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Abstract
Unsupervised machine learning offers significant opportunities for extracting knowledge from unlabeled datasets and for 
achieving maximum machine learning performance. This paper demonstrates how to construct, use, and evaluate a high-per-
formance unsupervised machine learning system for classifying images in a popular microstructural dataset. The Northeastern 
University Steel Surface Defects Database includes micrographs of six different defects observed on hot-rolled steel in a 
format that is convenient for training and evaluating models for image classification. We use the VGG16 convolutional neural 
network pre-trained on the ImageNet dataset of natural images to extract feature representations for each micrograph. After 
applying principal component analysis to extract signal from the feature descriptors, we use k-means clustering to classify 
the images without needing labeled training data. The approach achieves 99.4%  ± 0.16% accuracy, and the resulting model 
can be used to classify new images without retraining. This approach demonstrates an improvement in both performance 
and utility compared to a previous study. A sensitivity analysis is conducted to better understand the influence of each step 
on the classification performance. The results provide insight toward applying unsupervised machine learning techniques to 
problems of interest in materials science.

Keywords Computer vision · Transfer learning · Image classification · Convolutional neural network · Unsupervised 
machine learning

Introduction

While applications of machine learning to materials science 
problems currently focus on supervised machine learning 
[1], there are significant opportunities for unsupervised 
machine learning, both for extracting knowledge from unla-
beled datasets and for achieving maximum machine learning 
performance. However, because they are less prevalent in the 
background literature, the best practices—and pitfalls—of 
using unsupervised methods are often overlooked. In this 
paper, we demonstrate how to construct, use, and evaluate a 

high-performance unsupervised machine learning approach 
to a standard materials computer vision problem. We explain 
each step in the process, including a sensitivity analysis of 
user-selected parameters. The code is available on GitHub 
in the following repository: https:// github. com/ rccohn/ NEU- 
Clust er.

There is a growing interest in employing computer vision 
for the quantitative analysis of microscopy images in materi-
als science [2, 3]. Potential applications of computer vision 
are extensive in both academic research and industrial mate-
rials processing. Recent studies have shown that computer 
vision approaches can be used for tasks including interpret-
ing diffraction patterns [4, 5], process control and powder 
characterization for additive manufacturing [6–8], automatic 
detection of features of interest in micrographs [9–13], and 
image segmentation and quantification [14], among others. 
With this in mind, we select a computer vision problem as 
the exemplar for a high-performance unsupervised machine 
learning system.

Image classification, the process of assigning a discrete 
label to an image to describe its contents, is a fundamental 
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task in computer vision. The ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) is one of the biggest 
standardized efforts to evaluate computer vision approaches 
to natural image classification (i.e., photographs of soccer 
balls, bassoons, hummingbirds, etc.) [15]. Recent develop-
ments in deep learning with convolutional neural networks 
(CNNs) [16, 17] have been shown to approach and even 
surpass human performance on classifying images in the 
ImageNet database [18]. There are numerous CNN archi-
tectures, but they all include layers of filters that encode 
quantitative descriptions of the visual contents of the image.

Training a CNN from its original randomized weights 
generally requires a very large training set of labeled images. 
For example, the ImageNet 2014 dataset contained over 
1,200,000 labeled images in the training set. For the mate-
rials scientist, gathering data at this scale is prohibitively 
expensive and time consuming. Interestingly, however, the 
intermediate layers of a trained CNN can be used to extract 
meaningful features for images that do not match the class 
descriptions in the original training set. This process, called 
transfer learning, allows the materials scientist to use CNNs 
trained on large databases of natural images, like ImageNet, 
for the task of quantitative microstructural image analysis 
[19, 20], without retraining on any additional images.

The decision to use transfer learning introduces two 
important design decisions. First, which pre-trained neural 
network should be used? The recent explosion of research in 
deep learning has led to the development of many different 
model architectures. Thus, the task of selecting a specific 
network for a task may seem daunting at first. To standard-
ize the training and evaluation of many different neural net-
work architectures, the deep learning community uses large 
standardized datasets for different applications. ImageNet 
provides a very large dataset of natural images and is one of 
the standards for evaluating neural networks for image clas-
sification. Though networks that perform well on ImageNet 
are not guaranteed to have the best performance on other 
datasets (such as ones used in materials science) looking at 
the top performers for the ImageNet challenge can be a use-
ful starting point for selecting candidate networks to use for 
transfer learning applications for materials science.

In this study, we use the VGG16 network [16] pre-trained 
on the ImageNet database. Developed by the Oxford Visual 
Geometry Group, an ensemble of VGG models achieved the 
lowest localization error in the ILSVRC 2014 classification 
+ localization challenge [15]. By using small convolution 
filters with a 3x3 kernel, VGG networks achieved signifi-
cantly higher depths compared to previous network archi-
tectures [16]. Increasing the depth allows the network to 
capture a wider range of features at different scales, leading 
to improved classification performance. After the release 
of VGG16 network, researchers have developed many new 
novel neural network architectures, including several with 

better performance on the ImageNet dataset. Despite this, 
we demonstrate in this study that VGG16 gives very good 
performance for classification of images of defects on steel 
through transfer learning.

