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A deep learning approach for complex
microstructure inference
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Automated, reliable, and objective microstructure inference from micrographs is essential for a

comprehensive understanding of process-microstructure-property relations and tailored

materials development. However, such inference, with the increasing complexity of micro-

structures, requires advanced segmentation methodologies. While deep learning offers new

opportunities, an intuition about the required data quality/quantity and a methodological

guideline for microstructure quantification is still missing. This, along with deep learning’s

seemingly intransparent decision-making process, hampers its breakthrough in this field.

We apply a multidisciplinary deep learning approach, devoting equal attention to specimen

preparation and imaging, and train distinct U-Net architectures with 30–50 micrographs

of different imaging modalities and electron backscatter diffraction-informed annotations.

On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve

accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image

context, pre-training with domain-extrinsic data, and data augmentation. Network visualization

techniques demonstrate plausible model decisions based on grain boundary morphology.
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Deep learning (DL) is a lasting subject of attention and
achieved remarkable results that culminated in a para-
digm shift in computer vision. In particular, research

fields such as autonomous driving1, and biomedicine2,3 acted as
driving forces for the development of data-driven approaches,
which superseded conventional computer vision (CV) algorithms
to a large extent. The introduction of convolutional neural
networks (CNN) with versatile architectures was accompanied
by substantial improvements in CV tasks4. This was rendered
possible by the accessibility of source codes and open-access data
sets, which enabled the comparability of different modeling
approaches and thus steady improvement.

Quality control in materials processing or of safety-critical
components, as well as tailored materials development5 require
the segmentation and classification of material microstructures.
Segmentation here refers to the pixel/voxel-wise materials phase
assignment. It is indispensable when relating microstructure with
properties, e.g., the phase morphology with fatigue properties6.
Predominantly, 2D micrographs of different imaging modalities,
such as light optical microscopy (LOM) or scanning electron
microscopy (SEM), are utilized for microstructure inference.

However, such micrographs’ automated, reliable, and objec-
tive segmentation is not established for all desirable material
classes. Although DL has more than proven its capability for
image segmentation and classification, it is still waiting for its
breakthrough in materials science. This can be attributed to
DL being frequently associated with a few drawbacks. Namely,
the requirement for (very) large data quantities and the
black-box nature of CNNs concerning the intransparency of
their decisions7. Furthermore, microstructure recognition tasks,
compared to natural images such as ImageNet8, can be very
complex regarding the degree of detail and information density
in the images. This further impedes the determination of
accurate annotations9 needed for supervised-learning, which
may discourage the use of DL, ultimately resulting in a lack of
representative annotated open-access data sets.

Hence, there is no practical guide on suitable specimen pre-
paration and contrasting, data acquisition and processing, and no
general intuition about the quality and quantity of data required
to train a specific DL architecture in the material science domain.
Consequently, material scientists’ recurrent questions address the
required amount of training data, resolutions, annotation accu-
racy, model architectures, and training strategies.

The work’s primary objective is to tackle former questions and
provide a better grasp through an integral approach system-
atically investigating methodological interdependencies in the
whole metallographic and DL process chain. Moreover, a CNN’s
decision-making process is rendered more transparent by inves-
tigating the importance of certain microstructural features for the
CNN prediction. Using the microstructure of a complex phase
(CP) steel, and particularly its lath-shaped bainitic phase, as a
case study, we demonstrate DL’s relevance in the field and aim to
raise the awareness and acceptance of DL for such tasks. This
microstructure class exhibits pronounced importance in engi-
neering, and its constituents can only be segmented to a minimal
extent using classical CV approaches10.

According to the classification scheme suggested by Zajac11,
the microstructure of CP steels, a family of advanced high-
strength steels, typically consists of bainite (granular, upper, or
degenerate upper bainite), ferrite, and dispersed carbon-rich
additional phases like martensite or retained austenite. In
micrographs of such heterogeneous microstructures, not all
constituents can be distinguished through gray value distribution.
Therefore, simple, traditional segmentation methods operating on
LOM or SEM quickly reach their limit. Approaches to quantify
the separate microstructure constituents using EBSD individually

have been reported12,13. Müller et al.14 developed a procedure to
segment lath-shaped bainite in CP steel micrographs consisting of
lath-shaped and granular bainite by analyzing the microstructure
constituents’ directionality. Bulgarevich et al.15 used a trainable
segmentation with a random forest classifier to segment ferrite,
pearlite, and bainite in light optical micrographs of three-phase
steels. Although methods for quantifying multi-phase micro-
structures have been suggested, the annotation and efficient
segmentation of different microstructure constituents solely from
LOM or SEM micrographs are not satisfactory.

As opposed to these works, supporting correlative electron
backscatter diffraction (EBSD) information is used in the LOM
and SEM annotation procedure to lay an appropriate foundation
for learning. Moreover, the aforementioned conventional CV or
ML approaches require complex image processing pipelines and
elaborate feature engineering to render predictions robust against
variances14. In contrast, the applied DL methods are directly
based on input and target output image pairs (representation
learning). Their application to microstructure recognition
demonstrated the potential for quantitative microstructure
analysis16,17, steel type classification16, crack path prediction18,
and micromechanical damage segmentation19. A CNN archi-
tecture referred to as U-Net2 has proven its merit in the
latter work and represents a common starting point due to
its numerous implementations in different DL frameworks and
image processing tools20,21. Therefore, this architecture repre-
sents a suitable candidate to derive best practices.

Results
This work addresses the task of distinguishing lath-shaped-bainite
regions (hereafter called foreground) from other phases such as
polygonal and irregular ferrite with dispersed granular carbon-rich
2nd phase (background) in metallographic cross sections of com-
plex phase steels. Therefore, the task is framed as binary segmen-
tation which we address with supervised learning of CNNs.
Unifying different methodologies such as specimen preparation,
image acquisition, multimodal data registration, data fusion, deep
learning modeling, and network visualization, all described in the
“Methods” section, facilitates a holistic approach for microstructure
inference. Ultimately, this puts us in a position to explore the
interdependencies within and optimize this processing pipeline.

Image sets and corresponding annotations. Aside from LOM
and SEM input micrographs, also their dense annotation masks
(i.e., pixel-wise and binary labels indicating lath-shaped bainite)
are crucial for supervised learning. For creating the annotation
masks, additionally correlative EBSD data was used, see the
section “Microscopy”. The EBSD data gives access to accurate and
highly quantitative features such as pixel-wise crystal orientation,
nicely complementing the qualitative, mostly topography-
sensitive information from our LOM or SEM data. Therefore,
this analytical technique allows the accurate distinction of phases
(and hence reliable dense annotations) even when facing com-
plicated multi-phase microstructure scenarios. In the following,
results of the LOM data preparation are shown. The SEM images
were treated accordingly.

