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Abstract

We study the problem of online multi-task learn-
ing where the tasks are performed within simi-
lar but not necessarily identical multi-armed ban-
dit environments. In particular, we study how a
learner can improve its overall performance across
multiple related tasks through robust transfer of
knowledge. While an upper confidence bound
(UCB)-based algorithm has recently been shown
to achieve nearly-optimal performance guarantees
in a setting where all tasks are solved concurrently,
it remains unclear whether Thompson sampling
(TS) algorithms, which have superior empirical
performance in general, share similar theoretical
properties. In this work, we present a TS-type
algorithm for a more general online multi-task
learning protocol, which extends the concurrent
setting. We provide its frequentist analysis and
prove that it is also nearly-optimal using a novel
concentration inequality for multi-task data aggre-
gation at random stopping times. Finally, we eval-
uate the algorithm on synthetic data and show that
the TS-type algorithm enjoys superior empirical
performance in comparison with the UCB-based
algorithm and a baseline algorithm that performs
TS for each individual task without transfer.

1. Introduction

We study multi-task transfer learning in a multi-armed ban-
dit (MAB) setting. In practice, auxiliary data from different
but related sources are often available, although it is also
often less clear how they should be utilized. If properly
managed, such data can serve an important role in accel-
erating learning; in particular, in online learning, auxiliary
data may be used to avoid costs associated with unnecessary
exploration. In this work, we study how data collected from
similar sources can be robustly aggregated and utilized.
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We consider a generalization of the e-multi-player multi-
armed bandit (e-MPMAB) problem recently proposed by
Wang et al. (2021), which can be used to model multi-task
bandits. In the -MPMAB problem!, a set of players sequen-
tially and potentially concurrently interact with a common
set of arms that have player-dependent reward distributions.
Each player and its associated reward distributions (data
sources) are thereby regarded as a task. Furthermore, we
consider the reward distributions that the players face for
each arm to be similar but not necessarily identical, and the
level of (dis)similarity is specified by a parameter € € [0, 1].

The e-MPMAB problem can be used to model important
real-world applications: for example, in healthcare robotics,
a set of robots, which correspond to players, can be paired
with people with dementia to provide personalized cogni-
tive training, who may exhibit similar preferences which
correspond to reward distributions (Kubota et al., 2020); in
recommendation systems, learning agents can be assigned
to people within a social network, who may have similar
interests due to inter-network influence (Qian et al., 2013).

Despite the similarity in its reward distributions, the e-
MPMAB problem is still challenging for two reasons: on
the one hand, misusing auxiliary data can lead to negative
transfer and substantially impair a player’s performance
(Rosenstein et al., 2005); on the other hand, while auxiliary
data are often immediately accessible in their entirety in
offline transfer learning settings, in the e-MPMAB problem,
the available auxiliary data grow in time and depend on the
interactions between the players and the environments.

An upper confidence bound (UCB)-based algorithm,
ROBUSTAGG(¢), has been proposed for the e-MPMAB
problem (Wang et al., 2021). It achieves strong, near-
optimal theoretical guarantees through robust data aggre-
gation. Nevertheless, ROBUSTAGG(¢)’s empirical perfor-
mance can, unfortunately, be underwhelming.

Meanwhile, Thompson sampling (TS) algorithms (Thomp-
son, 1933), another family of bandit algorithms, have been
shown superior empirically in comparison with UCB-based
algorithms in standard single-task settings (e.g., Chapelle
& Li, 2011). In fact, we show in Section 7 that, for the

"We shall still refer to the generalized problem as the e-
MPMAB problem.
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e-MPMAB problem, a baseline algorithm which employs
TS for each task individually without transfer learning can
outperform ROBUSTAGG(¢) in many cases.

In spite of the encouraging signs from the empirical evalu-
ations, the theoretical study of TS have lagged behind, es-
pecially in terms of frequentist analyses (Agrawal & Goyal,
2017; Kaufmann et al., 2012) for data aggregation and trans-
fer learning in the multi-task setting?. It is therefore im-
perative to design multi-task TS-type algorithms that have
superior empirical performance and strong theoretical guar-
antees. Our contributions in this work are:

1. Inspired by prior works (Cesa-Bianchi et al., 2013;
Gentile et al., 2014; Hong et al., 2021), we generalize
the e-MPMAB problem (Wang et al., 2021) to model
a wider class of multi-task bandit learning scenarios
so that it covers sequential and concurrent multi-task
learning as special cases.

2. We design a TS-type algorithm, ROBUSTAGG-TS (e),
for the e-MPMAB problem and provide a frequentist
analysis with near-optimal performance guarantees.

3. We empirically evaluate ROBUSTAGG-TS(¢) on syn-
thetic data and show that it outperforms the UCB-based
ROBUSTAGG(¢) and a baseline algorithm that runs TS
for each individual task without data sharing.

4. Technical highlight: frequentist analyses of Thomp-
son sampling can be much harder to conduct than
those of UCB-based algorithms (see Remark 5.2);
a concentration inequality loose in logarithmic fac-
tors can result in a polynomial increase in regret
guarantee (see Remark 5.7). To cope with this chal-
lenge, we prove a novel concentration inequality for
multi-task data aggregation at random stopping times
(Lemma 5.6), which leads to tight performance guaran-
tees for ROBUSTAGG-TS(€). Our technique may be
of independent interest for analyzing other multi-task
sequential learning problems.

2. Preliminaries

In this section, we first present the problem formulation and
some important known results. We then introduce a new
baseline algorithm based on TS.

Notations. Throughout, we use [n] to denote the set
{1,2,...,n}. Let N'(1, 0%) denote the Gaussian distribu-
tion with mean y and variance 2. Let a V b = max(a, b).
Foraset A C U, denote by A = U\ A the complement of
A in the universe U. We use O to hide logarithmic factors.

2See Section 6 for a discussion on related work.

2.1. Problem Formulation

We consider and generalize the e-MPMAB problem intro-
duced by Wang et al. (2021). An e-MPMAB problem in-
stance comprises M players, K arms, and a dissimilarity
parameter € € [0, 1]. Let [M] denote the set of players and
[K] the set of arms. For each player p € [M] and each arm
i € [K], there is an initially-unknown reward distribution
DP, which has support [0, 1] and has mean .

Reward dissimilarity. The reward distributions for each
arm are assumed to be similar but not necessarily identical
for different players; specifically,

Vi€ K], pge M), |u—pil<e D)
Protocol. In the work of Wang et al. (2021), the players
interact with the arms in rounds, and within each round, all
players take an action concurrently. In this paper, inspired
by the problem setup of Hong et al. (2021), we general-
ize the interaction protocol such that it allows any subset
of the players to take an action. In each round ¢ € [T,
where T' > max(K, M) is the time horizon of learning,
a subset of players P; C [M] is chosen (called the ac-
tive player set at round t) by an oblivious adversary; each
active player p € P; then pulls an arm it € [K] and ob-
serves an independently-drawn reward r¥ ~ Dp At the
end of round ¢, the active players communicate their de-
cisions, {i} : p € P;}, as well as their observed rewards,
{r? : p € P;}, to all players. Note that, when |P;| = 1 for
all ¢, the problem setting resembles the one in (Cesa-Bianchi
et al., 2013) and captures a sequential transfer bandit learn-
ing setting (e.g., Azar et al., 2013); when P; = [M] for all
t, we recover the setting in the work of Wang et al. (2021).

Performance metric. The goal of the players is to min-
imize their expected collective regret, which we define
shortly. For each player p € [M], let uf = max;c(x) p
denote the mean reward of an optimal arm for p; then, for
each arm ¢ € [K], let A? = 4% — 4 > 0 denote the
(suboptimality) gap of arm ¢ for player p. In addition, let
nt(t) = > .<; 1{p € Ps, & =i} denote the number of
pulls of arm i by player p after ¢ rounds. Then, the individ-
ual expected regret of any player p is defined as

SRR

te[T): i€[K]
PEP:

Reg?(

Finally, the expected collective regret is defined as the sum
of individual expected regret over all the players, i.e.,

Reg(T Z Reg?( Z Z

1€[K| pe[M]

2
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Does one need to know ¢? In this work, we focus on
the case where ¢ is known to the players in the e-MPMAB
problem. This is because Wang et al. (2021) prove that, un-
fortunately, not much can be done when € is unknown to the
players—a lower bound (Theorem 11 therein) shows that no
sublinear-regret algorithms can effectively take advantage
of inter-task data aggregation for every € € [0, 1] to achieve
improved regret upper bounds.

2.2. Existing Results

In the concurrent setting (P; = [M] for all t), Wang et al.
(2021) show that, whether data aggregation can be prov-
ably beneficial for an arm ¢ depends on how its associated
suboptimality gaps, A’s, compare with the dissimilarity
parameter, €.

Subpar arms. Specifically, the problem complexity is

captured by a notion called subpar arms. The set of a-
subpar arms is defined as:
Zo ={i € [K]: 3p, AT > a}. 3)

Regret guarantees. The upper and lower bounds pro-
vided in (Wang et al., 2021) characterize that, informally,
the collective performance of the players can be improved
by a factor of M (resp. /M) for each O(¢)-subpar arm in
the (suboptimality) gap-dependent (resp. gap-independent)
bounds, where we recall that M is the number of players.

This improvement is in comparison with baseline algorithms
in which each player runs their own instance of a bandit al-
gorithm individually. Let IND-UCB be a baseline in which
each player runs the UCB-1 algorithm (Auer et al., 2002). Its
collective regret guarantees are obtained by simply summing
over individual gap-dependent and gap-independent regret

bounds, respectively: O (Zpe[M] D ie[K]:AP>0 12—;) and
O (MVET).

In contrast, through leveraging auxiliary data from
inter-player communication, the UCB-based algorithm,

ROBUSTAGG(¢), proposed by Wang et al. (2021) has gap-
dependent and gap-independent regret bounds of

z > LS S lnT+MK and

16106 p€E[M] A iezl pE[M] A
AP>0 AP

()
@( VML |T+M/ (|ZS| - 1) T + MK),
N ———

(%)

respectively®. These guarantees exhibit a factor of ﬁ and

3The results may appear different from (Wang et al., 2021) at a

1 . . .
737 improvement in the respective () terms, for the set of

O(e)-subpar arms, Zs., and is nearly optimal.

In Appendix D, we give a brief recap of ROBUSTAGG (¢)—
we show that with a few small modifications, it can be
extended to work in the generalized e-MPMAB setting, and
achieve generalized regret guarantees (see Theorem D.2).

Lower bounds. In the setting where the dissimilarity pa-
rameter € is known, a lower bound in (Wang et al., 2021)
shows that, for any algorithm that has a sublinear-regret
guarantee, when facing a large class of e-MPMAB problem
instances, it must have regret at least

0 In T InT
Z Amin Z E : AP ’
i€T i APIN>0 ! €IS, pEIM]:AT>0 ?

where AM™" = min,¢(y;) A?. This lower bound shows
that, data aggregation cannot be effective for the arm set
14, CIC.

In addition, Wang et al. (2021) also show a gap-independent
lower bound: for any algorithm, there exists an e-MPMAB
instance, in which the algorithm has regret at least

Q(N/M|I5€|T + My\/(IZE] - 1) T),

in the setting where P, = [M] for all ¢t € [T].

2.3. Baseline: IND-TS

In this work, we consider another baseline algorithm,
IND-TS, in which each player runs the standard TS al-
gorithm with Gaussian priors. We now describe the TS
algorithm. At a high level, every learner (player) p begins
with some prior belief on the mean reward of each arm, and
through interactions with the environment, the learner up-
dates its posterior belief. Specifically, we consider TS with
Gaussian product priors—a learner maintains one Gaussian
posterior distribution for each arm, beginning with A/ (0, 1).
In each round ¢, the learner draws an independent sam-
ple 6% (¢) for each arm ¢ from its corresponding posterior

distribution, which is of form N (ul ) m) where

D _
o= ”?(t_l)vl Es<t:p€7’s,i§’:i P is the empirical mean

reward of player p pulling arm ¢. The learner then pulls the
arm iy = argmax, 07 (t), receives a reward r} ~ D%,, and

t
updates the posterior distribution for arm i.

Based on the results of Agrawal & Goyal (2017), we ob-
tain the regret guarantees of IND-TS by summing over

individual bounds: O (e Cieixgarso 3% ) and
0, (M\/KT).

glance because we use a slightly notation for subpar arms.
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Algorithm 1 ROBUSTAGG-TS (¢)

1: Input: Dissimilarity parameter ¢ € [0, 1], universal
constants ¢y, co > 0.
2: Initialization: For every i € [K] and p € [M], set

n? =0, ind-iif = 0, ind-var? = ¢y, agg-ii = 0, and

]
agg-var? = co; for every i € [K], setn; = 0.
3: for round ¢ € [T] do
4:  Receive active set of players P;.
5:  for active player p € P; do
6: for arm ¢ € [K] do
7: if n? > 01617;” + 2M then
8: @ < ind-ff, var? « ind-var?;
> Use the individual posterior
9: else
10: A« agg-pif, varl + agg-var?’;
> Use the aggregate posterior
11: end if
12: 07 (t) ~ N(a?, varl)
13: end for
14: Player p pulls arm 4; = argmax;¢ k1 07 (t) and
observes reward 7.
15:  end for
16:  for active player p € P; do
17: Let = if. Update n! < n? +1and n; + n; + 1.
18:  end for
19:  for active player p € P; do
20: Leti = .

> Only update posteriors associated with p and ¥
21: Update

ind-4? «

1 . .
oo LpePui =i}t
s<t

1

. C2

ind-var} < ———;
n; V1

22:

1
P g _ g
agg-it < V1 SE<t qu 1{i? =i} rl+e,
Cs

P
-var; = ———————.
agg-vars; (= M)V 1

23:  end for
24: end for

In Appendix D, we briefly recap the guarantees of
IND-UCB and IND-TS in the generalized e-MPMAB set-
ting, where P;’s are not necessarily [M] in every round.

3. Algorithm

In this section, we present a TS-type randomized exploration
algorithm, ROBUSTAGG-TS(¢) (Algorithm 1), which can
robustly leverage data collected by all the players.

In each round ¢, for each active player p € P; and arm
1, ROBUSTAGG-TS(€) maintains two Gaussian “‘posterior”
distributions. As a standard single-task TS algorithm with
Gaussian priors would normally maintain (e.g. Agrawal &
Goyal, 2017), N (ind-ﬂf , ind-var? ), the individual poste-
rior is solely based on player p’s own interactions with arm
i, with ind-/i¥” and ind-var! defined in line 21. In contrast,
the aggregate posterior, N (agg-ﬂf , agg-var? ) , 1s unique
to the multi-task setting—its mean, agg-/i}, is the sum of
the empirical mean of all players’ observed rewards for arm
i and a bonus term €, and its variance, agg-var?, is based on
the total number of pulls of arm ¢ by all players (line 22).

