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Abstract
1.	 Identifying reservoir host species is crucial for understanding the ecology of multi-

host pathogens and predicting risks of pathogen spillover from wildlife to people.
2.	 Predictive models are increasingly used for identifying ecological traits and pri-

oritizing surveillance of likely zoonotic reservoirs, but these often employ differ-
ent types of evidence for establishing host associations. Comparisons between 
models with different infection evidence are necessary to guide inferences 
about the trait profiles of likely hosts and identify which hosts and geographical 
regions are likely sources of spillover.

3.	 Here, we use New World rodent–orthohantavirus associations to explore dif-
ferences in the performance and predictions of models trained on two types 
of evidence for infection and onward transmission: RT-PCR and live virus isola-
tion data, representing active infections versus host competence, respectively. 
Orthohantaviruses are primarily carried by muroid rodents and cause the dis-
eases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopul-
monary syndrome (HCPS) in humans.

4.	 We show that although boosted regression tree (BRT) models trained on RT-PCR 
and live virus isolation data both performed well and capture generally similar trait 
profiles, rodent phylogeny influenced previously collected RT-PCR data, and BRTs 
using virus isolation data displayed a narrower list of predicted reservoirs than 
those using RT-PCR data. BRT models trained on RT-PCR data identified 138 un-
discovered hosts and virus isolation models identified 92 undiscovered hosts, with 
27 undiscovered hosts identified by both models. Distributions of predicted hosts 
were concentrated in several different regions for each model, with large discrep-
ancies between evidence types. As a form of validation, virus isolation models in-
dependently predicted several orthohantavirus–rodent host associations that had 
been previously identified through empirical research using RT-PCR.

5.	 Our model predictions provide a priority list of species and locations for future 
orthohantavirus sampling. More broadly, these results demonstrate the value of 
multiple data types for predicting zoonotic pathogen hosts. These methods can 
be applied across a range of systems to improve our understanding of pathogen 
maintenance and increase efficiency of pathogen surveillance.
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1  |  INTRODUC TION

Most emerging infectious diseases (EIDs) in humans are caused 
by pathogens that naturally circulate in wildlife and infect multi-
ple host species (Jones et al., 2008; Taylor et al., 2001). Although 
some zoonotic pathogens are transmissible among recipient 
hosts (e.g. HIV), most human EID cases are the result of unique 
spillover events, where humans function as dead-end hosts (e.g. 
rabies, malaria; Morens et al.,  2004). For EIDs, identifying likely 
reservoir host species (i.e. those that maintain and transmit a par-
ticular pathogen; Haydon et al.,  2002) is a critical step towards 
understanding the ecology of multi-host pathogens and predicting 
risks of cross-species transmission (Plowright et al.,  2017; Viana 
et al., 2014). Statistical models play an important role in this pro-
cess (Becker et al., 2019; Carlson et al., 2021). For example, eco-
logical trait datasets have facilitated the development of models 
that can identify the typical phenotypes of reservoir host species, 
which often display faster life histories (Albery & Becker,  2020; 
Worsley-Tonks et al.,  2020). Characterizing these trait profiles 
can, in turn, spur development of new hypotheses about the 
within- and between-host mechanism that facilitate pathogen 
maintenance (e.g. Han et al., 2015; Han et al., 2020). Additionally, 
aggregating the distributions of known and predicted reservoir 
host species through geographical information systems (GIS; 
Cromley, 2003) can determine regions of especially likely zoonotic 
spillover risk (Becker & Han, 2021; Han et al., 2016).

Identifying likely reservoir hosts, their ecological characteristics 
and their distributions can elucidate possible sources of zoonotic 
exposure. Large-scale surveillance of wildlife, often involving non-
targeted sampling of a large diversity and abundance of animals, 
is commonly conducted shortly after disease outbreaks to search 
for reservoir hosts (e.g. Leroy et al., 2005; Poon et al., 2005). Such 
studies are expensive, time-consuming and generally inefficient, 
particularly when there is little information to direct sampling ef-
fort (e.g. Poon et al., 2005; Pourrut et al., 2009; Yob et al., 2001). 
Therefore, predictive models provide two pragmatic benefits. First, 
informed predictions provide an efficient means to proactively iden-
tify likely reservoir hosts prior to outbreaks and guide surveillance 
efforts during or following outbreaks (Becker et al., 2022; Plowright 
et al., 2019). Second, identifying likely reservoirs with models also 
promotes targeted strategies to prevent or mitigate spillover risk 
(Sokolow et al., 2019).

