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A B S T R A C T   

The Colorado River Basin (CRB) supports the water supply for seven states and forty million people in the 
Western United States (US) and has been suffering an extensive drought for more than two decades. As climate 
change continues to reshape water resources distribution in the CRB, its impact can differ in intensity and 
location, resulting in variations in human adaptation behaviors. The feedback from human systems in response to 
the environmental changes and the associated uncertainty is critical to water resources management, especially 
for water-stressed basins. This paper investigates how human adaptation affects water scarcity uncertainty in the 
CRB and highlights the uncertainties in human behavior modeling. Our focus is on agricultural water con
sumption, as approximately 80% of the water consumption in the CRB is used in agriculture. We adopted a 
coupled agent-based and water resources modeling approach for exploring human-water system dynamics, in 
which an agent is a human behavior model that simulates a farmer’s water consumption decisions. We examined 
uncertainties at the system, agent, and parameter levels through uncertainty, clustering, and sensitivity analyses. 
The uncertainty analysis results suggest that the CRB water system may experience 13 to 30 years of water 
shortage during the 2019–2060 simulation period, depending on the paths of farmers’ adaptation. The clustering 
analysis identified three decision-making classes: bold, prudent, and forward-looking, and quantified the prob
abilities of an agent belonging to each class. The sensitivity analysis results indicated agents whose decision- 
making models require further investigation and the parameters with the higher uncertainty reduction poten
tials. By conducting numerical experiments with the coupled model, this paper presents quantitative and qual
itative information about farmers’ adaptation, water scarcity uncertainties, and future research directions for 
improving human behavior modeling.   

1. Introduction 

The Colorado River Basin (CRB) provides freshwater for 40 million 
people and 5.5 million acres of farmland in seven states of the Western 
United States (US). However, the extensive drought since 2000 and 
growing water demand have resulted in increasing water scarcity in the 
basin. In August 2021, the federal government declared the first-tier 
water shortage for the first time in history due to the extremely low 
water levels in Lake Mead and Lake Powell. Consequently, water supply 
to Arizona and Nevada will be curtailed by 18% and 7% of their total 
water allocations, respectively (USBR, 2021a). 

As climate change continues to affect water resource distribution in 
the basin, human water demands (as well as the ways water is used) also 
shift in response to the changes (Frederick and Major, 1997; Kallis, 

2010). The human-water system co-evolution can be affected by policies 
and infrastructure that influence people’s perceptions of the system. For 
example, dams and reservoirs are designed to provide a stable water 
supply during droughts. However, the water infrastructure also provides 
a false sense of water security that encourages water consumption 
instead of conservation (Di Baldassarre et al., 2018). This phenomenon, 
similar to the levee effects for flooding (Di Baldassarre et al., 2017), can 
contribute to severer water shortage during droughts and consequently 
causes significant economic losses. Previous studies have highlighted 
the importance of the co-evolution of human-water systems and urged 
more research to improve our understanding (e.g., Sivapalan et al., 
2012; Vogel et al., 2015; Wagener et al., 2010). 

Studies of the CRB have attempted to quantify water scarcity un
certainty and explore human-water system dynamics despite the 
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hydrological and institutional complexity of the water system. Several 
studies examined the hydrological responses in the CRB to various future 
climate change scenarios (Christensen et al., 2004; Vano et al., 2014; 
Vano and Lettenmaier, 2014; Yang et al., 2020), explored scenario 
design for climate adaptation decision-making (Gerlak et al., 2021; 
Quinn et al., 2020; Smith et al., 2022), developed modeling tools for 
understanding the human and water system interactions (Hadjimichael 
et al., 2020a; Hung and Yang, 2021), and investigated institutional and 
societal influence to the CRB water resources distribution (e.g., Savelli 
et al., 2022; Taylor et al., 2019; Womble and Hanemann, 2020). 
Nevertheless, quantification of the human adaptation uncertainty in the 
CRB and how such uncertainty affects the co-evolution of human- 
natural interactions remains unexplored. Quantifying and understand
ing the uncertainty resulting from the co-evaluation is a critical step 
toward managing the uncertainty, which is the goal of this paper. 

