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Prediction of Inclusion Types From
BSE Images: RF vs. CNN

Mohammad Abdulsalam*, Nan Gao, Bryan A. Webler and Elizabeth A. Holm

Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA, United States

The analysis of non-metallic inclusions is crucial for the assessment of steel properties.
Scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS)
is one of the most prominent methods for inclusion analysis. This study utilizes the output
generated from SEM/EDS analysis to predict inclusion types from BSE images. Prediction
models were generated using two different algorithms, Random Forest (RF) and
convolutional neural networks (CNN), for comparison. For each method, three separate
models were developed. Starting with a simple binary model to differentiate between
inclusions and non-inclusions, then developing to more complex four and five class
models. For the 4-class model, inclusions were split into oxides, sulfides, and oxy-
sulfides, in addition to the non-inclusion class. The 5-class model included specific
types of inclusions only, namely alumina, calcium aluminates, calcium sulfides,
complex calcium-manganese sulfides, and oxy-sulfide inclusions. CNN achieved better
accuracy for the binary (92%) and 4-class (78%) models, compared to RF (binary 87%, 4-
class 75%). For the 5-class model, the results were similar, 60% accuracy for RF and 59%
for CNN.

Keywords: inclusions (metallic defects), SEM-backscattered electron imaging, machine learning, random forest,
convolational neural netwwork

INTRODUCTION

Steel production methods have consistently evolved toward producing material with lower impurity
levels and better properties. Efforts in this area are generally referred to as “clean steel” production,
with the level of cleanliness required depending on the product requirements. It is generally accepted
that clean steels have a low frequency of product defects due to the presence of non-metallic
inclusions (Cramb and Briant, 1999). Non-metallic inclusions are oxide, sulfide, or nitride particles
that are present in the liquid metal. They form due to chemical reactions occurring during
steelmaking and by entrainment of oxide slag and refractory materials. Inclusions are generally
considered detrimental to downstream steel processing and product performance, though in some
cases they are engineered to improve steel properties (Abraham et al., 2018), (Holappa and Wijk,
2014). Examples of the detrimental effects of inclusions include the reduction of fatigue resistance,
strength, ductility, or fracture strength (Atkinson and Shi, 2003; Garrison and Wojcieszynski, 2007;
Garrison and Wojcieszynski, 2009; Gupta et al., 2015). Therefore, the analysis of non-metallic
inclusions is crucial for the assessment of steel properties.

The current state-of-the-art method for analysis of non-metallic inclusions utilizes automated
scanning electron microscopy (SEM) along with energy dispersive x-ray spectroscopy (EDS)
(Goransson et al., 1999; Zhang and Thomas, 2003a; Story and Asfahani, 2013; Harada et al.,
2014). SEM/EDS analysis enabled the analysis of hundreds or thousands of inclusions in a matter of
hours of less. Inclusion size can have drastic effects on the mechanical properties of the final product.
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Moreover, different types of inclusions have varying effects on
steel (Atkinson and Shi, 2003), (Garrison and Wojcieszynski,
2009), (Zhang and Thomas, 2003a), (Zhang and Thomas, 2003b),
(Anmark et al., 2015). Therefore, inclusion SEM/EDS analysis has
been generally focused on inclusion size, total amount, and
chemical composition. The method generates an abundance of
raw output data on each particle analyzed, including the spatial
position, chemical composition, size, and morphological features
of each particle analyzed, in addition to a magnified backscattered
electron (BSE) image of the particle.