Given the importance of statistical models to facilitate identi-
fying likely but undetected reservoir hosts and understanding the 
ecology of multi-host pathogens, there is a critical need to estab-
lish optimum techniques (Becker et al., 2022; Crowley et al., 2020). 
In particular, significant questions remain about how the level 
of evidence for infection and ability for onward transmission of 

pathogens affects model performance and prediction (Becker 
et al.,  2020; Worsley-Tonks et al.,  2020). Most predictive mod-
els have been developed for viruses and are based on serology 
data (i.e. virus-specific antibodies), which tend to be abundant due 
to their relative ease and cost-effectiveness to collect. However, 
such information often only provides evidence of virus exposure, 
not necessarily current infection (Gilbert et al., 2013). Polymerase 
chain reaction (PCR), on the other hand, provides stronger evi-
dence of current infection, and can better predict host competence 
(i.e. the ability to transmit) than serology data (Tolsá et al., 2018). 
However, PCR can amplify nonviable virus, and therefore it does 
not necessarily indicate onward transmission potential (Leland & 
Ginocchio, 2007). Aside from experimental infections (e.g. Komar 
et al., 2003), which are rare due to logistical constraints, the gold 
standard evidence for reservoir host competence is isolation of 
viable virus (e.g. Corona et al., 2018), which indicates the ability 
to not only be infected, but also a greater likelihood to shed in-
fectious virus (Leland & Ginocchio, 2007). Our understanding of 
how these different types of evidence alter model performance 
and predictions is limited, despite clear differences in establishing 
host associations, their resulting inference about the ecological 
traits of dead-end hosts versus reservoirs, and their applied rele-
vance (i.e. for identifying target species in reservoir host searches 
or interventions).

Orthohantaviruses (Hantaviridae, genus Orthohantavirus) are 
an ideal virus group to explore differences in the performance and 
predictions of models trained on different types of infection ev-
idence, due to their broad implications for human health as zoo-
notic pathogens, the predicted large number of unidentified viruses 
(Vaheri et al., 2008) and the varying types of virus infection evidence 
currently available from wildlife surveys. Additionally, unidentified 
orthohantavirus host species have not been previously evaluated 
using predictive models. There are currently 58 described ortho-
hantaviruses, primarily found in rodents (Laenen et al., 2019), many 
of which cause two main human diseases: haemorrhagic fever with 
renal syndrome (HFRS, which is common throughout the Old World) 
and hantavirus cardiopulmonary syndrome (HCPS or HPS, which is 
common throughout the New World). Because each human case is 
thought to be an independent spillover event from an infected ro-
dent (Avšič-Županc et al., 2019; Forbes et al., 2018), identifying or-
thohantavirus reservoir host species is critical for efforts to mitigate 
human disease.

Most known orthohantaviruses, including all orthohantaviruses 
that cause disease in humans (Forbes et al., 2018), infect rodents 
in the families Cricetidae and Muridae (superfamily Muroidea), 
though several mole- and shrew-borne orthohantaviruses of un-
known zoonotic potential have been discovered (Arai et al., 2007; 
Arai et al.,  2008; Kang et al.,  2009; Kang et al.,  2011). Because 
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cross-species transmission is generally constrained by phylogenetic 
distance between host species (Longdon et al.,  2014; Streicker 
et al., 2010), undiscovered orthohantaviruses of human health con-
cern are also likely to be found among muroid rodents. Additionally, 
although the majority of described North and South American or-
thohantaviruses cause disease in humans (13/22), knowledge of 
host relationships is weak for these viruses, and frequent discovery 
of novel orthohantaviruses indicates a high likelihood of unknown 
viruses in that part of the world (Mull et al., 2020). Efforts to iden-
tify likely but novel orthohantavirus reservoirs would therefore be 
maximized by focusing on New World muroids. Applying model-
ling efforts at a fine taxonomic resolution should further improve 
predictability by reducing statistical noise from the larger mammal 
phylogeny and life-history traits that are confounded with other 
host families or orders (Dallas & Becker, 2021).

In this study, we assess how the performance and predictions 
of statistical models of orthohantavirus associations varies be-
tween two types of evidence for the propensity of a muroid ro-
dent species to host orthohantaviruses: (a) reverse transcriptase 
PCR (RT-PCR), indicating susceptibility to infection but not neces-
sarily ability to generate new infections and (b) live virus isolation, 
indicating reservoir competence. We note that this definition of 
reservoir hosts applies strictly to host competence and the ca-
pacity to transmit (e.g. Becker et al.,  2020; Gervasi et al.,  2015; 
Merrill & Johnson,  2020), in contrast to population-level defini-
tions about pathogen maintenance (e.g. Haydon et al., 2002; Viana 
et al., 2014). We first characterize phylogenetic signal and taxo-
nomic patterns in orthohantavirus hosting, which can identify 
clades of species more susceptible to infection or that are truly 
competent reservoirs. Next, we train machine learning models on 
muroid phylogenetic and trait data and compare the performance 
of models applied to both forms of infection evidence to identify 
undiscovered orthohantavirus hosts. Finally, predicted host distri-
butions were mapped to identify concentrated regions of potential 
novel hosts and to explore how different evidence types generate 
distinct landscapes of likely risk, particularly when anthropogenic 
impacts are considered. Generated results will guide ongoing and 
future efforts to discover novel orthohantaviruses, their host as-
sociations and geographical areas with amplified spillover risk. 
More broadly, determining effective modelling approaches, spe-
cifically the role of different types of data indicating infection 
and onward transmission to new hosts, is critical to optimize tools 
for identifying and understanding potential zoonotic threats to 
human health and security.