After selecting a network to use, the next design deci-
sion is which layer or combination of layers should be used 
to generate features from this network. Feature selection 
for transfer learning applications is still an area of active 
research. Ling et al. [20] conducted a detailed study using 
transfer learning with VGG16 to classify electron micro-
graphs of different materials. They demonstrate how each 
material contains characteristic visual textures, which acti-
vate different convolution layers in VGG16. Thus, the clas-
sification performance depends on the intermediate layer 
used as a feature descriptor the material. Shallow layers (i.e., 
closer to the input) respond to finer textures and deeper lay-
ers respond to coarser visual features. Thus, the choice of 
layer is dependent on the length scale (in pixels) of the char-
acteristic visual textures in the image.

Instead of using the outputs of convolution layers, another 
common choice for feature descriptors is the fully connected 
layers near the top of the neural network. Though not directly 
interpretable, the fully connected layers perform a nonlinear 
transformation of the outputs of the previous layer and can 
be used as useful feature descriptor for the image. Unlike 
convolution layers, which are highly localized, fully con-
nected layers can respond to an aggregate signals from dif-
ferent locations in the image, which may be important when 
determining the label for the image. In VGG16, the fully 
connected layers are between 24.5 and 784 times smaller 
than the outputs of individual convolution layers, providing 
the additional benefit of faster computation time and reduced 
memory requirements for the analysis. In this study, we use 
the fc1 layer, the first fully connected layer in VGG16, to 
generate feature descriptors for the images. We show that 
the fc1 layer results in better classification performance than 
several other layers on the dataset used in this study.

After extracting visual features for each image, the typical 
approach to image classification uses supervised learning. 
In this process, a classifier is shown labeled examples in 
the training set in order to learn the decision boundaries 
between images of each class. After training the classifier 
can predict the labels of new images. In contrast, clustering, 
or unsupervised learning, is the process of finding natural 
patterns in the data to determine class labels without the use 
of labeled training data. Clustering is useful when labeling 
data are costly or when class labels are difficult for a human 
to define. An additional advantage is the ability to learn from 
the entire dataset, without the requirement to hold out data 
for validation and testing. Because it finds natural patterns 
in the data, the labels determined by clustering are not guar-
anteed to agree with the class labels assigned by humans. 
However, when the feature descriptors capture the relevant 
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visual signals in each image, clustering can be used to clas-
sify data with very high performance.

The Northeastern University Steel Surface Defects Data-
base [21] (NEU-SSDD) is an open-source database contain-
ing labeled images of steel defects. It is quickly becoming a 
standard for evaluating the performance of image classifica-
tion and object detection algorithms applied to image data in 
materials science with many citations in the literature [19, 
21–29]. The NEU-SSDD consists of 1,800 images of surface 
defects observed on samples of hot-rolled steel. The images 
are evenly divided into six classes. The defect classes are 
inclusions, rolled-in scale, patches, crazing, pitted surfaces, 
and scratches. All images are the same size and format mak-
ing them convenient for analysis. Example images from the 
database are shown in Fig. 1.

Because the NEU-SSDD images are all labeled with 
a defect type, they are well-suited to supervised machine 
learning, and indeed supervised ML methods have achieved 
excellent classification accuracy as high as 99% [28]. How-
ever, the NEU-SSDD also offers a testbed to compare super-
vised and unsupervised methods for image classification. 
In 2018, Kitahara used transfer learning with the VGG16 
network coupled with unsupervised k-means clustering to 
classify images in the NEU-SSDD with 98.3% ± 1.2% accu-
racy [19]. In their approach, features were projected onto 
t-distributed stochastic neighborhood embedding (t-SNE) 
maps before clustering. Since t-SNE maps cannot incorpo-
rate new points, their method cannot be extended to classify 
additional images. In this study, we adopt a similar strategy 
for classifying the NEU-SSDD dataset. However, by cluster-
ing whitened principal components instead of t-SNE embed-
dings, and by increasing the number of iterations for which 
k-means is run, we classify the data with higher performance 
and better repeatability between trials. Additionally, our 

method can be used to classify new data, which is impor-
tant for applications in high throughput experiments or qual-
ity control settings. Since seemingly small changes to the 
approach result in big changes in utility and classification 
performance, we conduct a sensitivity analysis to demon-
strate the impact of each step on the results.

Methodology

The analysis is split into three parts: 

1. Preprocessing: Prepare the data to be read by the CNN.
2. Feature extraction (encoding): Use the CNN to generate 

a numerical representation of each image.
3. Clustering (decoding): Assign a label to the image, 

grouping images with similar features together.

Python was used to conduct the study. Scikit-image [30] was 
used for preprocessing image data. The VGG16 neural net-
work [16] pre-trained on the ImageNet dataset [15], accessed 
through Keras [31], was used to extract features. Scikit-lean 
[32] was used to further process the data and perform the 
clustering. These tools are described in detail in the follow-
ing sections, and the Python code is available on GitHub at: 
https:// github. com/ rccohn/ NEU- Clust er.

Preprocessing

The first step to image analysis is loading an image file into 
Python. This can be done in scikit-image using the com-
mand skimage.io.imread(). After loading an image, various 
preprocessing techniques can be applied to change proper-
ties including its size, scale, and brightness. In this study, 
we preprocess the images with the following steps. First, 
histogram equalization is applied to normalize the bright-
ness of the images. Next, resizing is applied so the images 
are compatible with VGG16. These steps are described in 
more detail below.