Automated SEM/EDS is still too slow to serve as an online
production monitoring tool and typically averaged quantities are
output and analyzed by engineers and operators. In this work, we
investigate the use of machine learning and computer vision
methods to extract information on inclusion chemical
composition from BSE SEM images. In other fields, machine
learning has gained a great deal of attention especially with the
considerable processing power of modern computers (James
et al, 2013). Machine learning utilizes data to teach a
computer system how to infer or predict decisions without
being explicitly programmed to do so. Such techniques have
been recently applied in the steel industry. Most of the current
work has been focused on utilizing computer vision for the
detection of surface defects and scratches (Wang et al., 1883;
Konovalenko et al., 2021; Zhao et al., 2021). The focus of the work
presented here is to utilize machine learning to predict inclusion
types from their BSE images. Inclusion types are generally
specified based on wuser defined criteria applied to the
compositional measurements generated from x-ray signals
(EDS analysis). While BSE images are generated by raster
scanning an inclusion and measuring the BSE yield (i.e. BSE
signal) to produce a greyscale image of the particle. The amount
of BSE vyield is directly related to the mass averaged atomic
number of the material analyzed (Goldstein et al., 2018). This
leads to different grey level contrast between different materials,
as a result inclusions can be clearly identified from the steel
matrix in an SEM. Since both BSE and x-ray signals are related to
composition, machine learning can be applied to predict one
signal from the other.

Throughout the secondary metallurgy processes, several steel
samples are taken for SEM/EDS analysis to monitor inclusions
and ensure their conformity with the specified requirements.
Although the analysis is conducted offline, conducting the
analysis in a timely manner is critical. By predicting inclusion
types from their BSE images, SEM/EDS analysis time can be
reduced by mitigating the need for EDS analysis. The prediction
models rely heavily on the availability of training data, and this is
readily available in steel plants where the same grade of steel is
continuously produced and analyzed on a daily basis.

The method utilized is referred to as supervised learning. With
supervised learning algorithms, a relationship between inputs and
outputs is formulated based on some available data, known as the
training data. When new data is presented, the output is predicted
based on the relationship developed from the training data
(Bishop, 2006). The task at hand is a classification problem
since the output variable (inclusion type) is a discrete
categorical variable. There are numerous supervised learning
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algorithms available, each having their own pros and cons. In
this study, two specific algorithms were selected and compared,
the Random Forest (RF) algorithm and Convolutional Neural
Networks (CNN). For both methods, the approach was to
develop three separate models. The first model was a binary
model to classify “inclusions” from “non-inclusions”. The second
model, a 4-class model, which includes “non-inclusions” and a
breakdown of inclusions into types: “oxides”, “sulfide”, and “oxy-
sulfides.” The last model was a 5-class model, to predict specific
inclusion types.

MATERIALS AND METHODS

The inclusion dataset utilized in this study was compiled from
four final plate product samples. All were from different heats
that were Al-deoxidized and Ca-treated. The SEM analysis was
carried out at 20 kV accelerating voltage, using the Automated
Steel Cleanliness Analysis Tool (ASCAT) (Story et al., 2005). The
EDS analysis was conducted using point mode, i.e. x-rays are
collected from a single point on the particle which is assumed to
be the center of the particle. As per the SEM setting of the sample
supplier, the Fe content was not included in the EDS analysis. BSE
images (128 x 128 pixels) were also provided for each feature
analyzed. Inclusions were mostly composed of Ca-Al-S, with
minor amounts of Mn. It was assumed that all Mn would be in the
form of MnS, the remaining S would be in CaS, and all other
inclusions would be in the form of oxides. The reference greyscale
value (GSV) utilized in the analysis were 200 for Fe and 50 for Al
The measurement GSV threshold were set to 0-170, i.e., only
particles with a GSV less than 170 were analyzed. The total
number of particles analyzed was 29,318 particles.

Three separate models were developed to predict inclusion
classes, starting with a simple binary model, then expanding
to more specific four and five class models. Specific
definitions of the classes are provided below. The aim of
utilizing these three models was to gradually increase the
complexity of each model and evaluate its effect on the overall
prediction accuracy.

To allow for a justifiable comparison between different
prediction models, a standardized labelling criteria was devised
to classify inclusions based on their EDS measurements. Each
particle is initially classified as an inclusion or non-inclusion
based on the Fe and Si content. High Fe content is associated with
pores on the surface of the sample, and the only source of Si is
assumed to be from contaminants on the surface of the sample.
However, since the Fe content was not analyzed in the available
dataset the total x-ray counts were utilized instead. Therefore, any
particle with less than 3,000 total x-ray counts or more than 10 Si
at% were labelled as non-inclusions, all other particles were
labelled as inclusions. It should be noted that this classification
scheme does not pertain to Si deoxidized steels where Si
containing inclusions are expected to be present.

