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We propose instance segmentation as a useful tool for image analysis in
materials science. Instance segmentation is an advanced technique in com-
puter vision which generates individual segmentation masks for every object
of interest that is recognized in an image. Using an out-of-the-box imple-
mentation of Mask R-CNN, instance segmentation is applied to images of
metal powder particles produced through gas atomization. Leveraging
transfer learning allows for the analysis to be conducted with a very small
training set of labeled images. As well as providing another method for mea-
suring the particle size distribution, we demonstrate the first direct mea-
surements of the satellite content in powder samples. After analyzing the
results for the labeled data dataset, the trained model was used to generate
measurements for a much larger set of unlabeled images. The resulting par-
ticle size measurements showed reasonable agreement with laser scattering
measurements. The satellite measurements were self-consistent and showed
good agreement with the expected trends for different samples. Finally, we
present a small case study showing how instance segmentation can be used to
measure spheroidite content in the UltraHigh Carbon Steel DataBase,

demonstrating the flexibility of the technique.

INTRODUCTION

Materials characterization and quality control
rely on the analysis of microscopy images and other
visual data. Manual analysis of images is a labor-
intensive process and subject to human judgment.
Because of this, there is growing interest in using
automated computer vision techniques to analyze
image data in materials science. Recent research
has demonstrated how several types of computer
vision methods can be used for a wide variety of
applications, including identifying defects on mate-
rials’™ and powder beds,*® characterizing powder
samples,® se%mentation of microstructural features
of interest,”” and more.’®'® The methods applied
in most of these studies can be categorized as:

(Received January 12, 2021; accepted April 26, 2021;
published online May 26, 2021)

classification,'* in which a label is assigned to an
image; semantic segmentation,'® in which a label is
assigned to each pixel in an image; or detection,'®
which indicates the class, size, and position of each
instance of every object that is recognized in an
image.

Recently, researchers in computer vision have
made significant advancements in the field of
instance segmentation. Instance segmentation is
an advanced technique in computer vision that
extends object detection to include a segmentation
map for each object that is recognized in an image.
This provides detailed information on the number of
objects in an image, as well as the position, size, and
shape of each object. With the release of the
Microsoft Common Objects in Context (COCO)
dataset,'” which contains 328,000 labeled images
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with 2.5 million labeled instances, instance segmen-
tation has become an important area of focus in the
field of computer vision.

Current approaches to instance segmentation all
rely on deep learning and convolutional neural
networks. Mask R-CNN,'® introduced by Facebook
Al Research in 2017, is still one of the most popular
network architectures used for the task of instance
segmentation. Mask R-CNN extends Faster R-
CNN, ' a network with good performance on object
detection tasks, with additional convolution layers
for predicting individual segmentation masks for
each instance. At the time of its release, Mask R-
CNN achieved the highest score on the COCO
instance segmentation challenge and allowed for
near-real-time mask proposals. Additionally, note
that Mask R-CNN is a flexible architecture that can
be used for a wide range of task and applications.
Currently, it is still recognized as a standard
approach to instance segmentation and serves as a
benchmark for comparing the performance of new
network architectures.

Despite being a powerful tool for automating image
analysis, instance segmentation has not yet been
widely applied for applications in materials science.
In this paper, we present a case study using instance
segmentation to improve powder characterization
with potential applications in additive manufactur-
ing (AM.) In powder-bed fusion AM, the properties of
the feedstock powder influence the quality of the
parts produced.?’ However, current methods of char-
acterizing powder size and rheology are not always
sufficient to predict the quality of parts after a
build;?* For example, it has been established that
satellite formation on powder particles influences
flowability,?> but it is not currently possible to
experimentally measure satellites on metal powders.
We apply instance segmentation to scanning electron
microscopy (SEM) images of metal powders to gen-
erate the first direct measurements of powder satel-
lites. We then extend this approach to show how
instance segmentation can be used to measure the
spheroidite content in steel microstructures, demon-
strating the flexibility of the technique for a wide
variety of materials science applications.

METHODS
Data Collection and Labeling

Data for this study consisted of SEM images of a
gas-atomized nickel sugeralloy powder. The VGG
Image Annotator (VIA)?*?* was used to label images
for training and evaluation. The mask for each
instance was approximated by drawing a polygon
around each individual powder particle or satellite.
A sample screenshot showing an image with anno-
tations for powder particles is shown in Fig. 1.

The bounding boxes were derived from the poly-
gons by taking the highest and lowest X and Y
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coordinates from each polygon. Five images were
annotated with labels for both powder particles and
satellites. An additional five images were annotated
with only labels for satellites to account for there
being fewer satellites per image than powder par-
ticles. In total, there were 1360 labeled powder
particle instances and 1029 labeled satellite
instances. After labeling, each dataset was divided
into subsets for fivefold cross-validation. For the
powder particle dataset, four images were used to
train the model while the remaining image was
used for evaluation. For the satellite dataset, eight
images were used for training while the remaining
two were used for evaluation. In both datasets, each
image was used in four of the training subsets and
one of the validation subsets.