Literature has indicated farmers’ behavioral change due to climate 
and environmental changes. For example, both Ding et al. (2009) and 
Zilberman et al. (2011) concluded that historical droughts had caused 
farmers’ behavioral changes toward water conservation. To investigate 
human adaptation and behavioral changes, many researchers adopted 
the agent-based modeling (ABM) technique for its ability to simulate 
diverse human behaviors in a distributed system (Berglund, 2015; 
Giuliani and Castelletti, 2013; Yang et al., 2009). ABM is a computation 
method for simulating actions and interactions of autonomous agents to 
improve understanding of emerging system behaviors and investigate 
perturbation impacts, either climatic or human-induced, on water sys
tems across multiple temporal and spatial scales (Berglund, 2015). 
Traditional ABM studies use deterministic decision rules to describe 
observed human behaviors in response to environmental signals and 
algorithms to simulate rational agents who pursue strategies that opti
mize their objectives (e.g., Ligmann-Zielinska et al., 2014; Noël & Cai, 
2017; Yang et al., 2009). Recently, the focus has shifted to simulating 
human adaptive behaviors due to the increasing concern of water 
scarcity under future climate change (e.g., Al-Amin et al., 2018; Hyun 
et al., 2019; and Rieker and Labadie, 2012). However, ABMs, as models 
for human behaviors, are prone to uncertainty, reflecting our insuffi
cient knowledge of human decision-making processes (Ligmann-Zie
linska et al., 2014). Also, the co-evolution of the coupled human-natural 
systems can amplify the uncertainty due to climate and environmental 
changes (Solomatine and Shrestha, 2009; Tyre and Michaels, 2011; 
Vogel et al., 2015). Therefore, it is critical to quantify and manage the 
model output uncertainty to properly interpret modeling results. 

Quantifying and managing the uncertainty of water scarcity has been 
a topic of interest within the scientific community since the 1990s 
(Rajaram et al., 2015). Uncertainty studies primarily focused on para
metric uncertainty of hydrologic models and its effects on the model 
prediction uncertainty (e.g., Jung et al., 2011; Samuel et al., 2012; 
Solomatine & Shrestha, 2009) and future water resources uncertainty 
caused by climate change (e.g., Knighton et al., 2017; Yang et al., 2020). 
Recently, the uncertain societal and institutional influence on available 
water resources also became a concern, and the need to properly handle 
these human system uncertainties has been recognized in the scientific 
community (Buchmann et al., 2016; Ligmann-Zielinska et al., 2014; 
Schindler, 2013). However, ABM studies that explicitly quantify un
certainty are rare, partly for lacking evaluation methods that fit the 
varieties of ABMs and coupled models (Ligmann-Zielinska et al., 2020) 
and partly for the deep uncertainty involved in coupled human-natural 
systems (Moallemi et al., 2020b). 

Understanding the uncertainty of human impacts on water systems 
can facilitate the development of a robust climate adaptation policy to 
tackle stringent water scarcity issues in major river basins such as CRB. 
The advancing computer technology enables uncertainty quantification. 
Recent papers in the water resources and sustainability fields have 
advocated for using models to explore different scenarios to enhance the 
robustness of model inference and uncover the possibility of many future 
pathways for problems under deep uncertainty (de Haan et al., 2016; 

Moallemi et al., 2020a; Quinn et al., 2017). These studies acknowledge 
uncertainties in assumptions, data, and model structure and view 
modeling experiments and results as educated guesses of future re
alizations. This idea is crucial for modeling human behaviors and 
coupled human-natural systems due to the intrinsic uncertainty and our 
insufficient knowledge about the control mechanisms of the system 
behaviors. 

We join forces with the researchers on uncertainty investigation to 
deconstruct the intricacies in the CRB’s water resources management. 
Focusing on human adaptation (water demand changes), we examine 
uncertainties at system, agent, and parameter levels through three nu
merical experiments. The first experiment is the uncertainty analysis, 
which quantifies the water scarcity uncertainty at multiple spatial scales 
due to stochasticity in the human system and uncertainty of human 
behaviors under various human adaptation assumptions. The second 
experiment, the clustering analysis, classifies agents by their charac
teristics and quantifies the probability of agents being assigned to the 
behavioral classes. Finally, the third experiment investigates ABM 
structure and parameter uncertainties through two sensitivity analyses. 
The results can be applied to diagnose agents that may be under- or over- 
parametrized and identify opportunities to reduce the uncertainties. 

