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Orthohantaviruses are primarily carried by muroid rodents and cause the dis-
eases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopul-
monary syndrome (HCPS) in humans.

4. We show that although boosted regression tree (BRT) models trained on RT-PCR
and live virus isolation data both performed well and capture generally similar trait
profiles, rodent phylogeny influenced previously collected RT-PCR data, and BRTs
using virus isolation data displayed a narrower list of predicted reservoirs than
those using RT-PCR data. BRT models trained on RT-PCR data identified 138 un-
discovered hosts and virus isolation models identified 92 undiscovered hosts, with
27 undiscovered hosts identified by both models. Distributions of predicted hosts
were concentrated in several different regions for each model, with large discrep-
ancies between evidence types. As a form of validation, virus isolation models in-
dependently predicted several orthohantavirus-rodent host associations that had
been previously identified through empirical research using RT-PCR.

5. Our model predictions provide a priority list of species and locations for future
orthohantavirus sampling. More broadly, these results demonstrate the value of
multiple data types for predicting zoonotic pathogen hosts. These methods can
be applied across a range of systems to improve our understanding of pathogen
maintenance and increase efficiency of pathogen surveillance.
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1 | INTRODUCTION

Most emerging infectious diseases (EIDs) in humans are caused
by pathogens that naturally circulate in wildlife and infect multi-
ple host species (Jones et al., 2008; Taylor et al., 2001). Although
some zoonotic pathogens are transmissible among recipient
hosts (e.g. HIV), most human EID cases are the result of unique
spillover events, where humans function as dead-end hosts (e.g.
rabies, malaria; Morens et al., 2004). For EIDs, identifying likely
reservoir host species (i.e. those that maintain and transmit a par-
ticular pathogen; Haydon et al., 2002) is a critical step towards
understanding the ecology of multi-host pathogens and predicting
risks of cross-species transmission (Plowright et al., 2017; Viana
et al., 2014). Statistical models play an important role in this pro-
cess (Becker et al., 2019; Carlson et al., 2021). For example, eco-
logical trait datasets have facilitated the development of models
that can identify the typical phenotypes of reservoir host species,
which often display faster life histories (Albery & Becker, 2020;
Worsley-Tonks et al., 2020). Characterizing these trait profiles
can, in turn, spur development of new hypotheses about the
within- and between-host mechanism that facilitate pathogen
maintenance (e.g. Han et al., 2015; Han et al., 2020). Additionally,
aggregating the distributions of known and predicted reservoir
host species through geographical information systems (GIS;
Cromley, 2003) can determine regions of especially likely zoonotic
spillover risk (Becker & Han, 2021; Han et al., 2016).

Identifying likely reservoir hosts, their ecological characteristics
and their distributions can elucidate possible sources of zoonotic
exposure. Large-scale surveillance of wildlife, often involving non-
targeted sampling of a large diversity and abundance of animals,
is commonly conducted shortly after disease outbreaks to search
for reservoir hosts (e.g. Leroy et al., 2005; Poon et al., 2005). Such
studies are expensive, time-consuming and generally inefficient,
particularly when there is little information to direct sampling ef-
fort (e.g. Poon et al., 2005; Pourrut et al., 2009; Yob et al., 2001).
Therefore, predictive models provide two pragmatic benefits. First,
informed predictions provide an efficient means to proactively iden-
tify likely reservoir hosts prior to outbreaks and guide surveillance
efforts during or following outbreaks (Becker et al., 2022; Plowright
et al., 2019). Second, identifying likely reservoirs with models also
promotes targeted strategies to prevent or mitigate spillover risk
(Sokolow et al., 2019).

Given the importance of statistical models to facilitate identi-
fying likely but undetected reservoir hosts and understanding the
ecology of multi-host pathogens, there is a critical need to estab-
lish optimum techniques (Becker et al., 2022; Crowley et al., 2020).
In particular, significant questions remain about how the level
of evidence for infection and ability for onward transmission of

pathogens affects model performance and prediction (Becker
et al., 2020; Worsley-Tonks et al., 2020). Most predictive mod-
els have been developed for viruses and are based on serology
data (i.e. virus-specific antibodies), which tend to be abundant due
to their relative ease and cost-effectiveness to collect. However,
such information often only provides evidence of virus exposure,
not necessarily current infection (Gilbert et al., 2013). Polymerase
chain reaction (PCR), on the other hand, provides stronger evi-
dence of currentinfection, and can better predict host competence
(i.e. the ability to transmit) than serology data (Tolsa et al., 2018).
However, PCR can amplify nonviable virus, and therefore it does
not necessarily indicate onward transmission potential (Leland &
Ginocchio, 2007). Aside from experimental infections (e.g. Komar
et al., 2003), which are rare due to logistical constraints, the gold
standard evidence for reservoir host competence is isolation of
viable virus (e.g. Corona et al., 2018), which indicates the ability
to not only be infected, but also a greater likelihood to shed in-
fectious virus (Leland & Ginocchio, 2007). Our understanding of
how these different types of evidence alter model performance
and predictions is limited, despite clear differences in establishing
host associations, their resulting inference about the ecological
traits of dead-end hosts versus reservoirs, and their applied rele-
vance (i.e. for identifying target species in reservoir host searches
or interventions).