2  |  MATERIAL S AND METHODS

2.1  |  Hantavirus data

A systematic literature search was conducted in Web of Science to 
identify empirical studies that reported orthohantavirus infections 
in New World muroid rodents via RT-PCR or virus isolation (search 

queries in Appendix S1; PRISMA diagram in Appendix S2; citations 
for data used in Appendix S3). We recorded the number of studies 
per rodent species with each of the following criteria: at least one in-
dividual RT-PCR positive; all individuals RT-PCR negative or virus iso-
lation from at least one individual. Because orthohantaviruses cause 
persistent and chronic infections in rodents (Forbes et al.,  2018), 
serological tests are often used to demonstrate current or recent 
infection and RT-PCR is performed only on samples from antibody-
positive individuals for virus characterization (Vaheri et al., 2008). 
To preclude false positives in these studies, only rodents that had 
positive RT-PCR results were considered RT-PCR-positive, and all 
other individuals were considered RT-PCR negative, even if RT-PCR 
was not conducted. If a study used only serology without either RT-
PCR or live virus isolation attempts, then the study was not included. 
When studies attempted virus isolation, additional RT-PCR results 
were recorded for specimen tissue analyses, but not infected cell 
cultures.

In studies that used archived samples reported in a previous 
study (for the same level of evidence), those samples were omit-
ted to preclude pseudo-replication; instead, the original study was 
used. If a subsequent study examined a different level of evidence 
(e.g. virus isolation vs. RT-PCR), then we treated the two studies as 
a single report. When the number or description of positive and neg-
ative results per species was not clear in an article (including speci-
mens reported at the genus level and outdated taxonomy that now 
represents multiple species), only definitive results were recorded. 
We manually matched select rodent species names between our 
orthohantavirus data and our phylogeny and trait data (see below). 
Species synonyms are provided in our online data repository. Since 
several Rattus and Mus are abundant in the Old and New World, only 
results derived in the Americas were included. Species without pub-
lished evidence of orthohantavirus RT-PCR or isolation results were 
assigned pseudoabsences (Becker et al., 2020). No ethics approval 
was required for this study.

2.2  |  Phylogenetic analyses

We used a recently developed supertree of extant mammals to cap-
ture rodent phylogeny (Upham et al., 2019). The tree was simplified 
to our specified rodent species using the ape package in r (Paradis 
et al., 2004). Prior to predictive models, we conducted two assess-
ments of phylogenetic signal (i.e. the propensity for related rodent 
species to be more similar in virus positivity). For both response 
variables (RT-PCR and virus isolation), we used the caper package 
(Orme et al., 2018) to calculate D, where a value of 1 indicates a 
phylogenetically random trait distribution and a value of 0 indicates 
phylogenetic clustering under a Brownian motion model of evolu-
tion (Fritz & Purvis, 2010). Significant departure from either model 
was quantified using a randomization test with 1,000 permuta-
tions. However, because traits may also arise under a punctuated 
equilibrium model of evolution, we next used a graph-partitioning 
algorithm, phylogenetic factorization, to flexibly identify clades 
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with different propensity to be infected or competent at various 
taxonomic depths (Washburne et al., 2019). Phylogenetic factori-
zation partitions a given phylogeny by iteratively identifying edges 
in a tree that maximize an objective function contrasting species 
separated by the edge. In the case of our Bernoulli-distributed re-
sponse variables, this objective function is the deviance of a cat-
egorical variable indicating clades on either side of each edge in 
the phylogeny; this categorical variable is the predictor in a series 
of generalized linear models (Crowley et al., 2020). We performed 
phylogenetic factorization using the phylofactor package, and we 
determined the number of phylogenetic factors (clades) to retain 
using a Holm's sequentially rejective 5% cut-off for the family-wise 
error rate (Holm, 1979).

2.3  |  Rodent traits

We used a published dataset of 55 traits describing the morphology, 
geography, taxonomy and life history of rodent species. Trait data 
were primarily from PanTHERIA alongside derived covariates includ-
ing postnatal growth rate, relative age to sexual maturity, relative age 
at first birth, production and species density (Han et al., 2015; Jones 
et al., 2009). We also used the picante package to quantify evolution-
ary distinctiveness, a measure of how isolated a species is within our 
muroid phylogeny (Kembel et al., 2010; Redding & Mooers, 2006). 
Finally, we included binary covariates for our muroid rodent genera 
to represent taxonomy. Given substantial gaps in trait coverage for 
rodents (Figure S1), we only included predictors with non-zero vari-
ance or with data for over 70% of species, resulting in 56 covariates 
(Table S1). Lastly, we used the easyPubMed package (accessed May 
2021) to obtain the number of citations per species as a proxy for 
sampling effort (Fantini, 2019; Olival et al., 2017).