The remainder of this paper is organized as follows. Section 2 ex
plains the study area, the coupled ABM-water resources management 
model and methodology. Section 3 shows the results of numerical ex
periments, and Section 4 discusses the lessons learned from the analyses 
and limitations. Finally, the conclusions are presented in Section 5. 

2. Methodology and study area 

2.1. The Colorado river basin (CRB) 

The Colorado River is a major water source for the southwestern US 
and Mexico. The map of the basin is shown in Fig. 1 (left). From the 
1906–2018 flow record, an average of 18 billion m3 (14.8 million acre- 
feet, MAF) of freshwater is generated annually in the CRB (Salehabadi 
et al., 2020). The water allocation and dam operations are based on 
compacts, federal laws, court decisions and decrees, contracts, and 
regulatory guidelines, collectively known as the “Law of the River” 
(Stern & Sheikh, 2019). However, the future of the CRB water resources 
is looming due to the extended drought since 2000 and the increasing 
human demands. The mean flow in the current drought period is about 
15 billion m3 (12.4 MAF, average from 2000 to 2018) which is 3.5 
billion m3 below the consumptive allocation of 18.5 billion m3, 
including 1.9 billion m3 of Mexico uses (Salehabadi et al., 2020). The 
increasing water scarcity in the CRB has been a pressing issue for sci
entific and policy discussions (Castle et al., 2014; Christensen et al., 
2004; Garrick et al., 2008; McCabe & Wolock, 2007). 

The US Bureau of Reclamation (USBR) regulates water distribution 
in the CRB through operations of major reservoirs, among which Lake 
Powell (Glen Canyon Dam) and Lake Mead (Hoover Dam) are served as 
the indicators of water availability for the Upper and Lower Basins 
(abbreviated UB and LB hereafter; the left figure in Fig. 1), respectively. 
The 1922 Compact states that the UB States (comprising Colorado, New 
Mexico, Utah, Wyoming, and the upper part of Arizona) will not cause 
the flow to be depleted below an aggregate of 9.2 billion m3 (7.5 MAF) in 
any period of 10 consecutive years for the consumptive uses of the LB 
States (Arizona, California, and Nevada). In Year 2021, water levels in 
both Lake Powell and Lake Mead have dropped to historic lows (USBR, 
2021b;c), which suggests an urgent need for changing current practices 
to maintain a sustainable water supply. 

2.2. Model description 

In a river basin, climate change can affect the quantity, timing, and 
distribution of precipitation and temperature, of which the effects are 
variable, uncertain, and heterogeneous. Consequently, water users may 
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view climate change risks differently. Their perceptions and decision- 
making (at local scale) can alter water resource distribution in the 
river basin (at local, sub-basin, and basin scales), affecting future system 
responses they or others observed and experienced. The dynamic system 
also involves delayed response and complex interactions among the 
water users and the water system. 

Following the conceptualization of a river basin, we adopt an ABM 
approach for the CRB from a previous study (Hung and Yang, 2021) in 
which human water users (agents) are capable of learning to improve 
their decision-making (i.e., adaptation). The ABM (i.e., the human sys
tem) is coupled with a water resources management model, the Colo
rado River Simulation System (CRSS), as the virtual environment for 
agents to interact with. For illustration, the right figure in Fig. 1 presents 
the schematic of the coupled ABM model, where agents’ adaptation is 
modeled by a reinforcement learning algorithm which we will explain 
shortly in Section 2.2.2. The CRSS, a long-term planning model for CRB 
water resources administration, provides distributed hydrological in
formation regarding the projected future state of the river basin and 
rulesets for dam operations and water allocation (USBR, 2007). The 
rulesets for water allocation were developed based on the current water 
right system and are assumed unchanged in the future simulation. Below 
we describe the coupled ABM-CRSS model (Hung and Yang, 2021) and 
the three approaches for assessing water scarcity uncertainty in the CRB, 
investigating alternative assumptions and key uncertainties in the ABM. 