Model Training

Training is the process of adjusting the model
parameters to minimize the loss function, which
quantifies errors in model predictions. Mask-RCNN
utilizes a multitask loss function'® that incorporates
losses from predictions in class labels, bounding box
coordinates, and binary segmentation masks for
each instance, shown in Eq. 1.

L= Lcls + Lbox + Lmask~ (1>

The first component of the loss equation, L.,
measures the error in the predicted class label for
each instance.?” The class prediction branch of
Mask R-CNN uses a softmax layer to output the
final class predictions for each instance. For
instance i, the class prediction is a vector denoted
p'. Each element p} lies on the interval (0, 1) and is
interpreted as the predicted probability that
instance i belongs to class j. If the true class of an
instance i is u, then L. is given by the log loss
function, shown in Eq. 2:

Los(p*,u) = —logpl,. (2)

The second term in the loss function measures
differences between the predicted and true bound-
ing boxes for each instance. The ground truth for
the bounding box for an instance of class u is given
by the vector v = (vy,vy,Vu,v;), Where the four
indices indicate the x and y coordinates of the center
of the box, the width of the box, and the height of the
box, respectively. Detailed information about the
format of the bounding boxes is given in Ref. 26. The
predicted bounding box is denoted t and has the
same form as v. Ly, is given in Eq. 3:

Loy = Z smoothr, (t! —v;). (3)

iexyw,h

In this equation, the smoothy, loss is defined by the
equation
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Fig. 1. Screenshot from VGG Image Annotator software with powder particles labeled on sample image from the dataset.
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This loss function accounts for both the size and
position of the predicted bounding box for each
instance. Note that bounding boxes are always
rectangular and aligned vertically, so there is no
prediction or loss associated with the shape or
orientation of the box.

Finally, L,,.s accounts for differences between
the predicted and ground-truth binary segmenta-
tion masks for each instance. In the mask prediction
branch of Mask R-CNN, a sigmoid activation is
applied to every pixel in the final feature map. This
bounds the values at each pixel to the interval (0, 1)
and is interpreted as the probability that a given
pixel is included in the proposed segmentation mask
for the instance. Then, L,,,., is given by the binary
cross-entropy between the predicted and ground-

truth masks. Let Y; and P; correspond to the
ground-truth pixel label (0 or 1) and the predicted
probabilities for pixel i, respectively. For ground-
truth and predicted masks with N total pixels, L,,qs2
is shown in Eq. 5.

— N A A
Lyask = leYiZOgPi +(1-Yi)log(1-F;). (5)
-1

1

Stochastic gradient descent is used to train the
model. In this process, the training data are ran-
domly split into small batches. During each itera-
tion of training, the losses are computed on a single
batch of training data using forward propagation.
Then, the gradient of each parameter in the net-
work with respect to the loss is computed using back
propagation. Finally, the gradients are used to
update each parameter in the network, and the

resulting set of parameters will achieve a slightly
lower loss on the same batch of data. This process is
repeated for many iterations throughout the dura-
tion of trainin2g7.

Detectron2,”’ provided by Facebook AI Research,
provides a convenient and open-source implementa-
tion of Mask R-CNN in Python using the PyTorch
framework. The pretrained model for Mask R-CNN
with a ResNet-50 backbone + feature pyramid net-
work, trained for about 37 epochs on the COCO 2017
training dataset, was obtained from the Detectron2
Model Zoo library. Models were trained to predict
masks for individual powder particles and satellites.
Using separate models for each class simplified the
process of data labeling as separate images could be
annotated for each class. For both the powder particle
and satellite datasets, five models were trained, one
for each subset of data used in fivefold cross-valida-
tion. Each model was trained for 5000 iterations
using the default stochastic gradient optimizer pro-
vided in Detectron2.

To simplify the process of model training and
evaluation, we present AMPIS, an open-source
framework for performing instance segmentation
on materials data. AMPIS provides a high-level
interface to Detectron2 and provides additional
tools for data evaluation and visualization. AMPIS
was written with two main objectives. The first goal
is to simplify the process of performing instance
segmentation for materials scientists who may not
be familiar with PyTorch. The second goal is to
extend Detectron2 to provide useful tools specific to
analyzing materials data. AMPIS includes imple-
mentations for data analysis and visualization used
in this paper, including measuring the satellite
content from images of powder particles. AMPIS is
available at the following link: https:/github.com/
rccohn/AMPIS.
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Model Evaluation

In the COCO challenge, instance segmentation
models are evaluated by precision and recall scores
that are averaged across different instance classes,
and only account for a maximum of 100 instances
per image. These scores provide a convenient way of
evaluating the performance of models on large
datasets with many classes. In this study, each
model is trained on a small dataset with only one
instance class. Thus, we propose a slightly different
set of metrics that are easier to interpret for this
application.