Orthohantaviruses (Hantaviridae, genus Orthohantavirus) are
an ideal virus group to explore differences in the performance and
predictions of models trained on different types of infection ev-
idence, due to their broad implications for human health as zoo-
notic pathogens, the predicted large number of unidentified viruses
(Vaheri et al., 2008) and the varying types of virus infection evidence
currently available from wildlife surveys. Additionally, unidentified
orthohantavirus host species have not been previously evaluated
using predictive models. There are currently 58 described ortho-
hantaviruses, primarily found in rodents (Laenen et al., 2019), many
of which cause two main human diseases: haemorrhagic fever with
renal syndrome (HFRS, which is common throughout the Old World)
and hantavirus cardiopulmonary syndrome (HCPS or HPS, which is
common throughout the New World). Because each human case is
thought to be an independent spillover event from an infected ro-
dent (Avéié—zupanc et al., 2019; Forbes et al., 2018), identifying or-
thohantavirus reservoir host species is critical for efforts to mitigate
human disease.

Most known orthohantaviruses, including all orthohantaviruses
that cause disease in humans (Forbes et al., 2018), infect rodents
in the families Cricetidae and Muridae (superfamily Muroidea),
though several mole- and shrew-borne orthohantaviruses of un-
known zoonotic potential have been discovered (Arai et al., 2007;
Arai et al., 2008; Kang et al., 2009; Kang et al., 2011). Because
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cross-species transmission is generally constrained by phylogenetic
distance between host species (Longdon et al., 2014; Streicker
et al., 2010), undiscovered orthohantaviruses of human health con-
cern are also likely to be found among muroid rodents. Additionally,
although the majority of described North and South American or-
thohantaviruses cause disease in humans (13/22), knowledge of
host relationships is weak for these viruses, and frequent discovery
of novel orthohantaviruses indicates a high likelihood of unknown
viruses in that part of the world (Mull et al., 2020). Efforts to iden-
tify likely but novel orthohantavirus reservoirs would therefore be
maximized by focusing on New World muroids. Applying model-
ling efforts at a fine taxonomic resolution should further improve
predictability by reducing statistical noise from the larger mammal
phylogeny and life-history traits that are confounded with other
host families or orders (Dallas & Becker, 2021).

In this study, we assess how the performance and predictions
of statistical models of orthohantavirus associations varies be-
tween two types of evidence for the propensity of a muroid ro-
dent species to host orthohantaviruses: (a) reverse transcriptase
PCR (RT-PCR), indicating susceptibility to infection but not neces-
sarily ability to generate new infections and (b) live virus isolation,
indicating reservoir competence. We note that this definition of
reservoir hosts applies strictly to host competence and the ca-
pacity to transmit (e.g. Becker et al., 2020; Gervasi et al., 2015;
Merrill & Johnson, 2020), in contrast to population-level defini-
tions about pathogen maintenance (e.g. Haydon et al., 2002; Viana
et al., 2014). We first characterize phylogenetic signal and taxo-
nomic patterns in orthohantavirus hosting, which can identify
clades of species more susceptible to infection or that are truly
competent reservoirs. Next, we train machine learning models on
muroid phylogenetic and trait data and compare the performance
of models applied to both forms of infection evidence to identify
undiscovered orthohantavirus hosts. Finally, predicted host distri-
butions were mapped to identify concentrated regions of potential
novel hosts and to explore how different evidence types generate
distinct landscapes of likely risk, particularly when anthropogenic
impacts are considered. Generated results will guide ongoing and
future efforts to discover novel orthohantaviruses, their host as-
sociations and geographical areas with amplified spillover risk.
More broadly, determining effective modelling approaches, spe-
cifically the role of different types of data indicating infection
and onward transmission to new hosts, is critical to optimize tools
for identifying and understanding potential zoonotic threats to

human health and security.