Figure 1 shows a LOM image (a), different overlays of LOM with
suitable EBSD-derived characteristics (b–e), and the resulting
annotations of lath-shaped bainite based on the LOM image
and this EBSD-derived information (f). Enlarged details in (g–j)
illustrate how unique grain color maps or grain boundary
visualizations can be used to precisely define the boundaries of
the lath-shaped bainite regions. For instance, it is visible which
second phase particles belong to the object or are part of the
surroundings (red encircled region in Fig. 1g–j). This data also helps

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26565-5

2 NATURE COMMUNICATIONS | ��������(2021)�12:6272� | https://doi.org/10.1038/s41467-021-26565-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


if grain boundaries are not clearly visible in LOM images due to
weak contrasting. Additionally, when the determination of the
class affiliation is impeded due to microstructural units with
intermediate morphology between lath and granular, complement-
ing EBSD information can provide a remedy. Without EBSD
data, this assignment would have to be done solely based on the
microstructure’s visual appearance, which can lead to disagreement
between human experts and inconsistencies during annotation.
Enlarged details in k–n show that misorientation parameters, and
specifically low values (blue color) for kernel average misorientation
(KAM) or grain orientation spread (GOS) in Fig. 1l+m, indicate
polygonal ferrite grains adjacent to or even inside lath-shaped
regions (red arrows in Fig. 1k–n). These embedded or adjacent
polygonal ferrite grains should be excluded during annotation.
The distinct crystallographic orientation of the embedded grain
(see Fig. 1c) does not suffice to unambiguously exclude it from the
lath-bainite class. However, intragranular misorientation metrics
can characterize such marginal cases as ferritic regions since small
intragranular misorientation is incompatible with the notion of
lath-shaped bainite22.

These illustrations also clearly show the difficulty of the
segmentation task at hand because the different phases are not

distinguishable by gray value distribution, show very complex-
shaped borders, and can exhibit objects of one class inside objects
of the other class.

Segmentation results. Two CNN architectures, a vanilla U-Net
and VGG16 U-Net, were trained according to the section “Deep
learning methodology” with LOM or SEM tiles (image crops)
along with their corresponding dense annotations. These tile
images were either provided at native scale or downscaled. The
segmentation performance is evaluated in terms of the intersec-
tion over union (IoU) metric for the foreground (fg: lath-shaped
bainite regions) and background (bg: polygonal and irregular
ferrite with dispersed granular carbon-rich 2nd phase) as positive
classes each. The given metrics for each model represent the
average and standard deviation over five cross-validation trials
and were typically evaluated on tiles. Since the aleatoric uncer-
tainty component23 introduced during training was previously
confirmed to be negligible, the standard deviations given in
Tables 1 and 2 are predominately attributed to the k-fold sam-
pling from the low-quantity data sets. This is shown in a diagram
in the Supplemental, where the class-averaged IoU is plotted over
the fold number for two models. For this reason, and since the

Table 1 Intersection over Union metrics of U-Net-based networks trained on the light optical microscopy data set for different
model initializations and downscaling factors.

# Model Model initialization Downscaling factor IoUbg IoUfg

1 Vanilla U-Net Random native 87.0 ± 1.5 70.2 ± 1.2
2 Vanilla U-Net Random 0.5 × 0.5 87.2 ± 1.9 69.5 ± 1.8
2v Vanilla U-Net Random 0.5 × 0. 5* 86.8 ± 1.5 69.8 ± 1.3
3 U-Net VGG16 Pre-trained native 87.6 ± 0.9 71.3 ± 1.7
3v U-Net VGG16 Random native 86.3 ± 1.3 69.3 ± 1.5
4 U-Net VGG16 Pre-trained 0.5 × 0.5 87.1 ± 1.7 71.6 ± 1.7

The superscript v indicates a validation experiment conducted to test a particular hypothesis, as described in the section “Segmentation results”. The superscript * indicates that downscaling was
performed after tiling.

Fig. 1 Illustration of correlative microscopy approach for objectively annotating lath-bainite regions. a Original LOM micrograph. LOM overlayed with
b an EBSD-derived grain boundary map, c unique grain color map, d kernel average misorientation (KAM) map, and e grain orientation spread (GOS) map.
f LOM with annotated lath-bainite regions based on EBSD information. Detail views D1 (red frame) and D2 (green frame) are highlighted here. D1 in figures
(g–j) displays how h grain boundary and i grain visualizations are used to correctly annotate the exact boundaries of the lath-bainite. In contrast, D2 in
figures (k–n) demonstrates how l KAM and m GOS indicate polygonal ferrite grains in or adjacent to the lath-bainite region.
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same overall data was used to train the models, the average values
can be utilized to deduce tendencies between the models within
each modality.

In Table 1 the LOM image-trained models along with model
initialization type, image resizing factor, and IoU metrics are listed.

The model performances of the two architectures trained on
native and downscaled image tiles (#1, #2, #3, and #4) correspond
to accuracies around 90%. This is comparable to the discrepancy in
annotation by human experts when relying solely on topography
information. For the VGG16 U-Net architecture typically training
from a pre-trained configuration was conducted, while the vanilla
U-Net was trained from random weight initialization at all times.
To facilitate comparability between the VGG16 and vanilla U-Net
architectures, a random initialized VGG16 validation model #3v
was introduced. It can be observed that for random initialization,
the conventional U-Net scored slightly better than the VGG16-
based variant (cf. model #1 and #3v). At the same time, model #3v
acted as the randomly initialized equivalent of the ImageNet pre-
trained U-Net VGG16 (#3), therefore enabling assessment of the
pre-training dependency. Their comparison showed almost 2% IoU
improvement utilizing pre-trained models. This indicates that even
pre-training with domain-external data sets such as ImageNet can
benefit material scientific tasks.

The downscaling of the images, in general, was performed
before tiling, resulting in fewer tile images with sampling-induced

and interpolation-induced information loss but comparatively
more context in individual tiles. Downscaling for the vanilla
U-Net did not affect LOM image segmentation performance
significantly. Similarly, this applies to the another experiment 2v,
where downscaling after tiling was used for validation purposes.
Further, a higher scatter in IoU is observed for models when
downscaling before tiling is applied.

In the case of the vanilla U-Net, a foreground weighing factor
α= 1.5 to correct for the material-inherent class (i.e., phase)
distribution imbalance was found during the hyperparameter
optimization to improve the overall IoU slightly. Introducing the
same factor and weighted binary cross-entropy loss in the VGG16
variant did not change its performance in a statistically relevant
manner.

As an additional ablation study, the impact of LOM tile size
was tested on the random initialized vanilla U-Net networks. In
this case, rather than introducing scaling factors, tiles were
cropped with different sizes. The objective was to examine the
relations between tile sizes and characteristic microstructural unit
sizes. This study is exempt from the general procedure since
model evaluation additionally took place on native resolution
images rather than exclusively on tiles. In Fig. 2, the results of this
study are summarized.

This graph shows that evaluation on tiles is strictly detrimental
compared to evaluation on native resolution images (1024 × 1024)

Table 2 Intersection over Union metrics of U-Net-based networks trained on the scanning electron microscopy data set for
different model initializations and downscaling factors.

# Model Model initialization Downscaling factor IoUbg IoUfg

5 Vanilla U-Net Random Native 69.2 ± 2.1 77.5 ± 2.4
6 Vanilla U-Net Random 0.5 × 0.5 75.4 ± 2.9 77.9 ± 3.3
6v Vanilla U-Net Random 0.5 × 0. 5* 72.7 ± 2.3 79.9 ± 2.8
7 U-Net VGG16 Pre-trained Native 71.0 ± 2.5 80.1 ± 2.4
8 U-Net VGG16 Pre-trained 0.5 × 0.5 77.7 ± 3.2 80.4 ± 2.6
8v U-Net VGG16 Random 0.5 × 0.5 68.4 ± 4.0 73.1 ± 1.5

The superscript v indicates a validation experiment conducted to test a particular hypothesis, as described in the section “Segmentation results”. The superscript * indicates that downscaling was
performed after tiling.