In the NEU-SSDD, overall brightness is not an indica-
tor of defect class. Instead, brightness is influenced by fac-
tors including the lighting and amount of defects present 
in the images. This can be clearly seen in the images for 
patches, crazing, and pitted surfaces in Fig. 1. The images 
for these defects are sorted from brightest to darkest from 
top to bottom, and it is clear that they span a wide range of 
average brightness values. Thus, contrast-limited adaptive 
histogram equalization (CLAHE) [33] is applied to each 
image. CLAHE provides two main benefits. First, it nor-
malizes the brightness distribution of each image, reducing 
the difference between darker and lighter images. Second, 
CLAHE enhances the contrast in the images, which can 
result in stronger responses from the convolution layers in a 

Fig. 1  Sample images from Northeastern University Steel Surface 
Defects Database. Each column contains images from a different 
defect class in the dataset

https://github.com/rccohn/NEU-Cluster
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CNN. An example of CLAHE applied to an image from the 
NEU-SSDD is shown in Fig. 2. After the histogram equali-
zation is applied, the intensity distribution is much wider, 
and crazing in the image is much more noticeable. In scikit-
image, CLAHE can be applied to an image using skimage.
exposure.equalize_adapthist().

Note that CLAHE is an appropriate preprocessing step 
to use for the NEU-SSDD because brightness is not useful 
for classifying each image. In other datasets the brightness 
of each image may be a useful indicator of its contents. In 
this case histogram equalization should not be applied as it 
results in a loss of signal contained in the images. There are 
several other techniques for adjusting the brightness of an 
image including gamma adjustment, logarithmic corrections, 
histogram matching, and others. These techniques are read-
ily available in scikit-image and may be more appropriate for 
other datasets. However, exploring the impact of using these 
methods was determined to be out of the scope of this study.

The next step for preprocessing the image is resizing. 
Because the weights of a neural network are trained using 
training images of a fixed size, the network is only able to 
process images with the same dimensions. Images from the 
NEU-SSDD are scaled up from 200 × 200px to 224 × 224px 
for VGG16. Interpolation is applied to images before resiz-
ing to allow for rescaling by a non-integer scaling factor. 
To resize images with scikit-image, the command skim-
age.transform.resize() was used. After preprocessing was 
complete, the images were saved to disk using the skimage.
io.imsave() command.

Feature Extraction

The VGG16 network [16], developed by the Oxford Visual 
Geometry Group, is a popular CNN for computer vision 
tasks because of its high performance and relative simplicity. 

The VGG16 network achieved the top score in the ILVRC 
2014 challenge and is still widely used for computer vision 
tasks today. Thus, we use the VGG16 network to assist with 
the task of classifying images of steel defects in this study. 
Images were read from the disk using the function keras.
preprocessing.image.load_img(). Images were then format-
ted using the function keras.applications.vgg16.preproc-
ess_input(). Note that unlike preprocessing described in  
"Preprocessing" section these steps ensure the images are 
formatted correctly for use with the VGG16 model and do 
not change the properties of the images themselves.

After reading the images, the VGG16 network pre-trained 
on the ImageNet database was used to extract numerical fea-
ture descriptors of each image. The pre-trained network can 
be accessed through keras.applications.vgg16.VGG16() 
with the keyword argument weights=“imagenet”. The 
images are fed into the input layer of the neural network. 
The FC1 layer of VGG16 was used as it was empirically 
found to have good performance [19].

The outputs of intermediate layers in VGG16 each con-
tain between 4,096 and 3,211,264 elements. These outputs 
include a significant amount of noise and zero elements 
resulting from filters that did not activate. Principal com-
ponent analysis (PCA) [34] is applied to reduce the dimen-
sionality of the data, simultaneously increasing classification 
performance while decreasing computational cost. First, the 
data are centered so the mean along each dimension is zero. 
Next, the covariance matrix is computed from the centered 
data. Finally, singular value decomposition (SVD) is per-
formed to determine the eigenvectors and eigenvalues of the 
covariance matrix. The eigenvectors are the principal com-
ponents which the data can be projected onto. The eigen-
value corresponding to each eigenvector is proportional to 
the amount of variance explained by that component.

To reduce the dimensionality of the data, the data are 
projected onto the n principle components that explain the 
highest fraction of variance. Selecting n is subjective, but 
reasonable values can be determined from the amount of 
variance explained by each component. The fraction of 
variance explained versus the number of PCA components 
used for FC1 features on the NEU-SSDD dataset is shown 
in Fig. 3.

The number of components to use is another design 
decision that must be made during the analysis. Using 
too few components results in a lower classification per-
formance resulting from a loss of useful information in 
the original features. Using too many components intro-
duces noise into the features, which increases the com-
putational requirements of the analysis and can actually 
decrease classification performance in some cases. For 
high-dimensional data, it is common to start by using 50 
components and testing the performance when varying 
the number of components. For the features used in this 

Fig. 2  CR_10 from the NEUS-SDD dataset. a Original image. b 
Intensity histogram of original image. c Image after CLAHE applied. 
d Intensity histogram of image after CLAHE applied
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experiment, using 50 components preserves 73% of the 
variance and was found to give the best performance. The 
classification performance for the analysis using different 
numbers of components, and an analysis of the influence 
of PCA on classification performance, is shown in  "Fea-
ture Extraction: PCA Whitening and Number of Compo-
nents" section.