2 | MATERIALS AND METHODS

2.1 | Hantavirus data

A systematic literature search was conducted in Web of Science to
identify empirical studies that reported orthohantavirus infections
in New World muroid rodents via RT-PCR or virus isolation (search

queries in Appendix S1; PRISMA diagram in Appendix S2; citations
for data used in Appendix S3). We recorded the number of studies
per rodent species with each of the following criteria: at least one in-
dividual RT-PCR positive; all individuals RT-PCR negative or virus iso-
lation from at least one individual. Because orthohantaviruses cause
persistent and chronic infections in rodents (Forbes et al., 2018),
serological tests are often used to demonstrate current or recent
infection and RT-PCR is performed only on samples from antibody-
positive individuals for virus characterization (Vaheri et al., 2008).
To preclude false positives in these studies, only rodents that had
positive RT-PCR results were considered RT-PCR-positive, and all
other individuals were considered RT-PCR negative, even if RT-PCR
was not conducted. If a study used only serology without either RT-
PCR or live virus isolation attempts, then the study was not included.
When studies attempted virus isolation, additional RT-PCR results
were recorded for specimen tissue analyses, but not infected cell
cultures.

In studies that used archived samples reported in a previous
study (for the same level of evidence), those samples were omit-
ted to preclude pseudo-replication; instead, the original study was
used. If a subsequent study examined a different level of evidence
(e.g. virus isolation vs. RT-PCR), then we treated the two studies as
asingle report. When the number or description of positive and neg-
ative results per species was not clear in an article (including speci-
mens reported at the genus level and outdated taxonomy that now
represents multiple species), only definitive results were recorded.
We manually matched select rodent species names between our
orthohantavirus data and our phylogeny and trait data (see below).
Species synonyms are provided in our online data repository. Since
several Rattus and Mus are abundant in the Old and New World, only
results derived in the Americas were included. Species without pub-
lished evidence of orthohantavirus RT-PCR or isolation results were
assigned pseudoabsences (Becker et al., 2020). No ethics approval

was required for this study.

2.2 | Phylogenetic analyses

We used a recently developed supertree of extant mammals to cap-
ture rodent phylogeny (Upham et al., 2019). The tree was simplified
to our specified rodent species using the Ape package in r (Paradis
et al., 2004). Prior to predictive models, we conducted two assess-
ments of phylogenetic signal (i.e. the propensity for related rodent
species to be more similar in virus positivity). For both response
variables (RT-PCR and virus isolation), we used the caprer package
(Orme et al., 2018) to calculate D, where a value of 1 indicates a
phylogenetically random trait distribution and a value of O indicates
phylogenetic clustering under a Brownian motion model of evolu-
tion (Fritz & Purvis, 2010). Significant departure from either model
was quantified using a randomization test with 1,000 permuta-
tions. However, because traits may also arise under a punctuated
equilibrium model of evolution, we next used a graph-partitioning
algorithm, phylogenetic factorization, to flexibly identify clades
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with different propensity to be infected or competent at various
taxonomic depths (Washburne et al., 2019). Phylogenetic factori-
zation partitions a given phylogeny by iteratively identifying edges
in a tree that maximize an objective function contrasting species
separated by the edge. In the case of our Bernoulli-distributed re-
sponse variables, this objective function is the deviance of a cat-
egorical variable indicating clades on either side of each edge in
the phylogeny; this categorical variable is the predictor in a series
of generalized linear models (Crowley et al., 2020). We performed
phylogenetic factorization using the pHyLoFACTOR package, and we
determined the number of phylogenetic factors (clades) to retain
using a Holm's sequentially rejective 5% cut-off for the family-wise
error rate (Holm, 1979).

2.3 | Rodent traits

We used a published dataset of 55 traits describing the morphology,
geography, taxonomy and life history of rodent species. Trait data
were primarily from PanTHERIA alongside derived covariates includ-
ing postnatal growth rate, relative age to sexual maturity, relative age
at first birth, production and species density (Han et al., 2015; Jones
et al., 2009). We also used the picanTe package to quantify evolution-
ary distinctiveness, a measure of how isolated a species is within our
muroid phylogeny (Kembel et al., 2010; Redding & Mooers, 2006).
Finally, we included binary covariates for our muroid rodent genera
to represent taxonomy. Given substantial gaps in trait coverage for
rodents (Figure S1), we only included predictors with non-zero vari-
ance or with data for over 70% of species, resulting in 56 covariates
(Table S1). Lastly, we used the easyPusMeD package (accessed May
2021) to obtain the number of citations per species as a proxy for
sampling effort (Fantini, 2019; Olival et al., 2017).