2.4  |  Boosted regression trees

We used boosted regression trees (BRTs), a trait-based machine 
learning algorithm, to classify rodent species as orthohantavirus 
hosts based on our predictor matrix of traits. BRTs circumvent 
many statistical issues associated with traditional hypothesis test-
ing (e.g. non-independent data, many predictors, complex inter-
actions, non-randomly missing covariates) and can uncover new 
and surprising patterns in data to develop testable hypotheses or 
predictions (Hochachka et al.,  2007). A recent comparison among 
machine learning algorithms, based on predicting likely bat hosts of 
betacoronaviruses, also demonstrated that trait-based models, and 
BRTs in particular, vastly outperform network-based models (Becker 
et al., 2022). Using BRTs, we modelled binomial virus positivity sepa-
rately for RT-PCR and virus isolation.

BRTs maximize classification accuracy by learning patterns of 
features that best distinguish positive and negative hosts (Elith 
et al.,  2008). This generates recursive binary splits for randomly 
sampled predictor variables, and successive trees are built using 

residuals of the prior best-performing tree as the new response. 
Boosting generates an ensemble of linked trees, where each 
achieves increasingly more accurate classification. Prior to analy-
sis, we randomly split data into training (70%) and test (30%) sets, 
using the rsample package to perform stratified sampling such that 
both datasets contained equal proportions of positive labels. Models 
were then trained with the gbm package (Greenwell et al.,  2020), 
with the maximum number of trees set to 5,000, a learning rate of 
0.001 and an interaction depth of three. We used a comprehensive 
grid search to assess variation in model performance based on al-
ternative hyperparameters, finding that these parameterizations 
struck an optimal balance between model complexity and multiple 
measures of BRT performance (Appendix S4; Figure S2; Tables S2–
S4). All BRTs used a Bernoulli error distribution and fivefold cross-
validation, and we used the rocr package to quantify accuracy as 
area under the receiver operator curve (AUC; Sing et al., 2005). We 
also complemented this measure of model performance by calcu-
lating sensitivity and specificity with the InformationValue package 
(Prabhakaran,  2016). As results can depend on random splits be-
tween training and test data, we used 100 stratified partitions to 
generate an ensemble (Evans et al., 2017), resulting in mean perfor-
mance measures (AUC for accuracy; x for specificity and sensitivity). 
Lastly, to diagnose if trait profiles of positive species are driven by 
study effort, we ran a secondary set of BRTs using the same hyper-
parameters (with the exception of 10,000 total trees) that instead 
modelled species citation counts as a Poisson response (Plowright 
et al., 2019).

2.5  |  Model performance and prediction

To assess how BRT performance varied between RT-PCR and virus 
isolation models (Becker et al., 2020), we used a t-test to compare 
each measure of model performance, with p-values adjusted using 
the Benjamini–Hochberg correction (Benjamini & Hochberg, 1995). 
We also assessed similarity in mean variable importance between 
models by estimating the Spearman correlation coefficient between 
feature ranks. Next, we predicted the probability of a species being 
positive for either response. When predicting species status, we set 
citation counts per species to their mean across species as a post-
hoc method to correct for sampling effort and remove at least some 
bias (Becker et al.,  2022). Lastly, we also estimated the Spearman 
correlation coefficients for the mean predictions between RT-PCR 
and virus isolation models.

We used these mean predictions to identify ‘false-negative’ or-
thohantavirus hosts (i.e. those without a prior recorded orthohan-
tavirus infection or isolation). We identified taxonomic patterns 
in predictions using Pagel's λ as an estimate of phylogenetic signal 
with the caper package as well as a secondary phylogenetic factor-
ization to identify clades with different predicted probabilities. To 
identify potential unknown hosts or competent reservoirs, we esti-
mated a 95% sensitivity threshold using the presenceabsence package 
(Freeman & Moisen, 2008), which can stratify predictions at a 5% 
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omission rate on known true positives. This threshold, while fairly 
inclusive, mostly selects species with comparable probabilities of 
being infected or competent to known hosts.

To visualize the spatial distribution of known and predicted ro-
dent hosts, we used the IUCN Red List database of mammal geo-
graphical ranges and overlaid these shapefiles for thresholded 
species based on RT-PCR and isolation models. These distributions 
were also mapped against a proxy for cumulative anthropogenic 
impact on natural systems, given by the SEDAC Last of the Wild 
database's 2009 Human Footprint map (Venter et al., 2016; Venter 
et al., 2018). This qualitative descriptor encompasses several geo-
spatial layers that describe anthropogenic impacts with relevance 
to human exposure to rodents and orthohantaviruses, particularly 
human occupation (i.e. built up settlements and human population), 
agricultural intensification (i.e. crop lands and pasture lands) and 
ecosystem fragmentation (i.e. road and railway density).