The algorithm chooses one of the posterior distributions
(lines 7 to 11), i.e., decides whether to utilize data shared by
other players, by balancing a bias-variance trade-off (Ben-
David et al., 2010; Soare et al., 2014; Wang et al., 2021):
while an inclusion of n; reward samples collected by all
players leads to a variance, agg-varf , which can be much
smaller than ind-var?, it may also cause agg-/i¥’ to be biased
as the reward distributions for different players may be
different. The algorithm then independently draws a sample,
6?(t), from the chosen posterior distribution (line 12) and
pulls the arm with the largest 67 (¢) for player p (line 14).

Specifically, in round ¢, for player p € P; and arm ¢ € [K],
the algorithm chooses posterior distribution by comparing
n?, the number of pulls of i by p at the beginning of round
t, to a threshold in terms of the dissimilarity parameter, i.e.,
01617;” + 2M (line 7), where ¢; > 0 is some numerical
constant. Intuitively, when € is smaller, each player stays
longer on using the aggregate posterior to perform random-
ized exploration, which indicates a higher degree of trust on
data from other tasks.

After all players in P; obtain rewards for their arm pulls,
they compute and update their posteriors with new data.
In principle, data from one player can affect the aggregate
posteriors of all players. We make the design choice that this
effect gets delayed: the algorithm only updates the expected
reward posterior for player p and arm ¢ in round ¢, if p € P
and 7 = i¥ (line 20). Although our current analysis (see
Sections 4 and 5 below) relies on this property to establish
sharp regret guarantees, we conjecture that similar regret
guarantees can be shown even if the algorithm updates the
posteriors of all players and all arms in every round.

4. Main Results

We now present gap-dependent and gap-independent regret
upper bounds of ROBUSTAGG-TS(e). Recall that Z,, =
{i € [K] : 3p, AP > a} is the set of a-subpar arms.

Theorem 4.1 (Gap-dependent bound). There exists a set-
ting of ¢1, co > 0, such that, the expected collective regret
of ROBUSTAGG-TS (¢€) after T > max(K, M) rounds sat-
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isfies: Reg(T) <

1 lnT

M2 X AT

i1€T10e pe[M] —*
AP>0

Z ZlnT

i€Z(), pE[M] Z
AP>0

Theorem 4.2 (Gap-independent bound). There exists a set-
ting of ¢1, co > 0, such that, the expected collective regret
of ROBUSTAGG-TS (¢€) after T > max(K, M) rounds sat-
isfies:

Reg(T <O(\/ [ Zioe| P+ \/ M (I Z5o] — )P+M2K)’

where P = ZZ;I [P

The proofs of Theorems 4.1 and 4.2 can be found in Ap-
pendix C; in Section 5, we also highlight several technical
challenges and proof ingredients in our analysis.

Guarantees in the generalized e-MPMAB setting. Our
guarantees for ROBUSTAGG-TS(€) hold under the gener-
alized e-MPMAB setting, in that P;’s at each round can
change over time. Observe that the regret bound given
by Theorem 4.1 does not depend on P;’s, and the regret
bound given by Theorem 4.2 has the highest value when
P = MT. In addition, recall that near-matching gap-
dependent and gap-independent lower bounds have been
shown by Wang et al. (2021) in the P; = [M] setting (Sec-
tion 2.2). These lower bounds indicate the near-optimality
of ROBUSTAGG-TS(¢)’s guarantees, modulo an additive
lower-order term O(M? K) which does not depend on 7.

Furthermore, the gap-independent guarantee in Theorem 4.2
adapts to the value of P. This shows the flexibility of
ROBUSTAGG-TS (€). Specifically, if |P;| = 1 (similar to
the settings of Cesa-Bianchi et al. 2013; Gentile et al. 2014),
we have P = T, and Reg(T") <

O <\/|1105T +/M (TG - 1) T + M2K) .

Similarly, if P; = [M] for all ¢ (Wang et al., 2021), then
P = MT, and Reg(T) <

<\/ |Troe| T + Mo/ (ITG.] — )T+M2K).

Comparison with baselines. In comparison with the
guarantees of the UCB-based algorithm ROBUSTAGG(¢) in
Appendix D.2, we see that ROBUSTAGG-TS (¢€) has compet-
itive guarantees, except that the set of arms which benefits
from data aggregation changes from Zs. to Zyqe.

In comparison with the guarantees of IND-UCB and
IND-TS, the regret guarantees of ROBUSTAGG-TS(¢) are
never worse (modulo lower-order terms), and save factors
of 57 and ﬁ in Z;¢.’s contribution in the gap-dependent
and gap-independent regret guarantees, respectively.

5. Proof Ingredients

In this section, we highlight some of the novel proof ingredi-
ents used in our analysis of Algorithm 1, which are unique
to the multi-task setting*.

We begin by decomposing the regret in terms of subpar arms
and non-subpar arms. It follows from Eq. (2) that

Reg(T) = O ] Apiny

z:]EnZ

i€ZL10e

> D ERIM]AY],

i€Z§), pE[M]

where we let n;(T) = Z;VI 1 n?(T) be the number of pulls

of arm i by all players after 7" rounds; we recall that A"? =

minye (] AP; and we use the fact that for any subpar arm
i € T10c and any player p € [M], A? < 2AM" (Fact A.24).

In the interest of space, we focus on the analysis for subpar
arms and defer the discussion on non-subpar arms to the
appendix. The following lemma provides an upper bound
onE [m (T)} for ¢ € 710, which can be subsequently used
to derive the upper bounds on the expected collective regret
incurred by the 10e-subpar arms in Section 4.

Lemma 5.1. For any arm i € 1y,

While a similar lemma can be found in (Wang et al., 2021,
Lemma 20) for the UCB-based algorithm, ROBUSTAGG(¢),
proving Lemma 5.1 requires new ingredients that we present
in the rest of this section.

Let us fix an arm i € Zy.. To control E [n;(T)] =

E {Zte[T] > pep, L {if = z}] , we begin by generalizing a
technique introduced by Agrawal & Goyal (2017) for stan-
dard TS to the multi-task setting. In each round ¢ and for
each active player p, we consider two cases: (1) player p
pulls arm ¢ (namely, 7{ = ), and 67 (¢) (line 12 in Algo-
rithm 1) is greater than some threshold y¥ € (u?, 1) to be

“We note that our analysis involves various proofs by cases.
Figure 2 in the appendix provides an overview illustrating the case
division rules used in our proofs.
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defined shortly, and (2) 7} = ¢ and 6% (¢) < y?. We have

]E[ Zz]l{lt—l >yz’gt}
te[T] peP:
(A)
+E Y Y 1 {7 =i, 071 <of &} +O (1),
te[T] pEP:
(B)

where &, informally, is a high-probability “clean” event in
which fi;’s maintained by Algorithm 1 in round ¢ for each ¢
and p concentrate towards their respective expected values.

Term (A) can be controlled because, as more pulls of arm ¢
are made, {Gf t) >y } is unlikely to happen as fif’ concen-
trates towards a value smaller than y?, and var? decreases.
See Lemma C.6 in the appendix for a detailed proof.

In what follows, we focus on bounding term (B). Observe
that the event {i = ,67(t) < y”} in (B) happens only if
Vj € [K], 0%(t) < y;, including the optimal arm(s) for
player p. Since in an e-MPMAB problem instance, different
players may have different optimal arms, we consider a
common near-optimal arm € Z§ —see Fact A.24 in the
appendix for the existence of such an arm. It can be easily
verified that, for any arm ¢ € Zp¢. and player p € [M],
o = ,u’; — u? > 0 (see Fact C.4). In other words, while {
may not necessarily be an optimal arm for every player, it
has a larger mean reward than any 7 € Z70.. We can now
define yf 1=y + 367 € (uf, 1f) C (uf, ).

Using a technique first introduced in (Agrawal & Goyal,
2017), we will show that 6 (t) converges to a value greater

than y? fast enough so that {Vj € [K],05(t) <y } will un-
likely happen soon enough and thus (B) can be controlled.

Remark 5.2 (Comparison with UCB-based analyses). We
note that controlling term (B) is often not required in the
analyses of UCB-based algorithms. Colloquially, this term
concerns the event in which arm ¢ is pulled even when its
sample/index value is smaller than y‘f ; such an event would
unlikely happen for UCB-based algorithms as the optimism
in the face of uncertainty principle ensures that, with high
probability, the UCB index of an optimal arm for player p
is greater than or equal to pif > i > vy

Before we formalize the above-mentioned intuition for
bounding term (B) in Lemma 5.3, we first lay out a few
helpful definitions. We define {]:t}tT o to be a filtration such
that 7y = o ({i?,7% : s < t,q € Ps}) is the o-algebra gen-
erated by interactions of all players up until round ¢. Then,
let ¢, = Pr (Gf(t) >yP | Fie 1) Observe that if ¢}, is

large, the event {i} = i,67(t) < y’'} will unlikely happen.

Lemma 5.3.

<) D E

te T] PEP:

<¢11J — 1) 1{if =1,&}
it

(B*)

See Lemma C.11 and its proof in the appendix for details.
We now consider the following two cases: in any round ¢
and for any active player p that pulls arm 7, i.e., i¥ = 1, p
uses either the individual or the aggregate posterior distri-
bution associated with arm t (lines 7 to 11 in Algorithm 1).
Let HY(t) be the event that p uses the individual posterior

dlstrlbutlon and H f (t) be the event that p uses the aggregate
posterior (see Definition A.13 in the appendix for the formal
definitions). We can then decompose (Bx) as follows:

- Y E (}3 - 1) 1 {if =1, &, HE(0) |

te[T) pEP: it
(b1)
+3Y Y E ( _ 1) 1 {z‘f - T,St,Hf(t)}
tE[T pGPt
(62)

Let m’; (t) denote the aggregate number of pulls of arm
maintained by player p after ¢ rounds (see Definition A.9
in the appendix). Note that, by the design choice of Al-
gorithm 1 (line 20), m’T’ (t) is not necessarily the same as

ni(£). With foresight, let L = © (( o M) and let

GV = {zf = T,Et,Hf(t)}. We have

(12) =
Y Y E 1 ]I{Gf,m’;(tfl) <L}
te[T] pEP, it
(b2.1)
+ Z] Z; E (&—1) n{Gf,mI;(t—n 2L}
te[T] pEP: b
(b2.2)

Both (b1) and (b2.2) can be bounded by O (M), because,
informally speaking, either player p has pulled arm { many
times when the individual posterior is used (term (b1)) or
the players collectively have pulled T many times when the
aggregate posterior is used (term (62.2)), and % — 1can

therefore be upper bounded by % See Lemma C.13 and
Lemma C.18 and their proofs for details.
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The main challenge in bounding E [n;(T)] lies in term
(b2.1), for which we show the following lemma.

Lemma 5.4 (Bounding term (b2.1)).

<b2.1>§o<L>§o<(;;g,j)ﬁM).

Proving Lemma 5.4 is central to our analysis and as we
will see, requires special care. We begin by introducing the
following notion. For any arm j € [K] and k € [T'M], let

Ti(j) = min {T—f— 1, min {t inj(t) > k}}

be the round in which arm j is pulled the k-th time by any
player. Furthermore, let 74(j) = 0 by convention. For
any j € [K] and k € [T M], it is easy to verify that 73 (j)
is a stopping time with respect to {]—}}tT:O. In what fol-
lows, when circumstances permit, we abuse the notation
and denote 74 (t) by 7.

Invariant property. By the construction of Algorithm 1,
in any round ¢, a player only updates the posteriors associ-
ated with an arm if the player pulls the arm in the round ¢
(line 20). This design choice induces an invariant property:
for any arm and player, certain random variables associated
with them stay invariant between consecutive pulls of the
arm by the player (see Definition A.20 and a few examples
in the appendix).

The invariant property allows us to bound (b2.1) as follows
in terms of the stopping times 71’s (See Lemma C.14 and
Lemma C.38 in the appendix):

< 1
(b2.1) <) E (z? - 1) 1 {Hfu)} +

p=1 i1

1
1
E Dr
1 1, Tr+1

where py := pi(}) is the player that makes the k-th pull of
arm T (Definition A.17).

~
|

>
Il

_1> ]l{Tk ST,H%)(T]C—I—I)} s

Using basic Gaussian tail bounds, we can show that

E [( - 1) 1 {Hf(l)} < O(1) for any player p.
i,1
Then, the following lemma suffices to prove Lemma 5.4.

Lemma 5.5. Forany k € [TM],

1
(e
2, Te+1

1) 11{m gﬂm} <0(1).

Technical highlight. Lemma 5.5 generalizes Agrawal &
Goyal (2017, Lemma 2.13) for standard TS to the multi-task
setting. A complete proof can be found in the appendix,
which uses anti-concentration bounds of Gaussian random
variables (Gordon, 1941) as well as a novel concentration
inequality for multi-task data aggregation at random stop-
ping times 73 (f)’s, which we highlight here. For any arm
7, let

agg-iis(t) = —— 5 3 1 (i = jhrt e
n;(t)v1

s<t qePs

be the aggregate mean reward estimate of j constructed
using data by all players after ¢ rounds, offset by e.

Lemma 5.6. For any arm j € [K| and k € [TM] U {0},
denote by 1, = 1.(j). Then, for any § € (0, 1], with proba-
bility at least 1 — 6, one of the following events happens:

1. i, =T+ 1;

n(2
2. ¥p € [M), i)~ aggri(n) < | (ol
Remark 5.7. We note that Lemma 5.6 is critical to the tight
performance guarantee in Lemma 5.5 and subsequently the
near-optimal regret guarantees. This result is non-trivial,
as it is a concentration bound for a sequence of random
variables whose length, 1 (75(7)), is also a random variable.
Furthermore, since 7 (j) is the round in which arm j is
pulled the k-th time by any player, 7;(7%(j)) can potentially
take any integer value in [k, k + M — 1] because there
can be up to M pulls of arm j in round 74(j). We note
that using the Azuma-Hoeffding inequality together with
a union bound or Freedman’s inequality (similar to Wang
etal., 2021, Lemma 17) can lead to extra O (M) or O (InT')
terms for Lemma 5.5, respectively (see Remark C.17 in the
appendix for details).

To our best knowledge, we are not aware of any similar tight
concentration bounds for data aggregation in multi-task
bandits, and our technique may be of independent interest
for analyzing other multi-task sequential learning problems.