Fig. 2 Influence of tile size on the network performance under consideration of microstructure feature sizes. a Influence of tile size during training on
the mean intersection over union metric (averaged over both classes) for the light optical microscopy domain and the vanilla U-Net model. Evaluation on
tiles with a size equivalent to the training tile size (black) and evaluation on native resolution images was performed. Each data point and the error bar
corresponds to the average and standard deviation over five folds. b Lath width and lath-bainite instance equivalent diameter histograms including a
cumulative percentage for LOM.
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for the segmentation of such micrographs. For small tiles, the
performance gap between evaluation on tiles and native resolution
images amounts to 6% IoU. Both curves converge for tile sizes
approaching the native resolution. The orange curve represents the
effect of tile size during training and indicates that even when tiles
of 64 × 64 pixels or 8.1 × 8.1 μm2 are utilized, training is not
hampered substantially (less than 2% IoU decrease).

Moreover, in a preliminary study, we investigated the influence
of additional uncertain tiles, i.e. tiles with structures that
somewhat resemble laths but are distinct. In this case, additional
debatable structures did not affect the performance to a
significant extent.

For the SEM image-trained models (Table 2), the difference
between foreground and background IoUs is less pronounced
than for the LOM. Moreover, downscaling before tiling impacts
the IoUbg strongly, where downscaling proves advantageous (cf.
IoUbg of models #5 and #6, or #7 and #8). Analogous to the LOM

case, the influence of downscaling after tiling was investigated in a
validation experiment #6v, showing comparatively more uniform
improvement of about 3% IoU across both classes (cf. #5 to #6v).
While the result of downscaling improving performance seems
counterintuitive at first glance, its plausibility will be validated
later. The pre-trained U-Net VGG16 trained on downscaled data
(#8) achieved the best IoU for SEM images.

However, while pre-training contributed to only mediocre
improvements for LOM (cf. model #3 and #3v), it resulted in a
significant foreground and background IoU improvement for
SEM, of approximately 8% IoU (cf. model #8 and #8v). Further,
the SEM model performances confirm the LOM-case observation
that the vanilla U-Net performs better for random initialization.
The performance of best model #8 corresponds to 88.4%
accuracy.

In Fig. 3, the resulting segmentation map predictions of the
best vanilla U-Net (Fig. 3a+b) as well as best random initialized

Fig. 3 Light optical and scanning electron micrographs superimposed with lath-bainite predictions of different models and annotated regions showing
the comparison between model prediction (red) and manual expert annotation (blue). a, b Random initialized vanilla U-Net (model #1 and #6).
c, d Random initialized U-Net VGG16 (model #3v and #8v). e, f Pre-trained U-Net VGG16 (model #3 and #8).
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and pre-trained U-Net VGG16 (Fig. 3c, d and e, f) models are
compared to the annotations for both modalities. Note that the
illustrated images are full-frame, while for training and testing,
tiles of such images were used. The vast majority of lath-shaped
bainite regions are well identified, and the predictions are widely
in accordance for all three models of each modality. Moreover,
locations of erroneous predictions match in the models to a large
extent. Under-prediction (blue) occurs at individual smaller
foreground objects or at the borders of extensive lath-shaped
bainite regions, where annotated parts do not exhibit a clear lath
structure. Over-prediction (red) tends to arise mostly in smaller
areas in which carbides or grain boundaries resemble lath shapes.
In both modalities, but especially in the SEM-trained case, the
random initialized VGG16 (c, d) falls short as opposed to the
other models, which is mirrored by the performance metrics in
Tables 1 and 2.

Discussion
To achieve reliable and objective microstructure inference, an
understanding of fabrication, microscopy, DL methodology, and
their interdependencies is required. It is important not merely to
look at the images and corresponding annotations as an isolated
step but also to consider building a DL model as a holistic
approach where specimen preparation, reproducible specimen
contrasting, and suitable image acquisition techniques are of
tremendous importance9.

In our study, we successfully trained both random initialized
networks and pre-trained networks with comparatively small data
sets of approximately 50 and 30 images for LOM and SEM,
respectively. Ascribing to the reproducible specimen preparation
and imaging (i.e., low variance in the metallography process), we
believe the observed scatter in the data to be predominantly
materials’ microstructure-based. Under this assumption and
considering the characteristic sizes of microstructural features
(such as lath width and grain sizes, see Fig. 2), it is likely that the
imaged area is largely representative of the microstructural scat-
ter. For such datasets generated through reproducible processing,
this invalidates the frequent preconception of DL being only
applicable for large-scale data sets.

Special attention was paid to specimen preparation, optimal con-
trasting during etching, and consistent settings during image acqui-
sition. Moreover, the very reproducible imaging settings, e.g., viewing
perspective, brightness, and contrast, lead to a low degree of material-
extrinsic variance in the images compared to real-world scenario
image sets. The pronounced planarity of the metallographic cross-
sections avoids geometry-related image shading and distortions. Class
imbalances often pose a challenge for learning. Due to the com-
paratively lower magnifications during image acquisition, the LOM
image data set is representative of the microstructure in terms of
phase fractions, where lath-shaped bainite is a minority class (28%).
This poses a material-inherent class imbalance. On the other hand,
the lath bainite phase was oversampled during SEM image acquisi-
tion to correct for the imbalance. If such imbalances were not arti-
ficially corrected at the image acquisition stage, post-processing
techniques such as sampling or weighting methods could be applied
to account for them.

The choice of imaging modality primarily depends on the scale
on which relevant microstructural features are to be expected. For
instance, while LOM might be well suited to deduce lath-shaped
regions in CP steels, SEM was incorporated as it additionally
contains information on the exact nature of carbon-rich second
phases, which renders the distinction between bainite subclasses
possible. Perspectively, when the data quantities and imbalances
between both modalities are matched, the more suitable modality
for lath-shaped bainite prediction or other tasks can be concluded.

Assigning the ground truth, i.e., correctly annotating the lath-
shaped bainitic regions, is challenging, and disagreements between
human experts can arise when purely relying on the micro-
structure’s visual appearance in LOM or SEM. By incorporating
correlative EBSD data, even though for just a part of the image set,
the objectivity and reproducibility for annotating micrographs are
improved. However, annotating the foreground regions manually
by tracing their perceived object boundaries on a tablet can still
lead to some inconsistencies.

All segmentation models achieve performances that are com-
parable to expert segmentations performed in the absence of
EBSD data. Since two research groups applied their DL best
practices and the architectures are fairly similar, the changes in
performance are not extremely pronounced. Nonetheless, for the
first time applying DL best practices of two groups on identical
materials data gives important insights. These insights are
essential to facilitate subsequent major improvements through
adapted pre-processing, architectural choices, and training pro-
cedures. The similar segmentation results of U-Net-based models
point towards general performance robustness concerning dif-
ferent architectures and training strategies. Namely, no severe
performance decrease was observed by different initial network
conditions (random initialization as opposed to ImageNet pre-
trained model), different internal padding, and normalization
strategies. The regions where the models fail are regions where
human experts would primarily make mistakes during manual
segmentation. Especially, this applies to instance grain boundary
regions with the absence of distinct lath structures, which are
prone to low inter-rater reliability.