3  |  RESULTS

3.1  |  Phylogenetic patterns

Across our 601 New World muroid rodent species, 9.65% displayed 
evidence of orthohantavirus infection via RT-PCR, whereas only 2% 
were found positive for virus isolation (Figure 1). Of the 12 species 

with virus isolation records, only one (Microtus pennsylvanicus) did 
not have recorded evidence of PCR positivity. We identified inter-
mediate phylogenetic signal in RT-PCR data (D  =  0.83) but little 
phylogenetic signal in virus isolation data (D =  0.90). For the for-
mer, phylogenetic patterns in RT-PCR data departed from both 
randomness (p = 0.002) and Brownian motion (p < 0.001), whereas 
virus isolation data departed from Brownian motion (p < 0.001) but 
not phylogenetic randomness (p = 0.16). Results from phylogenetic 
factorization were qualitatively similar. We identified two rodent 
clades with greater propensities to have orthohantavirus infections 
detected via RT-PCR. The whole genus Oligoryzomys (n = 20) and a 
subclade of the genus Peromyscus (n = 24) had 40% and 37.5% of 
species predicted to be capable of becoming infected, respectively, 
compared to 9% of the paraphyletic remainder. In contrast, our 
analyses identified no taxonomic patterns in positive virus isolation 
results.

3.2  |  Model performance

Both infection evidence BRT models distinguished orthohantavirus-
positive and orthohantavirus-negative rodent species with high ac-
curacy (AUC = 0.92 ± 0.003) and specificity (x = 0.99 ± 0.001) but 
low sensitivity (x = 0.20 ± 0.01). However, BRTs trained on virus 
isolation data performed better (AUC = 0.93 ± 0.004) than those 

F I G U R E  1  Phylogenetic distribution of 
orthohantavirus-positive muroid rodents 
in the New World. Species with evidence 
of infection (a, RT-PCR) or competence (b, 
live virus isolation) are displayed in black. 
Visualized in red are any clades identified 
through phylogenetic factorization for 
having greater virus positivity when 
compared to the paraphyletic remainder
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trained on RT-PCR data (AUC = 0.91 ± 0.003; t = 2.63, p = 0.009; 
Figure  2a), resulting in a small standardized effect size (Cohen's 
d =  0.37; Cohen,  1988). RT-PCR models had greater sensitivity (x 
= 0.37 ± 0.01) than virus isolation models (x = 0.03 ± 0.01; t = 22.55, 
p < 0.001; Cohen's d = 3.19; Figure S3), whereas virus isolation mod-
els had improved specificity (x = 1.00 ± 0.00) over RT-PCR models 
(x = 0.98 ± 0.001; t = 16.33, p < 0.001; Cohen's d = 2.31; Figure S3).

Despite these differences in performance measures, both types 
of models identified mostly similar species traits as predictive of 
positivity. Ranks of mean variable importance scores were strongly 
correlated (ρ = 0.87, p < 0.001), even after removing traits with zero 
relative importance (n = 37 remaining features; ρ = 0.84, p < 0.001). 
Consistently important features for both response variables included 
PubMed citations, species richness and density within the species 
range, and evolutionary distinctiveness. Consistently unimportant 
features included the genera Thomasomys, Rhipidomys, Handleyomys 
and Nectomys. Major discrepancies included the genus Peromyscus 
being an important predictor of RT-PCR positivity but not virus 
isolation and the genus Oryzomys being an important predictor of 
virus isolation but not RT-PCR positivity (Figure 2b; Table S5). Partial 
dependence plots suggested that effect directions were largely 
consistent across models, with positive species being well-studied, 
located in mammal-rich regions, and characterized by smaller size 
(Figure  S4). Effect direction differed for phylogenetic character-
istics, as RT-PCR-positive species were less evolutionarily distinct 
while species positive for virus isolation were more evolutionarily 
distinct. Our secondary BRTs of sampling effort showed that cita-
tions were not predictable by host traits (AUC = 0.49 ± 0.001), sug-
gesting that the trait profiles of positive rodents are not confounded 
by the traits of well-studied species.