The relevant inclusion composition variables (Mg, Al, Ca, S,
Mn, and Ti) were then normalized, and inclusions were broken
down into several types based on the following criteria (all
percentages are atomic percentages):
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TABLE 1 | Breakdown of inclusion types in available dataset.

Inclusion type Count
Nitride 2
Other 771
Oxides total 4,902 MgAIO4 12
Al,O3 2,278
CA 2,539
CaO 0
Other oxide 73
Oxy-sulfide 7,642
Sulfides total 2,279 CaS 1,398
CaS-MnS 690
MnS 191
Inclusions 15,596
Non-inclusions 13,722
Total particles 29,318

Oxide: (Mg + Al + Ca-S) > 80% and S < 10%
Sulfide: (Ca + Mn + S) > 80% and (Mg + Al) < 10%
Oxy-sulfide: S > 10% and (Mg + Al + Ca-S) > 10%
Nitride: Ti > 80%

Other: remainder

Oxide and sulfide inclusion were further divided into more
specific classes, as follows:

Oxides

ALO5: Al > 80%

MgALO4 (Mg + Al) > 80% and 0.25 < Mg/Al < 0.75
CA (calcium aluminates): (Ca + Al) > 80% and 0.1 < Ca/
Al <3.2

CaO: Ca > 80%

Other oxides: remainder

Sulfides

CaS: Mn < 10%

MnS: Ca < 10%

CaS-MnS: remainder

The ratios used for the classification of MgAlL,O, and CA
inclusions were based on their stoichiometric ratios. The CA
inclusion class pertains to all types of calcium aluminates
(commonly referred to as C3A, C12A7, CA, CA2, and CA6).

A breakdown of the inclusion types in the dataset is given in
Table 1.

The binary model predicts whether a BSE image is of an
inclusion or a non-inclusion. The 4-class model includes the non-
inclusion class and a breakdown of the inclusion class into oxides,
sulfides, or oxy-sulfides. And finally, the 5-class model focuses on
specific inclusion classes: alumina (Al,Os), calcium aluminates
(CA), oxy-sulfides, calcium sulfides (CaS), and complex calcium-
manganese sulfides (CaS-MnS). These specific inclusion classes
were selected based on their abundance in the dataset.

For each prediction model, the data is initially filtered to include the
relevant classes with an equal number of observations in each class (i.e.
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balanced data). Therefore, the total number of observations for each
model was dependent on the smallest class size. Table 2 summarizes
the classes in each model, along with the limiting class size.

The dataset was then broken down into a training, validation,
and testing datasets. The training datasets was composed of 60%
of the data, and the validation and testing datasets were 20% each.
Several models are trained (on the training dataset) using a wide
range of parameters and evaluated on the validation dataset. This
process was carried out to obtain the optimal parameters, based
on the highest prediction accuracy. The prediction accuracy is
defined as the percentage of correctly predicted images (ie.
percentage of true positive and true negatives). Once the
parameters were selected, the final model is trained on both the
training and validation datasets (80% of the data) and evaluated on
the testing dataset, to obtain the final prediction result. Since this is
a classification task, the prediction accuracy is defined as the sum of
correctly classified data points divided by the total number of
points. The sampling of training and testing data was held constant
for both all RF and CNN models, to ensure consistency.

The RF algorithm (Breiman, 2001) was derived from an earlier
form of supervised learning, decision trees (Breiman et al., 1984).
Decision trees recursively split the data to produce a flowchart
with a tree-like structure. The tree is generated based on the
training data, starting with the root node on top, branching out
into several other nodes, and eventually reaching the terminal
nodes. Each node designates a split in the dataset based on one of
its input variables, and the terminal nodes identify the predicted
class. With the RF algorithm numerous trees are generated from
subsets of the data, thereby reducing the overall bias in the data.
This leads to better prediction accuracy compared to a decision
tree (James et al.,, 2013).

