CUDA-DClust+: Revisiting Early GPU-Accelerated
DBSCAN Clustering Designs

Madhav Poudel
School of Informatics, Computing, and Cyber Systems
Northern Arizona University
Flagstaff, AZ, U.S.A.
mp2525 @nau.edu

Abstract—Density-based clustering algorithms are widely used
unsupervised data mining techniques to find the clusters of
points in dense regions that are separated by low-density regions.
This algorithm is inherently sequential and has limitations in
its parallel implementation. There have been several parallel
algorithms presented in the literature for multi-core CPUs and
many-core GPUs. One such algorithm for the GPU is CUDA-
DCLUST. In this paper, we propose a new GPU-accelerated
DBSCAN algorithm with several optimizations. In comparison
to prior work, our algorithm, CUDA-DCLUST+: (i) computes
the indexing structure on the GPU, (ii) uses kernel fusion to
combine the index search and cluster expansion kernels, which
reduces communication and synchronization overhead with the
host, and (iii) seed list management control is primarily given to
the GPU rather than the CPU, which further decreases CPU-GPU
communication overhead. We compare our algorithm to three
state-of-the-art parallel algorithms in the literature on six real-
world datasets. We find that our algorithm achieves a speedup
of up to ~23x over the fastest GPU algorithm.

Index Terms—Clustering, DBSCAN, GPGPU, Graphics Pro-
cessing Unit, Outlier Detection, Machine Learning

I. INTRODUCTION

Clustering is a popular method in data processing and
analysis. It is used in many areas such as machine learn-
ing, data mining, pattern recognition, image analysis, and
bioinformatics [1], [2]. Density-based spatial clustering of
applications with noise (DBSCAN) [3] is a density-based
clustering algorithm. It assigns points that are close together to
a cluster, while assigning points an outlier label when they lie
in low-density regions [4]. Unlike other clustering algorithms,
DBSCAN is robust to noise and the algorithm does not require
specifying the number of clusters in advance.

The algorithm performs range queries in a radius around
all points in the dataset; therefore, the time complexity of the
algorithm increases with dataset size. Consequently, scaling
DBSCAN to large data volumes remains a major challenge [5].
To address this challenge, the GPU can be leveraged to
drastically improve the performance of the algorithm.

There have been several attempts to parallelize DBSCAN
in the literature [6], [7], [8], [9], [10]. This paper examines
a pioneering DBSCAN algorithm, CUDA-DCLUST [9], that
was shown to outperform a parallel multi-core CPU algo-
rithm [11]. Since that pioneering work, there have been addi-
tional GPU-accelerated DBSCAN algorithms, and in particu-

Michael Gowanlock
School of Informatics, Computing, and Cyber Systems
Northern Arizona University
Flagstaff, AZ, U.S.A.
michael.gowanlock @nau.edu

lar, a recent summary comparing GPU DBSCAN algorithms
by Mustafa et al. [11], showed that G-DBSCAN [8] outper-
formed CUDA-DCLUST. Despite G-DBSCAN outperform-
ing CUDA-DCLUST, this paper examines the initial algorithm
designs in CUDA-DCLUST, that targeted GPU architecture.
We leverage the main ideas in CUDA-DCLUST, and show
that in contrast to the results shown by Mustafa et al. [11],
our algorithm, CUDA-DCLUST+, outperforms G-DBSCAN.
In summary, this paper makes the following contributions.

1) Unlike prior work, we construct the index in parallel
on the GPU instead of the CPU. This reduces CPU/GPU
communication overhead. 2) We use kernel fusion to combine
the DBSCAN cluster expansion and index search kernels. This
decreases the CPU/GPU communication and synchronization
overhead. 3) We minimize communication between CPU and
GPU by computing most of the seed list management on the
GPU rather than the CPU. 4) In prior work, a size limitation
was imposed on the seed list management array used for
cluster expansion. To prevent inaccurate results, extra non-
negligible work was required. To address this problem, we
propose a new collision detection and merging method.

Mustafa et al. [11] showed that G-DBSCAN outperforms
CUDA-DCLUST in their DBSCAN comparison paper. Using
our optimizations, we show that CUDA-DCLUST+ achieves
up to ~23x speedup compared with G-DBSCAN, demon-
strating that the original CUDA-DCLUST design works well
when optimized for newer GPU architectures.

The paper is organized as follows: Section II presents back-
ground information. Section III presents our algorithm and
associated optimizations. Section IV presents the performance
evaluation. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Overview of the DBSCAN algorithm

DBSCAN is a popular density-based clustering algorithm.
The algorithm does not take as input the number of clusters,
such as k-means [12], but rather uses a density threshold
to generate clusters, and it detects outliers (or noise) in a
dataset. The algorithm assumes that clusters are located in
high-density regions, which are separated by low density
regions. The key idea is to find the neighborhood of a point
with at least a minimum number of points within a given

range [3]. Points with a sufficient density are chained together
to form clusters. We describe key DBSCAN concepts below.
Dimension: The dimension, d, is the number of coordinates
that define a point. Point: Each point in the dataset is defined
by d-dimensional coordinates where a point p; € D contains
the coordinates p; = (p;,p?,...,p). Dataset: A dataset D is
a set of points to be clustered; it contains points p; € D,
where i = 1,...,|D|. dist(p, q): The function dist(p, q)
is the Euclidean distance between points p and ¢, which is
consistent with prior work [9], [11]. e: The search radius
around a point. Points p and ¢ are considered neighbors if
dist(p, q) < e. minPts: The minimum number of points within
an e-neighborhood that are needed to form a cluster.

Based on e and minPts, point p can be classified into three
categories defined as follows: Core Point: A point p that has
at least minPts points within a distance €. Border Point: A
point p which has fewer than minPts points within a distance
€ but is in the neighborhood of a core point. Noise Point: A
point p which is neither a core point nor a border point.

DBSCAN takes a point and searches its e-neighborhood.
The e-neighborhood of a point p consists of all the points in the
dataset, D, whose distance from point p are less than or equal
to € i.e. dist(p,q) < e. DBSCAN relies on two relationships:
direct density reachablity and density connectedness. Given
two points p € D,q € D, point q is direct density reachable
from p, if p is a core point and ¢ is in the e-neighborhood
of p. Similarly, points p and ¢ are connected, if p and q are
density reachable from a point x, or a chain of points that
are density connected, i.e., p,x1,...,%y,q, Where x1,...,2,
form a density connected chain between the points. The
major steps involved in the DBSCAN algorithm are given as
follows [3]. 1) Find all neighboring points within € and identify
the core points with more than minPts neighbors. 2) For each
core point, if it is not already assigned to a cluster, create a new
cluster. 3) Find the density connected points and assign them
to the same cluster as the core point. 4) Iterate through the
remaining unvisited points in the dataset. The points that do
not belong to any of the clusters are considered noise points.

B. Past Optimizations of the DBSCAN algorithm

e-neighborhood searches may account for more than 95% of
the computation time [13]. Since the GPU can perform many
distance calculations in parallel, it is a good architecture for
computing e-neighborhood searches. We limit our literature
review to GPU-accelerated DBSCAN algorithms [6], [7], [8],
[9] because related work shows that GPUs outperform parallel
multi-core CPU DBSCAN algorithms.