The outputs of Mask R-CNN consist of predictions
for the class labels, bounding box coordinates, and
segmentation masks for each instance. To evaluate
these predictions, the predicted instances must be
matched with their corresponding ground-truth
instances. This is done on the basis of intersection
over union (IOU) score, defined in Eq. 6. For two
binary segmentation masks of the same size:

ANB

IOU(A,B)_AuB. (6)
In this equation, A N B is the number of pixels that
are shared by both masks A and B (intersection),
and AUB is the total number of pixels that are
occupied by both masks (union). The IOU score can
range from O (for no overlap between A and B) to 1
(when A and B are identical to each other).

To determine the matching pairs of instances, the
IOU score was computed for all pairs of ground-
truth and predicted instances. For each ground-
truth instance, the predicted instance with the
highest IOU score was found. If the score was
greater than 0.5, the pair of instances was consid-
ered to be a true-positive match. Otherwise, the
ground-truth instance was considered to be a false
negative, which is an instance that was missed by
the model. After computing the matches for all
ground-truth instances, the remaining unmatched
predicted instances were denoted as false positives.

Then, precision and recall, defined in Eqgs. 7 and
8, respectively, were used to evaluate the instance
predictions.

.. True positives
Precision = — P —, (7
True positives + false positives
true positives
Recall = (8)

true positives + false negatives

Detection precision answers the following question:
What is the likelihood that a predicted instance
matches a ground-truth instance? Detection recall
answers the following question: For a given ground-
truth instance, how likely is it that a matching
instance will be predicted?

The above measurements evaluate the number of
correct instance matches but do not describe the
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quality of agreement between the segmentation
masks. To account for this, we introduce a second
set of metrics called the segmentation precision and
recall. For the segmentation precision and recall,
true positives are defined as pixels that are included
in both the ground-truth and predicted masks. False
positives are pixels included in the predicted mask
but not in the ground-truth mask. False negatives
are pixels included in the ground-truth mask but
not in the predicted mask. Segmentation precision
answers the following question: If a pixel is pre-
dicted to be included in the mask, what is the
likelihood it is in the ground-truth mask? Segmen-
tation recall answers the following question: If a
pixel is included in the ground-truth mask, what is
the likelihood it is included in the predicted mask?

RESULTS AND DISCUSSION
Powder Particle Mask Predictions

Figure 2a shows a validation image with the
mask and bounding box predictions from Mask R-
CNN overlaid on the image. The colors are ran-
domly assigned to allow for clear distinction
between different instances. The predicted masks
show very good agreement with the powder parti-
cles in the image. Figure 2b shows the same mask
predictions colored by their classification during
instance matching. True-positive, false-positive,
and false-negative instances are colored purple,
blue, and red, respectively. The majority of the
instances are classified as true positives, confirming
the strong performance of Mask R-CNN. However,
there are still several false positives and false
negatives in the image as well. In this experiment,
false positives appear to occur as a result of the
model splitting single particles into multiple smal-
ler particles. This phenomena is common for irreg-
ularly shaped particles or large particles resulting
from multiple smaller particles appearing to have
fused together. Similarly, a small number of false
negatives occur when the model combines particles
together. This usually happens when smaller par-
ticles are directly next to large particles, and the
boundary between these particles is not very clear.
Finally, some false negatives occur when the model
simply misses a particle. This occurs for very small,
largely occluded, and irregularly shaped particles.

In most cases, false positives and false negatives
occur not because the model predicts the presence of
a spurious particle on the background or completely
misses an existing particle. Instead, these false
predictions occur as a result of a disagreement over
the boundaries between particles. An example of
this can clearly be seen by the group of five particles
highlighted in blue in the middle of Fig. 2b. This
collection of particles was labeled as a single particle
as its components appeared to have been fused
together. The model correctly recognized the pres-
ence of the particle, but split it into five individual
particles. Therefore, even though this group of
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Fig. 2. (a) Mask and bounding box predictions overlaid on a sample validation image from cross-validation. Colors are randomly assigned for
visual clarity. (b) Visualization of the detection performance of the predictions. True-positive, false-positive, and false-negative instances are
colored purple, blue, and red, respectively. (c) Visualization of the segmentation performance of the predictions for instances that were correctly
matched. True-positive, false-positive, and false-negative pixels in each mask are shown in purple, blue, and red, respectively. Pixels that are
included in multiple overlapping masks and have multiple classifications are colored yellow.

particles was recognized by Mask R-CNN, the
predictions still contribute five false-positive
instances and one false-negative instance to the
detection scoring. This behavior can be explained on
the basis of the limited amount of training data. In
each training image, the majority of particles are
relatively circular and lie within a certain size
range. There are only a few examples of large
particles that are fused together. Therefore, during
training, the model is shown many examples of mid-
size, regularly shaped particles, and only a couple of
larger fused particles. As a result, the model is more
likely to recognize these regularly shaped particles
than the fused particles.