For the RF prediction models, BSE images were converted to
raw numerical data and appended to the inclusion data. The
conversion is a tabulated histogram, identifying the number of
pixels from the BSE image for each GSV. Therefore, each BSE
image is described by 256 variables (i.e., GSVs from 0 to 255), the
value for each variable corresponds to the number of pixels with
the specified GSV in the BSE image. An example is given below in
Figure 1. The histogram displays the number of pixels for each
GSV in the BSE image. The inclusion BSE image from which the
histogram is generated is shown on the top-left corner of the
figure. Therefore, the inputs for the RF models are the GSV
variables (the “predictor” variables), and the output is the
inclusion classification (the “target” variable). All RF models
were conducted in R, an open source programming software.

TABLE 2 | Summary of inclusion models, relevant classes, and limiting class size.

Model
Binary 4-Class 5-Class
Limiting class size 13,772 2,279 690
Classes Inclusion Oxide Al,O3
Non-inclusion Sulfide CA

- Oxy-sulfide Oxy-sulfide

— Non-inclusion CaS

- — CaS-MnS
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FIGURE 1 | Example of GSV histogram of an inclusion BSE image. The BSE image is displayed on the top left corner.
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FIGURE 2 | Modified VGG16 architecture used in this work.
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The second method utilized for inclusion classification is a
convolutional neural network (CNN) (Schmidhuber, 2015). In
contrast to RF, which is used for tabulated data, CNN is an
artificial neural network used for image analysis. CNNs are a type
of deep machine learning algorithm that perform very well at
image classification tasks. A CNN passes the original image
through multiple filter banks to create a multiscale
representation of the image in the form of a high dimensional
vector. The system then uses a classifier (typically a multilayer
perceptron) that identifies the probability that an image belongs
to a given class. Both the filters and the classifier are learned from
the training data, and then can be used to classify additional
images.

One of the main drawbacks of CNNs is the preprocessing
required to develop the ideal model. Defining the CNN’s
architecture can be an arduous task, i.e., selecting the number
of hidden layers, number of neurons per layer, activation
function, weights ... etc. Fortunately, there are various well-
established architectures available that can be used, and even be
modified or tailored, for image classification, such as ResNet,
AlexNet, VGG, LeNet and others.

VGG16 (Simonyan and Zisserman, 2015), a powerful CNN
which performs well at the ImageNet Dataset (Deng et al., 2009)
natural image classification task, was utilized for inclusion
classification. VGG16 was slightly modified, with architecture
shown in Figure 2. Standard VGG16 contains five convolutional

blocks and three fully connected layers (FCLs). Convolution
layers in convolutional blocks are filters to summarize the
presence of features in an input. Pooling layers are used to
downscale feature maps by summarizing the presence of
features in patches of the feature map. Highly condensed
features are finally flattened to pass through fully-connected
layers for classification tasks. A fully-connected layer
multiplies the input by a weight matrix and then adds a bias
vector. This provides a computationally cheap and convenient
way of learning non-linear combinations of these features.

The modified architecture discards deeper layers from block_4
in the original VGG16. The pretrained layers and their associated
parameters from block_1 to block_3 are retained without further
training. The outputs from block_3—conv_3 were utilized as
characteristic features to perform classification tasks. Two fully-
connected layers fc_1 and fc_2 are designed to recognize non-
inclusions and the different inclusion classes. The features
extracted from the modified VGG16 architecture were
generated from conv_3 layer. Instead of training from scratch,
feature extraction was initialized with a pre-trained VGG-16
network trained on the ImageNet. The size of input images
was 128 x 128 pixels. To prevent overfitting, a combination of
Batch Normalization (BN) and Dropout regularization was
utilized. Adam optimizer is used with the learning rate of
0.001 for 10 epochs of training. All programming for the
CNN models was carried out in python.
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FIGURE 3 | Three BSE image examples for each of the selected inclusion classes.
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RESULTS

Three BSE image examples for each of the selected inclusions
classes are given in Figure 3, based on the specified labelling
criteria. The figure displays some of the variations in GSV and
particle morphology between different classes.