We describe GPU algorithms as follows. CUDA-
DCLUST [9] uses a tree-based directory indexing structure
to support the e-neighborhood search by limiting the number
of points to search when expanding the clusters. Another
algorithm is G-DBSCAN [8] that uses the graph structure to
index data and perform breadth-first searches on the GPU to
compute the clusters. Thapa et al. [7] leverages the GPU by re-
placing the e-neighborhood search in the DBSCAN algorithm
with a GPU function executing many GPU threads. Points are

assigned to different GPU threads to find the e-neighborhood
of each point in the dataset through a brute force approach
that does not use an index. Welton et al. [6] proposes an
algorithm that effectively processes dense regions of data using
data partition and merging techniques to avoid the scalability
limits on large datasets. It combines MRNet [14], a tree-based
distribution network for distributed-memory computing, with
hybrid CPU-GPU nodes, and a “dense box” algorithm [6],
[15], [16] that reduces the number of distance calculations.
Gowanlock et al. [17] purposed a hybrid CPU/GPU DBSCAN
approach that exploits the memory bandwidth on the GPU
for fast index searches and employs a batching scheme for
CPU/GPU data transfers to obviate the limitations of GPU
memory. Similarly, Gowanlock [15] proposed another algo-
rithm that clusters on the billion-point scale using multi-core
CPUs and many-core GPUs. In addition, it uses grid-based
indexing to perform e-neighborhood searches and uses the
dense box algorithm to avoid distance calculations.

The algorithms by Welton et al. [6], and Gowanlock [15] are
designed for large datasets and are unsuitable for comparison
to our algorithm (e.g., for small to medium sized datasets, the
algorithm by Gowanlock [15] has non-negligible overhead,
as it expects large datasets to be processed). In addition,
Welton et al. [6], and Gowanlock et al. [15] use the dense
box algorithm to avoid the distance calculations. The dense
box algorithm does not improve performance in low density
regions and is only useful in very high density regions when
minPts is very small. The algorithm by Gowanlock et al. [17]
focuses on DBSCAN clustering under the conditions where a
single dataset should be clustered with multiple € and minPts
parameters. As such, the focus of optimization is on pipelining
the execution of DBSCAN instances, rather than clustering a
dataset with a single set of parameters. Thus, it is unsuitable
for comparison with this work.

To summarize, in our experimental evaluation, we compare
our algorithm to the following algorithms: CUDA-DCLUST,
G-DBSCAN, and CPU-DBSCAN. CPU-DBSCAN is a
parallel CPU algorithm modified from Thapa et al. [7] referred
to as “Multi-Threaded CPU DBSCAN” in Mustafa et al. [11].
We selected these state-of-the-art algorithms as they have
been presented in the algorithm comparison paper of
Mustafa et al. [11]. In that paper [11], they report
that G-DBSCAN outperforms CUDA-DCLUST and CPU-
DBSCAN. In this paper, we show that by optimizing CUDA -
DCLUST, we are able to outperforms G-DBSCAN and CPU-
DBSCAN.

III. CUDA-DCLUST+ ALGORITHM

We present our algorithm, CUDA-DCLUST+, that lever-
ages many of the algorithm designs in CUDA-DCLUST [9].
For clarity, the algorithm uses the notation as shown in Table I.

The algorithm takes as input the dataset D, €, and minPts,
and outputs a list of points and their corresponding cluster
or whether it has been assigned a noise label. The algorithm
constructs an index on the dataset D based on the number
of partitions 7 at each level of the tree. Then, it performs

TABLE I
NOTATION USED IN THE ALGORITHM.

Symbol | Description
€ Radius of neighborhood around a point.
minPts | Minimum number of points required to form a cluster.
7 Number of partition size used in index structure.
|D| Number of data point in a dataset.

Fraction of noise points in a dataset with a given set of € and

minPts parameters.

the cluster expansion on the GPU and merges the clusters
on the CPU. To better understand the algorithm designs, we
first outline the concepts used in CUDA-DCLUST algorithm.
Then, we explain the CUDA-DCLUST+ components and
optimizations.

A. The CUDA-DClust Algorithm

The CUDA-DCLUST [9] algorithm uses the concept of
chains for parallelization. Each CUDA block is assigned a
point for expansion and threads within the block compute the
e-neighborhood search in parallel. The cluster formed from
the expansion is called a chain, where a chain is a subset of
a larger cluster. The threads in a block incrementally grow a
chain. While the chains grow, there is a possibility that two of
the chains contain the same point. This is called a collision,
and a collision matrix is used to record these conflicts. Later,
the collided chains are merged to form a single cluster. The
algorithm uses a seed list to keep track of points that are
to be expanded and uses an atomic operation to assign the
points to the cluster to avoid race conditions. These concepts
of CUDA-DCLUST are explained in detail as follows.

1) Chains and the Collision Matrix: A chain is a collection
of data points belonging to a shared density-based cluster
processed by CUDA blocks during the execution of the cluster
expansion kernel. The threads assigned to each of the blocks
are utilized for the e-neighborhood searches. Collisions that
occur between points within chains are recorded on the GPU
in the collision matrix and are merged on the CPU.

2) Seed List: The seed list is a data structure that keeps
track of points to be expanded. The seed list is assigned to
each block in the algorithm before the execution of the cluster
expansion kernel. The seed lists are updated when points are
processed to find more members of the cluster. The size of
the seed list is a constant, where the maximum size may be
reached during the execution of the program. In this case,
a point may be discarded and not correctly assigned to its
cluster. To address this problem, CUDA-DCLUST uses a refill
seed list operation, which is a data structure that keeps track
of additional points that are needed to refill the seed list for
further chain/cluster expansions.

3) Cluster Expansion Kernel: The cluster expansion kernel
determines the members (points) assigned to a chain and
expands it to include new members. Once the seed list is
assigned with new points from the CPU, each CUDA block
expands the last point from the seed list and decreases the
seed list size. Threads from each block work together to find

neighbors in parallel. The points with a distance < € of the
point being expanded are marked as neighbors and are added
to the seed list by the threads of the respective block. If there
are fewer than minPts neighbors, they are stored in a data
structure denoted as the Quarantine. The quarantined points
are marked as candidates of a chain if there are > minPts
neighbors. Otherwise, expanded points are assigned to the set
of noise points. The potential collisions between the chains
during expansion are recorded in the collision matrix.

4) Index Structure: All e-neighborhood searches can be
performed using a brute-force approach, yielding a complexity
of |DJ?. Alternatively, an index can be used to reduce the
complexity of e-neighborhood searches by pruning the search.
Bohm et al. [9] used an index that partitions the dataset into
levels where each level indexes on a different dimension. The
indexed version of their algorithm is called CUDA-DCLUST*.
For clarity, in this paper, we refer to CUDA-DCLUST as
the indexed version of the algorithm (CUDA-DCLUST*). We
do not compare our work to the brute force version, as it is
significantly slower than using an index.