After selecting the number of components, whitening is 
an optional post-processing step for PCA. Whitening scales 
the final subset of components by the variance of each com-
ponent to achieve unit variance across all components. This 
may improve the classification performance. However, if 
too many components are chosen, whitening the data may 
decrease performance due to increasing the weight of noisy 
components. The effect of whitening on classification per-
formance is discussed in further detail in  "Feature Extrac-
tion: PCA Whitening and Number of Components" section. 
In Python, Scikit-learn provides a convenient implementa-
tion for PCA, including whitening, with the sklearn.decom-
position.PCA() object.

Clustering

The last step in the analysis is clustering, in which the class 
label for each image is assigned. k-means clustering [35] is 
an unsupervised machine learning method that is one of the 
most popular clustering algorithms in use today [36, 37]. 
The goal of k-means is to group nearby points in feature 
space. The k-means clustering algorithm works in the fol-
lowing way: 

1. Choose k centroids.
2. Associate each point with the centroid that is closest to 

it in feature space.
3. Update the position of each centroid to be the mean posi-

tion of all of the points associated with it.
4. Repeat steps 2 and 3 until the centroids do not change 

position or until a maximum number of iterations is 
reached.

This approach minimizes inertia, which is the sum of 
squared Euclidean distances from each point to its associated 
cluster center. Note that this achieves a local minimum that 
is dependent on the initial position of each centroid. There 
are different approaches for selecting the starting centroids. 
One method, called k-means++ [38], has been shown to help 
k-means achieve good clustering performance and computa-
tional efficiency. In this technique, the first cluster center is 
chosen with uniform probability from the data. The remain-
ing cluster centers are chosen from the data with probabil-
ity proportional to the distance to the nearest cluster center. 
Thus, the initial cluster centers are close to data points and 
are spread out from each other, which is consistent with the 
expected patterns in the data when using k-means clustering.

Once the initial centroids are selected, k-means is deter-
ministic. However, selecting the initial cluster centers is a 
stochastic process. Unless the data naturally cluster very well 
and do not contain noise or outliers, running k-means with 
different initializations will give different results. Therefore, 
k-means is run several times with different initial centroids. 
The cluster centers with the lowest inertia are used as the 
final clusters. Note that inertia is used instead of accuracy 
to select the clusters. This prevents overfitting the model 
and allows for clusters to be determined without the use 
of labeled training data. This is discussed in more detail in 
Sect. 3.3.4.

K-means requires an input value for K, the number of 
clusters. There are several techniques for approximating a 
reasonable value for K [39, 40]. The number of clusters can 
also be determined empirically from visualizing the data. 
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a 
popular method for visualizing high-dimensional data. This 
technique is introduced in [41] and summarized in [19]. 
t-SNE maps for the NEU-SSDD data are shown throughout 
this paper. In this technique, a nonlinear transformation is 
used to project data to 2 or 3 dimensions so it can be ana-
lyzed visually. The distances between points that are close to 
each other on the resulting t-SNE maps are more likely to be 
representative of the actual distances in the original feature 
space. The distances between points that are far away from 
each other on t-SNE maps are not likely to be representa-
tive of the actual distances in feature space. In other words, 
points that cluster together in feature space are likely to clus-
ter together on t-SNE maps. The spacing between different 
clusters may not be representative of the actual inter-cluster 
spacing, but different clusters are still distinct.

A sample t-SNE map for the NEU-SSDD is shown in 
Fig. 4. The map was computed using PCA components 
without whitening, which shows more distinct clusters than 
the map computed from whitened components. The map 
reveals the natural clustering of the data. In this figure, the 
numerical values on the axes are not shown because they are 
arbitrarily determined during the projection. Since there are 

Fig. 3  Cumulative fraction of variance explained vs number of PCA 
components for FC1 features of NEU-SSDD dataset
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6 defect classes, at least 6 clusters must be used to classify 
the data. However, on the t-SNE map, points corresponding 
to scratches appear to be separated into two distinct clusters. 
Representative images for each of the clusters correspond-
ing to scratches are overlaid on the t-SNE map next to their 
respective clusters. From these images it is clear that these 
clusters distinguish horizontally oriented scratches from ver-
tically oriented scratches. Neural networks are commonly 
sensitive to rotation, and reducing this phenomena is an 
area of active research [42]. Thus, for this dataset, adding 
a 7th class, distinguishing between horizontal and verti-
cal scratches, is necessary to maximize the classification 
performance.

In [19], clustering is performed directly on t-SNE map-
pings of the NEU-SSDD data. This approach has the advan-
tage of being interpretable as clusters can be visualized 
directly. However, this method will not generalize to new 
data as t-SNE maps must be recomputed every time new data 
are added. In this paper it is shown that clustering directly on 
whitened PCA components can achieve comparable perfor-
mance to clustering the t-SNE maps and can scale to larger 
datasets and generalize to new data more effectively.