The segmentation performance for -correctly
matched instances is shown in Fig. 2c. For each
matched pair of masks, true-positive pixel predic-
tions are shown in purple, constituting the majority
of the pixel predictions. False-positive pixel predic-
tions are shown in blue, while false-negative pixel
predictions are shown in red. There are a couple of
larger regions containing false-positive or false-
negative pixels. These regions can be explained by
the combination or splitting of masks mentioned
above. Even when there is disagreement over the
boundaries of particles, ground-truth and predicted
masks can still match with an IOU score greater
than 0.5, especially if a large particle is correctly
recognized then a smaller particle is combined or
split in the prediction. Therefore, the inclusion or

omission of the smaller particle shows up as false-
positive or false-negative pixels in the mask. This is
why several of the blue false-positive regions in
Fig. 2b show up as red false-negative regions in
Fig. 2¢, and vice versa.

Additional false-positive and false-negative pixels
appear around the edges of the particle masks. An
example of this is detailed in Fig. 3. Figure 3a
shows an individual particle with the ground-truth
mask overlaid on the image shown in blue. False-
positive pixels from the predicted mask are shown
in pink. Figure 3b shows the same particle with the
matched predicted instance overlaid in blue. False-
negative pixels missed by the mask prediction are
highlighted in green. The masks show very good
agreement with only a small number of false-
positive and false-negative pixels visible in the
images. To further quantify this agreement, the
distance from each false-positive pixel to the nearest
true-positive pixel in the corresponding ground-
truth mask and the distance from each false-nega-
tive pixel to the nearest true-positive pixel in the
corresponding predicted mask were measured. The
cumulative distributions of these distances are
shown in Fig. 3c.

Since the particle labels were approximated as
polygons, and the exact boundary is subjective, the
predicted masks are not expected to be perfectly
consistent with the labels. Nonetheless, 65% of the
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Fig. 3. (a) Sample image patch with ground-truth mask pixels highlighted in blue. False-positive pixels predicted to be included in the mask are
highlighted in pink. (b) The same image with the predicted mask that matched to the ground-truth mask shown in (a). Pixels in the predicted mask
are shown in blue. False-negative pixels missed in the predicted mask are highlighted in green. (c) Cumulative fraction of false-positive and false-
negative pixels in all matched instances in the image versus distance to the nearest pixel in the ground-truth or predicted mask, respectively.

Table I. Cross-validation detection and segmentation scores for particle mask predictions.

Cval Fold 0 1

Detection precision 0.944 0.944
Detection recall 0.786 0.724
Segmentation precision 0.987 0.980
Segmentation recall 0.973 0.966

2 3 4 Avg. Std.
0.921 0.933 0.946 0.938 0.010
0.854 0.812 0.819 0.799 0.043
0.976 0.977 0.986 0.981 0.004
0.980 0.974 0.966 0.972 0.005

Detection scores were calculated from all instances in the validation dataset. Segmentation scores are reported as the median of all the

scores for all masks in the validation dataset.

false-positive pixels are within one pixel of the
nearest pixel in the corresponding ground-truth
masks, and 80% are within two pixels. Similarly,
43% of false-negative pixels are within 1 pixel of the
nearest pixel in the corresponding predicted mask,
and 59% are within two pixels. Note that these
measurements include the bulk regions correspond-
ing to split or combined particles, which signifi-
cantly increase these distance measurements. The
measurement for false negatives is affected more as
there are more of these regions for false-negative
pixels. The remaining predictions indicate very good
agreement between the ground-truth and predicted
masks including the boundaries of each particle.
The quantitative results for all cross-validation
folds for the particle instance predictions are

presented in Table I. The scores are fairly consis-
tent across all validation folds for each category.
The models achieve an average cross-validation
detection precision and recall of 0.938 +0.01 and
0.799 £ 0.043, respectively, and an average cross-
validation segmentation precision and recall of
0.981 +0.004 and 0.972 4+ 0.005. Considering that
labeling images is a subjective task, it is worth
comparing the model results with human perfor-
mance on a similar task. In Ref. 3, the task of
manually labeling defect loops in micrographs was
repeated by five different people. It was found that
humans achieved precision and recall scores of
0.790 £0.023 and 0.804 +0.029, respectively.
Because of this variation, the precision and recall
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of a model are not expected to ever reach perfect
scores of 1 when compared with human labels.