2.4 | Boosted regression trees

We used boosted regression trees (BRTs), a trait-based machine
learning algorithm, to classify rodent species as orthohantavirus
hosts based on our predictor matrix of traits. BRTs circumvent
many statistical issues associated with traditional hypothesis test-
ing (e.g. non-independent data, many predictors, complex inter-
actions, non-randomly missing covariates) and can uncover new
and surprising patterns in data to develop testable hypotheses or
predictions (Hochachka et al., 2007). A recent comparison among
machine learning algorithms, based on predicting likely bat hosts of
betacoronaviruses, also demonstrated that trait-based models, and
BRTs in particular, vastly outperform network-based models (Becker
et al., 2022). Using BRTs, we modelled binomial virus positivity sepa-
rately for RT-PCR and virus isolation.

BRTs maximize classification accuracy by learning patterns of
features that best distinguish positive and negative hosts (Elith
et al., 2008). This generates recursive binary splits for randomly
sampled predictor variables, and successive trees are built using

residuals of the prior best-performing tree as the new response.
Boosting generates an ensemble of linked trees, where each
achieves increasingly more accurate classification. Prior to analy-
sis, we randomly split data into training (70%) and test (30%) sets,
using the rsampLE package to perform stratified sampling such that
both datasets contained equal proportions of positive labels. Models
were then trained with the cem package (Greenwell et al., 2020),
with the maximum number of trees set to 5,000, a learning rate of
0.001 and an interaction depth of three. We used a comprehensive
grid search to assess variation in model performance based on al-
ternative hyperparameters, finding that these parameterizations
struck an optimal balance between model complexity and multiple
measures of BRT performance (Appendix S4; Figure S2; Tables S2-
S4). All BRTs used a Bernoulli error distribution and fivefold cross-
validation, and we used the rocr package to quantify accuracy as
area under the receiver operator curve (AUC; Sing et al., 2005). We
also complemented this measure of model performance by calcu-
lating sensitivity and specificity with the INFOrRmATIONVALUE package
(Prabhakaran, 2016). As results can depend on random splits be-
tween training and test data, we used 100 stratified partitions to
generate an ensemble (Evans et al., 2017), resulting in mean perfor-
mance measures (M for accuracy; x for specificity and sensitivity).
Lastly, to diagnose if trait profiles of positive species are driven by
study effort, we ran a secondary set of BRTs using the same hyper-
parameters (with the exception of 10,000 total trees) that instead
modelled species citation counts as a Poisson response (Plowright
etal., 2019).

2.5 | Model performance and prediction

To assess how BRT performance varied between RT-PCR and virus
isolation models (Becker et al., 2020), we used a t-test to compare
each measure of model performance, with p-values adjusted using
the Benjamini-Hochberg correction (Benjamini & Hochberg, 1995).
We also assessed similarity in mean variable importance between
models by estimating the Spearman correlation coefficient between
feature ranks. Next, we predicted the probability of a species being
positive for either response. When predicting species status, we set
citation counts per species to their mean across species as a post-
hoc method to correct for sampling effort and remove at least some
bias (Becker et al., 2022). Lastly, we also estimated the Spearman
correlation coefficients for the mean predictions between RT-PCR
and virus isolation models.

We used these mean predictions to identify ‘false-negative’ or-
thohantavirus hosts (i.e. those without a prior recorded orthohan-
tavirus infection or isolation). We identified taxonomic patterns
in predictions using Pagel's 1 as an estimate of phylogenetic signal
with the caper package as well as a secondary phylogenetic factor-
ization to identify clades with different predicted probabilities. To
identify potential unknown hosts or competent reservoirs, we esti-
mated a 95% sensitivity threshold using the preseNcEABSENCE package
(Freeman & Moisen, 2008), which can stratify predictions at a 5%
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omission rate on known true positives. This threshold, while fairly
inclusive, mostly selects species with comparable probabilities of
being infected or competent to known hosts.

To visualize the spatial distribution of known and predicted ro-
dent hosts, we used the IUCN Red List database of mammal geo-
graphical ranges and overlaid these shapefiles for thresholded
species based on RT-PCR and isolation models. These distributions
were also mapped against a proxy for cumulative anthropogenic
impact on natural systems, given by the SEDAC Last of the Wild
database's 2009 Human Footprint map (Venter et al., 2016; Venter
et al., 2018). This qualitative descriptor encompasses several geo-
spatial layers that describe anthropogenic impacts with relevance
to human exposure to rodents and orthohantaviruses, particularly
human occupation (i.e. built up settlements and human population),
agricultural intensification (i.e. crop lands and pasture lands) and

ecosystem fragmentation (i.e. road and railway density).