Scikit-learn provides a convenient implementation of 
k-means with the object sklearn.cluster.KMeans(). This 
implementation contains the k-means++ algorithm for cen-
troid initialization with the init=‘k-means++’ keyword 
argument.

Model Evaluation

When ground truth class labels are available, clustering 
algorithms can be evaluated on the basis of accuracy, preci-
sion, and recall. Accuracy is the ratio of predictions made 
by the model that are correct. Accuracy quantifies the per-
formance of all predictions into a single value, but can be 
misleading for unbalanced datasets. Precision and recall 

contain more information about the model performance but 
must be calculated for each ground-truth class in the data-
set. The precision of predictions for class i describes the 
likelihood that a prediction of class i made by the model is 
correct. The recall for class i describes the likelihood that a 
data point with ground-truth class i will be correctly labeled 
by the model. These values are determined from true posi-
tives, false positives, and false negatives, which are defined 
in Table 1. Precision and recall are defined as

where Pi and Ri are the precision and recall for ground-truth 
class i , respectively. TPi and FPi are the number of true posi-
tive and false positive predictions for class i , respectively, 
and FNi is the number of false positive predictions for class 
i.

The performance of a model can be visualized using a 
confusion matrix. A schematic for the confusion matrix is 
shown in Fig. 5. Note that the confusion matrix shown in this 
figure is for demonstration purpose and does not reflect the 
performance of any model used in this study. For confusion 
matrix C , element Ci,j shows the number of samples with 
ground truth class i that were predicted to belong to class 
j . Elements on the diagonal represent correct predictions, 
and all off-diagonal elements are incorrect. For class k , true 
positive predictions are on element Ck,k ; false positives are 
all other elements in column k , Cj≠k,k ; and false negatives 
are all other elements in row k , Ck,j≠k . Thus, the confusion 
matrix gives a convenient and easy-to-interpret representa-
tion of the model performance. In Python, the command 
sklearn.metrics.confusion_matrix() can be used to com-
pute the confusion matrix for a set of predictions. The pre-
cision and recall can be inferred from the confusion matrix 
or displayed directly with the function sklearn.metrics.
classification_report().

Results

Standard Analysis

The standard analysis consists of the following steps in 
order: 

1. Contrast limited adaptive histogram equalization is 
applied to each image.

2. Each image is resized to 224 × 224 pixels.

(1)Pi =
TPi

TPi + FPi

(2)Ri =
TPi

TPi + FNi

Fig. 4  t-SNE map for unwhitened PCA components. Points in the 
map are colored by their ground truth labels and show good cluster-
ing. Typical images for the two different clusters corresponding to 
scratches are overlaid next to each cluster and show the separation of 
vertical and horizontal scratches
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3. Each image is passed through VGG16 trained with 
ImageNet weights, and the outputs of the FC1 layer are 
saved as feature representations.

4. The features are transformed using PCA with 50 whit-
ened components, which preserve 73.6% of the total 
variance.

5. Features are clustered via k-means clustering with 7 
clusters, k-means++ initialization, and 500 different 
initialization steps.

6. The clustering with the lowest total inertia (not neces-
sarily the greatest accuracy) is used as the final result.

This procedure was iterated 10 times with different initial 
random seeds to verify the repeatability of the approach. 
The model achieved an average classification accuracy of 
99.40% ± 0.16% , with minimum accuracy of 99.06%. The 
results represent an improvement in both the classification 
accuracy and variance compared to previous unsupervised 
methods [19] and are comparable to supervised methods 
without the requirement for image labeling. To better inter-
pret the performance, the results for one trial are reported 
in detail below.

Figure  6 shows the t-SNE projection of the feature 
data colored by the predicted labels determined from one 
trial during the standard analysis. The color scheme is the 
same as Fig. 4, with the exception that the extra cluster for 
scratches is shown in gray and denoted ‘Sc-2.’ This allows 

for easy visual comparison between the ground truth labels 
and the labels determined from the standard analysis. The 
labels determined from cluster analysis show good agree-
ment with the ground truth and also the clusters that appear 
on the t-SNE projection.

The classification scores from the same trial are visual-
ized in Fig. 7 and summarized in Table 2. This trial achieves 
99.6% classification accuracy for the dataset. The perfor-
mance can be more precisely understood by looking at the 
results for each class individually. The strong diagonal in 
the confusion matrix indicates good overall classification 
performance. The model achieves perfect classification of 
rolled-in scale (RS) images, with no false positives or false 
negatives. The model also achieves perfect precision for 
patches (Pa) and scratches (Sc), and perfect recall for crazing 
(Cr) and pitted surfaces (PS). The biggest source of confu-
sion is classifying images of scratches to be inclusions, with 
4 misclassification errors. From the t-SNE map in Fig. 4a, 
the cluster for vertical scratches is close to the cluster for 

Fig. 5  Sample confusion matrix 
for demonstration purpose 
(i.e., not using data from this 
study.) a Correct predictions are 
highlighted. Incorrect predic-
tions are shown as off-diagonal 
elements. b Results for class 1 
are highlighted. True positive 
predictions for class 1 are in ele-
ment (1,1). False positives and 
false negatives for class 1 are 
other elements in the 1st column 
and 1st row, respectively

Table 1  Definition of true positive, false positive, and false negative 
predictions for a data point belonging to ground-truth class i

Prediction type Ground-truth 
class

Predicted class

True positive for class i i i
False positive for class i j≠ i i
False negative for class i i j ≠ i

Fig. 6  t-SNE projection of feature data colored by cluster identities 
determined from k-means clustering with 7 clusters from one trial 
during the standard analysis
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inclusions, indicating visual similarity between some images 
of these defect classes. In Fig. 1, the bottom two images of 
inclusions show inclusions that are elongated and oriented 
vertically and therefore look similar to scratches. The other 
two sources of errors were predicting patches to be crazing 
and inclusions to be pitted surfaces, with 2 misclassification 
errors each.