After generating instance predictions, the particle
size distribution can be determined from the masks
without any additional measurements. To evaluate
the performance of this approach, a statistically
significant number of instances is required. To
maximize the number of instances included in the
analysis, the validation mask predictions from each
cross-validation fold were combined. The predic-
tions were compared with the ground-truth labels
for the same images. The resulting particle size
distributions in terms of equivalent volume fraction
are shown in Fig. 4a. The distributions were inter-
polated between cumulative volume fractions of
0.01 and 0.99 to allow for direct comparison. The
percent difference between the ground-truth and
predicted distributions as a function of cumulative
volume fractions on this interval are shown in
Fig. 4b. Between cumulative fractions of 0.01 and
0.97, the difference between the two distributions is
consistently below 5%. As the volume fraction
approaches 0, the difference between the distribu-
tions rapidly increases due to the model missing the
smallest particles in the labeled data. As the volume
fraction approaches 1, the difference between the
size distributions also rapidly increases. In the
ground-truth annotations, there were two abnor-
mally large masks, corresponding to particle diam-
eters of 167 ym and 199 um, respectively. Though
the model recognized the presence of these particles,
it predicted that they were actually multiple sepa-
rate particles. Since the training set during cross-
validation did not contain any particles this large,
the model was not able to recognize the presence of
the abnormally large particles in the image. Thus,
the difference between size distributions dramati-
cally increases at the end of the distribution.

The systematic errors associated with missing
very small and very large particles can be explained
on the basis of the imbalance of the particles in the
training set. Few very large or very small particles
appear in the annotated training images. Labeling
additional images with more of these outlier

particles and/or applying more advanced techniques
such as data augmentation®® will likely reduce the
errors at the tails of the particle size distribution.

Satellite Mask Predictions

The satellite prediction and detection perfor-
mance for the same sample image are visualized
in Fig. 5a. In this figure, purple masks are true-
positive predictions and blue masks are false-posi-
tive predictions. Red masks are false-negative
ground-truth masks that did not match with any
of the predictions. Compared with the powder
particle masks, the cause of false positives and false
negatives is much more straightforward. The net-
work simply misses some labeled satellites in some
cases and predicts the presence of extra satellites in
other cases. The segmentation performance of
matched instances is shown in Fig. 5b. Similar to
the results for powder particles, the predicted
masks show very good agreement with the ground-
truth instances, and after matching there are
disagreements between the edges of the predicted
and ground-truth instances.

The quantitative cross-validation results for the
satellite mask predictions are presented in Table II.
The models achieve an average detection precision
of 0.692 + 0.061 and an average detection recall of
0.545 £ 0.031. Both the precision and recall are
considerably lower than the results for the powder
particle predictions. Note that there is no estab-
lished method for consistently counting satellites in
an image. There are several particles which are
clear examples of satellites, and several that clearly
do not contain any. However, there are many
particles with irregular bumps and features that
are between these two limiting cases. For the same
reason, the boundaries of satellites (i.e., the exact
point where the satellite ends and the bulk particle
begins) are also not clear. During labeling, the
judgment of whether or not a particle contains a
satellite and determining the exact boundaries of
each satellite is highly subjective. Thus, neither the
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Fig. 4. (a) Particle size distribution determined from ground-truth and predicted masks for the powder images. Particle size distribution is
reported as the cumulative volume fraction versus equivalent sphere diameter. (b) Cumulative volume fraction versus percent difference between
distributions computed from ground-truth instances and predicted instances.
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Fig. 5. Satellite mask predictions. (a) Visualization of the match performance of the predictions. True-positive, false-positive, and false-negative
instances are colored purple, blue, and red, respectively. (b) Visualization of the mask performance of the predictions for instances that were
correctly matched. True-positive, false-positive, and false-negative pixels in each mask are shown in purple, blue, and red, respectively. (c)
Sample particle masks visualized with their corresponding satellite masks after matching. Mask colors are randomly selected for visual clarity.

Table II. Cross-validation detection and segmentation scores for satellite predictions.

Cval Fold 0 1

Detection precision 0.732 0.740
Detection recall 0.502 0.566
Segmentation precision 0.909 0.959
Segmentation recall 0.881 0.830

2 3 4 Avg. Std.
0.720 0.573 0.693 0.692 0.061
0.545 0.523 0.589 0.545 0.031
0.948 0.954 0.886 0.931 0.029
0.848 0.833 0.928 0.864 0.037

Detection scores were calculated from all instances in the validation dataset. Segmentation scores are reported as the median of all the

scores for all masks in the validation dataset.

human nor the computer tasked with labeling the
data is expected to be able to perform this task
perfectly. Instead, after training, the model will
produce consistent and objective instance predic-
tions. From looking at the mask predictions in
Fig. 5a, the predictions of satellite masks look
reasonable. The model consistently labels more
than half of the ground-truth particles. The remain-
ing false-positive predictions, highlighted in blue,
consist of small particles that touch adjacent bigger
particles or bumps on the edges of particles. Though
these were not not labeled as satellites, these
predictions are qualitatively visually similar to
many of the ground-truth instances that were
labeled as satellites.