3 | RESULTS
3.1 | Phylogenetic patterns
Across our 601 New World muroid rodent species, 9.65% displayed

evidence of orthohantavirus infection via RT-PCR, whereas only 2%

were found positive for virus isolation (Figure 1). Of the 12 species

(@) RT-PCR

subclade of Peromyscus

Oligoryzomys

(b) virus isolation

with virus isolation records, only one (Microtus pennsylvanicus) did
not have recorded evidence of PCR positivity. We identified inter-
mediate phylogenetic signal in RT-PCR data (D = 0.83) but little
phylogenetic signal in virus isolation data (D = 0.90). For the for-
mer, phylogenetic patterns in RT-PCR data departed from both
randomness (p = 0.002) and Brownian motion (p <0.001), whereas
virus isolation data departed from Brownian motion (p <0.001) but
not phylogenetic randomness (p = 0.16). Results from phylogenetic
factorization were qualitatively similar. We identified two rodent
clades with greater propensities to have orthohantavirus infections
detected via RT-PCR. The whole genus Oligoryzomys (n = 20) and a
subclade of the genus Peromyscus (n = 24) had 40% and 37.5% of
species predicted to be capable of becoming infected, respectively,
compared to 9% of the paraphyletic remainder. In contrast, our
analyses identified no taxonomic patterns in positive virus isolation

results.

3.2 | Model performance

Both infection evidence BRT models distinguished orthohantavirus-
positive and orthohantavirus-negative rodent species with high ac-
curacy (AUC =0.92+0.003) and specificity (x =0.99+0.001) but
low sensitivity (x =0.20+0.01). However, BRTs trained on virus
isolation data performed better (M =0.93+0.004) than those

FIGURE 1 Phylogenetic distribution of
orthohantavirus-positive muroid rodents
in the New World. Species with evidence
of infection (a, RT-PCR) or competence (b,
live virus isolation) are displayed in black.
Visualized in red are any clades identified
through phylogenetic factorization for
having greater virus positivity when
compared to the paraphyletic remainder
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trained on RT-PCR data (m =0.91+0.003; t = 2.63, p = 0.009;
Figure 2a), resulting in a small standardized effect size (Cohen's
d = 0.37; Cohen, 1988). RT-PCR models had greater sensitivity (x
=0.37+0.01) than virus isolation models (x =0.03+0.01; t = 22.55,
p<0.001; Cohen's d = 3.19; Figure S3), whereas virus isolation mod-
els had improved specificity (x =1.00+0.00) over RT-PCR models
(x =0.98+0.001; t = 16.33, p<0.001; Cohen's d = 2.31; Figure S3).

Despite these differences in performance measures, both types
of models identified mostly similar species traits as predictive of
positivity. Ranks of mean variable importance scores were strongly
correlated (p = 0.87, p<0.001), even after removing traits with zero
relative importance (n = 37 remaining features; p = 0.84, p<0.001).
Consistently important features for both response variables included
PubMed citations, species richness and density within the species
range, and evolutionary distinctiveness. Consistently unimportant
features included the genera Thomasomys, Rhipidomys, Handleyomys
and Nectomys. Major discrepancies included the genus Peromyscus
being an important predictor of RT-PCR positivity but not virus
isolation and the genus Oryzomys being an important predictor of
virus isolation but not RT-PCR positivity (Figure 2b; Table S5). Partial
dependence plots suggested that effect directions were largely
consistent across models, with positive species being well-studied,
located in mammal-rich regions, and characterized by smaller size
(Figure S4). Effect direction differed for phylogenetic character-
istics, as RT-PCR-positive species were less evolutionarily distinct
while species positive for virus isolation were more evolutionarily
distinct. Our secondary BRTs of sampling effort showed that cita-
tions were not predictable by host traits (AUC =0.49 +0.001), sug-
gesting that the trait profiles of positive rodents are not confounded
by the traits of well-studied species.

3.3 | Model prediction

Predicted probabilities of being an orthohantavirus host varied
widely across the 601 rodent species and were not correlated be-
tween BRTs of both evidence types (p = 0.06, p<0.12; Figure 3a).
Many species with intermediate-to-high propensity scores from
models based on RT-PCR had a low corresponding probability of
being a host based on virus isolation data. Whereas both predictions
displayed moderate phylogenetic signal (1 = 0.63 and 0.57, respec-
tively), the taxonomic patterns identified by phylogenetic factori-
zation largely differed between models (Figure 3b,c; Table S3). For
both evidence type models, the genus Oligoryzomys (n = 20) had a
greater mean probability of orthohantavirus hosting compared to
the paraphyletic remainder. Predictions from infection models also
included a subclade of the genera Peromyscus (n = 25), Oxymycterus
(n = 6), Calomys (n = 8) and Rhipidomys (n = 13) as having higher
probabilities (x =0.62, 0.74, 0.68 and 0.61, respectively), for which
Peromyscus was also identified in our phylogenetic factorization of
the raw data (Figure 1). However, the subfamily Arvicolinae (includ-
ing voles, lemmings and muskrats; n = 43) had lower probabilities of
positive RT-PCR results (x =0.23). Predictions from virus isolation