Predictive Model

Fivefold cross-validation was used to test the performance 
of the model on data not used to compute the original cluster 
centers. The image data was randomly divided into 5 equal 
subsets. Four subsets, denoted the training set, were used 
to find the PCA components and cluster centers using the 
standard analysis. The last subset, denoted the validation 
set, was held out to test the performance of the clusters on 
data that the model has not seen before. The class labels for 
each point in the validation set are determined by its closest 
cluster center in feature space. This process was repeated 5 
times, where each subset was used as the test set once.

The results of the analysis with cross-validation are 
shown in Table 3. On the first set the model achieves a train-
ing accuracy of 0.988 and a validation accuracy of 0.983, but 
on the rest of the trials the training and validation accuracy 
is at least 0.99. This indicates that the centroids determined 
from the training set are reasonable approximations of the 
true cluster centers for each defect class. Since represen-
tations in feature space can be generated for new images, 
the model can generalize to classify unseen data with good 
performance. Note that this is not possible when clustering 
points on t-SNE projections, as new points cannot be added 
without recomputing the whole map. Thus, clustering PCA 
extends the performance of the method presented in [19] 
with the ability to classify new images.

Sensitivity Analysis

Because the selection of operations and parameters can sig-
nificantly affect model performance, we conducted a sensi-
tivity analysis for the preprocessing, feature extraction, and 
clustering elements of the standard analysis. Since there are 
few known best practices for constructing machine learning 
systems, this is a recommended step for model optimization. 
It is important to note that the specific selections made here 
may not represent the best choices for other image datasets 
or machine learning architectures, but the methodology of 
systematically examining the operations and parameters in 
the analysis pipeline is generally applicable.

Preprocessing: Histogram Equalization

To determine the impact of histogram equalization on the 
classification performance, the analysis was repeated on 
images without applying histogram equalization. The t-SNE 
projection for the feature representations of these images 
colored by ground truth labels is shown in Fig. 8a. Com-
pared to the t-SNE map in the standard analysis, the clus-
ters are more elongated, indicating higher visual variance 
within each class. Also, the rolled-in scale (RS) cluster has 
split into 2 distinct clusters. The images in Fig. 8c and d 
show typical images from each of the two clusters with their 

Fig. 7  Confusion Matrix for one trial during the standard analysis

Table 2  Precision and recall for 
each class for one trial of the 
standard analysis

Class Precision Recall

Cr 0.993 1.000
In 0.987 0.993
Pa 1.000 0.993
PS 0.993 1.000
RS 1.000 1.000
Sc 1.000 0.987

Table 3  Performance of cluster analysis with fivefold cross-validation

Subset Train accuracy Valida-
tion 
accuracy

1 0.988 0.983
2 0.990 0.997
3 0.992 0.994
4 0.992 0.994
5 0.993 0.992
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intensity histograms overlaid on the image. The image in 
Fig. 8c has more scale, which appears to be very dark with 
a less reflective surface. Its intensity distribution is narrow 
with a maximum value at relative intensity of 0.27. In con-
trast, the image in Fig. 8d has less scale and a more reflective 
surface. Its intensity histogram is much wider with a peak 
value at a relative intensity of 0.55. The differences in inten-
sity profiles are captured in the feature representation of the 
images and appear as two distinct clusters in the t-SNE map.

Applying k-means with 7 clusters results in a classifi-
cation accuracy of 93%, which is a significant decrease 
in performance compared to the approach with histogram 
equalization. Since the t-SNE map indicates that the data 
are more spread out, clustering was repeated while varying 
the number of centroids between 7 and 15. Classification 
accuracies of these models vary between 87 and 95%. The 

lowest and highest scoring models have 8 and 12 centroids, 
respectively. The t-SNE map with points colored by their 
labels determined from clustering with 12 centroids is 
shown in Fig. 8b.

Interestingly, despite appearing as two distinct clusters 
on the t-SNE map, images containing the rolled-in scale 
defect are grouped into a single cluster in feature space. 
On the other hand, 5 out of 12 clusters are associated with 
scratches, indicating that removing histogram equalization 
significantly increases the variance between these images. 
From the example images in 1, images of scratches have 
very dark backgrounds, and the scratches themselves are 
very bright. Thus, the intensity profile heavily depends on 
the size and number of scratches in the image. Without the 
use of histogram equalization, these images generate very 

Fig. 8  a t-SNE projection of features without histogram equalization 
applied. Colors correspond to ground truth labels. b t-SNE projection 
of features without histogram equalization applied. Colors correspond 
to clusters determined from k-means. c Sample image from first 
rolled-in scale cluster denoted by the black diamond on the t-SNE 

map. Intensity histogram is overlaid on the image. d Sample image 
from second rolled-in scale cluster denoted by the black square on the 
t-SNE map. The intensity histogram for each image is overlaid on the 
figure
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different visual signals from each other when analyzed 
with the VGG16 network.