For RF classification the main parameters are the number of
trees, number of variables per tree, and the minimum number of
observations in the terminal nodes. To select the ideal parameters
the model was trained and tested on several parameter ranges for
each of the separate models.

The selected range of parameters were as follows:
e Number of trees: 500-1,500
e Variables per tree: 50-100
e Minimum node size: 10-100

The variation in accuracy was relatively low for the range of
parameters selected. The difference between lowest and highest
validation data accuracy was 5% for the 5-class model, 3% for the
4-class model, and 2% for the binary model. The accuracy did not
decrease significantly unless relatively low number of trees or
variables per trees were selected, or a high minimum node size
was selected. The adopted parameters were 500 trees, with 60
variables per tree, and a minimum of 10 data points in the
terminal nodes.

A limiting factor with regards to supervised learning is the
number of observations used to train the model. Figure 4
illustrates the relationship between the size of the data and
testing accuracy, using RF classification. Models were trained
using various numbers of observations, to assess the effect on
accuracy. In addition, three trials were conducted for each
number of observations, to quantify any uncertainty in the
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FIGURE 5 | CNN binary, 4-class, and 5-class models accuracy and loss curves for training and validation datasets.
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FIGURE 6 | Number of observations in training data vs training time (A) and testing accuracy (B). Error bars represent minimum and maximum of three trials. Note:
the horizontal axis is in log scale.
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accuracy. Figure 4 displays the averaged test accuracy against the
total number of observations (training + testing data) used in the
model. For each model, the specified number of observations was
randomly selected from the specified classes, the model was

Frontiers in Materials | www.frontiersin.org

trained on 80% of these observations, and the accuracy
corresponds to prediction results on the remaining 20% of the
data. For example, for a 4-class model with a total of 8,000
observations, the model is trained on 6,400 observations and the
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TABLE 3 | Testing accuracy results of RF and CNN on all three models.

Method Model

Binary (%) 4-Class (%) 5-Class (%)
RF 87 75 60
CNN 92 78 59

accuracy is the prediction result on the withheld 1,600
observations. The same process is reiterated three times, on
each run the specified number of observations is randomly
selected from the available data. The error bars represent the
maximum and minimum accuracies for the three trials. As the
number of observations is increased, a steady increase in accuracy
is shown for the four and five class models. Whereas, for the
binary model the testing accuracy fluctuates around 86.5% when
6,000 observations or more are used. Therefore, it can be safely
assumed that enough data is available for the binary model, but
not for the four and five class models. This was also displayed
with the CNN models as shown in training history curves in
Figure 5, illustrating the accuracy and loss against the number of
epochs. For the four and five class models, all the available The
binary model provided a suitable case to assess the tradeoffs
between accuracy, number of observations, and training time. A
summary of the results is presented in Figure 6, displaying the
average training time (figure a) and testing accuracy (figure b),
from the three trials, with respect to the total number of
observations in the training data for the binary model. The
error bars represent the maximum and minimum of the three
trials.

BSE Image Inclusion Prediction

The prediction accuracies for all three models are summarized
in Table 3 for both RF and CNN. The prediction accuracy is
defined as the correctly predicted particles (sum of true positives
and true negatives) divided by the total number of particles in the
respective testing data.

A visual comparison between the prediction results for both
RF and CNN methods is given in Figure 7. The prediction results
for each combination of model and method are displayed as
confusion matrices, where the rows and columns of each matrix
correspond to the actual and predicted labels, respectively. The
color of the squares represents the percentage of observations
within each class, ie., a confusion matrix with red diagonal
squares and white off-diagonals signifies a 100% accuracy. The
last column in the matrix displays the in-class accuracy. The top
row of confusion matrices corresponds to RF predictions, the
bottom to CNN predictions, and the columns to the three
different models.