We will show that the original CUDA-DCLUST algorithm
has significant potential for improvement. We summarize our
optimizations to the CUDA-DCLUST algorithm below.

1) CUDA-DCLUST constructs the index using the CPU. In
contrast, CUDA-DCLUST+ performs the construction of
the index on the GPU in parallel. Since index construction
takes non-negligible time, computing it in parallel on the
GPU improves performance.

2) CUDA-DCLUST uses a constant seed list size to keep track
of points in the cluster expansion kernel. The constant seed
list size can inadvertently discard points from the cluster.
To mitigate this issue, it refills the seed list to minimize
discarding points [9]. In contrast, CUDA-DCLUST+ uses
a correction merge routine that merges the discarded points
to their clusters. This improves performance and slightly
improves the accuracy of the clustering results.

3) CUDA-DCLUST uses a large seed list to maintain accurate
clustering results. In contrast, a large seed list size is not
necessary for CUDA-DCLUST+, as discarded points are
merged by our correction merge routine.

4) In CUDA-DCLUST+, the overhead of communication
between CPU and GPU is minimized by managing the seed
list within the cluster expansion kernel until the seed lists
are empty. Limiting CPU/GPU synchronization and other
overheads improves performance.

B. Index Construction

The index is a tree where each level [of the tree indexes
a different dimension of D. The total number of levels of the
tree is thus the data dimensionality (d) of the dataset. Figure 1
shows the index structure with r = 3 partitions, and d = 2
dimensions/levels. Level 1 partitions the data points in the first
dimension, and level 2 partitions the data points in the second
dimension. Each node represents a bin, and the collection of
all bins represents the index structure denoted by I. Each
node stores the dimension, and range of the data points. The

Partition size: 3

Level 1 ‘

Level 2 ’

Index Tree Structure

Fig. 1. Index structure with » = 3 partitions, and d = 2 dimensions.

location of the data points in the dataset are stored as values
in key/value pairs where the key denotes bin ID. While the
nodes contain minimal information, the use of key/value pairs
allow us to search the index using binary searches (using the
Thrust library [18]) to determine which candidate points may
be within the e-neighborhood of a given query point. We detail
the search of the index in Section III-D.

The index is constructed as follows. We begin by computing
the minimum and maximum coordinates of the points in
each dimension denoted as min, = min(p. € D) and
maz; = max(p, € D), where | = 1,...,d. The minimum
and maximum point coordinates are used to determine whether
we can partition the dataset at each level into r partitions,
where we select an initial number of partitions, 7/, which is
a parameter that we choose experimentally. We then com-
pute the minimum width across all dimensions as follows:
Win = min(max; — ming). We check if (wpin/r') > €.
This constraint ensures that the width of each bin is at least €
units wide to limit the index search to three partitions at each
level of the tree. Otherwise, the complexity of the index search
would increase significantly, thus degrading performance. In
summary, we select r as follows using r’ as an initially
selected number of partitions.

Wmin i Wmin
min - Of S >

|_w7ni'n. J
€)

Consequently, the bin width at all levels of the tree, b, is
simply b = “min,

For a single e-neighborhood search, the maximum number
of bins that need to be searched is 3¢.

To minimize the memory consumption of the index, we
constrain the number of partitions, » < 500, and we will show
experimentally that a good value for » = 10 — 500 across
several real-world datasets'.

T =
otherwise

'In contrast to selecting the number of partitions at each level, another
approach would be to create e-length bins in each dimension. However, one
potential drawback of this approach is that for small values of e, the index
may require a significantly large number of bins, which may exceed global
memory capacity. For this reason, we parameterize the number of partitions.

Algorithm 1 Main routine of CUDA-DCLUST+.

1: procedure MAIN(D, €, minPts, 1)

2 indexKernel(D, r, I)

3 fillSeedList(D, sl)

4 while true do

5: expansionKernel(D, cluster, 1, sl, colMat, corMerge)
6.

7

8

9

mergeClusters (cluster, sl, colMat, corMerge)
completed = fillSeedList(D, sl)
if completed = true then

: break
return

C. Algorithm Overview

We present an overview of CUDA-DCLUST+ in Algo-
rithm 1. The main function starts by taking the parameters
D, €, minPts, and r. First, GPU memory is allocated for the
index (I). The indexKernel inserts all data points into / and
generates bins (line 2). The seed list is initialized with one data
point per CUDA block for expansion (line 2). The process
of cluster expansion and cluster merging is carried out by
coordination of the GPU and CPU in several iterations until
all the data points are processed (lines 4-9). expansionKernel
performs cluster expansion and seed list management until the
seed lists (s/) are empty (line 5). The mergeClusters function
merges the collisions recorded in collision matrix (colMat)
and performs the correction merge (corMerge) to complete
the clustering process for the iteration in the CPU (line 6).
The fillSeedList function fills the new points in the seed list
for the next instance of cluster expansion (line 7). It returns
a completion status by checking the number of remaining
unprocessed points (lines 8-9). If the completion status is true
then the algorithm terminates. The pseudocode of indexKernel,
mergeClusters, and fillSeedList functions are omitted due to
space constraints.

D. Cluster expansion and Index-Supported Range Queries

The expansion and range query kernel expands the cluster
and performs e-neighborhood searches using the index. It uses
a seed list for the management of points to be expanded. Each
of the CUDA blocks expands one point at one instance of
kernel execution. The cluster that is formed at each kernel
invocation is called a chain. The collision between the chains
is recorded in the collision matrix. The chains are merged
on the CPU to form intermediate clusters (which may be
finalized if no other points are to be assigned to the cluster).
The original CUDA-DCLUST algorithm uses a seed list for
the management of points to be expanded. However, it is
limited by its constant size. It uses a data structure called “refill
seed list” to cluster the discarded points caused by seed list
overflow. We have removed the refill seed list functionality and
instead perform an additional cluster merge (called corMerge
in Algorithm 1) that addresses the seed list size limitation. It
merges the collision between the chain and the intermediate
cluster that were formed in the previous iteration of the loop.

The pseudocode of the expansionKernel is given in Al-
gorithm 2. The expansionKernel starts by taking the initial
seed points from the CPU for each of the CUDA blocks for

expansion. Each of the blocks is identified with the chain ID
(cID) which is equal to the CUDA block ID (line 2). The
collision matrix (colMat) and correction merge (corMerge)
are assigned with the unProc state (line 3). The size of the
seed list (slsz) for each of the blocks is checked (line 4). If
the seed list (s/) contains points, then the expansion of the
last point from the seed list is performed in each block. If the
seed lists are empty, then the control is transferred to the CPU
which adds a single seed point to each of the blocks and starts
the next iteration of expansion. The Neighbor count (nbCnt) is
initialized to zero. The point for each of the blocks is extracted
from the seed lists and the size of the seed list is decremented
(lines 5-7). The indexResults data structure is used to store the
bin identifier (bID) list. It is assigned with unProc (line 8). The
expanded point is searched in the index structure to get the
range of data points and perform the e-neighborhood search
(line 9). Due to space constraints, we omit the pseudocode of
the index search in the algorithm, denoted as searchindex.