The classification performance without histogram equali-
zation is shown in Fig. 9 and summarized in Table 4. Com-
pared to the standard analysis the decrease in performance 
is driven by predicting scratches to be inclusions (53 mis-
classifications) and predicting inclusions to be pitted sur-
faces (32 misclassifications.) Even with 5 cluster centers for 
scratches, the model has trouble classifying scratches. This 
suggests that the removal of histogram equalization causes 
overlap in feature space between the clusters for scratches 
and inclusions, as well as inclusions and pitted surfaces, 
resulting in many classification errors. Since the defect class 
is independent of the intensity profile of each image, apply-
ing histogram equalization is necessary for eliminating the 
effect that relative brightness has on the visual signal cap-
tured in each image.

Feature Extraction: Choice of Output Layer

It has been observed that image classification accuracy 
depends on the choice of the CNN output layer selected 
as the feature descriptor and that different image types are 
best represented by different layers [20]. Thus, the analy-
sis was repeated using the outputs of the VGG16 fc2 and 
block5_pool layers in place of the fc1 layer. The fc2 fully 
connected layer has the same size as the fc1 layer, gener-
ating 4096-dimensional features for each image. Simply 
conducting the standard analysis except replacing the fc1 
features with fc2 features results in similar classification 

performance. The accuracy is 99.4%, and the biggest source 
of error is classifying 5 images of scratches to be inclusions. 
The outputs of the block5_pool layer are much larger, with 
features in 25,088 dimensions. Thus, the parameters of the 
analysis are changed to maximize the classification perfor-
mance. For the block5_pool layer, 110 PCA components 
were kept, preserving about 55% of the total variance of 
the data.

The t-SNE map of the features colored by their ground 
truth labels is shown in Fig. 10. The data still cluster by 
defect type, though some of the clusters appear closer to 
each other. KMeans was run while varying the number of 
clusters between 6 and 19. The maximum accuracy was 
achieved with 9 clusters. However, the accuracy was only 
89%. Interestingly, the decrease in accuracy is driven by 178 
predictions of scratches to be inclusions. This decreased the 
recall of scratches to 0.4 and the precision of inclusions to 
0.64. All other classes were correctly labeled with preci-
sion and recall values above 0.976. Despite showing good 
clustering on the t-SNE map, KMeans is unable to resolve 
scratches from inclusions in feature space. Noting the appar-
ent strong clustering in the t-SNE map, clustering was per-
formed using the t-SNE map directly. With 7 clusters, the 
model achieves 96.4% accuracy. Increasing k to 23 improves 
the cluster accuracy to 97.6%. The confusion matrix for this 
is shown in Fig. 11. Interestingly, this model only classified 

Fig. 9  Confusion matrix for analysis without histogram equalization 
and clustering with 12 centroids

Table 4  Precision and recall for 
each class with no histogram 
equalization and clustering with 
12 centroids

Class Precision Recall

Cr 0.997 0.997
In 0.824 0.890
Pa 0.990 0.997
PS 0.900 0.987
RS 0.993 1.000
Sc 1.000 0.810

Fig. 10  t-SNE projection of feature data extracted from block5_pool 
layer from VGG16 with 110 unwhitened PCA components
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two scratches as inclusions, demonstrating improved recall 
for scratches compared to the k-means analysis. However, 
the model made more mistakes when classifying images 
of patches and inclusions, contributing to the lower overall 
accuracy. The results indicate that the original block5_pool 
features contain significant noise, making it difficult for 
PCA/KMeans to directly capture the clusters. The nonlin-
ear mapping applied during t-SNE helps resolve the sig-
nal, especially when separating scratches from inclusions. 
A neural network can be thought of as an encoder-decoder 
signal processor. The convolution blocks in VGG16 encode 
images with lots of filter responses but also have lots of 
noise. Thus, after extracting features from these blocks, 
additional techniques such as t-SNE are needed to de-noise 
the useful signal for cluster analysis. In contrast, the fully 
connected layers extract signal from the noisy outputs of 
the convolution blocks, so PCA and k-means can be applied 
directly to these features without additional transformations.

Feature Extraction: PCA Whitening and Number 
of Components

The standard analysis uses PCA with 50 components fol-
lowed by whitening to compute the final feature repre-
sentation of the images. To determine how classification 
performance changes with the number of components 
used, the analysis was conducted while varying the num-
ber of components, using both whitened and unwhitened 
PCA components. Figure 12 shows the results. For small 
numbers of components, the results with and without 

whitening are consistent with each other. With only one 
component, the model still achieves 46% accuracy. As 
the number of components increases to 10, the accuracy 
increases to around 96%. Without using whitening, the 
accuracy plateaus at 96% as the number of components 
is increased to 1800. After the first 10 components, each 
additional component contributes a very small amount of 
variance and therefore does not affect the cluster results.

