured particle size distribution and that obtained by
ellipsoid packing with similar input parameters. As
noted previously, iterative tuning of the DREAM.3D
parameters could yield a bettermatchingmicrostruc-
ture, but the scope of DREAM.3D in this work was to
compare GAN’s imitation to a user’s honest attempt
at using DREAM.3D to create a similar microstruc-
ture. Although they do notmatch the original data as
well as theGAN-synthetics do, the distributions from
the DREAM.3D-synthetics are within a reasonable
range relative to those of the original and have the
same relative order of magnitude as those of the
original, consistent with past observations.26,29

To further evaluate the statistical similarity
between the original and GAN microstructures,
the distributions in Fig. 5 are presented as boxplots
in Fig. 6. All pair-wise boxplots have significant
overlaps of the interquartile range (IQR), or the box
region, as well as the ‘‘minimum’’–‘‘maximum’’
range (from Q1' 1:5IQR to Q3 þ 1:5IQR). This
reinforces the assertion that the GAN is able to
generate microstructures that are statistically rep-
resentative of the original microstructures, espe-
cially around the central portion of the
distributions. We define outlier values as those
outside of the statistical ‘‘minimum’’ and ‘‘maxi-
mum’’ values, shown as diamonds in Fig. 6. There
are more outliers for the original microstructures
than for the GAN-synthetics, and these outliers
cover a wider range of values. Thus, while the
current GAN implementation captures the central
portions of the distributions, further work is neces-
sary to capture the full variability, particularly the
outliers, of the original microstructures.

Electrochemical Performance

The microstructure metrics quantified in the pre-
vious section have been used in effective medium
theory models to describe electrochemical properties
or performance of electrodes.49–51 The statistical
similarity between the original and GAN structures
suggest that their effective medium properties will
match as well. For a more direct comparison of local
performance, microstructurally resolved, finite ele-
ment simulations of electrochemistry were carried
out on 30 volumes from each microstructure type:
original, GAN-synthetic, and DREAM.3D-synthetic.

These 90 sub-volumes, which are randomly sampled
subsets of the microstructure data in Fig. 5, were
subjected to a finite element computational workflow
described in detail elsewhere.27,28,52 In essence, the
voxelated microstructure images were meshed to
produce morphology-conforming finite element com-
putational domains, and a standard reaction-and-
transport electrochemistry model was implemented
across the meshed microstructures. The simulation
model only works on microstructural features fully
interconnected to the external source/sink locations
of the transport species and therefore only includes
active triple-phase boundaries. We note that, though
not shown in Fig. 5, the original and GAN-synthetics
have similar values of inactive TPB densities, but the
DREAM.3D has significantly higher inactive TPB
densities, highlighting again the difference between
GAN-synthetics and DREAM.3D synthetics for cap-
turing locally resolved topological features.

At a given global overpotential V, integrating the
current I flowing through the electrolyte layer
allows one to plot current density versus overpoten-
tial for all 90 subvolumes. Those I ' V plots can
then be fit using a standard activation/ohmic loss
model, which yields an effective exchange current
density j0 and an effective ohmic resistance Rohmic
for each subvolume (see28). As such, the electro-
chemical performance of each sub-volume can be
described using two distinct parameters. For all 90
volumes, the exchange current density is plotted
against the active TPB density in Fig. 7a, and the
ohmic resistance is plotted against the inverse of the
YSZ formation factor (sYSZ=hYSZ) in Fig. 7b.

Based on commonly used approximations, one
might expect the exchange current density to be
proportional to TPB density and the effective ohmic
resistance to be inversely proportional to formation
factor.28 Indeed, the exchange current density in
Fig. 7a is a nearly perfect linear function of active
TPB density (it even extrapolates to the origin). As
such, the main difference in performance of these
electrodes comes from the variability in the active
TPB density. Overall, the original and GAN-syn-
thetic microstructures have highly overlapped scat-
ter distributions. The GAN-synthetics have a
slightly lower mean value of active TPB density,
and therefore a slightly lower mean value of j0, and
the range of data is slightly wider for the original
sub-volumes than for the GAN-synthetics. The
DREAM.3D-synthetic microstructures, on the other
hand, have properties that have little overlap with
that of the original microstructures. This arises
because the distribution of active TPB density of the
DREAM.3D-synthetics differs significantly from the
original microstructures.

The ohmic resistance in Fig. 7b does not appear to
be a strong function of the inverse formation factor
of YSZ (the phase through which ions flow and
which determines the ohmic resistance). This was
shown previously,28 and is thought to arise because
internal microstructural heterogeneity impacts
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local ionic transport and, therefore, impacts ohmic
resistance values. Nevertheless, the original and
the GAN-synthetic microstructures have highly
overlapped scatter distributions: the GAN-synthet-
ics being slightly wider in formation factors and the
original being wider in the ohmic resistance values.
On the other hand, DREAM.3D-synthetic
microstructures have little overlap with the original
microstructures: the inverse formation factors are

lower and wider, while the ohmic resistance values
are slightly higher and wider.