DISCUSSION

For the four and five class models, the limiting factor was the
availability of training data, as displayed in Figure 4. On the
other the hand, there was an abundance of data for the binary
model. This presented an opportunity to assess the relationship
between number of observations, accuracy, and training time,
and obtain an estimate on the adequate number of observations
required for classification prediction. As shown in Figure 6,
there is a significant increase in accuracy (~5%) when the
training data is increased from a few hundred observations

Binary 4-class S-class
A Accuracy 87.2% Accuracy 75% Accuracy 60.4%
Predicted Class Predicted Class Predicted Class
o $o° e KPR
° A cﬁ”’ (0«6\ o*“' O\f-‘*\'e'\> ._,o“& Q‘@ge Pﬂoﬂs ch o od"’“g@”’"
non-inc 45 | 23 | 17 |81% A1203 (761 31 | 10 | 1 .16 S7%
00 13 89% 2 [ [ @ CA |41 |74| 3 | 0 |26 51%
I I ® © oxide 23 [ 711% o !
o o Q  cas |3 |1 [89]34 |10 65%
2 2 oxy-sulfide | 24 | 70 |67% 2
m = 143 86% I= | / | F cas#ns | 0 | 0 |34 9 69% 200%
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FIGURE 7 | Confusion matrices for prediction results of all three models using RF (A) and CNN (B).
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FIGURE 8 | Example of multiphase inclusions, with EDS measurement (composition bar) detecting only one phase.
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FIGURE 9 | Examples of inclusions classified as “CA” by standardized criteria but predicted as “oxy-sulfide.” Composition bar is displayed to the right of each

Area = 13.4um* GSV = 84

to a few thousand observations. Moreover, the uncertainty in
prediction accuracy decreases as more observations are used for
training. From this figure, a suitable number of observations
can be estimated for RF classification. Although there was some
fluctuation in accuracy, the variation in accuracy beyond 6,000
observations was within 1%. Therefore, it can be implied that
for the binary model 6,000 observations (ie., 3,000
observations per class) is sufficient for the purpose of
inclusion classification.

The same trend in accuracy was noted for both the RF and
CNN models. As the number of classes in a model increases the
accuracy decreases. This trend is expected since the models are
more specific in terms of inclusion type. This is also due to
decreasing number of training data with larger class models. With
regards to the binary model, CNN (92%) produced better results
compared to RF (87%). This was also observed for the 4-class
model (CNN 78%, RF 75%). However, for the 5-class model the
RF and CNN produced similar results, 60 and 59% accuracy,
respectively.

The confusion matrices in Figure 7 provide an illustration of
the uncertainty in the algorithms. For the 4-class model, most
errors were made between “oxide”/“oxy-sulfide” and “sulfide”/
“oxy-sulfide” inclusions. For the 5-class models, most errors
occurred within the oxides or sulfides (i.e., between “Al203”/
“CA” or “CaS”/“CaS-MnS”). These observations were evident for
both the RF and CNN. Therefore, both methods had the same

prediction errors. This implies that the errors are due to the
similarity in the inclusion BSE images between specific inclusion
types (i.e., “ALO;” and “CA”, “CaS” and “CaS-MnS”, “oxides”
and “oxy-sulfides”, or “sulfides” and “oxy-sulfides”), and not due
to an inherent issue in the methodology. Such errors are expected,
since the GSVs of that certain inclusion types are similar, such as
Al O; and CA or CaS and CaS-MnS, and are hard to distinguish
on BSE images. Whereas differences between BSE images of non-
inclusions, oxides, and sulfides can be arguably easier to identify
visually.