The data points that fall within the bins are iterated in
parallel by the CUDA block to find whether they should be
assigned to the chain (lines 10-21). The distance between
the candidate point and the expanded point is calculated.
If the distance of candidate points in the bins are within
€ of the expanded point (line 16), then the point is added
as a neighbor. The first minPts neighbors are stored in the
Quarantine (lines 18-19). If nbCnt exceeds minPts (lines 20—
21) then we call the processPoint function (line 27) and mark
the neighbor points as members of the chain (line 28). In
addition, they are added to the seed list for further expansion
(lines 29-30). If the neighbor points already belong to one of
the chains, then the collision between two chains is stored in
the collision matrix (lines 31-33). Similarly, if the neighbor
point already belongs to an intermediate cluster, then the
collision between the chain and the intermediate cluster is
recorded in the corMerge (lines 34-38). The point marked as
noise in the past and belonging to the current chain is marked
as a member of the chain (lines 39-40).

After the processPoint function returns, the data points in
Quarantine are marked as members of the chain, if the number
of neighbors exceed minPts (lines 22-24). Otherwise, the
expanded point is marked as noise (lines 25-26). Furthermore,
the record of the collision matrix and correction merge are
processed on the CPU after the seed lists are emptied (Al-
gorithm 1 line 6). After merging the clusters, the seed list is
filled with new points and the next iteration is executed.

E. Merging Clusters and Filling the Seed List

The cluster merging process is coordinated between the
CPU and GPU. The records of the collision matrix and
correction merge are merged on the CPU. After merging,
the data points are assigned to the intermediate clusters in
parallel using the Thrust library [18]. Then, for each of the
CUDA blocks, a data point is filled in the seed list for further
expansion on the CPU. Furthermore, unprocessed points are
tracked to determine whether the DBSCAN algorithm has
completed processing all points in the dataset.

Algorithm 2 DBSCAN Cluster Expansion.

1: procedure EXPANSIONKERNEL(D, cluster, I, sl, colMat, corMerge)
2: if threadldx.x = 0 then cID <« blockID

3 initUnprocess(colMat, corMerge)

4: for slsz[cID] # 0 do

5: if threadldx.x = O then
6.
7
8

slsz[cID] <« slsz[cID] - 1; nbCnt < 0;
pID < sl[cID][slsz - 1]; p <~ D[pID];
: initUnprocess(indexResults)
9: searchindex(p, cID, D, indexResults, I)

10 for k € 3¢ do
11: bID < indexResults[cID][k]
12: if bID = unProc then
13: break
14: for x € I[bID] do
15: candP < DI[x];
16: if dist(p[i], candP[i]) < €2 then
17: nbCnt < nbCnt + 1
18: if nbCnt < minPts then
19: Quarantine[nbCnt] < x
20: else
21: processPoint(x)
22: if nbCnt > minPts then
23: for i € minPts do
24: processPoint(Quarantine[i])
25: else
26: cluster[pID] <— noise
return

27: procedure PROCESSPOINT(id)

28: oldCID <+ CAS(cluster[id], unProc, cID)

29: if oldCID = unProc then

30: slsz < atomicAdd(slsz, 1); sl[cID][slsz] < = id

31: if oldCID<gridDim.x and oldCID#cID and oldCID#noise then
32: if 0ldCID < cID then

33: colMat[oldCID][cID] « 1
34: if 0oldCID > gridDim.x then
35: for i € corMergeSize do
36: changedCID <— CAS(corMerge[cID][i], unProc, oldCID)
37: if changedCID = unProc or changedCID = oldCID then
38: break
39: if oldCID = noise then
40: CAS(cluster[id], noise, cID)
return

IV. EXPERIMENTAL EVALUATION

A. Datasets

We use six real-world datasets that were used in other works
for examining DBSCAN performance [11], [17]. The datasets
are summarized below.

NGSIM: Next Generation Simulation (NGSIM) vehicle tra-
jectory dataset [19] consists of vehicle trajectory data on three
U.S. highways. The dataset contains over 11,800,000 points
with several attributes, where we use the local road coordi-
nates. We selected up to 108 data points for the experiments.

Spatial and Spatial3D: This 3D-Road Network [20] dataset
consists of road network data of North Jutland in Denmark. It
consists of over 400,000 data points with several attributes.
Regarding Spatial, we used two-dimensional longitude and
latitude information. In the Spatial3D, we used the additional
altitude information along with longitude and latitude. We
selected up to 400,000 data points for the experiments.

Porto: This dataset is from a Taxi Service Trajectory Predic-
tion Challenge dataset [21] that consists of trajectories of 442
taxis in the city of Porto, Portugal. It contains over 81,000,000

location points. It has different attributes like taxi ID, trip
ID, timestamp, day type, and polyline. We extracted the GPS
coordinates from the polyline attribute for our experiment. We
selected up to 107 data points for the experiments.

Iono and Iono3D: These are the real-world space weather
datasets of the ionosphere [22] in two and three dimensions,
respectively. The 2 dimensional datasets contain longitude and
latitude and the 3 dimensional dataset adds the total electron
content value. We use up to 1,864,620 data points.

In our experiments, we sampled the data points to make a
consistent comparison with the experimental methodology by
Mustafa et al. [11]. One reason the data points were sampled
in prior work was that G-DBSCAN has a large memory
footprint and cannot be executed on large datasets. For the
interested reader, our datasets are available online 2.

B. Experimental Methodology

Our platform consists of 2x Intel Xeon E5-2620 v4 2.1
GHz CPUs with 16 total physical cores and 128 GiB of main
memory. The platform is equipped with an NVIDIA Quadro
GP100 GPU and runs CUDA 11.3 [23]. The host code is
written in C/C++. All source code including the reference
implementations are compiled with the O3 optimization flag,
and experiments are averaged over three trials. The implemen-
tations are made publicly available and configured as follows?.
CUDA-DCLUST+: In all GPU kernels, we use a CUDA
block size of 256 and execute 256 blocks. We use a seed list
size of 128 and the correction merge array is of 512 elements.
We chose a smaller seed list size than CUDA-DCLUST in
Bohm et al. [9] to limit the GPU memory footprint. The data
is stored as 64-bit floats.

CUDA-DCLUST: For this algorithm, we reproduce the major
ideas of Bohm et al. [9], as the source code of the algorithm is
not publicly available. The index is identical to that in CUDA-
DCLUST+. We used a CUDA block size of 256 and execute
256 blocks. We configure the seed list to be of size 1024
elements as selected by Bohm et al. [9] to closely reproduce
their experiments. The data is stored as 64-bit floats.
G-DBSCAN: The algorithm uses 256 CUDA blocks per
kernel invocation, where the number of threads per block are
computed by the algorithm at run time. Data are stored as
32-bit floats.

CPU-DBSCAN: This is a modified version of the code by
Thapa et al. [7] that replaces the GPU kernel function with
a CPU function that uses multi-threading. We use 16 threads,
which are the number of physical cores on our platform. Recall
that this algorithm does not use an indexing structure, and is
brute force (Section II-B). The data is stored as 32-bit floats.