2.2.1. The coupled ABM-CRSS model 
The majority (about 80%) of the water in the CRB is consumed by 

agriculture irrigation. For simplicity, only agriculture water users and 
their irrigation decisions are simulated as agents in the ABM. Other 
water demands, such as industrial and municipal demands, are fixed 
inputs using the default values in the CRSS. Decisions, such as crop 

selections, fertilization, and irrigation practices, are not explicitly 
included in current models. Moreover, the agriculture agents are ag
gregations of individual farmers, irrigation districts, tribal water users, 
or a mix of farming entities within a geographical region. Since the agent 
design is for capturing the emergent phenomena in the water system, an 
agent only represents the collective behavior of farmers at that location 
but not individual farmers’ decision-making. 

Agents’ decisions are assumed pertaining to their prior knowledge 
about the river basin, the new information learned (i.e., hydrological 
response), and their perception of the future climate change. An agent’s 
decision-making is modeled as a partially observable Markov Decision 
Process (Monahan, 1982). That is, agents take actions based on their 
beliefs about the system state (i.e., overall water availability, which is 
not known to agents) and the observation available to them (i.e., climate 
forecasts and dam water levels) at the time and location of the decisions. 

Following the CRSS model design, the ABM simulates 31 (22 in the 
LB and 9 in the UB) agents’ water demands (i.e., the agriculture water 
users in CRSS aggregated by locations and indicated by the purple dots 
in Fig. 1) and sends the water requests to the CRSS. The agent group IDs 
are enlarged in Fig. S1, and the corresponding agent names can be found 
in Tables S2 and S3, Supplementary Information. The CRSS then de
termines the actual water quantities delivered to the agents according to 
a predefined rule set that mimics the legal institutions and real-world 
water allocation practices in the basin and provides water quantity 
and dam water level information to the ABM. Upon receiving the feed
back from the CRSS, agents will update their prior knowledge of water 
availability and optimal strategies for water uses. The updating of 
agents’ prior knowledge and strategies follows a reinforcement learning 
(RL) algorithm developed by Hung and Yang (2021), of which the key 
components are presented in the following subsection, and the mathe
matical equations are presented in Text S1, Supplementary Information. 

Fig. 1. The CRB map and the schematic of the coupled ABM-CRSS model. The ABM simulates the annual diversion requests of the farmers (i.e., agents) and submits 
them to the CRSS. Upon receiving the requests, the CRSS will allocate water to farmers following a set of rules and send the allocation information and dams’ water 
level to ABM. The ABM will also receive winter precipitation forecast information in the next year from the input database. 
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With new strategies and knowledge of water availability, agents will 
determine their water requests for the following year. 

2.2.2. The reinforcement learning (RL) algorithm 
The RL algorithm simulates an agent’s decision-making process, 

including choosing an action (a water request) and updating the optimal 
water use strategy. Agents are assumed to utilize environmental infor
mation to facilitate their decision-making. We assume that the LB agents 
consider the reservoir’s water level information in their decision-making 
while the UB agents’ actions take into account the local precipitation. 

The algorithm utilizes a function (Max Q, where Q represents the 
expected utility) to maximize an agent’s utility by increasing or 
decreasing its diversion and a stochastic process to determine the 
quantity of change. The stochastic process is assumed to follow a half- 
normal distribution with mean μ and standard deviation σ (i.e., | 
Normal (μ,σ)|). After receiving the water allocation from the CRSS, the 
utility function (Q) is updated by increasing or decreasing the expected 
value of the action taken. Moreover, this algorithm adopts a penalty 
mechanism to punish actions that result in water deficits. A multiplier, 
regret, is used to represent an agent’s risk attitude toward water deficit, 
and the penalty is equal to the deficit multiplied by the regret. This 
design forms a reinforcement loop that encourages actions with high 
expected utilities and discourages the others. 

Another feature of the RL algorithm is the inclusion of the 
exploitation-exploration tradeoff. An agent may take exploration actions 
to search for better strategies. This feature is critical since a water system 
can evolve, and agents need to re-assess strategies to learn whether the 
system has changed and the original strategy remains optimal. The al
gorithm adopts an ∊-greedy design that an agent will take an exploration 
action with a probability ∊. There are two other parameters that control 
how an agent learns, the learning rate (α) and discount rate (γ). The 
learning rate α represents how much an agent believes in the new in
formation relative to its prior knowledge, and the discount rate γ means 
an agent’s view of future utility at the present time. Both α and γ are in 
the range of (0, 1). α = 1 means agents only believe the new information 
learned, whereas α = 0 means agents do not learn. γ = 1 means the 
future water is equally valuable as the present water, and γ = 0 repre
sents an agent who does not consider future water (no value). 