There were 587 labeled satellites in the labeled
training images, but the model predicted that there
were 436 satellites, so there is about a 25%

difference between the labeled and predicted values.
However, it was observed that many satellited
particles contain multiple satellites. Thus, the frac-
tion of particles that contained at least one satellite
was proposed as a new metric. To match particles to
satellites, the masks for powder particles and
satellites for each image were overlaid. For each
satellite mask, the intersection scores of each par-
ticle mask were computed. If none of the intersec-
tion scores were above 0.5, or at least half of the
area of the satellite mask, the satellite was consid-
ered unmatched. Otherwise, the particle mask with
the highest intersection score was considered a
match for the satellite mask. Visualizations of some
representative powder—satellite matches are shown
in Fig. 5c. After computing the matches, the ratio of
satellited particles is simply the number of particles
that matched at least one satellite divided by the
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total number of particles. For the validation images
in the training set, the ratio of satellited particles
determined from the ground-truth and predicted
labels were found to be 0.232 and 0.240, respec-
tively, so the results agree to within 3.5% of each
other. Note that smaller particles tend not to have
satellites, and the model misses many of the small
particles. This increases the ratio of satellited
particles in the predicted masks. To remove the
effect of missing small particles, the analysis was
conducted after excluding all particle masks smaller
than 20 um, which accounts for more than half of
the false-negative ground-truth instances missed by
the model predictions. In this analysis, the ratio of
satellited particles in the ground-truth and pre-
dicted sets was found to be 0.272 and 0.255,
respectively, and the results still agreed to within
7%.

Bulk Sample Measurements

After characterizing the performance of Mask R-
CNN on a small subset of labeled data, the model
was used to generate instance predictions on two
larger sets of unlabeled images. Sample images with
powder and satellite masks overlaid in colors are
shown in Fig. 6a—f. The image in Fig. 6a, b is from
the same sample as the labeled training images, and
was taken with the same magnification. The image
has more fine particles but is otherwise similar to
those in the training set. The mask predictions for
both particles and satellites show similar trends to
the results for the training images discussed in
“Powder Particle Mask Predictions” and “Satellite
Mask Predictions” sections. The image in Fig. 6¢, d
is from a different powder sample and was taken
with a magnification 20% higher than that used in
the training images. The image contains primarily
mid-sized particles, and the model recognizes nearly

Fig. 6. Sample images from model inference on larger sets of unlabeled data. (a) Image from experiment 1 with mask predictions overlaid in
color. (b) Same image with satellite masks overlaid in color. (c) Image from secondary electron detector in experiment 2 with mask predictions
overlaid in color. (d) Same image with satellite predictions overlaid in color. (e) Image from backscatter electron detector in experiment 2 with
mask predictions overlaid. (f) Same image with satellite masks overlaid in color.
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all of them with very good performance. There are
not many obviously satellited particles in the image,
but the model is able to detect satellites on a couple
particles. The images in Fig. 6e, f are also from a set
of images with 20% higher magnification than the
original training images, and are also recorded with
the backscatter detector. The image contains larger
particles, most of which contain several satellites.
The model appears to recognize all of the particles,
but also predicts some apparent satellites to be full
particles. The model also recognizes satellites on
most of the particles.

Despite changing the magnification and imaging
mode, the original model predicts reasonable parti-
cle and satellite masks on these images without
additional labeling and training efforts. Note that
images in the training set contain powder particles
that span a wide range of sizes (e.g., Fig. 6a). Thus,
many of the particles in the new set of images are
still within the same size range, in pixels, of the
original images (e.g., Fig. 6¢). Interestingly, the
particles in Fig. 6e are detected despite being larger
than those in the training images, suggesting that
the system can learn general features of large
particles. However, in this image, satellites are
often incorrectly identified as particles, presumably
due to their similarity to the smaller particles in the
original training set.

In image analysis, it is often considered good
practice to remove instances that contact the edges
of the image to remove bias from partially visible
particles. However, larger particles, which are more
likely to contain satellites, are also more likely to
intersect the edge of the image. Thus, removing
edge particles introduces bias to size distribution
and satellite measurements. Therefore, in this
study, all particle masks, including masks that
intersect the edges of the image, are included in the
analysis; edge particles can be easily removed in
postprocessing if desired.

The particle size distribution for two powders in
the first image dataset were determined from the
areas of each powder particle mask. The results
were compared with the particle size distribution
measured with a Microtrac Bluewave laser

Cohn, Anderson, Prost, Tiarks, White, and Holm

scattering particle size analyzer, as shown in
Fig. 7. For both of the powder samples, the distri-
butions determined from the segmentation masks
show very good agreement with each other. How-
ever, there are some differences between the distri-
butions determined from instance segmentation and
the ones measured through laser scattering.