Note that the use of 64-bit floats is more expensive than 32-
bit floats. Since CUDA-DCLUST+ and CUDA-DCLUST use
64-bit floats, it puts the algorithm at a disadvantage compared
to G-DBSCAN and CPU-DBSCAN algorithms. Thus, the

2https://rcdata.nau.edu/gowanlock_lab/datasets/CUDA_DCLUST_datasets/
CUDA_DCLUST_HiPC2021.zip.
3https://github.com/I3lackcurtains/fast-cuda-gpu-dbscan.

TABLE II

DEFAULT PARAMETERS USED IN EXPERIMENT FOR 6 DATASETS.
Parameters | NGSIM | Spatial | Iono | Porto | Spatial3D | Iono3D
minPts 8 8 4 8 2 4
€ 1.25] 0.008 1.5] 0.008 0.08 1.5
r 100 80 80| 100 10 40
|D| 400K | 400K | 400K | 160K 400K | 400K

0.060 | 0.002 | 0.001 | 0.003 0.013 | 0.001

performance gains of CUDA-DCLUST+ over G-DBSCAN
and CPU-DBSCAN are a lower bound.

C. Experimental Parameters

DBSCAN takes as input minPts and €. We select a practical
range minPts and ¢, such that we do not obtain too low or
high degrees of noise. Our parameters yield a fraction f =~
0.001 — 0.40 noise points across all experiments.

The number of the partitions (r) are used in CUDA-
DCLUST and CUDA-DCLUST+ as these require r to be
selected for the indexing procedure. While we will show
that » can be selected in a large range to achieve good
performance, we select a default value for each dataset. The
default parameters are shown in Table II for the six datasets.

D. Evaluation on Two Dimensional Datasets

In the following experiments, we vary €, minPts, |D|, and
r. When a parameter is not reported in the figure, we use the
default value as shown in Table II.

1) Performance Impact of the Number of Partitions Param-
eter (r): Figure 2(a)—(d) plots the execution time vs. r for
various values of |D| in CUDA-DCLUST+ (the performance
impact will be the same for CUDA-DCLUST, as they share
the same index). The bins in the index are constructed by
partitioning the data space into r partitions at each level of the
tree. Therefore, a good value of r is dependent on the data dis-
tribution of a given dataset. On the NGSIM dataset, the best r
is 40 when | D| = 50, 000, 60 when |D| = 100, 000—200, 000,
and 100 when |D| = 400,000 — 800,000. A similar pattern
can be observed in Spatial, lono, and Porto datasets. We can
infer that the best value of r is increasing with increasing D. In
Iono at |D| = 400, 000, the best value is 7 = 80. Observe that
increasing from r = 80 to » = 100 yields a longer execution
time due to more expensive index searches. Overall, we find
that the number of partitions 7 can be selected in a large range
and obtain good performance. This is, minor changes to r
do not severely degrade performance, as the algorithm is not
largely sensitive to this parameter.

Note that in Figure 2(d) on Porto, when r > 60, the bin
width, b < e thus, we cannot show these data points.

Figure 2(e)-(h) plots the execution time vs. r for various
values of e. On the Spatial dataset, the best value is r =
100 when € = 0.002 — 0.004, » = 80 when € = 0.006 —
0.008, and r = 60 when € = 0.01. A similar pattern can be
observed on the NGSIM, Iono, and Porto datasets. We infer
that a larger r value is best for the smaller values of € and
vice versa. A smaller e value requires more partitions to avoid

(a) NGSIM (b) SPATIAL
100 100
I —e— |D|=50000 I —— |D|=25000
o —e— |D|=100000 ° —e— |D|=50000
£ 104 —— |D|=200000 £ 104 —— |D|=100000
= —%— |D|=400000 = —%— |D|=200000
C —__ c
5 ~——.___ —+— |D|=800000 o —+— |D|=400000
g 1 —| 3 1<§
9] |9)
(9] (0] _
X X
w w
0.1 " " " v 0.1 " " " v
20 40 60 80 100 20 40 60 80 100
r r
(e) NGSIM (f) SPATIAL
10 1000
- —— £=0.50 - —— £=0.002
- —— €=0.75 - —e— £=0.004
g —— £=1.00 g 100; —v— £=0.006
= = —»— £=0.008
.S _5 10 —+— £=0.010
=} =}
S T e e
g § e
X X
w w ——*
0.1-—= y v v .
20 40 60 80 100

Execution Time (s)

100

10

10

Execution Time (s)

(c) IONO

|D]=50000

|D|=100000
|D]=200000
|D]=400000
|D|=800000

——
——

4 ——

£=0.50

100

80

Execution Time (s)

10000

(d) PORTO

1004

——

—.—

|D|=40000
|D|=80000
|D|=160000
|D|=320000
|D|=640000

—y—
——

—.—

o r————3—3
——

0.01

20 40 60 80 100
r

(h) PORTO

10

Execution Time (s)

0.1

€=0.002
€=0.004
€=0.006
€=0.008
€=0.010

40 60 80 100

Fig. 2. The execution time vs. the number of partitions in CUDA-DCLUST+ () on the two-dimensional datasets. (a)-(d) Performance impact as a function
of the € parameter. (¢)-(h) Performance impact as a function of the |D| parameter.

—+— CUDA-DClust+ —— G-DBSCAN

(a) NGSIM (b) SPATIAL
— 1000 — 1000
a a
X
g 1004——— | ¢ 1004
[i: \
§ Wi—0 ., | 5 W=
5 5
2 1“\0\’\’\’ 3 1“\‘\‘\‘\‘
19} [J]
X X
“ooal . . . ool
0.50 0.75 1.00 1.25 1.50 0.002 0.004 0.006 0.008 0.010
€ €
(e) NGSIM (f) SPATIAL
— 1000 — 1000
a)
g 1009 " —————| ¢ 1004
[= [=
S 10‘»-—‘-<z;".:. s 10‘Q:<
5 5
3 13/ o S e
19} [J]
X X
ool : . : -4 o1l . . , :
4 8 16 32 64 4 8 16 32 64
minPts minPts
(i) NGSIM (j) SPATIAL
— 1000 —
G)
2 1001 g 100
[= [=
§ 1% s 1
5 5
3 14 3
Q [}
X X
ool : . : ~ Yoo01i, . . : :
05 1.0 2.0 4.0 8.0 0.25 0.50 1.00 2.00 4.00
D le5 D 1le5

—+— CUDA-DClust

Execution Time (s) Execution Time (s)

Execution Time (s)

=
o
o
o

100

=
o

1

0.1

1000

100

10

0.1

1000

10

0.1

(c) IONO

A S A
e e S

0.50 0.75 1.00 1.25 1.50

€
(9) IONO

16 32
minPts
(k) IONO

| —

05 1.0 20 40 80
D] 1e5

—— CPU-DBSCAN

Execution Time (s)

Execution Time (s)

)

=
o
o
o
o

Execution Time (s

(d) PORTO

1000

1004

=
o

14

°
Y

— e

‘\'%'\'\-v

e o —

‘\‘\0\0—0

o

.002 0.004 0.006 0.008 0.010

€
(h) PORTO

1000

1004

105

0.1

16
minPts
(I) PORTO

e

0.