3.3  |  Model prediction

Predicted probabilities of being an orthohantavirus host varied 
widely across the 601 rodent species and were not correlated be-
tween BRTs of both evidence types (ρ = 0.06, p < 0.12; Figure 3a). 
Many species with intermediate-to-high propensity scores from 
models based on RT-PCR had a low corresponding probability of 
being a host based on virus isolation data. Whereas both predictions 
displayed moderate phylogenetic signal (λ = 0.63 and 0.57, respec-
tively), the taxonomic patterns identified by phylogenetic factori-
zation largely differed between models (Figure 3b,c; Table S3). For 
both evidence type models, the genus Oligoryzomys (n = 20) had a 
greater mean probability of orthohantavirus hosting compared to 
the paraphyletic remainder. Predictions from infection models also 
included a subclade of the genera Peromyscus (n = 25), Oxymycterus 
(n =  6), Calomys (n =  8) and Rhipidomys (n =  13) as having higher 
probabilities (x = 0.62, 0.74, 0.68 and 0.61, respectively), for which 
Peromyscus was also identified in our phylogenetic factorization of 
the raw data (Figure 1). However, the subfamily Arvicolinae (includ-
ing voles, lemmings and muskrats; n = 43) had lower probabilities of 
positive RT-PCR results (x = 0.23). Predictions from virus isolation 

models differed from RT-PCR model predictions, as a subclade of the 
genus Oecomys (n = 7) and the genus Oryzomys (n = 6) had greater 
probabilities of being likely competent reservoirs (both x = 0.24).

Lastly, we stratified results into binary predictions using a 95% 
sensitivity threshold. This revealed a total 138 likely undiscovered 
hosts based on RT-PCR models versus 92 undiscovered hosts based 
on virus isolation models, of which 27 were also predicted by the for-
mer (Table 1). Mapping the geographical distribution of undetected 
hosts alongside known orthohantavirus-positive rodent species 
revealed that while predictions from RT-PCR models largely reca-
pitulated the distributions of known RT-PCR-positive species, virus 
isolation models indicated novel hotspots of overlapping competent 
reservoirs in the northeastern United States and northern South 
America, particularly along the Andes Mountains (Figure 4).

4  |  DISCUSSION

We used rodent–orthohantavirus associations to demonstrate how 
statistical model performance and predictions are impacted by dif-
ferent types of infection evidence (i.e. RT-PCR versus virus isolation) 
alongside identifying rodent species that are likely novel orthohan-
tavirus hosts. Determining the reservoir host of many viruses can 
be challenging, given logistical challenges of experimental infections 
and the dramatic variation of infection prevalence across space and 
time (e.g. for virus isolation; Walsh et al., 2007; Vadell et al., 2011; 
Holsomback et al.,  2013). This is especially true for orthohantavi-
ruses, which are notoriously difficult to isolate (Strandin et al., 2020). 
However, predictive modelling enables the identification of novel 
hosts in the absence of field data and, in turn, facilitates targeted 
field surveillance that can ultimately be used to mitigate hazards 
posed by zoonotic viruses (Becker et al., 2019). We illustrate here 
how such models trained on two distinct forms of evidence on host 
capacity can vary in their performance and predictions regarding 
likely host species and where they overlap in space.

Orthohantaviruses have traditionally been considered to follow 
evolutionary cophylogenies with their hosts, with few cross-species 
infections denoting distinct lineages (Herbreteau et al., 2006; Hjelle 
et al., 1995; Song et al., 2007). However, the discovery of additional 
orthohantaviruses has since expanded the diversity of hosts and 
demonstrated host switches in their evolutionary history (Blasdell 
et al., 2011; Guo et al., 2013). Indeed, orthohantaviruses have been 
isolated from species among all four subfamilies of muroid rodents 
in the Americas. Within those subfamilies, orthohantaviruses have 
been isolated from seven genera, and the subset of hosts predicted 
by both models would expand this range by four additional genera 
(Table 1). In particular, the discovery of an orthohantavirus hosted by 
Myodes gapperi would bridge not only a phylogenetic gap between 
Eurasian and American viruses, but also a geographical gap between 
Russia and North America. Several Microtus species are the only ar-
vicoline rodents currently known to host orthohantaviruses in the 
New World, despite a variety of arvicoline hosts in the Old World 
(Blasdell et al., 2011).
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In our study, postulated orthohantavirus hosts are mostly con-
centrated in several regions—southern Mexico and eastern Brazil 
(based on RT-PCR data) and central and southeastern United States 
as well as the portions of Peru and northern South America sur-
rounding the Amazon basin (based on virus isolation data; Figure 4). 
Interestingly, all of these regions coincide with geographical gaps 
in known orthohantavirus distribution (Guzmán et al.,  2017). 
Distributions from our virus isolation models are consistent with the 
North American, but not South American, regions predicted to con-
tain rodent reservoirs of novel pathogens at a broader taxonomic 
scale (Han et al., 2015), and vice versa for distributions from our RT-
PCR models, though with a lesser intensity. Such differences high-
light the importance of considering various types of evidence, as the 

use of only one type would have presented an incomplete picture. 
Future surveillance efforts in these areas will clarify model accuracy 
to determine the effectiveness of each data type in host predictions.