There are systematic errors associated with each
method of measuring particle size distribution,
primarily due to particle size-dependent biases.
Thus, it is expected that distributions determined
from different approaches will vary. Indeed, Table -
I1I shows that the D5y measured by computer vision
is 36% to 47% larger than the value measured by
laser diffraction. However, after normalizing the
D5y measurements by the value for sample 4, the
relative D5y measurements agree to within 8%. We
conclude that both methods capture the same trends
in particle size distribution, even though they each
involve different systematic measurement biases.

Using the same procedure as outlined in “Satellite
Mask Predictions” section, the predicted particle
and satellite masks were combined to determine the
fraction of satellited particles in both datasets. The
results for the first dataset are shown in Fig. 8a.
The bar heights show the average value obtained
from the two subsets, and the error bars show the
minimum and maximum values. For each sample
the results from the two subsets of images show
good consistency with each other. The measure-
ments for sample 1 agree to within 5.2%, and the
measurements for all other samples agree to within
3%. This demonstrates the ability of the approach to
generate consistent, repeatable measurements of
satellites contained in powder images. For example,
based on sample preparation, sample 4 was
expected to contain more fine particles and fewer
satellites than the other samples. The measure-
ments in this study agree with this expectation, as
the fraction of satellited particles in sample 4 was
25% to 45% lower compared with the other samples.

The second dataset contains images from two
different powders produced with different atomizer
settings. Each powder was divided into 12 samples
by particle size before imaging. Once again, each
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Fig. 7. Particle size distributions measured from Mask R-CNN and from laser scattering for samples 2 (a) and 4 (b).



Instance Segmentation for Direct Measurements of Satellites in Metal Powders and 2169
Automated Microstructural Characterization from Image Data

Table III. Powder D5, (um) for each sample, measured by laser diffraction and from the segmentation masks.

Sample No. Laser Diffraction, ym Segmentation, yum
0 76.0 (1.40) 105.8 (1.43)
1 70.2 (1.29) 103.2 (1.39)
2 76.6 (1.41) 106.5 (1.44)
3 68.7 (1.27) 93.7 (1.26)
4 54.3 (1.00) 74.1 (1.00)

Relative values, normalized to the D5y, measured for sample 4, are shown in parentheses next to each measurement.
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Fig. 8. Ratio of satellited particles measured for each sample in two experiments. Bar heights show the average value measured from two
subsets of images. Error bars show the maximum and minimum value from the subsets. (a) Results for experiment 1. Each sample corresponds
to a different set of atomizer conditions. (b) Results for experiment 2. Setting 1 and setting 2 correspond to two different parameters used during

atomization. The particle size increases with sample number.

sample was divided into two subgroups to verify the
precision of measurements and avoid double-count-
ing particles in overlapping regions between
images.

The measured satellite content in each sample is
shown in Fig. 8b. The difference between the two
trials for each samples was less than 4% for 20 out
of 24 of the samples, indicating that the measure-
ments are consistent. For both atomizer settings,
satellite content increases with sample number,
corresponding to average particle size, for the first
seven samples. This is consistent with the expected
trend for satellite content. Small particles have less
area and solidify faster in the atomizer column.
Thus, they are much less likely to acquire satellites
during atomization and are expected to have a
smaller ratio of satellited particles than samples
with larger particles. There is not a consistent
difference in satellite content for the samples pro-
duced with the two different settings on the
atomizer. These results demonstrate the potential
of how instance segmentation can provide a more
complete understanding of how different conditions
during atomization can affect the quality of metal
powders.

Generalization to Other Powder Images

By far the most time-consuming task in training
an instance segmentation model is manually anno-
tating the training images. Thus, we investigate
whether the trained model can be used for other
particle image datasets without retraining on addi-
tional annotated images. This concept is referred to
as “transfer learning.”

Instance segmentation of four different powders
is shown in Fig. 9. Note that the model was not
retrained on any additional labeled data before
generating predictions on these images. The predic-
tions on these images show similar trends to those
described in “Results and Discussion” section. The
model recognizes most of the particles, but tends to
miss some of the smaller particles and classify some
of the satellites as separate particles.

In Fig. 9c, Ti64 powder produced through a
hydride—dehydride process®® has very irregularly
shaped particles. Nonetheless, the model recognizes
these particles and draws reasonable particle
boundaries on almost all of the particles in the
image. The image in Fig. 9d contains synthetic
powder particles generated by rendering software
from Ref. 30. The model is still able to recognize
individual particles in the image, despite being a
simulated micrograph. With only four training
images, the model was able to generate useful
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Fig. 9. Model predictions on images of different samples from different experiments. Note that the original model from this study was used to
generate predictions without any additional training. (a) Image of commercially produced gas-atomized powder. (b) Heavily satellited Al10SiMg
powder. (c) Ti64 powder produced through hydride—dehydride process. (d) Simulated powder particles generated with computer rendering

software (from an open-source dataset available at Ref. 30).