The segmentation enables the accurate calculation of lath-
shaped bainite phase fractions. Reported IoUs for the foreground
(lath-shaped bainite, Tables 1 and 2) correspond to minor phase
fraction errors in the range of 1% compared to human expert
annotation. This error is lower than the variance in manual
human expert evaluation. These are remarkable results con-
sidering the intricacy of the segmentation task at hand. A pre-
requisite to achieve accurate phase fraction predictions is that the
training data is not significantly skewed towards a specific class.
Skewed data sets would result in models that favor the majority
class24. Therefore, for accurate phase fraction estimation of
relatively uncommon phases, imbalance correction is advised.

Since there are some deviations along the border of lath-shaped
bainite objects, localization of phase boundaries is only possible to
a limited extent. These border deviations are potentially partly
attributed to the aforementioned border annotation incon-
sistencies and hamper the calculation of individual bainite object
morphological parameters associated with the objects’ spatial
extent. On the other hand, segmentation enables the analysis of
inner morphology of specific phases in the first place. In this
case of CP steel microstructures, it facilitates the detached cal-
culation of the lath-shaped bainite regions’ lath characteristics
(e.g., lath-width) instead of calculating these characteristics for
the whole image, yielding a more differentiated and sophisticated
microstructure quantification. These morphological parameters
are known to impact mechanical properties significantly25,26.
Furthermore, the also accessible relative spatial distribution of
phases in such heterogeneous microstructures affects local fatigue
properties severely. Such focused microstructure analyses are the
prerequisite to establish processing-microstructure-property cor-
relations. Furthermore, reliable and high-fidelity segmentation
has implications for automated and targeted microscopy.

The isolated tile context influence was demonstrated in Fig. 2a
by cropping tiles with different resolutions from the native LOM
images and using them for training while evaluating either on
tiles of the same size or native resolution images. While the
orange data points (evaluation on full-frame as-acquired images)
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entail only information on the tile size influence at training time,
the black data points (evaluation on tiles) additionally encompass
information on tile size at test time. The results indicate that the
context contained in the tiles or images provided during training
and testing is of pronounced importance. Both data point series
converge, while evaluation on native resolution images is always
advantageous as image edge effects are suppressed. Therefore,
while at training time, tiling is often inevitable due to GPU
memory constraints, during testing, where the image size is not
restricting, avoiding tiling proves beneficial.

In order to compare tile sizes with characteristic microstructural
entity sizes, the lath width histogram (top) and one for the
equivalent diameter of lath-bainite regions (bottom) are provided
for the LOM modality in Fig. 2b. As the training tile size
approaches the lath width, a detrimental impact on learning is
observed. However, the fact that even learning with reduced
8.1 × 8.1 μm2 tile sizes and evaluating on whole images shows a
drop of 2% IoU only, indicates that either a few parallel carbide
films at lath boundaries suffice as features or that the network
adapts to focus more on less prominent short-range features.
Nonetheless, in this lath-bainite segmentation case, where parallel
but distant inter-lath carbide islands are relevant to deduce the
foreground, it is valuable to avoid a small training tile field of view
to increase the likelihood of obtaining multiple parallel carbide
clusters within a single image. For the evaluation on tiles (black
data series in Fig. 2a), it can be observed that reducing the tile size
is even detrimental at larger physical tile sizes. This is associated
with image edge effects depending not only on feature separation
(i.e., lath width) but also strongly on instance size. Since individual
lath-bainite instance diameters range up to more than 100 μm,
such image edge effects play a role also at larger tile sizes. Both lath
width histograms for LOM and SEM (not shown) exhibit similar
distributions, with LOM lath widths’ shifted slightly towards larger
values, presumably due to the different etchings and worse optical
resolving power. The reasoning applied here can be carried over to
many microstructure inference tasks since objects of interest in
metallographic micrographs (e.g., phases) and features within
these objects are often comparatively more dispersed than in many
real-world scenario images.

Based on these results of the tiling study, it is comprehensible
that the context increase, associated with downscaling before
256 × 256 pixel tiling, would not have a major impact on LOM
performance as suggested in Table 1. This is plausible given the
large physical pixel size in native scale LOM images, which results
in tiles that already capture sufficient microstructural features.
However, assuming the trend in Fig. 2a being modality-
independent raises the question of whether SEM results would
benefit from more image context at the learning and testing stage,
especially considering that SEM tiles without downscaling have a
physical tile size of ~14.2 μm.

It is reasonable to assume that such SEM tiles do not repre-
sent the lath structure appropriately but only contain fragments
of the lath-shaped regions, thus impeding learning. This ques-
tion, amongst others, was addressed by SEM downscaling
experiments, where downscaling before tiling resulted in a IoUbg
performance improvement (cf. model #5 and #6, or #7 and #8).
The reason for IoUbg improving, in particular, can be traced
back to the dataset acquisition and pre-processing stages.
Namely, this can be attributed to the lath-shaped bainite over-
sampling (localized in the image centers) combined with addi-
tional mirror padding in the downscaled dataset to still extract
2 × 2 tiles. This combination skews the downscaled SEM dataset
towards the background class. When applying downscaling
before tiling, aside from this SEM dataset-specific change in
class distribution, image context, as well as context provided to
the so-called network receptive field, is increased artificially, and

information loss is introduced. In order to discern these influ-
ence factors’ contributions to the performance, an additional
validation experiment (#6v) was performed, where tiles used for
model #5 were downscaled as an exception (i.e., downscaling
after tiling). In this case, the tile context increase and afore-
mentioned mirror padding differences, both with respect to
model #5, are absent. Despite the still present information loss
in experiment #6v, the downscaling after tiling leads to a rela-
tively uniform and notable improvement of 3% IoU for both
classes. This can be ascribed to the fact that by downsampling
more physical area is taken into consideration at each network
layer. In contrast, when downscaling is discarded, only later
layers can consider sufficient context when extracting features
due to the small physical pixel size in the SEM images.

Therefore, aside from ensuring appropriate feature repre-
sentation in images, it is important to select a network archi-
tecture for the task at hand that takes a sufficient amount of
context into consideration. Characteristic image length scales
(e.g., phase boundary pixel distance) change depending on the
applied magnifications and image resolutions required to resolve
relevant features during image acquisition. In such cases, it can be
beneficial to adapt the image region that the network considers,
also referred to as theoretical receptive field (TRF), accordingly.
In Luo et al.27, the effective receptive field (ERF) metric was
proposed for CNNs and was empirically computed for several
architectures. The ERF revolves around the notion that not every
region within the TRF is taken into account equally. In fact, their
predicted ERFs were substantially smaller than the TRF and
showed a 2D Gaussian distribution that strongly decays towards
border regions of the TRF. This means, the closer a pixel is to a
target pixel, the more it influences the target pixels’ predicted
class27. This represents a CNN-based inductive bias appropriate
for many scientific segmentation challenges, such as for fatigue
damage localization where image features are dense19. However,
for phase segmentation tasks, where long-range features (paral-
lelism of distant carbide islands) are relevant, more general
Attention-based networks28 could improve segmentation per-
formance in the future. The observation that the scale of features
determines the optimal downscaling factor has led to specialized
architectures. Especially in such multi-class segmentation or
classification tasks where features are distributed across scales,
aggregation of distinctly dilated convolutions is reasonable29. In
conclusion, it is important that individual tile images comprise
sufficient learnable feature information, and the architecture
facilitates their appropriate extraction and processing.