6. Related Work

There exist many prior works that study multi-player or
multi-task bandits with heterogeneous reward distributions.
For example, Cesa-Bianchi et al. (2013) use Laplacian-
based regularization to learn a network of bandit problem
instances such that connected problems have similar param-
eters; Gentile et al. (2014), among others, study clustering

’In the single-task case (M = 1), our proof technique
(Lemma C.36) also simplifies the proof of the first case of Agrawal
& Goyal (2017, Lemma 2.13).
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Figure 1. Compares the average performance of the algorithms on 30 randomly generated problem instances with |Zsc| = 8 and |Zsc| = 5
in a horizon of 7" = 50000 rounds. Figures in the left column plot the cumulative collective regret over time; figures in the middle column
demonstrate the percentages of pulls of optimal arms, non-subpar yet non-optimal arms (referred to as near-optimal arms), and subpar
arms; figures in the right column then show the incurred cumulative regret by arm optimality.

of bandit problem instances. The e-MPMAB problem stud-
ied in this paper is introduced by Wang et al. (2021); see
Appendix A thereof for a detailed comparison with related
work. More recently, Zhang & Wang (2021) generalize
the e-MPMAB problem to episodic, tabular Markov de-
cision processes. We note that while the methods in the
above-mentioned works are UCB-based, we study TS-type
algorithms in this work.

TS is initially proposed by Thompson (1933) decades ago,
but its frequentist analysis has not emerged until recent
years (e.g., Agrawal & Goyal, 2012; Kaufmann et al., 2012).
Jin et al. (2021) present the first minimax optimal TS-type
algorithm. Our proof techniques in this paper are mostly
inspired by the work of Agrawal & Goyal (2017).

TS algorithms have been studied in multi-task Bayesian ban-
dits. For example, several recent works study the setting of
interacting with a sequence of M bandit problem instances
(tasks) sampled from a common, unknown prior distribution,
with a goal of minimizing the M -instance Bayesian regret
(Bastani et al., 2021; Kveton et al., 2021; Peleg et al., 2021;
Basu et al., 2021). The recent work of Hong et al. (2021)
proposes a hierarchical Bayesian bandit problem that gen-
eralizes many multi-task bandit settings, and analyzes the
Bayes regret. In contrast, we use frequentist regret as our
performance metric, and we do not assume a shared prior
distribution over the players’ problem instances/tasks. Wan

et al. (2021) study multi-task TS in a hierarchical Bayesian
model and assume knowledge of metadata of each task;
while they provide a frequentist regret bound, we study the
e-MPMAB problem which models task relations differently.

Similar models on sequential transfer between problem in-
stances have also been studied by Azar et al. (2013) and
Soare et al. (2014). Zhang & Bareinboim (2017); Zhang
et al. (2019); Sharma et al. (2020) investigate warm-starting
bandits from misaligned data. In this work, we focus on a
more general interaction protocol, under which the players
may interact with the environment concurrently.

7. Empirical Evaluation

In this section, we present an empirical evaluation of
ROBUSTAGG-TS(€) on synthetic data®. We focus on the
concurrent setting (P; = [M] for all ¢), which is the setting
studied in the experiments of (Wang et al., 2021). Our goal
is to address the following two questions:

(1) How does ROBUSTAGG-TS(¢) perform in comparison
with the UCB-based algorithm, ROBUSTAGG(€), and the
baseline algorithms without transfer learning?

(2) Does the notion of subpar arms characterize the perfor-

%Our code is available at https://github.com/
zhiwangl23/eps—-MPMAB-TS.
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mance of the algorithms in practice?

Experimental Setup. We compared the performance of
4 algorithms: (1) ROBUSTAGG-TS(¢€) with constants ¢; =
+ and ¢z = 1; (2) ROBUSTAGG(€) (Wang et al., 2021,
Section 6.1); (3) IND-TS, the baseline algorithm that runs
TS with Gaussian priors for each player individually; and
(4) IND-UCSB, the baseline algorithm that runs UCB-1 for
each player individually.

The algorithms were evaluated on randomly generated 0.15-
MPMAB problem instances with different numbers of sub-
par arms. To stay consistent with the work of Wang et al.
(2021), we followed the same instance generation procedure
and considered Zs. to be the set of subpar arms—we set
the number of players M = 20 and the number of arms
K = 10; then, for each integer value v € [0, 9], we gen-
erated 30 0.15-MPMAB problem instances with Bernoulli
reward distributions and |Z5.| = v. We ran the algorithms
on each instance for a horizon of T' = 50, 000 rounds.

Results and Discussion. Figure 1 compares the average
performance of the algorithms on instances with |Zs.| = 8
and 5. We defer the rest of the results to Appendix E.

From the left column, we first observe that, while the
UCB-based algorithm, ROBUSTAGG(¢€), outperforms its
counterpart, IND-UCB, in the cumulative collective re-
gret (3, crr) 2 pep, uh — u%), its empirical performance
is underwhelming in comparison with TS algorithms. In
particular, even on instances with half of the arms sub-
par (|Zsc| = 5), ROBUSTAGG(¢) is outperformed by the
IND-TS baseline without transfer learning. Importantly,
we note that ROBUSTAGG-TS (e) shows a superior perfor-
mance than the other algorithms.

The figures in the middle and right columns illustrate the
arm selection of each algorithm. We categorize all arms into
three groups: optimal arms, subpar arms, and near-optimal
arms which are neither subpar nor optimal. Comparing the
TS-type algorithms with the UCB-based algorithms, we
observe that the former algorithms perform better mainly
because they pull near-optimal arms a smaller number of
times and incur less regret on these arms.

Furthermore, we observe that ROBUSTAGG(e) and
ROBUSTAGG-TS(€), when compared with their counter-
parts (IND-UCB and IND-TS, respectively), incur a similar
amount of regret from near-optimal arms. Meanwhile, they
make fewer pulls on subpar arms. This may be less obvious
from the plots on the percentage of total pulls because none
of the algorithms pull subpar arms extensively over the hori-
zon. However, since the suboptimality gaps of subpar arms
are large, we see from the figures in the right column that
ROBUSTAGG(€) and ROBUSTAGG-TS(¢) incur far less re-
gret on subpar arms. These results thereby demonstrate that

the notion of subpar arms can capture the amenability of
transfer learning in subpar arms but not near-optimal arms.

In addition, the results show that, empirically, our proposed
algorithm ROBUSTAGG-TS(¢€) can robustly leverage trans-
fer for arms in Zs. O Zj9.—this suggests that our upper
bounds may be improved; we leave this as future work.

8. Conclusion

In this work, we studied transfer learning in multi-task ban-
dits under the framework of a generalized version of the
e-MPMAB problem (Wang et al., 2021). We proposed
a TS-type algorithm, ROBUSTAGG-TS(¢), which can ro-
bustly leverage auxiliary data collected for other tasks. We
showed that ROBUSTAGG-TS(¢) is empirically superior
when evaluated on synthetic data, and also near-optimal in
gap-dependent and gap-independent frequentist guarantees.
In our analysis, we also proved a novel concentration in-
equality for multi-task data aggregation, which can be of
independent interest in the analysis of other multi-task on-
line learning problems. For future work, we are interested
in improving the lower-order terms in our regret bounds and
evaluating our algorithm in real-world applications.
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Outline. The structure of this appendix is as follows.

* In Section A, we introduce some basic definitions, facts and additional notations that are used in our analysis.

e In Section B, we formally present and prove the concentration bounds used in our proofs, including our novel
concentration inequality for multi-task data aggregation at stopping times.

¢ In Section C, we prove Theorem 4.1 and Theorem 4.2.

* In Section D, we discuss the performance guarantees of the baseline algorithms in the e-MPMAB problem, which
include IND-UCB, IND-TS, and ROBUSTAGG(e).

* Finally, we provide additional experimental results in Section E.

A. Basic Definitions and Facts

In this section, we revisit and introduce a few basic definitions, facts and additional notations that are useful in our proofs.
Definition A.1 (Constants used in the analysis). In the analysis, we set

cp =40,c0 =4

to be the constants used in Algorithm 1.
Definition A.2 (Number of pulls). Recall that
nP(t)=> 1{pe P, il =i}
s<t

is the number of pulls of arm 7 by player p after ¢ rounds. We define

pE[M]

to be the total of number of pulls of arm ¢ by all the players after ¢ rounds.
Definition A.3 (Individual mean estimate). For any ¢ € [K], p € [M], and ¢t € [T] U {0}, let

1
Y i{pe P il =i}t
<t

ind-] (t) = POV

be the empirical mean computed for arm ¢ using player p’s own data from the first ¢ rounds.

Definition A.4. Define 4

nf(t)v1

Remark A.5 (mean and variance of the individual posteriors). By the construction of Algorithm 1, we have that, in any
round ¢ € [T, for any active player p € P; and arm 4, ind-i (¢ — 1) and ind-var? (¢ — 1) are the mean and variance of the
individual posterior associated with arm 7 and player p in round ¢, respectively.

Definition A.6 (Aggregate mean estimate). Forany i € [K] and t € [T] U {0}, let

agg-ﬂi(t):mz D Wil =itri+e

s<t q:q€Ps

ind-var? (t) =

be the empirical mean computed for arm ¢ using all players’ data from the first ¢ rounds, offset by the dissimilarity parameter
€. Note that the definition of agg-/i;(¢) does not depend on the identity of a specific player p.

Definition A.7 (Most recent pull). In any round ¢ € [T] U {0}, for any player p € [M] and arm ¢ € [K], we define

3

» max{s <t:pePs,i¥ =i}, nl(t)>0
07 ’I’Lf

to be the round in which player p most recently pulled arm i (including round t); we let ¥ (¢) = 0 by convention if player p
has not yet pulled arm 1.
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Definition A.8 (Aggregate mean estimate maintained by player p). Forany ¢ € [T]U {0}, p € [M], and i € [K], define
agg-fi; (t) = agg-fui (u; (t)).
Note that the superscript p differentiates this player-dependent aggregate mean estimate from agg-fi;(¢) in Definition A.6,

which does not depend on any individual player.

Definition A.9 (Aggregate number of pulls maintained by player p ). Forany ¢t € [T] U {0}, p € [M], and ¢ € [K], define
mP () = na(u (1))

to be the total number of pulls of arm 7 by all the players until the round in which player p last pulled arm .

Definition A.10. Define A

(mP(t)—M)Vv1

7

agg-vary (t) =

Remark A.11 (mean and variance of the aggregate posteriors). By the construction of Algorithm 1, in any round ¢ € [T,
for any active player p € P; and arm i, we have that agg-/i¥ (¢ — 1) and agg-var? (¢ — 1) are the mean and variance of the
aggregate posterior associated with arm ¢ and player p in round ¢, respectively.

Definition A.12 (Filtration). Let {]-'t}tTZO be a filtration such that
Fr=0({ilrl:s<t,qgePs})

is the o-algebra generated by interactions of all players up until and including round ¢.

Definition A.13. Let 40InT
HP(t) = {nf(tl) > 27 +2M}
€

be the event that in round ¢, for arm i, player p uses the individual posterior distribution; correspondingly, let

40InT
Hg’(t){nf(t1)< el +2M}
€

be the event that in round ¢, for arm i, player p uses the aggregate posterior distribution. See lines 7 to 11 in Algorithm 1.
Remark A.14. With the above notations,

fi7 (t = 1) = agg-ji; (t — 1) - L(H (1)) + ind-7 (¢ — 1) - L(H (1)),

and

var? (t — 1) = agg-var? (t — 1) - L(HP(t)) + ind-var? (¢ — 1) - 1(H? (t)).

Stopping times. In our analysis, we will frequently use the following notions of stopping times:
Definition A.15. For any arm ¢ € [K] and k € [T'M], let

T (1) = min {T+ 1, min {t in(t) > k}}

be the round in which arm 1 is pulled the k-th time by any player. Furthermore, as a convention, let 79(¢) = 0.

Remark A.16. For any i € [K] and k € [T M], 7 (%) is a stopping time with respect to {]—"t}tT:O. Indeed, for any ¢t < T,

@ <t}=q> > 1{Z=i}zkper

s€(t] p:pE€Ps

Definition A.17. For any arm ¢ € [K] and k € [T'M], such that 7,(i) < T, let py(i) be the unique p € [M] such that

p .
Uiy = 0 and
Tk(i)—l
YooY w{ig=diy+ > 1{fil=i}=k
s=1 q€Ps qeprk(i):qu

In words, py(4) is the player that makes the k-th pull of arm ¢, where arm pulls within a round are ordered by the indices of
active players in that round.
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Definition A.18. For any arm i € [K], player p € [M], and k € [T, let
(7, p) = min {T + 1, min {t :nf(t) > k}}

be the round in which arm ¢ is pulled the k-th time by player p. In addition, let o (7, p) = 0 by convention.
Remark A.19. Forany i € [K] and k € [T, m (i, p) is a stopping time with respect to {]—"t}z;o. Indeed, forany t < T,

{m(i,p) <t} = Yo W{it=i}>ky e F

SE[t]:pEPs

The following property, namely, the invariant property, will also be useful for our analysis.

Definition A.20 (Invariant property). We say that:

1. a set of random variables { gt € [T]} satisfies the invariant property with respect to arm i € [K] and player
p € [M], if g; stays constant/invariant between two consecutive pulls of arm ¢ by player p, i.e., for any s € [T'] such that
7s(3,p) < T, g, is constant for all ¢ € [ms_1 (7, p) + 1, 75(¢, p)]. In other words, for any s € [T'] such that 7, (i, p) < T,

Ire1(ip)+1 = Yra1(ip)+2 = -+ - = Yra(ip)-
2. aset of random variables { ff:teT),peM ]} satisfies the invariant property with respect to arm i € [K]|, if for
every player p € [M], { ff : t € [T} satisfy the invariant property with respect to (i, p).

Example A.21. By the construction of Algorithm 1, in any round ¢, a player only updates the posteriors associated
with an arm if the player pulls the arm in round ¢ (line 20). It is easy to verify that for any arm ¢ € [K] and p € [M],
{HF(t) : t € [T]} satisfies the invariant property with respect to (¢, p). Specifically, for any s € [T such that 7,(i,p) < T,

HP (ms—1(i,p) + 1) = HY (ms—1(i,p) +2) = ... = H (7s(i,p)).

Consequently, { HP(t):te[T],pe M }} satisfies the invariant property with respect to <.

Example A.22. For any arm i € [K| and any player p € [M], {nf(¢t — 1) : ¢ € [T]} and {mf(t — 1) : t € [T]} both
satisfy the invariant property with respect to (¢, p) (see Definition A.2 and Definition A.9, respectively). Specifically, for any
player p and any s € [T such that 75(é,p) < T,

n?(rs—1(i,p)) = nf(me_1(i,p) + 1) = ... = nl (75 (i,p) = 1) = s — 1,
mf(ﬂs—l(i7p)) = mf(ﬂ—s—l(ivp) + 1) = .= m;f(ﬂ-s(%p) - 1) = ni(ﬂ-s—l(i?p))
However, {n?(t) : t € [T']} and {m?(t) : t € [T']} do not necessarily satisfy the invariant property with respect to i. Simi-

larly, {ind-4f'(t — 1) : t € [T]}, {ind-varf (t — 1) : ¢t € [T]}, {agg-Af(t — 1) : t € [T]}, {agg-varf(t — 1) : t € [T]} all
satisfy the invariant property with respect to (i, p).