models differed from RT-PCR model predictions, as a subclade of the
genus Oecomys (n = 7) and the genus Oryzomys (n = 6) had greater
probabilities of being likely competent reservoirs (both x =0.24).
Lastly, we stratified results into binary predictions using a 95%
sensitivity threshold. This revealed a total 138 likely undiscovered
hosts based on RT-PCR models versus 92 undiscovered hosts based
on virus isolation models, of which 27 were also predicted by the for-
mer (Table 1). Mapping the geographical distribution of undetected
hosts alongside known orthohantavirus-positive rodent species
revealed that while predictions from RT-PCR models largely reca-
pitulated the distributions of known RT-PCR-positive species, virus
isolation models indicated novel hotspots of overlapping competent
reservoirs in the northeastern United States and northern South

America, particularly along the Andes Mountains (Figure 4).

4 | DISCUSSION

We used rodent-orthohantavirus associations to demonstrate how
statistical model performance and predictions are impacted by dif-
ferent types of infection evidence (i.e. RT-PCR versus virus isolation)
alongside identifying rodent species that are likely novel orthohan-
tavirus hosts. Determining the reservoir host of many viruses can
be challenging, given logistical challenges of experimental infections
and the dramatic variation of infection prevalence across space and
time (e.g. for virus isolation; Walsh et al., 2007; Vadell et al., 2011;
Holsomback et al., 2013). This is especially true for orthohantavi-
ruses, which are notoriously difficult to isolate (Strandin et al., 2020).
However, predictive modelling enables the identification of novel
hosts in the absence of field data and, in turn, facilitates targeted
field surveillance that can ultimately be used to mitigate hazards
posed by zoonotic viruses (Becker et al., 2019). We illustrate here
how such models trained on two distinct forms of evidence on host
capacity can vary in their performance and predictions regarding
likely host species and where they overlap in space.

Orthohantaviruses have traditionally been considered to follow
evolutionary cophylogenies with their hosts, with few cross-species
infections denoting distinct lineages (Herbreteau et al., 2006; Hjelle
et al., 1995; Song et al., 2007). However, the discovery of additional
orthohantaviruses has since expanded the diversity of hosts and
demonstrated host switches in their evolutionary history (Blasdell
et al.,, 2011; Guo et al., 2013). Indeed, orthohantaviruses have been
isolated from species among all four subfamilies of muroid rodents
in the Americas. Within those subfamilies, orthohantaviruses have
been isolated from seven genera, and the subset of hosts predicted
by both models would expand this range by four additional genera
(Table 1). In particular, the discovery of an orthohantavirus hosted by
Myodes gapperi would bridge not only a phylogenetic gap between
Eurasian and American viruses, but also a geographical gap between
Russia and North America. Several Microtus species are the only ar-
vicoline rodents currently known to host orthohantaviruses in the
New World, despite a variety of arvicoline hosts in the Old World
(Blasdell et al., 2011).
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based on RT-PCR versus virus isolation.
(a) Distribution of propensity scores
stratified by known positive, currently
negative and unsampled species. The
scatterplot between predictions includes a
smoothed curve and confidence intervals
from a generalized additive model. (b,

c) Taxonomic patterns in predictions

as identified through phylogenetic
factorization. Segments are scaled by
probabilities and coloured as in panel

a. Clades identified with significantly
different mean predictions are shown

(b) RT-PCR predictions

In our study, postulated orthohantavirus hosts are mostly con-
centrated in several regions—southern Mexico and eastern Brazil
(based on RT-PCR data) and central and southeastern United States
as well as the portions of Peru and northern South America sur-
rounding the Amazon basin (based on virus isolation data; Figure 4).
Interestingly, all of these regions coincide with geographical gaps
in known orthohantavirus distribution (Guzman et al., 2017).
Distributions from our virus isolation models are consistent with the
North American, but not South American, regions predicted to con-
tain rodent reservoirs of novel pathogens at a broader taxonomic
scale (Han et al., 2015), and vice versa for distributions from our RT-
PCR models, though with a lesser intensity. Such differences high-
light the importance of considering various types of evidence, as the

in grey, and additional information (e.g.
included taxa, species richness) is included
in Table S6

(c) virus isolation predictions

use of only one type would have presented an incomplete picture.
Future surveillance efforts in these areas will clarify model accuracy
to determine the effectiveness of each data type in host predictions.