. 6.4
le5

16 3.2

1Dl

4 08

Fig. 3. Performance comparison of CUDA-DCLUST+, CUDA-DCLUST, G-DBSCAN and CPU-DBSCAN on two dimensional datasets. (a)—(d) Execution
time as a function of the e parameter; (e)—(h) Execution time as a function of minPts parameter; and, (i)—(1) Execution time as a function of the |D| parameter.
The fraction of noise points across the columns for each of the datasets NGSIM, Spatial, lono and Porto are f = 0.025 — 0.404, f = 0.001 — 0.184,

f =0.001 — 0.003, and f = 0.001 — 0.017, respectively.

wasteful distance calculations because a smaller value of r
creates larger sized bins. However, a larger r increases the
execution time to search the index. Thus, there is a trade-
off between index search and distance calculation overhead.
Despite this trade-off, a good value partition number is r =
60 — 100 across all 2-dimensional datasets and values of e.

Recall from Section III-B that an alternative index design
would be to create e-length bins. However, if we use e-length
bins, then the search time would increase for small values of ¢
because we would have a large number of partitions, r. Thus,
this experiment demonstrates why we do not use e-length bins.

2) Impact of the e Parameter: Figure 3(a)—(d) plots the
execution time vs. € on the four datasets. We observe that
CPU-DBSCAN performs the worst of all algorithms. This is
expected as the algorithm does not use an index, and so it has
a complexity of |D|%.

On NGSIM, G-DBSCAN and CUDA-DCLUST have
nearly identical performance. On the Spatial, lono, and Porto
datasets, G-DBSCAN performs better than CUDA-DCLUST
by a significant degree. We find that CUDA-DCLUST+ yields
superior performance compared with all other algorithms. G-
DBSCAN remains the second-best performing GPU algo-
rithm on all datasets. CUDA-DCLUST+ achieves the greatest
speedup of up to 13.34x over G-DBSCAN on the Spatial
dataset at ¢ = 0.01. The execution time of CUDA-DCLUST+,
and CUDA-DCLUST decreases with increasing € across all
datasets. Smaller values of e require a larger number of
partitions, r, for effective index searches which is evident
from Figure 2(a)—(d). Since we are using a constant r for
this experiment, this impact can be observed on CUDA-
DCLUST and CUDA-DCLUST+. In addition, smaller ¢ values
form a large number of small clusters, which increases the
communication and data transfer between CPU and GPU in
CUDA-DCLUST, and CUDA-DCLUST+.

3) Impact of the minPts Parameter: Figure 3(e)-(h) plots
the execution time vs. minPts on the four datasets. We observe
that CPU-DBSCAN performs the worst of all algorithms.
In all datasets, the G-DBSCAN performs better than the
CUDA-DCLUST. On the NGSIM dataset at minPts = 4 — 8,
G-DBSCAN and CUDA-DCLUST have nearly equal execu-
tion time. Similarly, On Spatial dataset at minPts = 4, G-
DBSCAN and CUDA-DCLUST have nearly equal execution
times. The CUDA-DCLUST+ in all experiments performs
better than all other algorithms. CUDA-DCLUST+ achieves
its greatest speedup of up to 22.74x over G-DBSCAN on
the Spatial dataset at minPts = 4. The execution time of G-
DBSCAN on all datasets tends to decrease with increasing
minPts. In contrast, the execution time of CUDA-DCLUST
and CUDA-DCLUST+ is increasing with increasing minPts.
At a larger values of minPts, DBSCAN finds fewer clusters
and many noise points. Since G-DBSCAN creates a small
adjacency list in the graph which is fast to traverse, the
execution time decreases with increasing minPts. In contrast,
CUDA-DCLUST and CUDA-DCLUST+ need to frequently
fill the seed list from the CPU, and process fewer seed points
in the expansion kernel, which degrades performance.

4) Scalability with Dataset Size (|D|): Figure 3(i)—(1) plots
the execution time vs. |D| on the four datasets to observe how
the algorithms scale with dataset size. Scalability of CPU-
DBSCAN is worse than the other algorithms with increasing
|D|. At |D| = 25,000 on the Spatial dataset, CPU-DBSCAN
performs equally to G-DBSCAN, CUDA-DCLUST performs
worse than G-DBSCAN and CUDA-DCLUST+ performs
slightly better than G-DBSCAN. Similarly, CUDA-DCLUST
performs worse than CPU-DBSCAN until |D| = 200, 000 on
Spatial. Furthermore, on the NGSIM and Porto datasets, G-
DBSCAN has similar execution times compared to CUDA-

(a) SPATIAL3D
1000 1000
—e— |D|=25000
—+— |D|=50000
100 —— |D|=100000
—«— |D|=200000

(b) IONO3D

—— |D|=50000
—e— |D|=100000
—— |D|=200000
—— |D|=400000

|D|=800000

—
o
S

|D|=400000

(

Execution Time (s)
=
o
Execution Time (s)
=
o

=)
-
o
i

2 4 6 8 10 10 20 30 40 50
r r
(c) SPATIAL3D (d) IONO3D
1000 1000

—— £=0.02

—— £=0.50
—e— £=0.75
—»— £=1.00
—— €=1.25

€=1.50

—e— €=0.04
—— £=0.06
—— £=0.08

€=0.10

=
o
I=]
o
o
S

o
o

Execution Time (s)
=
o

Execution Time (s)

Fig. 4. The execution time vs. the number of partitions in CUDA-DCLUST+
(r) on the three-dimensional datasets. (a)—(b) Performance impact as a
function of the e parameter. (c)—(d) Performance impact as a function of
the | D| parameter.

DCLUST+ for smaller dataset sizes. We find that G-DBSCAN
performs similarly to CUDA-DCLUST+ on small dataset
sizes, |D|.

There are several missing data points regarding the execu-
tion of G-DBSCAN because the algorithm exceeds global
memory capacity of the GPU. This occurs on the lono dataset
at | D| = 800,000 and on the Porto dataset at |D| > 320, 000.

On the Porto dataset at |D| = 400, 000, the execution time
for CUDA-DCLUST and CUDA-DCLUST+ are not shown
because we use the value of » = 100 in all plots; this value of
r breaks the constraint that the bins need to be at least € units
in length. In practice, our code will execute with a smaller
value of r (see Section III-B)*.

Across all datasets, the speedup of CUDA-DCLUST+
increases gradually with increasing |D|. CUDA-DCLUST+
achieves the greatest speedup of up to 12.85x at |D| =
400,000 on the Spatial dataset over G-DBSCAN.

E. Comparing CUDA-DCLUST+ vs. CUDA-DCLUST on
Three Dimensional Datasets

We compare CUDA-DCLUST+ and CUDA-DCLUST on
two three-dimensional datasets. G-DBSCAN and CPU-
DBSCAN are excluded because they are not designed for
more than two dimensional datasets [11].