Example A.23. For any arm i € [K] and any player p € [M], {a(t —1):t € [T]} satisfy the invariant prop-
erty with respect to (7, p). This follows from Eq. (A.14), and the above two examples that {ind-a?(t — 1) : ¢t € [T},
{agg-if (t — 1) : t € [T]}, {HP(t) - t € [T} all satisfy the invariant property with respect to (i, p).

Following a similar reasoning, {var? (¢t — 1) : ¢ € [T} satisfy the invariant property with respect to (i, p).

Facts about Subpar Arms. We now present some facts about subpar arms.

Fact A.24 (Properties of subpar arms, see also Wang et al. 2021, Fact 15). The following are true:

1. forany i € [K] and p, ¢ € [M],

AP — A?| < 2e (Wang et al., 2021, Fact 14);

2. Forany i € Zyo. and p € [M], A? > 8¢, which means that A™™ > 8e.
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3.z > 1

4. Let A" = max,c[p) AY. Forany i € Zyge € Zse, AP < 2AmIn; furthermore, ﬁ < % Zpe[M (Wang

etal., 2021, Fact 15).

1
] A7

Proof. For item 2, by the definition of Z;., there exists p such that Af > 10e. Then, for all ¢ € [M], we have Ag > 8¢ by
item 1.

For item 3, using a similar argument, we have, for each i € Zy. and p € [M], A? > 0. Let j be an optimal for player 1 such
that A§ = 0. Then j ¢ Zs.. O

Additional notations.

22 . . . . . . . . .
* Denote by ®(z) = ffoc ﬁe‘?dz the cumulative distribution function (CDF) of the standard Gaussian distribution.

- Z2 . . . .
s Let®(z) =1—®(z) = [° ﬁe‘?dz denote the complementary CDF of the standard Gaussian distribution.

* Denote by (2), =z V0.

* For any arm i € [K], player p € [M] and t € [T U {0}, let

and

B. Concentration Bounds
B.1. Novel concentration inequality for multi-task data aggregation at random stopping time 7;,’s

We begin by introducing the following definition.
Definition B.1 (Mixture expected reward at ¢). For any arm ¢ € [K] and ¢t € [T, define

i) = ——g > D Wil =i} pf +e
s<t q€Ps

to be the e-offset mixture expected reward of arm ¢ up to round .

In what follows, we will consider fi; (7% (7)) for any i € [K] and k € [T'M], where the definition of 7 (i) can be found in
Definition A.15.

Lemma B.2. Forany armi € [K| and k € [T M), denote by 11, = 71,(2). If 7, < T, then for every player p € [M], we have

agg-fii (i) — pf < agg-fi () — fui(7) + 2€; and
wf — agg-fi; (1) < Qi) — agg-fui (7).

Proof. Forevery t € [T}, observe that
q q
- 2:2: _ 2: n; (t) - pi
M’L( /‘Lz +6 nl(t)\/l +6'

s<t qEPS qE[M)]

It can be easily verified that, if n;(t) > 0, for every player p € [M],

fii(t) — w7 < 2€ and i — ;(t) <0,
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where we note that the asymmetry comes from the additive term e in fi;(¢). Therefore, for k € [TM], if 7, < T, then
n;(7) > k > 0 and we have
fi(7) — pi < 2€ and pf — fi;(73,) < 0.

It then follows that, for every player p € [M],

agg-f1i(Tr) — py < agg-fui (1) — fi(71) + 2¢, and
pf — agg-fi (i) < fii (1) — agg-fii (Tk)- O

We are now ready to present Lemma B.3, our novel concentration bound (see also Lemma 5.6).
Lemma B.3. Forany armi € [K| and k € [TM] U {0}, denote by 1, = 1,(4); for 6 € (0,1], we have

i I T .
Pr|{m=T+1}U {m <T}NSVp € [M], agg-i1;(1s,) — pf < \/(nz(Tk) SV + 2¢ >1-0; 4)
Pr|{m=T+1}U {rx <T}NVpe [M], uf —age-f;(1) < 2In (3) >1-—46. (5

b b= P k)= (ni(Tk)—M)\/l ’

The following corollary is an equivalent form of Equation (5):

Corollary B.4. Forany armi € [K] and k € [T M] U {0}, denote by 7, = 11,(i). Equivalently, for any z > 0, we have

4
-M)v1

Pr | (m <T)A | 3p € [M], jf — agg-fu(m,) > = <27 (©)
(ni(7x)

Proof of Corollary B.4. 1If z < 4/ % In 2, Equation (6) holds trivially as 2e=2%° > 1. Otherwise z > 4/ % In 2. In this case,
let§ =22 ¢ (0, 1] in Equation (5), and using De Morgan’s law, we also obtain Equation (6). [

Proof of Lemma B.3. Fix any arm i € [K]. For k = 0, we have 79 = 0; both Eq. (4) and Eq. (5) hold trivially because for
allp € [M] and 6 € (0,1], i(70) p‘<1<\/21n 2<4/2In(3).

We now focus on k € [T'M]. By Lemma B.2, it suffices to show that

21In (2
Pr|{m =T+ 1} U {7 <T}N Y agg-fi;(1) — jis (1) < \/(nz(m)n(}s\;) o >1—4;and, (7)

Pr({m =T+ 1} U {m <T}N < i) — agg-fi(1x) < \/(m(i;n—(}s\;) v

>1-4.

To avoid redundancy, we only prove Eq. (7); the other inequality follows by symmetry.
Now, for ¢ € [T] U {0}, consider Z; = 3" _, > pep, L{ih =i} (r? — pif). Furthermore, for ¢ € [7] U {0} and A > 0, let

we(A\) = exp ()\Zt —n;(t) )\82> .
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We now show that {w;()) }tT:O is a nonnegative supermartingale with respect to {]-"t}tT:O forall A > 0. Since E “wt(/\) ” <

oo and wi(A) > 0 forall ¢ € [T] U {0}, it suffices to show that, for all ¢ € [T,

E [_wt()\) | -7:t—1]

=E |exp Zzﬂ{if:i}</\(7"5_ﬂ§)_>\8> | Fio1

s€[t] pEPs

s€[t—1] pEPs

=exp Z Zﬂ{iﬁzi}(k(rf—uﬁ’)—é) E |exp Z]l{ifzi}()\(r

s€[t—1] pEPs

/\2
=w;_1(A)-E [exp | A Z L{f =i} (r} —p?) | exp | — Z 1 {d :z}§ | Fioa

PEP: PEP:

Swt—l (A)a

where the last inequality uses the law of iterated expectation along with Hoeffding’s lemma, i.e.,

)\2
B o (A Y 1 =i} (0 =) | o (= S 1 =i} 5 | 1 7ies
PEP: pEP:

PEP PEP:

<E H exp

pEP: pPEP:

X (1 :i})2

=E |exp Z Z]l{zp ((r — p)—)\82> exp Z]l{ifzi}()\(r

)\2
<E |E |exp | A Z 1 {Zt = Z} =) | | Fee1, (i )pep, | -exp | — Z 1 {Zf = Z} )

) 4 A2
S - exp —Z]l{zf:z}§ | Fir| <1

| Fe-1

Recall from Remark A.16 that 7 is a stopping time with respect to {]—'t};io and 7, < T + 1 < oo almost surely, it follows

that, by the optional sampling theorem, for all A > 0,

E[L{r < T} w;(N)] <EJ[wy(N)] =1.

Rewriting Eq. (8), we have
/\2
E|1{r <T} exp|AZ, — ni(Tk)g <1.

It then follows that, by Markov’s inequality, for any § > 0,

Pr|1{m <T}- exp </\ZT,€ - ni(Tk)§

S| =

22 1 E []1 {me < T} exp ()\ZTk - ni(T}g)A;):|
) > 3 <

®)
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therefore,

< 4.

2
1
Pr|{m <T}n{exp ()\ZTk — ni(Tk)/\8> > 3 <

Rearranging the terms in the above inequality, we have, for any A > 0,

Pr {Tk:T-i-l}U {TkST}ﬂ LZT,C >\ ln(%) >1-94,

where we use the elementary fact that for sets A and B, -(ANB) = AU (AN -B).

Choosing A = @ and using the fact that n;(7) > k, we have

1 2In(3%)
P =T+1 <T - 0 1-4;
r| {7 +1}Uc{m <T}nN nre) e < p > :
it then follows that
1 2In(2)
Pr|{m=T+1}Uu{m <T}N < >1-9. ©)]
TLZ'(Tk) k

‘We now consider two cases:

21n(2 ..
1. n;(m,) < M. We have ﬁZﬂc <1< \/W% = \/2111(%) trivially for 6 € (0, 1].

2. ni(mx) > M + 1. Since k > n;(1,) — M, we have 4/ 21n( ) < \/717217n D = \/(ni(i:)l(j&)vl-

Eq. (7) then follows from Eq. (9) and the elementary fact that A C B if (AN C) C B and (A N —C) C B. This completes
the proof. O

B.2. Other concentration bounds

Recall the definition of stopping times 7 (¢, p) for any arm ¢ and player p (see Definition A.18).
Lemma B.5. Foranyi € [K], p € [M], k € [T)U{0}, and 6 € (0, 1], we have

2111(4)
i,p)=T+1 i,p) <T ind-ji? (m (i, p)) — pi | < 4] b 1—-46. (1
{m(i,p) =T +1} U {mi(i,p) < T} N ¢ |ind-af (i (i, p)) — 1| < oGV >1-46. (10)
Corollary B.6. Foranyi € [K], p € [M], k € [T|U{0}, and z > 0, we have
4 2
P i,p) <T) A | |1 — ind-fif (mx (i > | | <de . 11
| utin) <) (o = it 2 [y | | < e an
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Proof of Corollary B.6. If z < 4/ % In 4, Equation (11) holds trivially as 4e2%" > 1. Otherwise z > 4/ % In 4. In this case,
let § = 4e~2%" € (0, 1] in Equation (10), and using De Morgan’s law, we also obtain Equation (11). O

Proof of Lemma B.5. The proof of Lemma B.5 is largely similar to the one for Lemma B.3. Therefore, we omit some details
here to avoid redundancy. See the proof of Lemma B.3 for full details.

Let us fix any arm ¢ € [K] and player p € [M]. Throughout this proof, to ease the exposition, we use 7y, to denote 7 (4, p).

We first observe that when k = 0, we have 13, = 0, ind-4?(0) = 0, and ¥ (0) = 0. It follows that |ind-A? (75) — pf | <
1<4/2In (%) trivially.
It then suffices to only consider the case when k € [T']. Note that n? (7)) = k > 1. We will show that
- 2In (3)
Pr|{m=T+1}U< {m <T}N < ind-af (mg) — pt < Tlm) >1-4. (12)
T (T

For t € [T]U {0}, let Xy = > yL{p€Ps,i& =i} (L — p); and for A > 0, further define &{(\) =
exp ()\Xt —n? (t)%g) It can be verified that {ft(A)}fZO is a nonnegative supermartingale with respect to {}‘t}tT:O
for all A > 0:

I.E [|§t(A)” < oo forall ¢ € [T] U {0};
2. &(A) > 0forallt € [T)U{0};
3. E [{t(A) ‘ -Ft—l] < gt—l(A) forallt € [T]

Item 3 is true because

E [6(N) | Fei]

t—1
A2 A2
=exp | Y _1{peP,if =i} (/\(Tf —u) = 8) E |exp | 1{p € P ij =i} (/\(Tf — ) = 8) | Fi1
s=1
)\2
=& 1(N\)-E |exp ()\ -1 {p € Py, ik = z} (rf — ,uf)) exp | —1 {p € Py, il = z} 5 | Fio1

. ) ) . o A2
=&\ -E|E [exp (A A{pePy,if =i} (r] — u?)) | Ftwi’} - exp (—]l {pePif =i} 8) | Fia

< é-tfl ()\)7
where we use the law of total expectation, the observation that £_; () is F;_1-measurable, and Hoeffding’s Lemma.

Recall from Remark A.19 that 7y, is a stopping time with respect to {]-'t}tT:O and 1, < T + 1 < oo almost surely. Then, by
the optional sampling theorem, for all A > 0,

E[1{m <T} &, (W] <E[&N)] = 1. (13)

In other words,

2
E |1{m <T}-exp (x\Xﬂk — nf(ﬂk))\g> <1
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By Markov’s inequality, we have
b AZ) 1
Pr|1{m, <T} -exp | AXr, —n} (7rk)§ > 5 < ;
and thus,
)\2
Pr|{m, <T}N<exp|AXr, — n’:(wk)§ >
Using the elementary fact that for sets A and B, -(A N B) = =AU (AN —B), we have, for any A > 0,
nz(wk) T 8 nf 7Tk)~/\

In (%
Pr|{m,=T+1}U {ﬂ'kST}ﬂ{plX _/\<n<5)} >1-4,

where we slightly rearrange the terms.

Choose A\ = @ and observe that n? (7)) = k. It follows that
Pr| {m =T+ 13U {me < T} d — 2 LU
r|{m = 77 —— X, — 4.
; i () S\ nl ()

Eq. (12) follows trivially by the observation that In(2) > In(%). By symmetry, it can also be shown that the following
inequality is true:

21n (2
Pr|{m=T+1}U< {m <T}N < pf —ind-pf(my) < pn((é)) >1-4.
T (T
The proof is then completed by applying the union bound. [

Definition B.7. For any ¢ € (0, 1], let

Eagg(0) = (Vi € [K],Vk € [TM]U{0}, (re(i) =T+ 1) V | (7(i) <T) A

o 2In (3) o 21 (3)
Vp € [M], agg-f1i(Tk(i)) — pi < \/(ni(Tk(i)) fM) o7 26w — age (i (i) < \/(ni(Tk(i)) jM> e

and

Eina(8) = { Vi € [K],Vp € [M]Vk € [T)U{0}, (mi(i,p) =T + 1) V

21n(})

(muliop) < T) A | [indefl (map)) = | <\ b
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Furthermore, let
E(6) = Eage(6) N Eina(90).

Corollary B.8. For o € (0,1],
Pr(E(8)) > 1 — 6T°.