BRT models trained on RT-PCR and virus isolation data pro-
duced similarly high AUC and specificity but did differ in sensi-
tivity. The extremely low sensitivity for virus isolation models is 
most likely a function of the low predicted probability of hosting 
based on this form of infection evidence; known positive species 
had predictions below approximately 60%, which was thus the 
threshold for classification in calculating sensitivity and specific-
ity. Over-sampling would have likely increased sensitivity (Chawla 
et al., 2002), but doing so may result in lower specificity (Fountain-
Jones et al., 2019). Because the low sensitivity of our models was 

F I G U R E  2  Performance of rodent 
orthohantavirus BRT models trained on 
RT-PCR versus virus isolation data as 
the response. (a) Area under the receiver 
operating characteristic curve (AUC) 
across 100 random splits of training (70%) 
and test (30%) data. Boxplots show the 
median and interquartile range alongside 
AUC values. (b) Correlation between ranks 
of mean feature importance between 
models. Mean relative importance is given 
in Table S5

F I G U R E  3  Predicted probabilities 
of rodent orthohantavirus positivity 
based on RT-PCR versus virus isolation. 
(a) Distribution of propensity scores 
stratified by known positive, currently 
negative and unsampled species. The 
scatterplot between predictions includes a 
smoothed curve and confidence intervals 
from a generalized additive model. (b, 
c) Taxonomic patterns in predictions 
as identified through phylogenetic 
factorization. Segments are scaled by 
probabilities and coloured as in panel 
a. Clades identified with significantly 
different mean predictions are shown 
in grey, and additional information (e.g. 
included taxa, species richness) is included 
in Table S6
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TA B L E  1  Predicted undiscovered hosts of orthohantaviruses in the Americas: A priority list for future sampling. Plain text species are 
predicted by the RT-PCR model only, bolded species are predicted by the virus isolation model and starred species are predicted by both 
models

Genus Species

Abrothrix olivaceus*, lanosus, manni, markhami, sanborni

Aepeomys reigi

Akodon boliviensis, cursor, dayi, fumeus, lutescens, iniscatus, leucolimnaeus, mystax, orophilus, 
paranaensis, pervalens, reigi, subfuscus, toba

Amphinectomys savamis

Baiomys musculus, taylori

Brucepattersonius albinasus, griserufescens, igniventrus, paradisus, soricinus

Calomys cerqueirai, expulsus, hummelincki, musculinus, sorellus, tener, tocantinsi, venustus

Chibchanomys orcesi

Chilomys instans

Delomys collinus

Dicrostonyx groenlandicus

Eligmodontia bolsonensis, typus

Euneomys chinchilloides

Euryoryzomys macconnelli, nitidus

Graomys griseoflavus

Habromys delicatulus, ixtlani, lepturus

Holochilus brasiliensis, lagigliai, sciureus

Hylaeamys oniscus, yunganus

Juliomys rimofrons

Juscelinomys guaporensis, huanchacae

Lemmus trimucronatus

Loxodontomys micropus

Melanomys caliginosus*

Microtus chrotorrhinus, oeconomus, pinetorum

Microryzomys minutus*

Mus musculus

Myodes gapperi, rutilus

Neacomys dubosti, guianae, minutus, musseri, paracou, spinosus*, tenuipes*

Necromys lasiurus, lenguarum, punctulatus, urichi*

Nectomys apicalis, magdalenae, palmipes, rattus, squamipes

Neotoma leucodon

Neusticomys ferreirai, oyapocki, peruviensis, venezuelae

Nyctomys sumichrasti*

Ochrotomys nuttalli

Oecomys auyantepui, bicolor*, catherinae, concolor*, mamorae*, paricola, roberti*, speciosus, superans, 
sydandersoni*, trinitatis*

Oligoryzomys andinus*, arenalis, brendae, chacoensis, delticola*, destructor*, eliurus*, griseolus*, flavescens, 
magellanicus*, moojeni, nigripes, rupestris, vegetus, victus

Ondatra zibethicus

Onychomys torridus

Oryzomys antillarum*, dimidiatus, gorgasi

Otonyctomys hatti

Oxymycterus amazonicus, angularis, caparoae, dasytrichus, inca, josei, paramensis, quaestor, roberti, wayku

(Continues)
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an artefact of the probability threshold, we opted to prioritize 
specificity and forego over-sampling. Additionally, the greater 
AUC for virus isolation models indicated good performance, and 
species with and without evidence of virus isolation were clearly 
distinguishable by our BRTs (Figure  3a). In addition to perfor-
mance, the ecological characteristics identified with positivity 
through both diagnostic methods were largely similar (Figure  2; 
Figure S4).

Muroid rodents positive via RT-PCR or virus isolation tended to 
have smaller body sizes and occur in regions of high mammal rich-
ness, alongside other characteristics (Figure  S4), matching previ-
ous fast pace of life profiles of hosts of zoonotic pathogens across 
Rodentia more generally (Han et al., 2015). However, in line with our 
phylogenetic analyses, BRTs also suggested that RT-PCR-positive 
species were less evolutionarily distinct, likely driven by increased 
susceptibility to and frequency of spillover events for related species 
(Longdon et al., 2014; Streicker et al., 2010), whereas virus isolation 
positive species were more isolated among the muroid phylogeny. 
Although these differences may be skewed by targeted trapping of 
known hosts in particular studies (e.g. Safronetz et al.,  2008), the 
broad sampling approach typical of small mammal trapping and han-
tavirus surveys (e.g. Chu et al., 2008; de Thoisy et al., 2014) suggests 
that the phylogenetic differences between our RT-PCR and virus 
isolation models are indicative of the heterogeneity among rodent 
hosts in ortohantavirus maintenance.