Downscaling, if this condition is fulfilled, but especially when
severe information loss is expected as its consequence, should be
avoided. In our case, while segregated carbides at lath interfaces are
slender, we believe that these features are still largely preserved
when 0.5 × downscaling is applied. This is in accordance with30,
where a plateau of nearly constant performance for a range of
downscaling factors (0.2–0.5 ×) was demonstrated. Downscaling
factors below a threshold are typically accompanied by a significant
information loss and a decrease in segmentation performance. Such
information loss can be ascribed to image downsampling and non-
ideal interpolation. Literature30,31 suggests that this threshold
depends on the specific foreground class. In these works, it was
shown that specific classes that have fine features or small object
extent profit from discarding downscaling operations.

To summarize, in phase quantification, where long-range fea-
tures such as the morphology of grain boundary traces are relevant,
downscaling before tiling can potentially improve performance and
accelerates training. When applying downscaling, it should be used
consistently at training and testing time. This holds especially true if
no preventive measures such as scaling data augmentations are
taken at training time.
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Considering random initialized models, the vanilla U-Net
scoring better than the U-Net VGG16 for both modalities can be
hypothesized to be ascribed to the following factors:

● The learnable transposed convolution upsampling can
recover spatial localization in the decoder more
accurately32.

● Batch normalization applied in the encoder of the vanilla
U-Net can improve performance33.

● In vanilla U-Net training, the imbalance in the data set was
corrected by employing a class weight inside the focal loss
function.

The distinct loss function was experimentally invalidated to be
the cause for the performance difference in architectures. The
other individual factors’ influence was not systematically retraced.

The fact that pre-training led only to a minor improvement
(almost 2% IoU) for the U-Net VGG16 in the LOM case leads us
to conclude that the 50 full-frame LOM images with relatively
even class distribution suffice for training such a binary seg-
mentation model. While this is dependent on the exact problem
and model to be trained, we infer that given such data, U-Net-
based models, which score satisfactory results at such ambitious
phase segmentation tasks, can be trained from scratch. In con-
trast, for the SEM case, the pre-training culminates in an IoU
increase of 7–9% over the random initialized U-Net VGG16 (cf.
model #8 and #8v). Therefore, the pre-training dependence is
comparatively more pronounced in the SEM modality. This can
be ascribed to the fewer amount and higher magnifications of
SEM images, hence covering considerably fewer distinct micro-
structure scenarios. Therefore, when the data set comprises few
images covering a small field of view, we advise pre-training with
readily available data sets. While ImageNet encompasses a wide
range of classes, the noise characteristics and image formation in
microscopic images are different. Potentially, pre-training with
other data sets exhibiting a smaller domain gap such as mis-
cellaneous nanoscientific objects in SEM34 or ultra-high carbon
steel phases SEM35 can be advantageous.

The random k-fold sampling of low-quantity data, especially in
SEM, results in notable IoU scatter. In such cases, stratified
sampling and training can prove beneficial before the deployment
of the model. The reproducible preparation, mounting, and
imaging (i.e., low intra-domain variance) rendered the data
augmentation, and corresponding hyperparameter tuning negli-
gible as the performance improvement associated with it for both
modalities was minimal. This implies that data augmentation is
not generally essential for small-scale data sets, but only when the
applied transformations render the training set more repre-
sentative of the test set. In instances where such material-extrinsic
variance can be ensured to be insignificant, data augmentation
through simple spatial (affine and even elastic) or intensity
transformations can be evaded. Therefore, such models trained
on comparatively small data sets are suitable for tasks with
inherently small scatter, such as quality inspection, where
recurring tasks and predefined workflows are set. When, for
instance, etching-based contrasting methodologies are concerned,
reproducibility can be difficult to attain.

To this end, a generalization study was conducted to test the
transferability of this model, trained with low variance data, to an
alternate data domain. Therefore, the previously best SEM vanilla
U-Net model #6 was tested on an SEM image of a surface etched
with Nital as an exception. In contrast, another model was trained
with dedicated augmentation settings to improve the perfor-
mance on the alternate etching domain. Figure 4a+ b illustrates
the comparison of the source domain (electrolytic etch) with
the alternate target domain. Moreover, Fig. 4c+ d depicts the

segmentation of Fig. 4b using model #6 and a model trained with
solely brightness and contrast augmented images of the source
domain. The degree of both augmentations was optimized for the
target domain.

A substantial improvement of IoUbg and IoUfg of 65%→ 69%
and 35%→ 54% is achieved, respectively. This corresponds to a
change in phase fraction prediction of 17%→ 33% for a manually
labeled phase fraction of 44%. Evidently, the segmentation in
Fig. 4d is not satisfactory since applied augmentations do not
close the domain gap entirely. More elaborate image transfor-
mations would be required to align the domains since the sec-
ondary electron image formation is strongly affected by the
different topographies. Nonetheless, the fact that even simple
targeted optimizations of low-variance training data can cause
such improvements implies that dedicated data augmentation
pipelines can presumably render models robust against a large
range of perturbations in the specimen preparation or imaging.
For instance, in our prior study19 a substantial improvement was
achieved by augmentation of our high-variance data. When
training images are acquired from different instruments or at
different institutions, such regularization methods become
increasingly relevant. In such instances, it is essential to track and
store all relevant process parameters along the entire process
chain in a structured and ideally semantics-informed database.
Moreover, this outcome foreshadows that advanced augmenta-
tion with generative adversarial networks (GANs)36 or domain
adaptation37, potentially can address even more challenging
generalization demands of the materials science community in
the future.

Interpretability and explainability of DL models are important
to build trust and push for successful implementation in day-to-
day applications. Moreover, it can help in finding failure modes of
models and give insights on tackling them. To that end, we
computed network visualizations introduced in the section “Deep
learning methodology” that highlight regions or concepts within
an image that affected the network’s decision. Meaningful
examples of Grad-CAM and NetDissect visualization from sev-
eral network layers are illustrated in Figs. 5 and 6, respectively.
Furthermore, Grad-CAM visualizations of all network layers for
both architectures can be found in the Supplemental.

Grad-CAM masks are generated for a particular convolutional
layer of the trained models #1 and #3 for a specific class. These
masks are formed by a weighted average of all activation maps
originating from all the target layer filters. Hence, the masks
highlight those regions in the input image that the specific layer
treats as essential for predicting the specified class. Thus, by
looking at the Grad-CAM masks of various layers for lath-bainite
and background classes, we can deduce how the trained model
predicts a segmentation mask for a given input.

Although the following observations are qualitative, they are
very helpful in interpretation. Concerning the background in the
LOM segmentation, strong activations are caused to a certain
extent by particles of the carbon-rich 2nd phase (b, c, e, h) and for
the most part by grains and grain boundaries of the polygonal
ferrite (b, d, f, g, i). Moreover, in the down4convr1 layer (c), there
is a focus on grain boundary junctions, such as triple and
quadruple points, which are discriminative features. Activations
in the vanilla U-Net and VGG16 U-Net mostly match (note that e
and h show similar activations that differ in scaling and the
degree of focus on carbon-rich clusters). However, towards the
end of the decoder (layer up4convr2), the vanilla U-Net focuses
on polygonal ferrite grain boundaries (f) to determine the final
output, whereas the VGG16 U-Net focuses on the grains them-
selves (i). The model during decision-making puts emphasis on
image features that correlate with how human experts interpret
the image. For instance, the decision for the background
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will mostly depend on the existence of ferrite grains, which are
comparatively more equiaxed. It should be noted that the vertical
and horizontal line artifacts visible in Fig. 5d are presumably
attributed to the checkerboard problem associated with trans-
posed convolutions38 as such artifacts do not occur in the VGG16
case that used bilinear upsampling.