Proof. By the union bound, Lemma B.3, Lemma B.5, and the assumption that 7' > max(K, M), we have

Pr(Fuge(8)) > 1 — K(TM +1)(26) > 1 — 4T3.
Pr(Eina(6)) > 1 — KM(T +1)5 > 1 — 2T36.

The corollary then follows by the union bound. O

B.3. Clean Event
‘We now define our notion of “clean” event for each ¢.

Definition B.9. For any ¢ € [T + 1], let

& = {p e [M],vie K], [indg(t— 1) 2

10InT
ST =
nl(t 1)
10InT
P P
agg-fl; (t —1) — p; < | =——+2¢,
fig (= 1) — p ’/mg’(t—l)
10InT
P AP
pi —agg-fi (t —1) <\ [—=——— )
A e Ty

where we recall that n? (t — 1) = n?(t — 1) V 1, mP(t — 1) = (m?(t — 1) — M) V 1. Furthermore, let & denote the
complement of &;.
The following lemma shows that the clean event happens with high probability.

Lemma B.10.

24

Proof. The proof of Lemma B.10 follows from Corollary B.8. It suffices to show that, for any ¢, E(%) C &;. To this end,
we will show that if E(+5) happens, then & must happen.

Foranyt € [T +1],i € [K],p € [M], letu = u! (¢t — 1) be the round in which player p last pulls arm i (see Definition A.7).
In addition, let s = n¥ (u) € ([T] U {0}) and k = n;(u) € ([TM] U {0}). Note that 75 (i, p) = u < T and 75,(¢) = u < T.

It then follows by definition that,

ind-af (t — 1) = ind-@¥ (w5 (4,p)), n¥(t —1) = nl(7s(i,p));
agg-ji; (t — 1) = agg-f1i(7(i)), m}(t —1) = ni(7e(p))-

The proof is then completed straightforwardly by the definition of E (%), which indicates that for all s € [T] U {0} and
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ke [TM]U {0},

10InT
ind-4i? (7, (i, — 1| <\ 5
ind-fif (ms (i, p)) — pf | < ny (ms(i,p)) V 1
10lnT
N . P
agg-fui(m,(i)) — b < + 2¢, and
(75 (7)) \/(m(m(p))—M)Vl
10InT

ut — agg-u(mi(i)) < \/(m(m(p)) —M)ve
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Subpar arms (C.1) Non-subpar arms (C.2)

9///\\QTW ﬁy//\\QTW

) HO) WP (t) wP(©)
(AV Nxz) (ty wa ‘ (el/ &z)
HP () HP(t) HI(t) HE(E) HP () HZ(®) H(t)
‘ (bz% &2.2) (el.l/ \ez.Z) (EZ% &2.2)
-2y v
m{(t-1)<L mit—-1)=L wiE-10<] ndiEt-10=] mit-1)<z mit-1)=Z
(a) Subpar arms (Section C.1) (b) Non-subpar arms (Section C.2)

Figure 2. Illustrations of the case division rules used in the proofs of Theorem 4.1 and Theorem 4.2, respectively. Formal definitions of the
notions used in the figure can be found in Section A, Section C.1 and Section C.2.

C. Proofs of Theorem 4.1 and Theorem 4.2

The following lemmas are central to our proofs of Theorem 4.1 and Theorem 4.2. In Section C.1, we prove Lemma C.1. In
Section C.2, we prove Lemma C.2. We then conclude our proofs in Section C.3.

Lemma C.1 (Subpar arms). For any arm i € Iy,

EW@HSOQ££V+M>

where we recall that A™™ = minpe|p AY.

Lemma C.2 (Non-subpar arms). For any arm i € Ilco6 and player p € [M],

m@@ﬂgoQZ;+M>

Our analysis in the following Section C.1 and Section C.2 involve various proofs by cases. Figure 2 provides an overview of
the case division rules used in our analysis.

C.1. Subpar Arms
In this section, we prove Lemma C.1.

Fix any subpar arm i € Z;o, and an arm € ZS. See Fact A.24 for the existence of such an arm. We first consider the
following definitions.

Definition C.3. For any arm ¢ € 770, and any player p, let
& = pf — i > 0.
Fact C.4. For any i € 71, and player p € [M],

Sar<g<arn

Proof. For any player p € [M], since t € ZS, we have A? =ul - ,u? < 2¢ by the definition of ZS. Furthermore, for any
i € Thoe, AY = i — pi? > 8e. Therefore, we have

K3



Thompson Sampling for Robust Transfer in Multi-Task Bandits

L7 = pf — pf <l — pf = AV

2. Note that

= 8 — 14
Definition C.5. For any player p, let y” = i’ 4+ 67 be a threshold; in any round ¢, further define
Q:U {91) >yt }

to be the event that the sample 6% (¢) from the posterior distribution associated with arm ¢ and player p in round ¢ is greater
than the threshold y?. In addition, let Q (t) = {67 (t) < y¥'}.

C.1.1. SUBPAR ARMS—DECOMPOSITION

We can then decompose I [n;(T))] as follows.

E[ni(T)) =E | > Y 1{if =i}
_te[T] PEP:
<E|S S 1{#=i,Qv). &) | +E }: 2:1{%__ZQW) } E|S Ejn{&}
| t€[T] pEP: L te[T] pEP: ] te[T] pEP:
SN 1 =iQU), &) | +E E:E:H{ﬁ:@QHWEJ +O(1), (14)
te|[T] pEP: _tE[T] pEP: ]

(A) (B)

where the second inequality follows from Lemma B.10. In the following two subsections, we bound term (A) and (B),
respectively.

C.1.2. BOUNDING TERM (A)

The following lemma provides an upper bound on term (A).

Lemma C.6.
A) <0 (IT) +M> | is)

where we recall that A" = minye ) AY.

Proof of Lemma C.6. Recall the definition of & in Definition B.9 and the definition of H? (¢) in Definition A.13, we have

=Y Y E[{#=iQi.& O+ Y Y E [{u—%@”()&ﬂf(t)}]-

te[T] pEP: te[T] pEP:

(A1) (A2)

We first consider term (A1). Recall that, for simplicity, we let n? (t — 1) denote n?(t — 1) V 1; also recall that ®(-) is the
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complementary CDF of the standard Gaussian distribution, and (2) + =2V 0. We have
<Y Y E[{Qtw.& )]
te[T] pEP:
-3 Y E[E[H{Q0.8 0} 5]
te[T] pEP: -
-3 e[ o) = 10 > o} | 7|
te[T)pEP: -
Y Y n{gt,Hm)}@(m@ indg? M))]
te[T] pEP: L
Pt —1)(y? —ind-2 (t — 1))2
< Z ZE L{&, H(t)} - exp A ), ;n i ( ))+>
te[T] pEP:
_ n?(t—1)(u? + 2AY — P — L AP)2
<) MYE ]l{Eth(t)}.exp( (t = 1) (1 881 p - l)+>
te[T) pEP:
np (t—1)(A7)?
<D EL{& HI®)} e (— )
te[T|pEP: |
I
te| T]pEPf

where the first inequality drops the indicator 1 {zf = i}; the first equality uses the law of total expectation; the second equality
follows from the observation that £ and H f’ (t) are F;_1-measurable; the third equality follows from the observation that

when H? (t) happens, E []l {67(t) > yP'} | Fie 1} =P(07(t) >yl | Foor) =@ (W) ; the second inequality
4/n?(t—1

is from Lemma C.35 and that n?(t — 1) > nP(t — 1); the third inequality follows from the facts that when & and H”(t)
happen,

1. nP(t—1 P(t—1) > 40T > 2560 T (see Fact A.24),
i (A7)

2. ind-pf(t—1) < pl + /% <+ 5 Ap (see Definition B.9), and

3.yl = + 567 > ' + 3AY (see Fact C.4);

the fourth inequality is by algebra; and the fifth inequality again uses the observation that when H? (¢) happens, n? (t — 1) >
2560 In T
(ap? -
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We now turn our attention to term (A2). With foresight, let | = 10240107 4 77 We have

(Apn)®
(2= ¥ Y B[1{t =006 70
te[T] pEP:
<Y Y E [11 (i =i,Que). & HI@), mi(t 1) <l}]
te[T] pEP:
+ Y S E | - Q.8 B0l - 1) 2 1)
te[T] pEP:
<@+M)+ > Y E []1 {zf =i, QY (t), &, HP (t),mF (t — 1) > l}] . (16)

te[T) pEP:

To see why Eq. (16) is true, it suffices to show that, with probability 1,

SN a{id =imb(t—1) <1} <I+ M

te [T] pEP:

Indeed, let us define ¢ = min {t (1) = X gep 2pep, L{IE =1} > l}. The above summation can be simplified as

Soa{i =imbt—1) <1}

T
t=1 pePy
—1 T
=S O3 u{if =imPE-1) <} +> > 1{if =iml(t—1) <1}
t=1 peP; t=1 pePy
—1
DN 1 =i+ > Y w{@=imlt-1) <1}
t=1 peP; pG[M]tZL:pEPt

where the Zpé[ M] Zt>upe7>,, 1 {zf =i,mb(t—1) < l} < M follows from the observation that, once the total number of
pulls of arm 7 by all players has reached I, any player p cannot pull arm ¢ more than once before the aggregate number of
pulls of ¢ maintained by p is updated to a value > [ (see Definition A.9).

Remark C.7. Eq. (16) can also be deducted from the more general Lemma C.38 in Section C.4, by taking ff = 1 for all
t,p.

Now, recall that we denote (m?(t — 1) — M) V 1 by mP(t — 1). And again, recall that &(-) is the complementary CDF of
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the standard Gaussian distribution, and (z) , = 2z V 0. It follows from Eq. (16) that

(A2) <(I+M)+ Y Y E|E {1{Qﬂw¢af¥u%nﬁ@—1>zl}hﬂ4]

te[T] pEP:

=(+M)+ ZZE {Et,%,mf(t—mzl}E[ﬂ{gg( >y | Fo 1H

te[T] pEP:

=((+M)+ > > E {gt’lw’mf(t_l)zl}'q’<\/m<yf—agg—ﬂf(t—l)))]
te[T] pEP: L

(+)+ > S E|{&H@mit-1) =1} e | - it =D '_8agg“l(t_1))
te[T) pEP:

- mP(t—1 +3A7 - P _ 9 AP)?
t+M+> S E ]l{ﬁt,Hf(t),mf(t—l)Zl}-exp _m b . i Y

te[T] pEP:

s my(t—1) (Apin)?
(1 + M) +t;]p;,E e 7@, mf = 1) = e | - gons

I+ M)+ ZZ

te(T) pePf

—0|——+M
(A;nin)2

)

where the first inequality is from Eq. (16), dropping the indicator 1 {zf = z} and using the law of total expectation;
the first equality follows from the observation that &, H?(t), and {ml.7 t—-1)>1 } are F;_j-measurable; the second

equality follows from the observation that when H” (t) happens, E []l {07(t) > yP'} | Fie 1] =P(0°(t) >yl | Feor) =

P <y”—wgg\/¢—l)> ; the second inequality follows from Lemma C.35; the third inequality uses the facts that
4/mb (t—1)

1. when {m?(t — 1) >} happens, m?(t — 1) > f(t—l)—MZl—M:%,
2. yf = pl 4 367 > pl + AP (see Fact C.4), and

3. when &, happens, agg-i? (t—1) < pb'+ /% +2e < P+ B%A;nin + iA;nin = b+ S%Aznin (see Definition B.9
and Fact A.24);

the fourth inequality is by algebra; and the fifth inequality again uses the fact that when {mf (t—-1)> l} happens,
mi(t—1) Zm(t—1) - M 2 JEEE

In summary, we have
InT
(A) < (A1) +(A2)+O0(1) <O | ———= +M |. O
(ar®)
C.1.3. BOUNDING TERM (B)

We now bound term (B) in Eq. (14).
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Lemma C.8.
InT
B)<O|—=+M]|.
= ((A;mn)? . )
Proof. Lemma C.8 follows from Lemmas C.11 and C.12, which we present shortly. O

Consider the following definition.

Definition C.9. In any round ¢ € [T, for any active player p € P, define
o7, =Pr(60(0) > o} | Fia ).

Remark C.10. Recall that ®(-) denotes the complementary CDF of the standard Gaussian distribution; and recall n? (t—1) =
ny(t—1)V1,and mj(t — 1) = (mj(t — 1) — M) V 1. ¢}, can be explicitly written as:

=P —-1
f,t -3 Y; MT( ) (17)
var? (t — 1)

= (7 ~ e~ D)y~ 1/a) 1 {0 )+ 8 (7 - aeentle - D)yl - 0/a) 1 {0

(18)
Proof of Remark C.10. We have
&, =Pr (62(0) > o | (¢ — 1), vart (e — 1))
=1 Pr (07() < o | it — 1), varb(t — 1))
N 7 O 7 )
vary (t — 1) vary (t — 1)
Eq. (18) now follows by observing that:
1. if HY(t) happens, then /if (t — 1) = ind-/i{ (t — 1) and var{(t — 1) = m;
2. if HY(t) happens, then i} (t — 1) = agg-i} (t — 1) and var}(t — 1) = m. O

We now present the following lemma, which is inspired by a technique introduced in the work of (Agrawal & Goyal, 2017).

Lemma C.11.

B<>Y Y E (1;p iﬁ)n{ﬁ:na}

te [T] pEP:

(Bx)
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Proof. In any round ¢ and for any active player p € P;, consider
Pr(if =4, Q0(6),& | Fia )
=Pr(if =4,00(t) <yl | Fon) - 1{&}
Pr (Gf(t) <y | Fi- 1)

gPr(if:Tl]:tfl) Pr(g;}tg(t)>yf|]‘—t71) ]l{gt}
1— :D
( P )Pr(tﬂft 1) - L{E}
it
1— &P
:< pl’t>Pr(z~f=+,a|ﬂ—1>» (19)
it

where the first equality follows from the definition of Q¥ (¢) and that & is F;_;-measurable; the first inequality uses
Lemma C.40 with [ = { and z = y"; the second equality inequality is from the definition of ¢ +> and the last equality is
again because &, is F;_1-measurable.

Finally, we have

E {11 {z'f - z‘,Qf(t),Et}] —E :Pr (ig’ =i, Q00,5 | ]-'t_l)]

7,

<E (1_p )Pr(fTéﬂff )

p
7

1 — ot
=K |E < P ’t>]1{i€:T75t}|}—t1

it

-E (1_p t) 1{? =1,&},

it

where we use the law of total expectation and Eq. (19). The lemma follows by summing over all ¢, p’s. [

With foresight, let L = 2260107 . \r We further decompose term (Bx) as follows.