Overall, Fig. 7 demonstrates that the GAN has
learned the underlying distribution of features to an
extent that the ensemble electrochemical properties
are very well matched with the experimental
microstructures. While the DREAM.3D-synthetics
are somewhat similar to the originals, they do not
do well in matching local connectivity at the sub-

Fig. 6. Boxplots of the distributions of microstructural parameters from the original (blue) and GAN-synthetic (orange) microstructure volumes:
(a) volume fraction of each phase, (b) mean particle size for each phase, (c) tortuosity factor for each phase, (d) interfacial surface area between
each pair of phases, (e) formation factor for each phase, and (f) total triple phase boundary (TPB) density. Phase 1 indicates pores; phase 2 is Ni;
phase 3 is yttria-stabilized zirconia (YSZ). The interquartile range is indicated by the box, the mean by the horizontal line within the box, the
minimum (Q1' 1:5IQR) and maximum (Q3 þ 1:5IQR) range by the horizontal lines below and above the box, and outliers are represented by
diamonds. Q3 is the upper quartile, Q1 is the lower quartile, and IQR is the interquartile range (Color figure online).

Fig. 7. Simulated electrochemical performance metrics from 30 original, 30 GAN-synthetic, and 30 DREAM.3D-synthetic microstructure
volumes. (a) Exchange current density plotted against the triple-phase boundary (TPB) density. (b) Ohmic resistance plotted against the inverse
formation factor for YSZ, sYSZ =hYSZ . For each microstructure category, the mean exchange current density or the mean ohmic resistance is
shown in the legend. The microstructure volumes considered here are randomly sampled subsets of the microstructure data for Fig. 5. Note that
the simulations were operated directly on meshed microstructures, thus retaining topological information.
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volumes sizes investigated here and therefore result
in poorer matches to the performance of the original
microstructures. Furthermore, as noted above, the
performance simulations reported here presume
electrochemical activity is almost entirely restricted
to the TPBs. For models that include activity
through two-phase boundaries (e.g., through a
cathode phase bulk), the performance of the GAN
structures would improve further relative to
DREAM.3D, since it also captures these features
with greater fidelity (Fig. 5d).

CONCLUSION

In this work, we implemented a GAN model for
learning and generating microstructural images.
This is among the first applications of GAN to 3D
microstructure generation at a scale, complexity,
and fidelity suitable for ICME applications. We
show that the GAN model can generate realistic 3D,
topologically complex, multiphase, grayscale
microstructures that closely resemble the original,
experimental structures in terms of visual appear-
ance, statistical representation of geometric and
topological properties, and simulated electrochemi-
cal performance. Compared to the commonly used
microstructure generation algorithm DREAM.3D,
the GAN results are structurally and electrochem-
ically more realistic. Besides its superior fidelity, we
consider that the GAN model has the following
merits:

) Generality: The GAN framework can be applied
to arbitrary materials systems, microstructural
morphologies, and imaging modes, making it a
general and flexible tool for microstructure gen-
eration. This is in contrast to many conventional
generation methods that explicitly impose
underlying assumptions for the microstructure.
The specific example in this article, DREAM.3D,
generates microstructures with ellipsoid pack-
ing, which can be a greatly simplified assump-
tion.

) Autonomy: Conventional microstructural con-
struction methods require the user to define a
set of metrics that characterizes microstructural
geometry and topology. The GAN generates
realistic structures independent of user assump-
tions; that is, it reproduces microstructural
metrics without needing to know them.

) Throughput: A trained generator can synthesize
an arbitrarily large number of unique
microstructural volumes.

) Computational efficiency: Although training the
GAN model requires substantial HPC resources,
using it to generate synthetic microstructures is
quite efficient.

However, we also note that the GAN implementa-
tion has the following relative shortcomings:

) Training data: Obtaining a sufficient volume of

3D microstructural data to train a GAN via
experiments or physical simulation can be costly
or challenging. In contrast, conventional con-
struction methods such as DREAM.3D can gen-
erate microstructures from statistical
descriptors, without requiring 3D image data.

) High performance computing: 3D image gener-
ation requires high model complexity (number of
trainable parameters). As such, high perfor-
mance multi-GPU training is a requirement.

) Synthetic volume: Typical CNN models, or mod-
els with CNN encoding/decoding structures,
require fixed input/output sizes. As such, typical
GAN models with deep convolutional layers can
only generate images at a fixed size correspond-
ing to the image size used during training
(although multiple images can be tiled as mon-
tages). Training GAN to generate 3D images
beyond 64! 64! 64 voxels is costly. Due to the
computational cost of training, this work was
limited to generation of 3D images at the scale of
96! 96! 96 voxels. Larger volumes require
more computational resources in proportion to
system size.

) Tunability: While conventional construction
methods allow users to alter input variables to
explore different parameter spaces (e.g., phase
fraction, particle size), the present GAN imple-
mentation is limited to generating microstruc-
tures from the parameter space on which it was
trained. However, developing tunable GANs is
an active area of research.15

Finally, it is worth commenting on the role of this
work in the context of applied machine learning
models for tasks in the physical sciences. We have
shown that based on the metrics discussed in this
article, our GAN model outputs valid and physical
microstructures. Thus, a major contribution of our
work is the extensive validation of the GAN model
output beyond nebulous or subjective measures of
visual similarity. This is a necessary step for
advancing GAN generative methods as tools sup-
porting ICME and other scientific and engineering
endeavors.
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