Lath-bainite activations in some layers are induced by second
phase particles and grain boundaries in general or by elongated
second phase particles and grain boundaries. However, the
strongest reactions are caused by pronounced, more extensive
lath regions. An analogy to the human expert examination can be
supposed here, too. Pronounced, more extensive lath areas should
also be noticed strongly by the human eye because of regular lath
structure compared to the surrounding. Significant differences in
feature importance between the different U-Net architectures
were not found.

In contrast to Grad-CAM, NetDissect enables us to analyze
what different filters in the model extracted from an input image,
regardless of its contribution to the final segmentation map. This
technique offers us the prospect of finding disentangled feature
extractors from the model, which make sense to a human expert,
see Fig. 6. Note that these exemplary images represent only a small
portion of filters utilized in the whole network. In the case of LOM
images, relevant features include 2nd phase particles plus elon-
gated grain boundaries (a), lath-shaped 2nd phase particles (b),
and the area of more extensive grains (c). Thus, an analogy to
human expert interpretation can be assumed here as well.

Moreover, considering that lath-shaped 2nd phase particles are
relevant features, similarities to how feature engineering is per-
formed during conventional ML or CV can be seen, too. For
instance, in Müller et al.10 a sliding window technique that utilizes
a Prewitt39 edge detection filter to calculate directionalities of the
2nd phase particles is applied. Directionalities are used, in com-
bination with a neighborhood analysis, to detect lath-shaped
regions.

Given the large number of different materials and processes,
and the time-intensive generation of data sets for many tasks,
materials science will always be accompanied by data scarcity. It
is all the more important that strategies of model generalization
to alternate materials or processing conditions are pioneered. As a
consequence of emerging high-speed image acquisition technol-
ogies, annotation processes often pose the bottleneck in the
creation of statistical data sets. This particularly holds true for the
supervised learning of segmentation models in the material sci-
entific domain. By pushing the correlative approach with EBSD
measurements forward, routines for automatically generating
annotations based on EBSD data can be developed. This promises
to improve the annotation quality and make it less labor-
intensive. Moreover, it enables further segmentation tasks to be
addressed, e.g., segmenting lath-shaped and granular bainite as
well as distinguishing bainitic and pro-eutectoid ferrite.

Nonetheless, generalizing data-driven methodologies and
alternate learning strategies will be indispensable to cope with
material diversity. In literature, different training strategies to

Fig. 4 A generalization study for alternatively etched surfaces. a+b Comparison of the electrolytically-etched source image domain (a) and the alternate
Nital-etched specimen (b). c Segmentation results of model #6. In this case, augmentation parameters were chosen for the source domain (a).
d Segmentation results of a model like #6 but with modified brightness and contrast augmentation to improve performance on the alternately etched
(target) domain. The legend for (c) and (d) as well as the micron bar for (b), (c), and (d) is positioned in (b) to avoid concealing relevant regions in the
segmentation results.
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Fig. 5 Gradient-weighted class activation maps indicating image regions that dictated the decision of the network. The red color in (a–i) and (j–l)
highlights regions that incentivize the model to vote for the background class and lath-bainite, respectively. The Grad-CAMmaps are computed for specific
layers (see panel legends) considering light optical microscopy experiments #1 (black font) and #3 (white font). Layer names are indicated in
Supplementary Fig. 1.
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tackle the sparsity of annotated data have been developed which
rely on comparatively less data. These can be adopted for the
segmentation of metallographic phases or the materials com-
munity in general.

Rather than providing pixel-wise annotations for training a
segmentation network, in a weakly-supervised learning setting,
e.g., image-wise annotations are used. There are different anno-
tation abstraction levels ranging from bounding boxes40 to
naming the classes present in an image41. Typical methodologies
rely on classification networks which provide seeds for the seg-
mentation network, and constrained seed region growing to
respect object boundaries41,42. In recent years a leap in weakly-
supervised segmentation performance was achieved43, rendering
it a promising method for phase fractions. This is affirmed, since
well contrasted grain boundaries presumably can pose distinct
and suitable borders for region growing. In particular, for
metallographic segmentation tasks in which target phases are
often dispersed across the whole image, pixel-wise annotation is
cumbersome. Here it can be particularly worthwhile to replace
manual pixel-wise annotations by appropriate weak labels.

Alternate techniques called semi- or unsupervised domain
adaption evolve around the idea that for a specific task (e.g.,
segmentation) annotated data of one source domain (e.g., mate-
rial A) can be used together with non-annotated or minimally
annotated data of a target domain (e.g., material B) to produce
meaningful predictions in latter. The methods achieving this rely
on feature matching between both domains, self-training to
provide pseudo labels or generative networks to produce target
data37. The range of materials and processes that can be covered
with such techniques in material scientific challenges is yet to be
unveiled. Moreover, the materials science domain can profit from
its longstanding experience in knowledge-driven, realistic simu-
lation techniques such as phase field simulations. The resulting
synthetic data can be exploited in domain adaptation to obtain
annotated data in a source domain or for pre-training44.

Another promising candidate to reduce annotated data require-
ments are physics-constrained DL models45. Rather than supplying
a multitude of input-output pairs, conditions that represent domain
knowledge are imposed on the output space. In such cases the
domain knowledge is typically encoded into the loss function. For
microstructure inference, laws from thermodynamics including
different crystal growth or segregation/precipitate formation models
potentially can condition DL models.

In this study, we demonstrate the applicability of deep learning
(DL) for the segmentation of complex phase steel micro-
structures. Since its individual constituents differ only in shape

and arrangement of ferritic and carbon-rich phases rather than
image intensity levels, traditional segmentation approaches reach
their limits. We propose a holistic approach since the contrasting
and imaging has pronounced implications for the DL metho-
dology in terms of data imbalance, variance and spatial feature
density. Amongst others, this includes annotations informed by
electron backscatter diffraction to alleviate the burden of the
manual annotation process based on how the microstructure in
topography contrast micrographs visually appears to the expert
eye. This allowed to provide a well-founded, objective annotation.
While the segmentation models presumably benefit from more
data, the trained U-Net networks achieved a satisfying perfor-
mance from training with only 30–50 microscopic images. We
hope that rebutting the general preconceptions about the large
required data quantities, mitigates the reservations towards DL
and ultimately encourages more scientists to research in this
interdisciplinary field. The results point towards a general
robustness of the U-Net with respect to modifications in the
training procedure and architecture. Through the experimental
design, a general guideline for the application of DL for micro-
structure inference could be derived. This applies in particular to
the appropriate consideration of image context, data augmenta-
tion, imaging modalities, and pre-training. The network decisions
to distinguish lath-bainite from its surroundings are visualized
through the Grad-CAM and NetDissect methodologies. These
suggest plausible and human comprehensible choices for features
such as parallelism of inter-lath carbides, grain boundary junc-
tions, grain aspect ratios and carbon-rich clusters. This is an
important step towards the acceptance of DL segmentation in
material science community. Finally, we provide an outlook on
aspiring and auspicious cutting-edge methodologies from com-
puter science that hold the potential to render microstructure
inference from micrographs generalizable across materials and
processes. A fundamental requirement to achieve this is the
interoperability of diverse data generated across institutes. With
the development of materials ontologies and the systematic
digitalization of workflows, identifying and unifying relevant data
across institutes will come within reach and thus increase the
scope of such deep learning techniques substantially.