In summary, an agent (i.e., a virtual farmer) has six parameters 
controlling its adaptation actions (i.e., diversion request): two related to 
water use adjustment (μ and σ) and four for learning (α, γ, ∊, and regret). 
Interested readers can refer to our previous paper for more details on the 
reinforcement learning algorithm (Hung and Yang, 2021). 

2.3. Methods for water scarcity uncertainty quantification, agent 
characterization, and human behavior modeling diagnosis 

The coupled ABM-CRSS model is a sandbox to test various human 
adaptation assumptions with different numerical experiments. To 
improve our understanding of the human-water system dynamics, 
human behavioral uncertainty, and its impacts on water scarcity, we 
conducted three analyses: (1) uncertainty quantification, (2) agent 
classification, and (3) sensitivity analysis. The uncertainty analysis aims 
to quantify the water scarcity uncertainty due to the uncertainty in 
farmers’ irrigation behavior at basin and sub-basin levels. The results 
can be viewed as a reference of the water scarcity uncertainty contrib
uted by the human system in the CRB, and subsequently, the following 
two analyses aim to inform future research directions for reducing the 
uncertainty. The clustering analysis characterizes agents’ decision- 
making into three classes and quantifies the probabilities of each 
agent being assigned to each class. The results can inform future policy 
design to steer irrigation behavior changes. For the sensitivity analysis, 
the goal is to improve our understanding of the uncertainty in individual 
agents’ modeling and consequently reduce water scarcity uncertainty in 
the CRB at various spatial scales. Below are detailed descriptions of the 
methods. 

2.3.1. Uncertainty analysis 
Uncertainty can be classified as either aleatory – the inherent vari

ation in a quantity that can be characterized by a probability distribu
tion, or epistemic – uncertainty from analysts’ lack of knowledge (Roy 
and Oberkampf, 2011). Both uncertainties can be characterized as 
probability distributions based on observations. However, the distinc
tion of the uncertainty categories is not clear-cut since we often learn 
what we thought aleatory is actually epistemic. For example, the alea
tory uncertainty in decision-making can be the result of a farmer’s 
prediction errors, and the epistemic uncertainty is related to our insuf
ficient understanding of the farmer’s decision-making process. 

In the ABM, an agent’s action involves two decisions: the direction 
and quantity of the change in water diversion. Moreover, an agent is 
assumed to take the optimal action with probability 1 − ∊ and the 
exploration actions (selecting a sub-optimal solution) with probability ∊. 
The exploration rate ∊ represents the epistemic uncertainty in the de
cision since we do not know the exact reasons for that action. The 
quantity of change is assumed following a half-normal distribution for 
simulating the aleatory uncertainty in farmers’ decision-making. To gain 
insights into agents’ response to the non-stationary climate and the 
subsequent impacts on water scarcity, we focus on ABM parameter un
certainty and its effects on key system outputs at sub-basin and basin 
levels. 

Table 1 explains the uncertainty analysis workflow, which includes: 
(a) Identify parameter ranges, (b) Generate parameter sets, (c) Evaluate 
the parameter set performance, (d) Identify behavioral sets, and I Assess 
model output uncertainty. 

2.3.2. Clustering analysis 
The behavioral sets in the uncertainty analysis (Section 2.3.1) are the 

candidate representation of an agent’s cognitive decision-making pro
cess and essentially assumptions about the agent’s behaviors. Since a 
parameter set describes an agent’s decision-making and learning 
behavior, we will expect similarity in the behavioral sets, especially 
when the observed data show a clear pattern. To explore the similarity 
and dissimilarity among agents’ behavioral sets, we applied the K-means 
clustering for agent classification and investigated the characteristics of 
the agent classes. K-means clustering is a classification algorithm that 
partitions data into k clusters (agent classes) and recursively assigns data 
to the cluster whose centroid is closest to the data point until the 
assignment is stabilized (MacQueen, 1967). By analyzing the charac
teristics of the agent classes, we can develop agent-behavior typology 
and refine the assumptions about agents’ behaviors to a few common 
types. 