Although the CNN method displayed a better result for the
binary and 4-class models, the overall difference in prediction
accuracy between the CNN and RF for the four and five class
models was not significant. CNNs are generally expected to
perform better than RF classification for image classification
tasks. One reason for this is that the CNNs utilize shape or
morphology information as an input, in addition to the different
GSVs. With the RF classification method utilized here, the image
was converted to tabulated data (histogram of GSVs) which led to
information loss (i.e. particle shape was not considered in the
analysis). The better accuracy achieved using the CNN compared
to RF, implies that there is a significant difference in shape
between inclusions and non-inclusions in the training data
utilized which was captured by the CNN. Whereas, between
different inclusion types, inclusion morphology did not vary
as much.
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Moreover, because CNNs create a comprehensive
representation of image data that captures multiple levels of
visual information, their maximum classification accuracy will
tend to be larger than RF methods. However, this increased
performance comes at a price. Due to the larger number of
model parameters that must be optimized, the computational
cost of training a CNN model is high, and the input data
requirements are large. In addition, in deep learning models
such as CNNs, the basis for classification can be difficult or
impossible to extract, whereas the individual decision trees in RF
models can be analyzed to determine which features of the input
data are salient to accurate predictions.

Another consideration is the reliability of the EDS
measurements, from which the ground truth image labels are
specified. For this dataset, measurements were taken using point
mode. Thus, the composition measurement pertains to a
specific location on the inclusion, which is generally
assumed to be the center of the inclusion. This might not
always be the case due to drift in BSE imaging. Moreover, the
point at which the EDS is measured might not interact with
other phases present in the inclusion. If all inclusions were
single phased this will not be an issue, however, a large number
of BSE images in this dataset showed multiphase inclusions
(e.g., oxy-sulfide inclusions). The BSE image on the other
hand, incorporates a better overall picture of the phase
distribution. Figure 8 present examples of such cases, where
the BSE images clearly show two distinct phases, while the EDS
(composition bar to the right of the image) measures only one
phase. Conducting EDS measurements using raster mode can
help mitigate these errors, however, it will increase the analysis
time significantly.

The standardized classification criteria can also pose another
source of error. It is devised from a set of objective rules, which is
usually the case in industry. The criteria defined in this work sets a
minimum threshold of 10%, to allow for some margin of error,
when defining certain inclusion types. Figure 9 displays some
examples of inclusions classified as “CA” by the standardized
criteria, while their BSE image clearly display two phases (these
are likely oxy-sulfide phases). This is due to the S content being
lower than the minimum threshold of 10%, as shown by the
composition bar next to the BSE images.

The reliability of EDS measurement and classification criteria
are crucial for the formation of reliable prediction models. Studies
have been conducted to develop better methods for inclusion EDS
measurement. Shah et al. (Shah et al., 2018) proposed the use of
phase discrimination on the BSE image to identify different
phases, and analyze each phase separately. A similar approach
can be adopted to identify the different number of phases and use
this as an initial rule for classifying inclusion (e.g., only two-phase
inclusion can be oxy-sulfides, one-phase inclusions can be
alumina, CaS$ ... etc.). As shown above, most of the errors in
both the RF and CNN were due to mislabeled inclusions (e.g.
multiphase oxy-sulfides labelled as oxides or sulfides based on
EDS measurement, or vice versa). Therefore, the performance of

BSE Image Inclusion Prediction

the prediction models relies heavily on the availability and
reliability of training data.

CONCLUSION

RF and CNN models were applied to predict inclusion types from
BSE images. Three models were assessed and compared using
both methods.

e For the binary classification model (inclusion vs non-
inclusion), approximately 3,000 observations per class
should be sufficient for training data.

e The binary model had the highest testing accuracy: 87%
using the RF, and 92% using CNNs. As the number of
classes increases, the accuracy decreased.

e CNN achieved better accuracy for the binary (92%) and 4-
class (78%) models, compared to RF (binary 87%, 4-class
75%). For the 5-class model, RF (60%) had slightly better
accuracy than CNN (59%).

e The same prediction errors were observed for both RF and
CNN. Most of the errors were made between similar
inclusion types.

e Reliable EDS measurement and accurate labelling of
inclusions are vital for the formation of robust
classification prediction models.
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