In the following experiments, we vary ¢, minPts, |D|, and
r. When a parameter is not reported in the figure, we use the
default value as shown in Table II.

1) Performance Impact of the Number of Partitions Parame-
ter (r): Figure 4(a)—(b) plots the CUDA-DCLUST+ execution
time vs. r for various values of D. On Spatial, r = 8 yields
the best performance when |D| = 25,000 — 50, 000, whereas
r = 10 yields the best performance when |D| > 100, 000.
A similar pattern can be observed on the Iono3D dataset.

4For reference, at p = 60, the execution time of CUDA-DCLUST+ and
CUDA-DCLUST are 0.04 seconds and 0.62 seconds, respectively.

—— CUDA-DClust+ —v— CUDA-DClust

(a) SPATIAL3D (b) IONO3D
@ 100 @ 100
[[
€ € Te———
= ,_,74\1\' E
§ §
2 ‘—\ = '\0\’\’\‘
o v
[} 19}
X X
w 1= T T T T [1 T T T T
0.02 0.04 0.06 0.08 0.10 0.50 0.75 1.00 1.25 1.50
€ €
(c) SPATIAL3D (d) IONO3D
3 100 3 100
() Q
£ E
= V”‘F\—v—v/’ = w
S 104 5 104
S =]
2 o—o\k// 3 -— o .
[9) 19 +- ad
g ¢
w14 T T T T w1 T T T T
1 2 4 8 16 4 8 16 32 64
minPts minPts
(e) SPATIAL3D (f) IONO3D
« 100 » 100
: e
S v/v/'%'/v £ 109
s U —— | 3
5 5 1
o O
&% %
W 0.01-— T T T T w 0.1 T T T T
0.25 0.50 1.00 2.00 4.00 0.1 02 04 08 1.6
|D| le5 |D| le6

Fig. 5. Performance comparison of CUDA-DCLUST+, and CUDA-DCLUST
on three dimensional datasets. (a)—(b) Execution time as a function of the €
parameter; (c)—(d) Execution time as a function of the minPts parameter; and,
(e)—(f) Execution time as a function of the | D| parameter. The fraction of noise
points across the columns for each of the datasets Spatial3D, and Iono3D are
f =0.006 — 0.380, and f = 0.001 — 0.110, respectively.

On these datasets, we infer that as |D| increases, the best
performance is obtained by increasing .

Figure 4(c)—(d) plots the CUDA-DCLUST+ execution time
vs. r for various values of €. On the Spatial3D dataset, r = 10
yields best performance for all values of e. On the lono3D
dataset, » = 50 yields the best performance when € = 0.5 —
0.75, and » = 40 when ¢ > 1.00. We observe that the best
value of r typically decreases with increasing e.

2) Impact of the € Parameter: Figure 5(a)-(b) plots the
execution time vs. . CUDA-DCLUST+ performs better than
CUDA-DCLUST on both datasets. The execution time of
CUDA-DCLUST+ and CUDA-DCLUST decreases with the
increasing e. This is because, as was shown in Section IV-D2
as the fraction of noise points, f, decreases with increasing
€, there are fewer bins, which improves the efficiency of the
index search. In summary, we find that CUDA-DCLUST+
achieves the greatest speedup of up to 10.18x compared to
the CUDA-DCLUST on lono3D.

3) Impact of the minPts Parameter: Figure 5(c)—(d) plots
the execution time vs. minPts. CUDA-DCLUST+ performs
better than the CUDA-DCLUST on both of the datasets.
The execution time of the CUDA-DCLUST+ and CUDA-
DCLUST increases with the increasing minPts on both
datasets. This is because CUDA-DCLUST+ and CUDA-
DCLUST compute fewer seed lists and fill the seed list on the
CPU, which degrades performance. The CUDA-DCLUST+
achieves a greatest speedup over CUDA-DCLUST of up to

TABLE III
TIME DISTRIBUTION PARAMETERS. WE COMPARE TWO VALUES OF r FOR
EACH DATASET. g REFERS TO A VALUE OF r THAT YIELDED GOOD
PERFORMANCE ACROSS EACH DATASET; ¢ IS A CONSTANT VALUE OF 7.

Parameters | NGSIM | Spatial | Iono | Porto
minPts 8 8 4 8
€ 1.25] 0.008 1.5] 0.008
|D| IM| 400K |1.86M | 10M

0.050 | 0.002 | 0.001 | 0.001
Tg 150 80 100 | 500
re 70 70 70 70

TABLE IV

PERCENTAGE OF THE TOTAL EXECUTION TIME FOR CUDA-DCLUST+ IN
FOUR TWO-DIMENSIONAL DATASETS FOR TWO VALUES OF r (g AND 7°¢).

Algorithm Component [NGSIM | Spatial | Iono| Porto
Tg

indexKernel 32.39% | 18.18% | 4.89% | 14.14%

mergeClusters 14.08% | 22.72% | 9.78% | 0.32%

fillSeedList 1.40% | 2.27% | 0.54% | 0.12%

expansionKernel 35.23% | 50.00% | 41.32% | 69.74%

CPU/GPU communication and data | 16.90% | 6.83% | 43.47% | 15.68%

transfer

Total time (s) 0.71 0.41 1.84 1 15.62
Tc

indexKernel 9.30% | 14.28% | 2.31% | 0.06%

mergeClusters 11.62% | 20.40% | 8.33% | 0.06%

fillSeedList 1.16% | 2.04% | 0.48% | 0.01%

expansionKernel 65.13% | 57.16% | 50.00% | 97.12%

CPU/GPU communication and data | 12.79% | 6.12% | 38.88% | 2.75%

transfer

Total time (s) 0.86 0.49 2.16 | 105.09

11.12x on Iono3D.

4) Scalability with Dataset Size (|D|): Figure 5(e)—(f) plots
the scalability of |D| on the two datasets. We can observe
that the CUDA-DCLUST+ performs better than the CUDA-
DCLUST in both of the datasets in every value of |D|.
The speedup of CUDA-DCLUST+ is increasing within the
increase of |D|. The CUDA-DCLUST+ achieves the greatest
speedup over CUDA-DCLUST of up to 10.00x on lono3D.

F. Algorithm Time Distribution

We present the execution time of the CUDA-DCLUST+
algorithm components (described in Section III-C and in
Algorithm 1). We examine the datasets as shown in Table III.
We compare two values for the number of partitions (r):
is a value of r that performs well for the given experimental
scenario, and r. is a constant value of r across the datasets.

Table IV shows the time distribution of CUDA-DCLUST+.
Regarding r,, we observe that fillSeedList is the least time
consuming component across all of the datasets. fillSeedList
executes sequentially on the CPU and has a negligible im-
pact on the overall execution time. The execution time for
CPU/GPU communication and data transfer is higher than
mergeClusters in NGSIM, Iono, and Porto datasets. However,
it is lower than mergeClusters on the Spatial dataset. In
this case, Spatial requires a significant number of merges to
calculate the clusters. mergeClusters has a smaller impact on
algorithm performance than CPU/GPU communication.