Fig. 10. Sample micrograph of spheroidized steel from the validation set. (a) Ground-truth instance masks for spheroidite particles determined
from semiautomated process described in Ref. 33. Note that, in the annotations provided in the dataset, particles that intersect the edges of the
image were not included. (b) Predicted instance masks from Mask R-CNN.

predictions on the validation image, other images of
the same samples taken with different magnifica-
tion and imaging modes, images of other powder
samples from different studies, and even synthetic
images of simulated powders. These results demon-
strate the power of Mask R-CNN to generalize to a
wide variety of visual data in materials science.

We note, however, that the satellite model did not
generalize as well and tended to generate very few
mask predictions for each image. This is consistent
with the understanding that satellite detection is a
much more subjective task and depends much more
on the local visual features present on the powder
particles.

INSTANCE SEGMENTATION
FOR MICROSTRUCTURAL
CHARACTERIZATION

The above study demonstrates how instance
segmentation can be used to characterize powder
samples. However, it should be noted that instance
segmentation is a flexible technique that can be
applied to other kinds of micrographs to automat-
ically segment different phases, defects, or other
features of interest. The UltraHigh Carbon Steel
Micrograph DataBase®'~®? provides a standard set

of SEM images of various steel microstructures,
along with annotations of the constituents of each
image, which can be used to test and evaluate the
performance of computer vision methods. The
dataset includes images of steel that contain
spheroidite particles in the pearlite matrix. Mask
R-CNN was trained to identify spheroidite particles
on eight images before being tested on a separate
validation image. Figure 10a shows the validation
image with the ground-truth annotations provided
in Ref. 33; Figure 10b shows the validation image
with the predicted masks from Mask R-CNN. The
model achieves a detection precision and recall of
0.70 and 0.48 on the validation image, respectively.
The trends observed for detection scoring were
similar to those observed for the powder particles.
False positives generally result from combining or
splitting neighboring spheroidite particles in a
disagreement over the boundaries of the masks.
False negatives occur both from the same disagree-
ments over boundaries and also from missing
smaller particles.

In sect. 3.2 of Ref. 32, the spheroidite content in
the images is characterized through semantic seg-
mentation, achieving a cross-validation precision
and recall of 0.746 +0.028 and 0.703 + 0.043,
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respectively. To compare the results of Mask R-
CNN with the semantic segmentation methods used
in this study, all of the predicted masks were
combined into a single instance containing all of
the spheroidite pixels. Using this approach, Mask R-
CNN achieves a precision and recall of 0.939 and
0.700, respectively. Without any parameter tuning
or additional input, the model achieves a signifi-
cantly improved precision while maintaining simi-
lar recall to the approach in Ref. 32. This small
study demonstrates the flexibility of Mask R-CNN
in analyzing microstructural images.

CONCLUSIONS

Mask R-CNN was used for the task of instance
segmentation on SEM images of metal powder
particles. Two separate models were trained to
segment the individual powder particles and satel-
lites in each image, respectively. Transfer learning
was leveraged to train each network using only five
images for particle instances and ten images for
satellite instances. The powder particle predictions
showed good performance, achieving a cross-valida-
tion detection precision and recall of 0.938 and
0.799, respectively. False positives often occurred
from splitting large particles that were thought to
be fused together. False negatives mostly occurred
from missing small or heavily occluded particles
that did not contain a strong visual signal in the
image. Satellite predictions scored lower, with a
detection precision and recall of 0.692 and 0.545,
respectively, highlighting the subjective nature of
identifying satellites. The models were used to
characterize the particle size distribution and satel-
lite content of larger batches of unlabeled images.
The particle size distributions deviated from exper-
imental measurements by laser diffraction due to
systematic error due to underprediction of both very
fine and very large particles. However, relative D5
measurements were consistent between the two
methods, indicating that computer vision measure-
ments of particle size distribution can be used to
reliably measure the relative differences between
different samples. Further efforts in data labeling
are likely required to improve the detection of
particles at the tail ends of the size distribution.

Overlaying the particle masks with satellite
masks allowed the fraction of satellited particles to
be measured directly for the first time. The satellite
content measurements were self-consistent to
within about 5% for most samples. In both datasets
used in this experiment, the relative satellite con-
tents measured for different samples followed the
expected trends. Mask R-CNN was also used to
segment spheroidite particles from the UltraHigh
Carbon Steel DataBase, achieving a segmentation
precision and recall of 0.939 and 0.700. The results
represent a significant improvement in precision
compared with a previous approach in literature
while maintaining a comparable recall.

The results from these experiments demonstrate
how instance segmentation can be a useful tool for
automating image data for a variety of applications
in materials science and can characterize samples in
ways that are not possible with other approaches.
Ongoing research efforts strive to continue improv-
ing the performance of instance segmentation and
continue pairing computer vision measurements
with experimental results to enhance the fields of
research and development as well as quality control.
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