(ari)®

(Bx) = Z Z]E (1;; i’t>1{if:tgt}

tG[T pGPt it
1 g7, — 7, S
=Y Y E pz 1{@5:]5&, t} +3 S E p’ 1{if:f,8t,Hf(t)},
te[T)peP: | bt te[T)] pEP: bt
(b1) (b2)
1- (bf,t P P p
=)+ > S E . ]l{zt:T,é't,HT(t),mT(t—l)<L}
te[T] pEP: it
(b2.1)
L=d0\ o (o =
+Y N E 7 ]1{% = 1, &, HI (), m?(t — 1) ZL} . (20)
te[T] peP: it

(b2.2)
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where the inequality uses Lemma C.11.
Lemma C.12.

Proof. Lemma C.12 follows directly from Eq. (20) and the following Lemma C.13, Lemma C.14 and Lemma C.18, which
provide upper bounds on terms (b1), (b2.1) and (b2.2), respectively. O

Lemma C.13 (Bounding term (b1)).
1) <O (M).

Proof of Lemma C.13. For any player p € [M] and ¢ € [T, recall that F?(t —1)=n{(t-1)Vland(z), =2V0. When
& and HY (t) happen, nf (t — 1) > 228L = Y; we have:

17 Lt
=Pr (07(t) <yl | Fin)
= (7 ~ g~ 1)/~ 1/ )

Al = 1)(ind-f (£ — 1) — )2
8

nP(t—1)(p? — 1AP — P + 3ADP)2
Sexp ( T( )(,UT 4= IU’T 8 z)+

<exp | —

8
ni(t = 1)(A7)?
<exp (— 3(64) )
1
<7’
“T+1

where the second equality uses Remark C.10; the first inequality uses Lemma C.35; the second inequality follows from the
observations that, when &; and H. ?r" (t) happen:

Lnf(t—1)>nk(t—1)>Y =405T > 25220@1)“2T (see Fact C.4),

2. ind-ﬂf(t -1)> p? — /% > /J,T Af (see Definition B.9), and
3.y =y — 507 < pf — §AL

the third inequality is by algebra; and the last inequality follows because, again, when H. f (t) happens, nf(’ t—-1)>Y =

40 ln T 2560InT 12801In(T+1)
€2 2 (Ap)z Z (A}’?)Q forT > 1.

It follows that, when &; and HY (t) happen, ¢}, > 7 1 and = ¢

<Y Y E (jfﬂn{&,ﬂf(t)} <M.

pE[M] t:pEPy
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Lemma C.14 (Bounding term (62.1)).

(b2.1) <O Ty

()

K2

The remark below is useful for proving Lemma C.14.

Remark C.15 (Invariant property). Recall from Example A.21 that {H f(t):te(T),pe[M ]} satisfies the invariant
property with respect to .

Moreover, the construction of Algorithm 1 enforces that { peit€[Tlpe[M ]} satisfies the invariant property with
respect to T (note that it does not necessarily satisfy the invariant property with respect to 7). Indeed, this follows from
Egq. (17), along with Example A.23 that shows that the posterior parameters, {(ﬂ’; (t=1),vari(t —1)):t € [T],p € [M ]},
satisfy the invariant property with respect to t.

Combining the two observations above, { ( ¢}) — 1) 1 {Hi7 (t)} ite[T],pe[M ]} also satisfies the invariant property

with respect to arm .

Proof of Lemma C.14. Proving Lemma C.14 requires more special care. Recall that

EAW?
®21)=> Y E < P ’t> 1 {zf =1,&, HI (), mi(t— 1) < L}
te[T] pEP: bt

<> S E <1 _fi’t) 1 {if = 1, (), ml(t — 1) < L}

te[T] peP: it

Also recall the definition of stopping time 7% (f) (Definition A.15), the round in which { is pulled the k-th time by any player.
To ease exposition, we abuse the notation and denote 74 () by 7. Similarly, let p; := pg(T) denote the player that issues
the k-th pull of arm § (recall Definition A.17).

Since { (<f>’1’ - 1) 1 {Hf(t)} :teT),pe [M]} satisfies the invariant property with respect to arm {, by Lemma C.38,

we have

M L—-1
(b21) <Y E <}, —~ 1) 1 {Hf(l)} +> E <pl - 1) 1 {m < T, H{ (7 + 1)} : 1)

p=1 %,1 4, T+ 1

where we also use the linearity of expectations.
Since the variance of the aggregate posteriors are initialized as the constant co = 4 in ROBUSTAGG-TS (¢€), we have that

( - 1) 1 {Hf(l)} < O (1) with probability 1. Therefore,
i,1

i1

M
Y E <119 - 1) 1 {Hf(l)} <O(M). 22)

It then suffices to bound the second term in Eq. (21)—it follows straightforwardly from Lemma C.16, which we present
shortly, that the second term is bounded by O (L). It then follows from Eq. (21), Eq. (22), and Lemma C.16 that

(h2.1) <O ((AlgT) + M). O
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Lemma C.16. For any k € [T M],

E (17,}—1> ]I{Tk gT,Hf(rkH)} <o),

1, T +1

where we recall that Ty, = 71,(1) and p, = py (1) is the player that issues the k-th pull of arm 7.

Proof. Using Remark C.10, we observe that

p : ~D
k — (Y _lnd',u (Tk)
27%—0—1 =|® <2Jr (n?(Tk)) V 1) -1 {Hf(Tk + 1)}

+|® (W\/(ml;(m) - M) v 1> 1 {m} . (23)
We have
E ( 1+ _ 1> 1 {n < T HP (e 4 1))
_E 1 1|1 {n <P A D)
& | (v —agg-il* () ¢ ((mﬁk (m) = M) v 1) /4
<E ! 1{m <T}|, (24)
3 ((uﬁ’k _ agg-gT(Tk)) \/((nT(Tk) ~ M)V 1) /4)

where the last inequality uses the observations that y;* < ut*, agg-iat" (14) = agg-ji+(74) and mb* (7y,) = n (73, as well
as the monotonic increasing property of z %.

Observe that, from Corollary B.4, for any z > 1,

4
(nT(Tk) -M)v1

Pr| (e <T)A | pf* — agg-fiy(7s) > Z\/

4
(ni () = M)V 1

<Pr| (e <T)A | 3pe[M], pf — agg-fi() > Z\/

<2¢~ 2%

)

Applying Lemma C.36 with X = (agg—ﬂT(Tk) — ,u?k) \/((HT(Tk) - M)V 1) /4and E = {7, < T}, we conclude the
proof. O
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Remark C.17. Note that it follows from our novel concentration inequality (Corollary B.4) that

2111(%)
nT(Tk) —M) V1

Pr|m <T, ,ufr’ — agg-fit (1) > \/< < &

this tight bound enables us to bound Eq. (24) by O (1), which is essential to our proof of Lemma C.16.

Since n; (%) < [k, k + M — 1], using the Azuma-Hoeffding inequality and the union bound, one can obtain

(1)

Pr|m <T, 1k — agg-fi: (1) > O < 6;
[y L g ﬂf( k) (nT(Tk) — M) V1
and using Freedman’s inequality (e.g., Wang et al., 2021, Lemma 17), one can obtain
A in (127)
Pr| 7 <T,u¥ — agg-fiy(1y) > O <.

(’I”AT(Tk) —M) V1

However, naively combining the above bounds with Lemma C.36, one needs to set C; in Lemma C.36 to be O (M) or
O (InT'), which incurs extra (undesirable) O (M) or O (InT') factors for bounding Eq. (24).

Lemma C.18 (Bounding term (52.2)).

(b2.2) < O (M).

Proof of Lemma C.18. For any player p € [M] and t € [T, recall that mifT’(t —1)=(m{(t—1)—M)Vland(z), =2VO0.
When &;, {m’T’(t -1) > L} and HY (t) happen,

P
1 it

=Pr (9?(75) <y ]:t—l)

~o (07 - agerifc - 1)y~ /1)

mE (t — 1) (agg-if (t — 1) — yF)3
<exp | —
8
mE(t — 1) (uf — LAY — i 4 2AP)?
<exp | — T( )(NT 12 — My Ty )t
8
mP(t —1)(AP)2
T i
< - 7 7
=P 8(64)
1
<77
“T+1

where the second equality uses Remark C.10; the first inequality uses Lemma C.35; the second inequality follows from the

observations that, when &, {m%r’(t -1)> L} and HY (t) happen:

Lomf(t=1)>ml(t—1)— M > L— M > BT,
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5 agg—[ﬁ;(t 1) > M? _ mig(lf—ji) > H{(’ — iAf (see Definition B.9), and

3.y = pf — 307 < pf = AT

the third inequality is by algebra; and the last inequality follows from the observation that mizg(t -1 > m? t—-1)—M>
L—M > 25607 > 1280m{TH) fo, 7 1,

(AP)2 = " (AP)?
—_ P
It follows that, when &, {m’;(t -1)> L} and H”( ) happen, ¢7, > T,J-;-l and 1¢;th < 1. Hence,
1—¢%, _
(22)< > > E ¢p ﬂ{ft,Hf(t),m’T’(t—l)zL} < M. 0
pE[M tpEPt

C.2. Non-subpar Arms
In this section, we provide a proof for Lemma C.2.

Let us fix any player p € [M] and any suboptimal arm i € Z{;, for player p such that A? > 0. In the rest of this section, let
us also fix an optimal arm for player p, ©,, and we abbreviate it by o. We have pi6 = pf = max;e[x) 1}

Definition C.19. Let 27 = p? + 1A be a threshold. In any round ¢, define
WP () = {67(t) > 27}

to be the event that the sample 6% (¢) from the posterior distribution associated with arm ¢ and player p in round ¢ is greater
than the threshold z!. Therefore, W7 (t) = {67 (t) < 2P'}.

C.2.1. NON-SUBPAR ARMS—DECOMPOSITION

We consider the following decomposition.

E [n}(T)]

=E | > 1{i# =i}
_t:pGPt

=E| Y 1{# =i WP, & +E| Y 1{¢f=i,wg’(zﬁ),&} + 3 IE[IL {zf:zé’t}]
| t:PEP: | t:pEP: ] t:pEP:

<E| Y 1{# =i Wwr@L&} | +E| Y 1{15:1,14/;’(7:),&} +O(1), (25)
t:pEP: _tipepf, i

(D) (E)

where the last inequality follows from the observation that E []l {zf =1, é}}} <E {]l {é}}} and Lemma B.10.

Following this decomposition, Lemma C.2 is proved straightforwardly given Lemma C.20 and Lemma C.21 which we
present in what follows.
C.2.2. BOUNDING TERM (D)

We first bound term (D) in Eq. (25).
Lemma C.20.
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Proof of Lemma C.20. With foresight, let h = 43%;;} + 2M. Recall that H? (t) is the event that the individual posterior
is used in round ¢ by active player p for arm ¢ (see Definition A. 13). We have

(Dy=E | > 1{if =i, W/ (1), &}

t:pePy

<h+ Y E [11 (i =i, WP(t), &, nl(t — 1) > h}}
t:pEP;

=h+ > E [11 (i =i, WP(t), &, HP (), nP(t — 1) > h}],
t:pEPy

(d)
where the last equality follows from the observation that {n? (¢t — 1) > h} implies that H? (t) happening. To see why this
is true, recall that HY (t) = {nf (t—1)> 406172“T +2M }; and observe that for non-subpar arm i € Z{,_ and player p,

{nf(t —1)>h= 4(2%?1;1; + ZM} implies {np(t —1)>40RT 4 2M} because A? < 10e.

%

It therefore suffices to bound term (d). We have

(@) < 3 B [1{WP0), & H(0),nl(t 1) > h}]
=) E 1 {&.HP(t),n?(t—1) > h}E []1 (WP()} |;HH

- E n{stﬂf(t),nf(t—l)Zh}cb(uf—ind-ﬂf(t—l)) ni—’(t—1>/4)]

< Y E|L{& HI(t),nf(t—1) > h}exp (ﬁf(f— 1)(= —;nd-ﬂf(t— 1))1)

< Y E|1{& HI(t),nf(t—1) > h}exp (—

ng (t—1)(uf + SA7 — pf — 116NZ)1>

< 3 E|1{& HP(),nl(t—1) > h}exp <_’W>

where the first inequality drops the indicator 1 {zf = i}; the first equality uses the law of total expectation and the observation

that &, H? (t) and {nf (t—1)> h} are JF;_i-measurable; the second inequality follows from Lemma C.35; the third
inequality is from the observations that when &; and H? (t) happen:

Lalt-1)>nlt-1)>h= 4‘2&9,};] +2M,

2. ind-pl(t — 1) < pf 4 /2L <P+ L AP (see Definition B.9), and

n(t-1) =

3. 2 = + 3 A
the fourth inequality is by algebra; and the last inequality is from the observation that when n(t — 1) > h,
nf(t—=1)(A})? 1
€xp < 8(16) > <7

In summary, (D) < h+ (d) <O <(1A“?T)2 + M) O
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C.2.3. BOUNDING TERM (E)
We now bound (E) in Eq. (25):
Lemma C.21.

<E><o((1§;2+M>.

Proof. Lemma C.21 follows from Lemma C.24, Eq. (29), Lemma C.25, and Lemma C.30 which we present shortly. [

We begin with the following definition, similar to the notion of (;5,’57 , used for subpar arms.

Definition C.22. Recall that p is a fixed player, ¢ is a fixed suboptimal arm for p, and ¢ is a fixed optimal arm for p. In any
round t, define
dft =Pr (ep( ) > 2] | ]:t—l) .

Remark C.23. Recall that nE(t — 1) = nE(t — 1) V Land mB(t — 1) = (mB(t — 1) — M) V 1. i, can be explicitly
written as:

P _FH Mo(t - 1)
e =® < varh(t — 1) ) (26)
=5 ((:f — indg2(e - D)V - /1) 1 {20} + 8 (2~ aweat(c - V)~ /1) -2 {FE )}
27)

The proof for the above remark is omitted, as it is very similar to that of Remark C.10.

We now present the following lemma.

Lemma C.24.

B =E| Y t{#=iW®D.&}| < Y E ( ‘fﬂw:m}

t:pEP: t:pEP:

Proof. The proof largely follows the same outline as that of Lemma C.11.

In any round ¢ and such that p € P;, consider

'Qf()5t|]:t 1)

0,07 (t) < 2 | Foor) - L{&}
Pr(05(t) < 2P | Fooi)
Pr(05(t) > 2 | Fi1)

SPI‘ (Z'il:<>|.7t_1) . ]1{(‘:,5}

1 :
= pz’t>-PI'(Z'€:<>]:t1)']l{gt}

1 - it p
= 7 Pr(if =0,& | Fio1), (28)

where the first equality follows from the definition of Q¥ (¢) and that & is F;_;-measurable; the first inequality uses
Lemma C.40 with [ = ¢ and z = 27; and the second equality inequality is from the definition of ¢? +> the last equality is
again because & is F;_1 measurable
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Finally, we have

E {11 {if :z}Qf(t),St}} —E|Pr (z’f =i, QD). &, | ]—}1)]

1y
=E |E ( > ’t>]1{if:<>,8t}}}_1
it

1— P
=E ( p”>11{z‘f:<>,5t} ,
it

where we use the law of total expectation and Eq. (28). The lemma follows by summing over all ¢’s. O

Let us further decompose (Ex) as follows.