We find that indexing the dataset (indexKernel), requires
the greatest fraction of time. This is surprising, as index
construction was previously found to be negligible [9].

We compare to the constant value of r, (r. = 70) in
Table IV, and find that across all datasets, index construction
time is a much lower fraction of the total time compared to
the results using r,. However, increased index construction
time improves the pruning of the algorithm, where we perform
fewer distance calculations with r,. Therefore, while we spend
more time constructing the index, the total execution time with
r4 is lower than 7.

V. DISCUSSION & CONCLUSION

Discussion of CUDA-DCLUST: In this paper, we revisited
the design of CUDA-DCLUST [9] and improved the perfor-
mance of the algorithm. In particular, compared to CUDA-
DCLUST, our algorithm CUDA-DCLUST+ parallelized index
construction and data point insertion, prioritized using the
GPU for seed list management, efficiently merged collisions,
and introduced a correction merge routine. CUDA-DCLUST+
is compared with the CUDA-DCLUST, G-DBSCAN, and
CPU-DBSCAN algorithms on six real-world datasets.

Bohm et al. [9] find that CPU index construction requires
negligible time; however, we find that it is non-negligible on
the GPU in certain instances. If we use a constant number
of partitions for all experimental scenarios, then index con-
struction may be negligible (Table IV, Iono and Porto with
r. = 70); however, as was shown, this comes at the expensive
of overall algorithm execution time. Bohm et al. [9] may have
found index construction to be negligible compared to the
other algorithm components because those components were
not as optimized as we have shown here. Thus, indexing in
their work only required a negligible fraction of the total time.
Discussion of Mustafa et al. [11]: This experimental
comparison paper of different DBSCAN algorithms showed
that G-DBSCAN outperforms CUDA-DCLUST. Likewise,
our implementation of CUDA-DCLUST performed worse than
G-DBSCAN. However, we find that our optimized CUDA-
DCLUST+ outperforms G-DBSCAN achieving a speedup of
up to ~23x. Therefore, the design of the original algorithm
by Bohm et al. [9] is competitive with newer state-of-the-art
algorithms when further optimized.

Future work includes investigating the dense box algo-
rithm [6], [15], [16] that can be used to further reduce the
number of distance calculations in high density regions.

ACKNOWLEDGMENT

We thank FEleazar Leal for providing the G-DBSCAN and
CPU-DBSCAN source code used in our experiments. This
material is based upon work supported by the National Science
Foundation under Grant No. 2042155.

REFERENCES

[1] T. S. Madhulatha, “An overview on clustering methods,” IOSR Journal
of Engineering, vol. 02, no. 04, pp. 719-725, 2012.

[2]

[3

=

[4]

[5

[t}

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. Oyelade, I. Isewon, F. Oladipupo, O. Aromolaran, E. Uwoghiren,
F. Ameh, M. Achas, and E. Adebiyi, “Clustering algorithms: their ap-
plication to gene expression data,” Bioinformatics and Biology Insights,
vol. 10, p. BBI.S38316, 2016.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” ser. KDD’96. AAAI Press, 1996, p. 226-231.

K. Bindra and A. Mishra, “A detailed study of clustering algorithms,”
in 6th Intl. Conf. on Reliability, Infocom Technologies and Optimization.
IEEE, 2017, pp. 371-376.

P. S. Bradley, U. Fayyad, and C. Reina, “Scaling Clustering Algorithms
to Large Databases,” in Proc. of the Fourth Intl. Conf. on Knowledge
Discovery and Data Mining, 1998, p. 9-15.

B. Welton, E. Samanas, and B. P. Miller, “Mr. Scan: Extreme scale
density-based clustering using a tree-based network of GPGPU nodes,”
in SC ’13: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, 2013, pp. 1-11.
R. J. Thapa, C. Trefftz, and G. Wolffe, “Memory-efficient implemen-
tation of a graphics processor-based cluster detection algorithm for
large spatial databases,” in 2010 IEEE International Conference on
Electro/Information Technology, 2010, pp. 1-5.

G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and
L. Rocha, “G-DBSCAN: A GPU Accelerated Algorithm for Density-
based Clustering,” Procedia Computer Science, vol. 18, pp. 369-378,
2013.

C. Bohm, R. Noll, C. Plant, and B. Wackersreuther, “Density-based
clustering using graphics processors,” in Proc. of the 18th ACM Conf.
on Information and Knowledge Management, 2009, pp. 661-670.

M. M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao, F. Manne,
and A. Choudhary, “A new scalable parallel DBSCAN algorithm using
the disjoint-set data structure,” in Intl. Conf. for High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2012, pp. 1-
11.

H. Mustafa, E. Leal, and L. Gruenwald, “An Experimental Comparison
of GPU Techniques for DBSCAN Clustering,” in 2019 IEEE Intl. Conf.
on Big Data. IEEE, 2019, pp. 3701-3710.

Y. Li and H. Wu, “A clustering method based on K-means algorithm,”
Physics Procedia, vol. 25, pp. 1104-1109, 2012.

D. Arlia and M. Coppola, “Experiments in parallel clustering with
DBSCAN;,” in European Conf. on Parallel Processing. Springer, 2001,
pp- 326-331.

P. C. Roth, D. C. Arnold, and B. P. Miller, “MRNet: A software-based
multicast/reduction network for scalable tools,” in Proc. of the 2003
ACM/IEEE Conf. on Supercomputing. 1EEE, 2003, pp. 21-21.

M. Gowanlock, “Hybrid CPU/GPU clustering in shared memory on the
billion point scale,” in Proc. of the ACM Intl. Conf. on Supercomputing.
ACM, Jun. 2019, pp. 35-45.

A. Prokopenko, D. Lebrun-Grandie, and D. Arndt, “Fast tree-based
algorithms for DBSCAN on GPUs,” arXiv preprint arXiv:2103.05162,
2021.

M. Gowanlock, C. M. Rude, D. M. Blair, J. D. Li, and V. Pankratius, “A
hybrid approach for optimizing parallel clustering throughput using the
GPU,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 4, pp. 766777, 2018.

“Thrust - parallel algorithms library,” accessed: 2021-07-12. [Online].
Available: https://thrust.github.io/

“Next generation simulation (NGSIM) vehicle tra-
jectories and supporting data,” accessed: 2021-07-12.
[Online]. Available: https://data.transportation.gov/Automobiles/

Next-Generation-Simulation-NGSIM- Vehicle- Trajector/8ect- 6jqj

C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul, “Ecomark:
evaluating models of vehicular environmental impact,” in Proc. of the
20th Intl. Conf. on Advances in Geographic Information Systems, 2012,
pp. 269-278.

L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Predicting taxi—passenger demand using streaming data,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3,
pp. 1393-1402, 2013.

V. Pankratius, A. Coster, J. Vierinen, P. Erickson, and B. Rideout, GPS
Data Processing for Scientific Studies of the Earth’s Atmosphere and
Near-Space Environment, 01 2017.

“CUDA toolkit documentation,” accessed: 2021-07-12.
Available: https://docs.nvidia.com/cuda/

[Online].