Methods
Material. The material used in this study is a low-carbon CP steel, taken from
industrially produced heavy plates. Steels were thermo-mechanically rolled, fol-
lowed by controlled accelerated cooling. Figure 7 illustrates a plate cross section,
where the lath-shaped bainite as well as polygonal and irregular ferrite with dis-
persed granular carbon-rich 2nd phase are highlighted.

Fig. 6 Thresholded activation maps of specific convolution filters using the NetDissect method. a–c Illustrate different relevant extracted features. The
high gray value regions indicate disentangled concepts that were learned in experiment #1. Panel legends state the layer, designated in Supplementary
Fig. 1, and filter numbers (FX) of feature extraction.
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Specimen preparation. Specimens were taken in the plate’s transverse direction
(TD), ground using 80–1200 grid SiC papers, and then subjected to 6, 3, and finally,
1 μm diamond polishing. For LOM investigation, metallographic etching was carried
out by immersing polished specimen surfaces into a mixture of ethanol and nitric acid
(2 vol.-%), also called “Nital” etching. For SEM examination, the specimens were
etched electrolytically using Struers electrolyte A2. Nital and electrolytic etching were
chosen because they attack and thus reveal grain boundaries. This contrasting step is
crucial to identify the boundaries of lath-shaped bainite regions during annotation.
For investigation by electron backscatter diffraction, colloidal oxide polishing was
additionally performed after diamond polishing.

Microscopy
Light optical microscopy. For imaging, the LOM in an Olympus LEXT OLS 4100
laser scanning microscope was used. Images were taken at a magnification of ×1000
with an image size of 1024 × 1024 pixels, corresponding to an area of
129.6 × 129.6 μm2 (pixel size= 126.6 nm). All images were acquired with the same
image contrast and brightness settings.

Scanning electron microscopy. SEM images were recorded in a Zeiss Merlin FEG-
SEM using secondary electron contrast at a magnification of × 2000 with an image
size of 2048 × 1536 pixels, equal to 56.7 × 42.5 μm2 (pixel size= 27.7 nm). The SEM
was operated at an acceleration voltage of 5 kV, a probe current of 300 pA, and a
working distance of 5 mm. All images were acquired with the same image contrast
and brightness settings in the SEM. During SEM image acquisition, lath-bainite
regions were oversampled and are therefore overrepresented in the data.

Correlative microscopy. In a correlative approach, LOM and SEM were combined
with EBSD characterization. The specimen regions of interest were marked by
hardness indents for consistent imaging in different modalities. EBSD measure-
ments were performed in a Zeiss Merlin FEG-SEM with an acceleration voltage of
25 kV, a probe current of 10 nA, and 15 mm working distance. Scans were done at
a magnification of × 200 with a step size of 0.35 μm using a hexagonal grid. Data
were analyzed using software OIM TSL Analysis. As cleanup, neighbor confidence
index (CI) correlation (CI ≥ 0.01) and neighbor orientation correlation (5° grain
tolerance angle) were applied. After EBSD measurements, specimens were etched,
and micrographs from the same regions of interest were taken in LOM and SEM.
Several such micrographs were stitched together using Microsoft Image Composite
Editor to match the EBSD scanned region.

When combining different imaging techniques, the different micrographs must
be aligned. This process is referred to as multi-modal image registration and is
accompanied by challenges including different specimen states, viewpoints,
contrasts, and fields of view46. For a general explanation of challenges during
correlative characterization and image registration in metallography, the authors
refer to Britz et. al.47.

For registering EBSD maps with LOM and SEM images, the open-source tool
ImageJ and its plugins SIFT feature extraction and bUnwarpJ registration were used47.
First, the Scale-Invariant-Feature Transform (SIFT)48 algorithm was used to find the
same features in both the EBSD map and the LOM/SEM image. For this purpose, the
EBSD image quality map49 was chosen due to its pronounced similarity to the other

modalities. The common features extracted by SIFT facilitate the registration using
the bUnwarpJ50 algorithm. Thereby a transformation matrix is determined that is
applied to register other EBSD-derived maps, e.g., misorientation maps.

Data set preparation
Annotations for deep learning segmentation. Labeling of images was done manually
by human experts on a Wacom Tablet. Since human labeling based solely on the
microstructure’s visual appearance in topography-sensitive LOM or SEM images
can be subjective, parameters from correlative EBSD measurements were used as
additional information to annotate the micrographs more objectively. Reasonable
EBSD-derived information that assisted the annotation included grain structure
visualizations as well as intergranular and intragranular misorientation metrics.
Namely, unique grain color, grain boundary, GOS, grain average misorientation
(GAM), and KAM (with 3rd order neighbors) maps were considered.

Because of time constraints, it is typically not feasible to obtain high-fidelity
annotations through correlative EBSD measurements for the comparatively large
image sets required for DL. Therefore, correlative EBSD measurements were
collected only for a subset of images, and the knowledge and experience gained
from the fused data were translated to regular LOM and SEM images. For this
reason, the correlative measurements can be regarded as references for the whole
data set. Under these circumstances, well-founded and more objective annotations
can be accomplished by human experts also without the EBSD data.

The final LOM image set consists of 51 micrographs with corresponding masks
for the segmentation (1024 × 1024 pixels, ~28% lath-shaped bainite on average per
image) and the final SEM image set of 36 micrographs with corresponding masks
(2048 × 1433 pixels due to cropping of the SEM annotation bar, ~60% lath-shaped
bainite on average per image).

Data pre-processing for model training. The raw input and derived label images
were cropped into tiles for both imaging modalities to comply with network
architectural and computational memory constraints. Two major variations were
investigated with respect to data pre-processing—the influence of image down-
scaling (I) and tiling size (II).

I. Since the SEM images were acquired with higher magnification, the raw
images covered a substantially smaller field of view. Tile sizes of 256 × 256 pixels
and 512 × 512 pixels were selected for the LOM and SEM modality, respectively, to
assimilate their contained image context to some degree. Before extracting tiles
with the aforementioned fixed resolution, an optional downscaling step by a factor
of × 0.5 in both spatial directions was performed to study the influence of image
context, context passed into the receptive field, and information loss. So-called
padding refers to the artificial extension of the image at its border. To ensure data-
efficient tiling (3 × 2 tiles) and resolution conformity throughout the forward pass
of the networks despite the native SEM resolution (2048 × 1433 pixels), mirror
padding was applied at the top and bottom image border before extracting tiles.
Owing to the dimensions of the native SEM image, its downscaled version was
mirror padded comparatively more to facilitate 2 × 2 training and testing tiles of
512 × 512 pixels size. Tiles were cropped without overlap. For the downscaling
study, four DL data sets were derived from the LOM and SEM raw data sets—
native and downscaled versions of both image modalities.