In addition to this phylogenetic contrast, each predictive model 
generated mostly different lists of potential hosts. There was only 
minor overlap in predicted host species, and the virus isolation model 
produced a more concise list of competent reservoir candidates 
than the RT-PCR model (Table 1). Notably, the isolation model pre-
dicted several species that have been identified as orthohantavirus 
hosts based on empirical studies using RT-PCR (Holochilus sciureus, 

Loxodontomys micropus, Oligoryzomys chacoensis, O. flavescens, O. 
nigripes, Reithrodontomys fulvescens, R. megalotis, R. mexicanus and 
Zygodontomys brevicauda; Mull et al., 2020). These consistencies help 
validate the predictive capacity of our models, particularly when 
virus isolation data are included. Ultimately, field studies and natural 
infection experiments will be necessary to verify our predicted host 
species, though such model-guided prioritization schemes can pro-
vide initial insights to guide empirical efforts (Plowright et al., 2019).

Although this study focused on New World orthohantaviruses 
to enable higher resolution results in this system, our modelling ap-
proach with multiple types of infection evidence is transferable to 
many other systems. Old World orthohantaviruses represent the 
most obvious extension, particularly for regions with minimal sur-
veillance, such as Africa, the eastern Mediterranean and Southeast 
Asia (Guo et al., 2013; Herbreteau et al., 2006). However, other virus 
groups that pose a threat to human welfare would also benefit from 
predictive modelling. For example, the reservoir hosts, and likely 
virus diversity, of orthopoxviruses (e.g. cowpox virus, monkeypox 
virus) are still mostly unknown, despite common evidence of or-
thopoxvirus infection among a diverse assemblage of wildlife, par-
ticularly rodents (Kinnunen et al., 2011; McInnes et al., 2006) and 
carnivores (Emerson et al., 2009; Morgan et al., 2019). In such cases, 
models incorporating multiple levels of infection evidence can help 
filter out sampling noise caused by spillover to empower host detec-
tion for many known and future emerging infectious diseases (Jones 
et al.,  2008). However, this framework is limited to systems with 
sufficient data from multiple types of evidence, as model training 
would be challenging and inaccurate, or impossible, for viruses that 
are rarely or have never been isolated, such as henipaviruses and 
filoviruses.

Including different levels of infection evidence, and strongly 
considering data on virus isolation (or other indicators of host 

Genus Species

Peromyscus carletoni, crinitus, difficilis, fraterculus, gossypinus, gratus, guatemalensis, gymnotis, keeni, 
melanophrys, merriami, mexicanus, nasutus, pembertoni, perfulvus, polionotus, sagax, 
schmidlyi, simulus

Phenacomys ungava

Phyllotis definitus, xanthopygus*

Pseudoryzomys simplex

Rattus exulans*

Reithrodon auritus*

Reithrodontomys fulvescens, humulis, megalotis, mexicanus

Rhagomys longilingua

Rhipidomys cariri, caucensis, couesi, emiliae, gardneri, ipukensis, itoan, leucodactylus*, macconnelli, 
macrurus, mastacalis, modicus, nitela*, ochrogaster*, tribei

Sigmodon fulviventer, hirsutus*, inopinatus, leucotis, planifrons, toltecus, zanjonensis

Synaptomys borealis, cooperi

Thomasomys apeco, aureus*, caudivarius, cinereiventer, cinereus, cinnameus, eleusis, erro, gracilis, hudsoni, 
monochromos, onkiro, oreas, popayanus, praetor, ucucha, vestitus, vulcani

Zygodontomys brevicauda

TA B L E  1  (Continued)
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competence), will further improve predictive models (Becker 
et al., 2020). We show here how statistical models trained on two 
different levels of evidence about infection and the ability to gener-
ate new infections both largely performed well and capture mostly 
similar trait profiles, whereas each model differed most regarding 
predictions of likely but unsampled host species. Predictions based 
on viral isolation (i.e. host competence) are most likely to indicate 
possible reservoir hosts. However, congruent predictions derived 
from multiple types of evidence indicate particularly notable spe-
cies and, based on their geographical overlap, regions to consider 
for future field studies of host ecology, pathogen surveillance and 
interventions to limit spillover risk. These approaches will improve 

understanding of pathogen maintenance and increase efficiency in 
host surveillance not only for orthohantaviruses, but also for many 
other pathogens important in human and wildlife health.
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