7,t

(B )= Y E (1_p £t>1{¢f:o,gt,ﬂg(t)} + Y E <1_,, it)]l{if:o,&,flg(t)} )

t:pEP: (4 t:pEPy

(el) (e2)

We first consider term (el).

Lemma C.25.
InT
Proof of Lemma C.25. With foresight, let .J = Gglg};;;f . We have

1— P
(el) = Z E ( p”)n{if_o,et,Hg’(t),ng(t—l)<J} +
it

t:pEPy

(el.1)

1 _¢f,t .p
Y E . 1{i? = o0,&, H(t),nE(t —1) > J}| .

t:peP: it

(el.2)

Lemma C.25 follows straightforwardly from Lemma C.26 and Lemma C.29, which bound (el.1) and (el.2), respectively.
O

Lemma C.26.

InT

(el) <O —= |-

(A7)?
To prove Lemma C.26, we first present the following Remark C.15.
Remark C.27 (Invariant Property). Similar to Remark C.15, by the construction of Algorithm 1, we have that for any
arm ¢ € [K], and player p € [M], { piit€ [T]} and {HE(t) : t € [T} satisfy the invariant property with respect to
(¢, p) (Definition A.20). Indeed, the former follows from Eq. (26), along with Example A.23 that shows that the posterior

parameters, { (28(t — 1), var§(t — 1)) : t € [T']}, satisfy the invariant property with respect to (o, p); and the latter is from
Example A.21.
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Proof of Lemma C.26. We start by rewriting (e1.1) as follows, where we drop &;.

i L
(el.1) <E 23( p”>ﬂﬁf:%ﬂﬂﬂmﬁr—D<J}
_t:pEPt i,

=E Z gl {if =omE(t—1)< J}|,

_t:pEPt

. . . . 1—y?
where in the second line, we introduce the notation g; := < wf”) 1 {Hﬁ’ (t)};
i,t

We now focus on the sum inside the expectation. Recall that (<, p) is the round in which player p pulls arm ¢ the s-th time.
Here, we abuse the notation and denote 7, (o, p) by ms. By Remark C.27, {g; : ¢ € [T} satisfies the invariant property with
respect to (o, p). Applying Lemma C.37 on {g; : t € [T]}’s, we have that the term inside the above expectation is at most:

J—1 1
> <p - 1) 1{r, <T,HE(ms +1)},
s=1 i,ms+1

i1

where we also use the observation that ( - — 1) 1{HE(1)} =0.

Therefore, by the linearity of expectation, we have
J—1 1
(el]) <> E <p - 1) 1{r, <T,HE(ms +1)}
s=1 i, ms+1

Therefore, the following Lemma C.28 suffices to prove Lemma C.26, which we prove next. O

Lemma C.28. Forany s € [T,
1
E <p - 1) 1{m, <T,HY(ms+1)}| <O(1),
i, ms+1

where we recall that w4 = 75(0, p) is the round in which player p pulls arm © the s-th time.

Proof of Lemma C.28. We note that this proof is similar to that of Lemma C.16. We have

1
E <p - 1) 1{m <T,HE(ms+1)}
i, ms+1

=FE ! — 1|2 {m <T, H: (s + 1)}

& ( (a2~ intm)) o)1)

1
<E 1{rs <T}|,

® ( (4 - ind-t(m) y () 1)

where the inequality drops HY (5 + 1) and uses the observation that 2z’ < 18, and the monotonic increasing property of

Z %. Now, using Lemma C.36 and Corollary B.6, we conclude that this is at most O(1). O
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Lemma C.29.
(el.2) <O(1).

Proof. Recall that

1—P
(el2)= > E < ”)]l{z’f:o,&’t,Hg(t)mg(t—l)>J}

P
t:pEP; wi’t
Dropping 1 {if =5}, we have
p

(el2)< Y E <1_,, ”)1{5t,Hg(t),ng(t—1)>J}

t:peP, (4

When &;, HY(t), and {ng(t -1 > J} happen, we have

1- 1t
=Pr(65(t) <zF | Fov)

—o ((:f = mdeize 1)y le - /1)

nB(t—1) (ind-(t — 1) — 2')’,

<exp | — <
2

PE( 1) (18— 1A7 — 8 + A1)

<exp | — <
P Y2
ng(t —1)(A?)

< A S S A

_exp( 8(16)

1
<77
T+1

where the first inequality uses Lemma C.35; the second inequality uses the observations that, when & and {ng(t -1 >J }
happen:

LonB(t—1) > nb(t—1) > J = S0,

2. ind-g5(t—1) > pb —, /% > b — pr (see Definition B.9), and

3. 2 —uo—pr

the third inequality is by algebra; and the last inequality follows because when {nﬁ(t -H>J } happens, n5(t — 1) >

SE > EORH) for T > 1.

w

P
It follows that, when &; and {n<> (t—1)> J} happen, wz ;> T+1 and “t < #. Hence, (el1.2) < 1. O

We now consider term (e2). Recall that

_ Z 5 (1_1)7,75)]]_{2';:0,51&7%}

t:peEPy 15t
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Lemma C.30.
InT
Proof of Lemma C.30. With foresight, let Z = Gg*ggf;f + M. We have

(€2) = Z E (1 _;’Df’t) 1 {z’f =0,&, HE(t),mE(t —1) < Z} +

t:pEPy it

(e2.1)

1— P L
> E ( pq”t>ﬂ{if=<>,5t,H£’(t),m§(t—1)zz}

t:pEP, it

(e2.2)

The proof follows straightforwardly from Lemma C.31 and Lemma C.33 which we present subsequently. O

Lemma C.31.
InT

(e21) <O ((AW —|—M> .

Proof of Lemma C.31. We have

(@21)<E| Y (i - 1) 1 {if = o, HE(t),mP(t — 1) < Z}

1
<E| Y 1 {if — o, HE(t), mP(t — 1) < Z} :
| t:PEP: it

where we drop & and use the observation that w% —1< w}) )
it i,t

We now focus on sum inside the expectation. We denote 7 (0) by 71 and the player that makes the k’s pull of ¢ by
pr := pr(©). Recall that we use m3(t — 1) to denote (m3(t — 1) — M) V 1. We have

3 ipn {z‘f =0, HE(t),mB(t — 1) < Z}

t:peP; i,

- L 1{if = o HE(@), mi(t 1) < 2}
t:peP; O <(zf —agg-ib(t — 1)) \/mb(t — 1)/4>

< Z ! L{i} =o,mB(t—1) < Z} (30)
tpeP: ((u€ — agg-b(t — 1)) \/mE(t — 1)/4>

<> Zi ! i =o,mi(t—1)< Z}, (31

— 1 {z
te[T) a€P: ((ug —agg-pd(t — 1)) \/md(t — 1)/4)

where the first equality uses Remark C.23; the first inequality drops HZ (¢) and uses the observation that 2z < uf (see

Definition C.19), along with the monotonic increasing property of z 5(12) .; the second inequality adds similar terms for

other players q # p.
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Now, define {f!:t¢c [T],q € [M]} where f! = 1 — ; recall from Example A.22 that
Uit el ae ) B Nz ) b

{agg-id(t — 1) : t € [T]} and {m&(t — 1) : t € [T]} both satisfy the invariant property with respect to (¢, q); therefore,
{ fl:te[Tl),qe M ]} satisfies the invariant property with respect to . Applying Lemma C.38 to it, we have that

Z—1
SIEDIETTEDS : =1
q€[M] =1g ((u‘é”“ — agg-fi6" (Tk) m’é"“(ﬂc)/4>>

Since > c(a % < O (M), it then suffices to show that for every k € N,

E ! 1m<T} <0). (32)

9 ((uﬁk — agg-fi* (i) \/ mE* (&) / 4)

Note that m8* (1) = (no(mx) — M) V 1. Directly applying Corollary B.4 and Lemma C.36 with X = (agg-/ib* (73,) —

(E*)\/mB*(1;) /4 and E = {7, < T’} proves Eq. (32). =

Remark C.32. In the above proof, we relaxed Eq. (30) to Eq. (31) by adding the corresponding terms for all other players
q # p. Alternatively, we could use the observation that n5 (¢ — 1) < m5(¢ — 1) to bound Eq. (30) by

> ! 1{# =o,nl(t—1)< Z},

P (18— ot~ 1) (o — /1)

and apply Lemma C.37 and subsequently Lemma C.36. However, right now, we do not have tight-enough concentration
inequalities for agg-/i5 (7 (¢, p))—the best known inequality here is Freedman’s inequality, which incurs an undesirable
extra O (InT) factor in the bound for (e2.1).

Lemma C.33.

(2.2) <O(1).

Proof of Lemma C.33. Recall that

(22)= Y E (1 — f}) 1 {if = o, &, HE(t), mP(t — 1) > Z}

t:peP; it
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Recall that m2(t — 1) = (mE(t — 1) — M) V 1. When &;, HZ(t) and {mZ(t — 1) > Z} happen simultaneously,
1- i, t
=Pr(02(t) <zF | Fiov)

~ ((:f - asgit(c - 1) 0 1)/4)

- ~ 2
mB(t —1) (agg-pB(t — 1) — =),

<exp [ - e
— 2
W= 1) (s — SAT = + A1)
<exp | — <
P P\2
mo(t — 1)(AF)
< A A el A
—eXp< 8(16)
1
<7’
ST11

where the first inequality uses Lemma C.35; the second inequality uses the observations that when &, HY(¢) and
{m%(t — 1) > Z} happen:

Lomb(t—1) >mb(t—1) =M > Z - M > QBT

2. agg-fh(t —1) > b — | /% > pb — 3 AY (see Definition B.9), and

3. 2 = 8 — FA? (see Definition C.19);

7

the third inequality is by algebra; and the fourth inequality is by the fact that when m3(t —1) > Z, mB(t —1) > Z — M =
640InT ~, 320I(T+H1) g0 p o

(AP)Z - (AP)Z

P
It follows that, when &, HE (t) and {m&(t — 1) > Z} happen, PP, > TL-H and w?t £ < 4. Asaresult, (e2.2) <
o). 0

C.3. Concluding the proofs of Theorems 4.1 and 4.2

Lemma C.34. Let a generalized e-MPMAB problem instance and o > 0 be such that for all i € T, and all p € [M],
AP < 2AMMIf algorithm A guarantees that when interacting with this problem instance:

1. For any arm1 € I,
InT
En;(T)| <O s t M (33)
i) < (g 1)
2. Forany armi € IS and player p € [M],
InT
E[n?(T)] <O (W + C) , (34)
for some C' > 0, then it has the following regret bounds simultaneously:

1. gap-dependent regret bound:

Reg(T) Z 3 IZT + Y IZTJrMK(lJrC), (35)

zeIa pE[M]:AP>0 " i€ZS pe[M]:AP>0
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2. gap-independent regret bound:

Reg(T) < O| /|Za|P+ /M (ZS| - 1) P+ MK(1+C) |, (36)

where we recall that P = Zthl [Py

Proof. We prove the two items respectively. Recall that A = min, e AP

1. Note that for all i € Z,, and all p € [M], A < 2AM" and Z]]D\il E [nf(T)] =E [n;(T)]; as a consequence,

7

M K
Reg(T) =Y ) "E [nf(T)] O > En(D]Arm+Y" >  ERIDAY|. @37
p=1i=1 i€, i€Z{ pe[M]:AP>0

Using Eq. (33), the first term can be bounded by:

min
i€Lq i€Zq z i€Zq pE[M]lAf>O ?

E [n,(T)] AP < O T k| <ol L lnT—i—MK ,
2 2 & i Y,

where the second inequality follows from the assumption that for all i € Z,, and p € [M], A? < 2AMin,
Using Eq. (34), the second term can be bounded by:

S Y ERmar<o| Y % IZT+MKC

i€ZS pe[M]:AP>0 €IS pe[M]:AP>0 7
Combining the above two bounds yields Eq. (35).

2. As with the proof of Eq. (36), we continue from Eq. (37), but look at the two terms respectively. For the first term,

min : InT min
Z E [n;(T)] AP <O Z min (E (ni(T)] (A + M) Al
€L, €L,
<0 Z min ( (T)] AP», iii;) + MK
i€Ly g
<O | Y \VE[n(T)]InT + MK
1€L

<0 (VIZL[PInT + MK) (38)

where the first inequality is from Eq. (33); the second inequality is by algebra; the third inequality is from the elementary
fact that min(A, B) < v AB; the last inequality is from Jensen’s inequality and the concavity of function z +

vz, which implies that 37, ., |/E [m (T)] < \/|I(x| (Zieza E [nl(T)]), and the fact that >0, ., E [nz(T)] <
SME [ni(T)] < P.

For the second term in Eq. (36), first observe that if ’Igf ‘ = 1, then let ¢* be the only element in Ig ; it must be the
case that for all p € [M], i* is the optimal arm for player p. As a consequence, ) . ;c 2111\4:1 E [nP(T)] AY =0 =

O(/M(|Z| - 1)P).
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Otherwise,

Z Z]E )| A <O Z me(E (T)], (ZI%>A€+MKC

pE[M] €LY pE[M] €LY

<0 Z Zmln( )} Af7lzg>+MKC

pEe[M] €L

<0 Z > VE[RIT)]InT + MKC

M) ieZS

<O (MM Z¢ | PlnT+MKC>

<0 <\/M (1751 -1) P1nT+MKC> .

where the first inequality is by Eq. (34) and algebra; the second inequality is by algebra; the third inequality is from
the elementary fact that min(A, B) < v/ AB; the fourth inequality is from Jensen’s inequality and the concavity

of function = — /Z, which implies that ;.7 +/E [ni(T)] < \/ IZ.| (ZieIa E [ni(T)D, and the fact that

>ier, E [ni(T)] < Zf\il E [ni(T)] < P; the last inequality is from the simple observation that |Z'| < 2(|Z$| —1)
when |Is| > 2.

In summary, Zﬁil Yiezc E[nf(T)] AT <O <\/M (’Ig| — 1) Pln T) + M KC'. Combining this with Eq. (38),
this concludes the proof of Eq. (36). O

Proofs of Theorems 4.1 and 4.2. Combining Lemmas C.1, C.2, C.34 with C = M and o = 10¢, Theorems 4.1 and 4.2
follow immediately. O

C.4. Auxiliary Lemmas

N el 22 . . .
Recall that we denote by ®(z) = jz \/%e’ = dz the complementary CDF of the standard normal distribution.