BRT models trained on RT-PCR and virus isolation data pro-
duced similarly high AUC and specificity but did differ in sensi-
tivity. The extremely low sensitivity for virus isolation models is
most likely a function of the low predicted probability of hosting
based on this form of infection evidence; known positive species
had predictions below approximately 60%, which was thus the
threshold for classification in calculating sensitivity and specific-
ity. Over-sampling would have likely increased sensitivity (Chawla
et al., 2002), but doing so may result in lower specificity (Fountain-
Jones et al,, 2019). Because the low sensitivity of our models was
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TABLE 1 Predicted undiscovered hosts of orthohantaviruses in the Americas: A priority list for future sampling. Plain text species are
predicted by the RT-PCR model only, bolded species are predicted by the virus isolation model and starred species are predicted by both
models

Genus Species

Abrothrix olivaceus*, lanosus, manni, markhami, sanborni

Aepeomys reigi

Akodon boliviensis, cursor, dayi, fumeus, lutescens, iniscatus, leucolimnaeus, mystax, orophilus,

Amphinectomys

Baiomys

Brucepattersonius

paranaensis, pervalens, reigi, subfuscus, toba
savamis
musculus, taylori

albinasus, griserufescens, igniventrus, paradisus, soricinus

Calomys cerqueirai, expulsus, hummelincki, musculinus, sorellus, tener, tocantinsi, venustus
Chibchanomys orcesi

Chilomys instans

Delomys collinus

Dicrostonyx

Eligmodontia

groenlandicus

bolsonensis, typus

Euneomys chinchilloides

Euryoryzomys macconnelli, nitidus
Graomys griseoflavus

Habromys delicatulus, ixtlani, lepturus
Holochilus brasiliensis, lagigliai, sciureus
Hylaeamys oniscus, yunganus

Juliomys rimofrons

Juscelinomys

guaporensis, huanchacae

Lemmus trimucronatus

Loxodontomys micropus

Melanomys caliginosus*

Microtus chrotorrhinus, oeconomus, pinetorum
Microryzomys minutus*

Mus musculus

Myodes gapperi, rutilus

Neacomys dubosti, guianae, minutus, musseri, paracou, spinosus*, tenuipes*
Necromys lasiurus, lenguarum, punctulatus, urichi*

Nectomys apicalis, magdalenae, palmipes, rattus, squamipes

Neotoma leucodon

Neusticomys

ferreirai, oyapocki, peruviensis, venezuelae

Nyctomys sumichrasti*
Ochrotomys nuttalli
Oecomys auyantepui, bicolor*, catherinae, concolor*, mamorae®*, paricola, roberti*, speciosus, superans,

Oligoryzomys

sydandersoni*, trinitatis*

andinus®, arenalis, brendae, chacoensis, delticola*, destructor*, eliurus*, griseolus*, flavescens,
magellanicus*, moojeni, nigripes, rupestris, vegetus, victus

Ondatra zibethicus

Onychomys torridus

Oryzomys antillarum*, dimidiatus, gorgasi

Otonyctomys hatti

Oxymycterus amazonicus, angularis, caparoae, dasytrichus, inca, josei, paramensis, quaestor, roberti, wayku

(Continues)
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TABLE 1 (Continued)

carletoni, crinitus, difficilis, fraterculus, gossypinus, gratus, guatemalensis, gymnotis, keeni,

melanophrys, merriami, mexicanus, nasutus, pembertoni, perfulvus, polionotus, sagax,

Genus Species
Peromyscus
schmidlyi, simulus
Phenacomys ungava
Phyllotis definitus, xanthopygus*
Pseudoryzomys simplex
Rattus exulans*
Reithrodon auritus*

Reithrodontomys

fulvescens, humulis, megalotis, mexicanus

cariri, caucensis, couesi, emiliae, gardneri, ipukensis, itoan, leucodactylus*®, macconnelli,

macrurus, mastacalis, modicus, nitela*, ochrogaster*, tribei

fulviventer, hirsutus®, inopinatus, leucotis, planifrons, toltecus, zanjonensis

apeco, aureus®, caudivarius, cinereiventer, cinereus, cinnameus, eleusis, erro, gracilis, hudsoni,

monochromos, onkiro, oreas, popayanus, praetor, ucucha, vestitus, vulcani

Rhagomys longilingua
Rhipidomys

Sigmodon

Synaptomys borealis, cooperi
Thomasomys

Zygodontomys brevicauda

an artefact of the probability threshold, we opted to prioritize
specificity and forego over-sampling. Additionally, the greater
AUC for virus isolation models indicated good performance, and
species with and without evidence of virus isolation were clearly
distinguishable by our BRTs (Figure 3a). In addition to perfor-
mance, the ecological characteristics identified with positivity
through both diagnostic methods were largely similar (Figure 2;
Figure S4).