Fig. 7 Overview of microstructure and contained phases. a LOM micrograph of CP steel microstructure after Nital etching. b enlarged detail from (a),
showing an annotated lath-shaped bainite region (blue). c correlative SEM micrograph of (b). The enlarged detail figures d–f depict polygonal ferrite with
dispersed carbon-rich 2nd phase, lath-shaped bainite, and irregular ferrite with dispersed carbon-rich 2nd phase, respectively. In the SEM modality, the
carbon-rich 2nd phase particles appear bright. RD, TD, and ND refer to the rolling, transverse and normal direction of the plate, respectively.
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II. Intending to investigate the effect of the scale of phases with respect to the
tile size, we created a set of differently tiled images from the native LOM images.
Specifically, tiles of size 64 × 64, 96 × 96, 128 × 128, 192 × 192, 256 × 256, and
512 × 512 pixels were prepared. In this setting, as opposed to the downsizing
experiments, information loss was absent, and physical pixel size is maintained.

In both studies, LOM input images were converted into grayscale. A summary
of all tiled data sets, including some characteristic metrics, can be found in the
Supplemental. Note that aside from the difference in raw image amount between
the modalities, their different magnifications cause a large discrepancy in available
data quantity in terms of physical specimen area. The resulting tiles were randomly
sampled in five data portions for k-fold cross-validation (unstratified) with k= 5.
For each of the five folds, the test set was altered to be one of the data portions.
Hence, the five distinct data sets contained 80% and 20% of the total tile amount
for training and testing, respectively.

While usually all models were evaluated on the testing sets with equivalent tile
sizes and scale factors, the models for the tiling study were additionally evaluated
on full resolution images to identify the impact of the provided field of view at the
training stage.

Deep learning methodology. Two research groups collaborated on this segmentation
task using their respective approaches and best practices. Both approaches are based on
the U-Net architecture, but still contain some differences. By comparing their results,
important conclusions regarding the universal applicability and robustness of deep
learning techniques for the segmentation of CP steels can be drawn.

Deep learning segmentation approach 1—Vanilla U-Net. A vanilla U-Net model
with an architecture implemented in the PyTorch framework51 that included few
adjustments with respect to ref. 19 was trained from scratch. Only two class
channels in the output were used since the work at hand covers a binary seg-
mentation problem. Furthermore, batch normalization was incorporated after
convolutions to accelerate the training procedure by smoothing the optimization
function33. The U-Net architecture has four levels, uses padding for the non-dilated
3 × 3 convolutions in the encoder, utilizes 2 × 2 max-pooling, applies “same”
padding for transposed convolutions in the decoder, and contains skip-
connections52 between the corresponding encoder and decoder levels. A schematic
of the architecture showing the designation of the individual layers is accessible in
the Supplemental since network visualization techniques shown hereafter are
referring to specific layers. Different online data augmentation techniques from the
Albumentations package53 were applied to investigate their impact on the per-
formance. In contrast to our prior study19, a more systematic approach to data
augmentation was taken by applying grid, and random search for optimization of
relevant hyperparameters in Tune54. The set of optimized augmentation para-
meters for both image modalities is outlined in the Supplemental. For training, the
focal loss function55, and an Adam optimizer56 was used. Each model was trained
for 250 epochs on a NVIDIA Tesla V100 GPU with 32GB memory and CUDA
(v10.0) acceleration. The α and γ parameters of the focal loss function were also
considered during hyperparameter optimization to account for data set class
imbalances.

Deep learning segmentation approach 2—U-Net with VGG16 backbone. A U-Net
model variant with a VGG16 encoder that was pre-trained on ImageNet57 was applied.
During fine-tuning all layers were tuned simultaneously, the pre-trained encoder and
the random initialized decoder. The model was implemented in PyTorch, and the pre-
trained weights were from torchvision. A schematic of the architecture is depicted in the
Supplemental. The initial five convolution blocks of VGG16 represent the four encoder
levels and center level of the U-Net. The decoder contains four upsampling blocks. Each
upsampling block contains a bilinear upsampling and two convolutional layers with
batch normalization and Relu activation. Skip-connections are applied identically to the
regular U-Net. In Table 3 relevant architectural differences are listed. Identical to the
vanilla U-Net, the image shape is maintained by this model due to padded convolutions
in the encoder. The major difference compared to segmentation approach #1 in the
training procedure is that the U-Net VGG16 leveraged a pre-trained encoder. For
performance optimization in the training process, online data augmentation (see
Supplemental), cross-entropy loss, and an Adam optimizer56 with cosine annealing
schedule are utilized. Pre-trained models and random initialed validation models were
confirmed to be converged after training for 150 and 250 epochs on a NVIDIA GeForce
GTX 1080 Ti, respectively. Computational efficiency during training and testing
depends on the hardware and implementation and is given as an indication in the

Supplemental despite omitting deployment optimization such as model pruning. With
the exception of a validation experiment, no measures for the correction of class
imbalance were taken.

The model performances are evaluated in terms of the Accuracy metric and the
intersection over union (IoU), also referred to as Jaccard index, defined as follows.

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
ð1Þ

IoU ¼
TP

TPþ FPþ FN
ð2Þ

Here, TP, TN, FP, and FN are the true positive, true negative, false positive, and
false negative pixel amounts, respectively. Both metrics are defined in the range
from zero to unity (or 0–100%), where latter corresponds to an ideal model
prediction. The accuracy metric measures the correctly predicted pixel percentage,
while the IoU measures the ratio between intersection and union of predicted and
labeled pixel areas. We exemplary provide the accuracy metric due to its
intuitiveness and despite its limited sensitivity in case of notable class imbalances,
such as in the LOM case. In contrast, the IoU captures the model differences more
adequately for data sets skewed towards the negative class, which is why we focus
on it for the comparison between the individual models.

Network visualization techniques. In order to render model decisions explainable,
the Network Dissection58 and Gradient Weighted Class Activation Maps (Grad-
CAM)59 visualization methods were used. The objective of the Network Dissection
method is to visualize concepts that were learned by individual filters in specific
layers. This is achieved by evaluating activation maps, i.e., single channels of the
activation function output, with regard to its spatial attention for regions in the
input image. In particular, activation maps were thresholded such that the largest
1.0% of the activation map is obtained. In the original implementation, the thre-
sholded activation maps were then resized to input image resolution and subse-
quently superimposed. However, since the encoder used unpadded convolutions, in
the vanilla U-Net case, a combination of resizing and padding was required.

Grad-CAM, on the other hand, aims to shed light on the decision-making
process of models. This technique originally focused on providing a class
discriminative localization map for the output convolutional layer for a given input
image, highlighting the important regions in the image for a particular class
prediction. However, it is also applicable for any convolutional layer in a network.
The localization map for a convolutional layer is constructed by a weighted
combination of feature maps of that layer for a given input image. The weights for
feature maps are computed by propagating the gradient of the particular class score
with respect to the feature maps and performing a global average pooling over
width and height dimensions. Since the method is applicable only for classification
problems, we converted our network prediction to a classification output by global
average pooling. Both methodologies for network visualization complement each
other well and can, when combined, generate detailed insights into the decision-
making process of DL architectures3.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly
available because they are part of an ongoing study and subject to third party (AG der
Dillinger Hüttenwerke) restrictions. Source data are provided with this paper.

Code availability
The codes used in this study are available after study completion (July 2022) from the
authors upon reasonable request.
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