Lemma C.35. ® is monotonically decreasing. In addition, for z > 0,

Lz ) <3 < =
27TA22_~_1exp 5 | =2() sew 5 |

where the first inequality (anti-concentration) is from (Gordon, 1941). In addition, for any z € R,

®(2) < exp <(Z2)+> , ®D(2) <exp <(_;)+> ,

where we recall that (z)+ = max(z,0).

The following lemma is useful in bounding (62.1), (e1.1), (€2.1); it can also be used to provide a simplified proof of the
first case of Agrawal & Goyal (2017, Lemma 2.13). Roughly speaking, the lemma shows that a random variable X with

a light lower probability tail must have a small value of E ; it crucially uses the lower bound on ® (Gaussian

1
o(-X)
anti-concentration) given in Lemma C.35.
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Lemma C.36. There exists some absolute constants c1, co > 0 such that the following holds. Given a random variable X,
an event E and some Cy > 0; if, for every z > 1, P(X < —z, E) < Cy exp(—222), such that

1
x

< c1Cq + co.

Proof. Define Y = —X; we have P(Y > 2, E) < C} exp(—22?) forall z > 1.

1
E|= 1{E}
o(-X)
!
=E | = 1{E, X <-1}| +E | = 1{E, X >-1
SX) { } S X) { }
1 1
<E |=——1{E,Y > 1}| + =
| 2(Y) (1)
1
<8V2r - E [ey2]l (B,Y > 1}} F—
o(1)
where the first inequality follows due to the fact that 6(12) increases monotonically as z increases; and the second inequality

is based on the observation that for y > 1, % </ 277% exp(%) < 8v27e¥’ (see Lemma C.35).

It suffices to show that E {ewll {E,)Y > 1}] is bounded by some constant, given the assumption on Y. Define W =
eY’1 {E,Y > 1}. We have that for any w > e,

P(W >w)=P(E,Y > Vlhw) < C—;
w
As a result,
E [W] :/ P(W > w)dw
0
:/ P(sz)dw+/ P(W > w)dw
0 e
> C
<e —|—/ —; dw
e W
Cq
<e+ )
e
Therefore, the lemma holds by taking ¢; = @ and co = 8V 2me + ﬁ. O

The following two lemmas are useful in bounding (el.1) (Lemma C.37), as well as (b2.1) and (e2.1) (Lemma C.38),
respectively.

Lemma C.37. Fix any arm i € [K] and player p € [M]. Let N € NT. Suppose {g; : t € [T'|} satisfies the invariant
property with respect to (i,p) (Definition A.20). Then,

N—1
S gt { =i (t—1) <N}y < g+ Y greral {me < T},
t:pEPy 1

where T, = (i, p) denotes the round associated with the k-th pull of arm i by player p.
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Proof. Let hy = g1 {nf(t — 1) < N'}. As seen in Example A.22, {n?(t — 1) : ¢t € [T]} satisfies the invariant property
with respect to (i, p). This, combined with the assumption that {g, : ¢ € [T} satisfies the invariant property with respect to

(i,p), implies that {h, : ¢ € [T']} is also invariant with respect to (¢, p). Applying Lemma C.39 to the above {h, : t € [T},
we have

S g {if =inf(t—1)<N}= > hl{if =i}

t:pEP; t:pePy

T
<hy+ Y he a1 {mp < T}
k=1

T
=11 {n?(0) <N} + > gmopad {n¥(m) < N} 1 {m. < T}
k=1

T
—g1+ 3 gmeril {k < N}1{m, < T}
k=1
N-—-1

=01 + Z gﬂ'k"l‘l]]‘ {ﬂ'k < T}v
k=1

where the first inequality is by Equation (40) in Lemma C.39; the second equality is by expanding the definition of h;’s; the
third equality is from that n”’(0) = 0 and n? () = k; and the last eqaulity is by algebra. O

Lemma C.38. Fixanyarmi € [K] and let N € NT. Suppose {ftp ite[T),pe [M]} satisfies the invariant property with
respect to arm i (Definition A.20), then,

Yo AU =imlt-1) <N} < Y f1+z e {me < T}

te[T] pEP: pe[M]

where (i, pr.) = (71(2), px (7)) denote the round and player associated with the k-th pull of arm i by all players.

Proof of Lemma C.38. First, consider any fixed player p € [M]; let hy = fF1 {m t—1)< N } As seen in Example A.22,
{mP(t—1):t € [T} satisfies the invariant property with respect to (¢,p). This, comblned with the assumption that
{f? :t € [T} satisfies the invariant property with respect to (i, p), implies that { h, : ¢ € [T]} is also invariant with respect
to (i,p). Applying Lemma C.39 to the above {h, : t € [T}, we have

oo =imPt-1) <N} = > hl{if =i}

t:pEPy t:pEPy
<hy+ Y a1 {i =i}
t:pePy
=f+ Z ft+1]l{zt—zm <N}
t:pEP:
=1+ > L {il =ini(t) < N} (39)
t:pEPy

where the first inequality is from Equation (41) of Lemma C.39; the second equality is by expanding the definition of h; and
noting that hy = 1 {m?(0) < N} f{ = 1{0 < N} f7 = f?; the third equality is from the observation that, if i{ = i and
ub (t) = t, then m? () = n;(ul (t)) = n,(t).
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Now, summing Equation (39) over all players p € [M], we have

SN fFa{i =iml(t—1) < N}

te [T] PEP:

< e Y (@ =it < N}

pE[M] pE[M] t:pEP;

N—-1
<Y Al {n < T},
k=1

p€[M]

where the second inequality is from the observation that for every ¢ € [T, p € Py such that i = 4 and n;(¢t) < N, there
must exists some unique k € [N — 1] such that 7, = ¢ and p, = p. O

The following auxiliary lemma facilitates the proofs of Lemmas C.37 and C.38.

Lemma C.39. Fix any arm i € [K] and player p € [M]. Suppose {h; : t € [T} satisfies the invariant property with
respect to (i,p) (Definition A.20). Then,

T
> A {if =i} <hi+ > haal{m, < T} (40)
te[T):pEP: k=1
b+ Y el {d =i}, (41)
te[T]:peP:

where 7y, = (i, p) denotes the round associated with the k-th pull of arm i by player p.

Proof.

T

> ml{il =i} = ho 1 {m <T}
k

te[T]:pePy =1

=3 ey D {m < T)

T
=1

T

Shl + Z hﬂ-k71+1]l {’/Tk S T}
k=2
T-1

=h1 + Z P11 {mp1 < T}
k=1
T-1

<h; + Z P11 {m, < T}
k=1

=hy + Z ht+1ﬂ {’Lf = Z} ,

te[T):peP:

where the first equality uses the definition of 7 the second equality uses the invariant property, specifically, hr, = hr,_,+1;
the first inequality uses the observation that the first term hy,+11 {m < T} = hy1 {m < T} < hy; the third equality
shifts the indices in the sum by 1; the second inequality uses the observation that 71 < T = m; < T; and the last
equality is again by the definition of 7. O

The following lemma is largely inspired by Agrawal & Goyal (2017, Lemma 2.8); here we generalize it to the multi-task
setting, for reducing bounding (B) and (E) to bounding (Bx*) and (FE*) respectively.
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Lemma C.40. For any player p € [M], time step t € [T, and arm i € [K], we have for any arm | € [K| and any threshold
z e R:
Pr(07(t) <z|Fi-1)

Pr (i} =4,00(t) <z | Fpo1) < Pr (67 (t) > z | Fi—1)

Pr(if =1]|Fi1).

Proof. First,
Pr (if =i, QI(0) | Fi )
<Pr(vje (K], 07() < 2| Foa)
=Pr(07(t) < = | For) - Pr (V) £1, 60(8) < 2| Fia ),

where the first inequality follows because the event {zf =1i,Q (t)} happens only if Vj € [K], 6%(t) < z; and the second

equality follows because conditional on F;_1, the draws 6% (t)’s and 67 (t) are independent.

Now, observe that

Pr(Vj £ 00 <2 | Fia)
Pr(67(t) > 2, and Vj £1, 63(1) < 2| Fir)
Pr(0F(t) >z | Fi1)
Pr (i =1| Fi_1)
PI‘ 0{’(15 >z ‘ .7:,5_1)

where the equality follows, again, by the conditional independence of {9? (t):j# l} and 67 (t); and the inequality follows

because the event {Qf (t) >z, Vj#1 05(t) <y} } implies that {i{ = [} happens. The lemma follows from combining
the above two inequalities. O
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D. Theoretical Guarantees of Baselines
D.1. IND-UCB and IND-TS in the generalized e-MPMAB setting

Theorem D.1. The expected collective regret of IND-UCB and IND-TS after T' rounds satisfies the following two upper
bounds simultaneously:

Regr) <0 [ Y AT “)

pe[M]ic[K]:AP>0 ¢

Reg(T) <O (\/MKP) , (43)

where we recall that P = ZZ;I |Py].

Proof sketch. For Eq. (42), we note that both IND-UCB and IND-TS guarantees that for every p € [M],

InT
Reg?(T) <0 | Y S |;

p
i€[Kl:AP>0

summing over p yields Eq. (42).
For Eq. (43), we note that for every p € [M],

Reg”(T) < O (W) .

Summing over all p € [M], we have

M M M
Reg(T) =Y Reg’(T) <O (Y WJK|{t:peP}| <O | MK |{t:pe P} :@(VMKP). O

D.2. ROBUSTAGG (¢) and its regret analysis in the generalized e-MPMAB setting

Wang et al. (2021) study a special case of eeMPMAB problem, which can be viewed as e-MPMAB problem defined in
Section 2, with active sets of players P; = [M]. In this specialized setting, they propose ROBUSTAGG(¢), a UCB-based
algorithm that achieves a gap-dependent and gap-independent regret of

1 InT InT
o M_Z > ny >, Ar HME| (44)
1€T5c pe[M]:AP>0 * icZS pe[M]:AP>0 *

and
@) <\/M|I55|T+M I§§|T+MK), (45)

respectively. In this section, we show that, with a few small modifications, their algorithm and analysis can be used in our
(more general) e-MPMAB setting, where the active sets P; can change over time.
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Algorithm 2 ROBUSTAGG(¢€) for the generalized e-MPMAB setting
1: Input: Dissimilarity parameter € € [0, 1]
2: Initialization: Set n!’ = 0 forall p € [M] and all i € [K].
3: fort=1,2...,T do

4:  Receive active set of players P

5. forpe P;do

6: fori € [K] do

7: Let mp = qu[]\f] q;ﬁp

8: Letn =n? vlandm =mlVv1

9: Let

1
P — — P D .
i(t)—ﬁ >ty Z > rand k25, N) = AL () + (1= Mn? (1);
7 s<t: L s<t q€Ps:
PEPs, 18 =i q#p,id=i

10: Let F(n?,mP, )\ €) = 8\/131nT PQ + <1§)2] + (1= Ne

11: Compute \* = argminy ¢ 1 F(n?,mP, \,€)

12: Compute an upper confidence bound of the reward of arm ¢ for player p:

UCB?(t) = kP(t, \*) + F(n?,m?, \*, €).

13: end for

14: Let if = argmax;¢ ;) UCBY (t)

15: Player p pulls arm 4}’ and observes reward r?

16:  end for

17:  for active players p € P; do

18: Leti = i} and set n? + n? + 1.

19:  end for
20: end for

Specifically, Algorithm 2 is our modified version of ROBUSTAGG(€). Recall that ROBUSTAGG(¢€) performs an UCB-based
exploration (Auer et al., 2002): for every player and every arm, it constructs high-probability UCBs on the expected rewards
(line 7 to 12); to this end, it makes careful use of both the player and other players’ data, and construct a series of UCBs
parameterized by A (line 10), and selects the tightest one (line 11 and 12). Compared to ROBUSTAGG(¢), for every round ¢,
Algorithm 2 only computes expected reward UCBs for active players p € P; (line 5), and updates arm pull counts on active
players (line 17).

We show that Algorithm 2, when applied to our e-MPMAB setting, has regret guarantees that recover and generalize
ROBUSTAGG(€)’s original guarantees. Specifically, in the specialized e-MPMAB setting where P; = [M], we recover the
regret guarantees of ROBUSTAGG(¢) (Equations (44) and (45)).

Theorem D.2. The expected collective regret of ROBUSTAGG (¢) after T rounds satisfies the following two upper bounds
simultaneously:

Reg()<0| -3 Y A4 Y
4 i€ZS pel

InT
> o tME |, (46)
i€Tse pe[M]:AP>0  ° M]:AP>0

e[ )

Reg(T) <O| V/|Zse|P + /M (|ZS| - 1) P+ MK |, 47)

where we recall that P = 23:1 [Py
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Proof sketch. Even in the general setting where P, is not necessarily [M], Freedman’s inquality can still be applied to
establish the high-probability concentration of the empirically averaged rewards ¥ (¢) and 7! (t); therefore, Lemma 17
of Wang et al. (2021) still holds in the general setting. As a result, Lemmas 20 and 21 of Wang et al. (2021) carries over;
hence, for all ¢ € Z5,, Algorithm 2 still satisfies that

InT
En;(D) <O | ——5+ M|, 48
and for all i € Z& and all p € [M],
InT
E[nf(T)] <O ((AW) : (49)
Equations (46) and (47) now follows directly from applying Lemma C.34 with C = 0 and a = 5e. O

E. Additional Experimental Results

In this section, we present the rest of the experimental results. Figures 3, 4, and 5 compare the average performance
of ROBUSTAGG-TS(0.15), ROBUSTAGG(0.15), IND-UCB, and IND-TS in randomly generated 0.15-MPMAB problem
instances with different numbers of subpar arms.

Note that, when |Z5.| = 9, we have ’IE)CJ = 1 which means that there exists one arm that is optimal to all the players
and the other arms are all subpar. In this favorable special case, ROBUSTAGG-TS(0.15) and ROBUSTAGG(0.15) perform
significantly better than the baseline algorithms without transfer, as expected.

Furthermore, when |Z5.| = 0, i.e., there is no subpar arm and all the arms have relatively small suboptimality gaps. In
this unfavorable special case, ROBUSTAGG-TS(0.15)’s performance is still very competitive in comparison with IND-TS,
which demonstrates the robustness of our proposed algorithm.
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Figure 3. Compares the cumulative collective regret of the 4 algorithms over a horizon of T' = 50, 000 rounds.
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Figure 4. Compares the percentage of arm pulls by arm optimality for the 4 algorithms in 7" = 50, 000 rounds.
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Figure 5. Compares the cumulative collective regret incurred by arm optimality for the 4 algorithms in 7" = 50, 000 rounds.