Muroid rodents positive via RT-PCR or virus isolation tended to
have smaller body sizes and occur in regions of high mammal rich-
ness, alongside other characteristics (Figure S4), matching previ-
ous fast pace of life profiles of hosts of zoonotic pathogens across
Rodentia more generally (Han et al., 2015). However, in line with our
phylogenetic analyses, BRTs also suggested that RT-PCR-positive
species were less evolutionarily distinct, likely driven by increased
susceptibility to and frequency of spillover events for related species
(Longdon et al., 2014; Streicker et al., 2010), whereas virus isolation
positive species were more isolated among the muroid phylogeny.
Although these differences may be skewed by targeted trapping of
known hosts in particular studies (e.g. Safronetz et al., 2008), the
broad sampling approach typical of small mammal trapping and han-
tavirus surveys (e.g. Chu et al., 2008; de Thoisy et al., 2014) suggests
that the phylogenetic differences between our RT-PCR and virus
isolation models are indicative of the heterogeneity among rodent
hosts in ortohantavirus maintenance.

In addition to this phylogenetic contrast, each predictive model
generated mostly different lists of potential hosts. There was only
minor overlap in predicted host species, and the virus isolation model
produced a more concise list of competent reservoir candidates
than the RT-PCR model (Table 1). Notably, the isolation model pre-
dicted several species that have been identified as orthohantavirus
hosts based on empirical studies using RT-PCR (Holochilus sciureus,

Loxodontomys micropus, Oligoryzomys chacoensis, O. flavescens, O.
nigripes, Reithrodontomys fulvescens, R. megalotis, R. mexicanus and
Zygodontomys brevicauda; Mull et al., 2020). These consistencies help
validate the predictive capacity of our models, particularly when
virus isolation data are included. Ultimately, field studies and natural
infection experiments will be necessary to verify our predicted host
species, though such model-guided prioritization schemes can pro-
vide initial insights to guide empirical efforts (Plowright et al., 2019).

Although this study focused on New World orthohantaviruses
to enable higher resolution results in this system, our modelling ap-
proach with multiple types of infection evidence is transferable to
many other systems. Old World orthohantaviruses represent the
most obvious extension, particularly for regions with minimal sur-
veillance, such as Africa, the eastern Mediterranean and Southeast
Asia (Guo et al., 2013; Herbreteau et al., 2006). However, other virus
groups that pose a threat to human welfare would also benefit from
predictive modelling. For example, the reservoir hosts, and likely
virus diversity, of orthopoxviruses (e.g. cowpox virus, monkeypox
virus) are still mostly unknown, despite common evidence of or-
thopoxvirus infection among a diverse assemblage of wildlife, par-
ticularly rodents (Kinnunen et al., 2011; Mclnnes et al., 2006) and
carnivores (Emerson et al., 2009; Morgan et al., 2019). In such cases,
models incorporating multiple levels of infection evidence can help
filter out sampling noise caused by spillover to empower host detec-
tion for many known and future emerging infectious diseases (Jones
et al.,, 2008). However, this framework is limited to systems with
sufficient data from multiple types of evidence, as model training
would be challenging and inaccurate, or impossible, for viruses that
are rarely or have never been isolated, such as henipaviruses and
filoviruses.

Including different levels of infection evidence, and strongly
considering data on virus isolation (or other indicators of host
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FIGURE 4 Distribution of orthohantavirus hosts. The distribution of known (a, b) and predicted undiscovered (c, d) hosts of
orthohantaviruses based on RT-PCR (a, ) and virus isolation (b, d), based on the IUCN Red List database of mammal geographical ranges

competence), will further improve predictive models (Becker
et al., 2020). We show here how statistical models trained on two
different levels of evidence about infection and the ability to gener-
ate new infections both largely performed well and capture mostly
similar trait profiles, whereas each model differed most regarding
predictions of likely but unsampled host species. Predictions based
on viral isolation (i.e. host competence) are most likely to indicate
possible reservoir hosts. However, congruent predictions derived
from multiple types of evidence indicate particularly notable spe-
cies and, based on their geographical overlap, regions to consider
for future field studies of host ecology, pathogen surveillance and
interventions to limit spillover risk. These approaches will improve

understanding of pathogen maintenance and increase efficiency in
host surveillance not only for orthohantaviruses, but also for many
other pathogens important in human and wildlife health.
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