The results with whitening demonstrate a different 
trend. As the number of components is increased to 50, 
the accuracy increases to a maximum value of 99.6%. 
However, continuing to increase the number of compo-
nents causes a sharp drop in classification performance. 
Using 1000 components results in a classification accuracy 
of 17%, which is about equal to the expected accuracy 
for random guessing. Whitening normalizes the variance 
across all PCA components to unit value. Thus, compo-
nents that explain less of the variance in the original data 
but still contain useful signal are able to contribute to clus-
tering the data, resulting in improved classification perfor-
mance. However, if too many components are included, 
components that only contain noise drown out the useful 
signal. With far too many noisy components, the signal is 
entirely lost. Thus, whitening can significantly improve the 
classification performance of clustering algorithms like 
k-means, but can also introduce significant error if too 
many components are used.

Although whitening can increase the clustering perfor-
mance, it also increases the chance that k-means gets stuck in 
a local minimum and returns the sub-optimal classification 
results. Because of this, including whitening in the analy-
sis increases the number of cluster initialization steps that 
should be used when running k-means. This is discussed 

Fig. 11  Confusion matrix for clustering block5_pool features on the 
t-SNE map

Fig. 12  Clustering accuracy vs number of PCA components used for 
both whitened and unwhitened components
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in more detail in "Clustering: Initialization and Whitening" 
section.

Clustering: Initialization and Whitening

To determine the impact of the initial choice of cluster cent-
ers, k-means was run 5,000 times with different initializa-
tion steps, and the final cluster accuracy and inertia were 
recorded. This analysis was conducted for feature represen-
tations with and without whitening applied. Figure 13a and b 
shows the clustering accuracy versus relative inertia and the 
histogram of accuracy scores, respectively, for the analysis 
performed on unwhitened components.

Depending on the choice of initial cluster centers, the 
inertia of the final clusters varies by 15% and the accuracy 
ranges from 0.61 to 0.96. The accuracy of the point with 
the lowest inertia is 0.961, which is close to the maximum 
accuracy achieved. The correlation between accuracy and 
inertia is −0.76, indicating that clustering with lower iner-
tia generally results in a higher classification accuracy for 
this dataset. The scores are irregularly distributed. 68% of 
the trials achieved higher than 93% accuracy. This indicates 
that there is a strong minimum in inertia, and not that many 
iterations of k-means are required to achieve a good cluster-
ing performance.

Figure  13c, d shows the clustering accuracy versus 
relative inertia and the histogram of accuracy scores, 

respectively, for the analysis performed on whitened com-
ponents. The relative inertia for the tests with whitening is 
much smaller, spanning only about 3% between all trials. 
Despite this, there is a larger range in classification accuracy, 
ranging from 0.36 to 0.996. The accuracy of the model with 
the lowest inertia is 0.996. As expected, whitening allows 
the model to reach higher classification accuracy. Similar 
to the results for unwhitened components, accuracy has a 
negative correlation with inertia with a correlation coeffi-
cient of −0.79. Unlike the experiment without whitening, 
the scores for each trial are more normally distributed, with 
most trials reaching near 85% accuracy. Only 0.7% of trials 
achieved accuracies higher than 99%. Thus, when whitening 
is applied, there are many local minima in inertia in which 
KMeans can get trapped. The results indicate that despite 
increasing the potential for high classification performance, 
whitening PCA components also increases the variance 
between different trials of k-means. Thus, in order to have 
a high likelihood of finding good clustering with whitened 
PCA components, k-means needs to be run with many initial 
centroid selections.

Fig. 13  a Classification accuracy versus relative inertia for 5000 tri-
als of k-means clustering on unwhitened PCA components. b Histo-
gram of classification accuracy scores for the 5,000 trials of k-means 
clustering on unwhitened PCA components. c Classification accuracy 

versus relative inertia for 5,000 trials of k-means clustering on whit-
ened PCA components. d Histogram of classification accuracy scores 
for the 5,000 trials of k-means clustering on whitened PCA compo-
nents
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Conclusions

This paper provides an in-depth description of the steps 
required to apply transfer learning to classify images in the 
Northeastern University Steel Surface Defects Database 
with k-means clustering. The approach outlined in this 
study achieved 99.4% ± 0.16% , demonstrating improved 
accuracy compared to previous studies in the literature. 
A sensitivity analysis was conducted to demonstrate the 
impact of each step in the analysis on the results. Histo-
gram equalization improves classification performance by 
reducing differences between images with the same defects 
but different brightness profiles. Using the outputs of the 
fully connected layers in VGG16 maximizes the signal-to-
noise ratio of the feature descriptors, resulting in a useful 
and relatively compact feature description of each image. 
Using PCA with enough components to preserve about 
75% of the total variance and applying whitening opti-
mized the classification performance by maximizing the 
useful signal captured in the feature descriptors. Despite 
there being only 6 defects, running k-means with 7 clusters 
was needed to account for both vertical and horizontal 
scratches. Clustering whitened PCA components results in 
the maximum classification performance but also increases 
the variance in performance of individual trials. Thus, to 
maximize the classification accuracy, k-means was run 
with many different initialization steps, and the model 
with the lowest total inertia was used. Finally, because the 
analysis does not rely on clustering points on a t-SNE map, 
the k-means model can be used to classify new images 
with accuracy above 99%. This allows for automated clas-
sification of large numbers of images in high-throughput 
experiments and quality control applications.
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