To help visualization and interpretation, we applied the principal 
component analysis to project data from a high-dimensional parameter 
space into a lower-dimensional subspace. This is a common practice for 
clustering analysis to reduce dimensionality and extract information 
from high-dimensional data sets (Aubert et al., 2013; Hannah et al., 
2000). 

2.3.3. Sensitivity analysis 
The Sensitivity analysis (SA) methods applied in this paper are global 

sensitivity analysis methods, which investigate the relationships be
tween the parameters (including equation coefficients, thresholds, and 
input forcing) and outputs of a simulation model (Norton, 2015). In our 
ABM model, an agent’s parameters are related to its cognitive decision- 
making process (i.e., learning rate α, discount rate γ, exploration rate ∊,
and regret) and stochastic actions of water use adjustment (i.e., mean μ 
and standard deviation σ). The model output of interest is the ABM’s 
performance in simulating the observed water consumption measured 
by KGE. 

There are a variety of SA methods, which can be categorized into five 
broad groups based on the underlying mathematical concepts: pertur
bation and derivatives, elementary effect (EE), correlation and regres
sion analysis methods, and variance-based methods (Pianosi et al., 
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2016). Since the SAs methods have different mathematical properties 
and purposes, applying multiple SA methods is recommended (Ligmann- 
Zielinska et al., 2020; Wagener and Pianosi, 2019). Therefore, we 
implemented two widely-applied SA methods: the Morris SA (Morris, 
1991) and the Sobol SA (Sobol, 2001) in this study as diagnostic tools to 
improve our understanding of the ABM and guide future ABM research. 

The Morris SA is an EE method that calculates the changes in model 
outputs for a unit change in a parameter (i.e., the EE). In contrast, the 
Sobol SA, a variance-based method, uses two variance ratios for the 
importance of parameters (Saltelli et al., 2010). The first Sobol ratio, 

called the first-order index, measures the direct contribution to the 
output variance from individual parameters or, equivalently, the ex
pected variance reduction if a parameter’s value could be fixed. The 
second ratio, called the total-order index, measures the overall contri
bution from a parameter, including the direct effects and interactions 
with other parameters (Pianosi et al., 2016). 

We applied the Morris SA for model structure diagnosis based on the 
rationale that the parameters of a proper model should have moderate 
EE values. A parameter with a low EE value means that the model may 
be over-parameterized and can be simplified by removing the parameter 
(as a screening method). In contrast, a parameter with a high EE value 
may signify a poor representation of the observed behaviors and a need 
to review the model structure. Meanwhile, the two Sobol indices are 
calculated for ranking the potentials for uncertainty reduction in the 
agents’ behavior modeling. Therefore, the Sobol indices can inform 
future research directions on the mechanisms associated with a sensitive 
parameter or the estimation of that parameter value. 

Additionally, the two SAs also have different experiment designs. 
The Morris method requires generating traces of samples (a trace con
sists of n + 1 samples; n is the number of parameters) in the parameter 
space and calculates the mean absolute elementary effects. The Sobol 
method adopts Monte Carlo sampling methods to generate parameter 
sets and compute two sensitivity indices. The parameter sets for the two 
SAs are generated independently following the methods’ experiment 
designs. The mathematical definitions of the SAs’ sensitivity indices are 
presented in Text S2, Supplementary Information. 

3. Results 

3.1. Monte Carlo simulation for water scarcity uncertainty assessment 

Following the procedure described in Table 1, we assessed the KGE 
values of the 2,000 parameter sets for each agent (the results are pre
sented in Figs. S2 and S3, Supplementary Information). An agent’s 
parameter sets with KGE values higher than a threshold value are 
selected as the behavioral sets (top 10% ranked parameter sets; 200 sets 
per agent). Although the same 2000 parameter sets are evaluated for 
each agent, the resulting KGE value for each set varies from agent to 
agent due to agents’ diverse historical behaviors. Consequently, each 
agent has its own behavior parameter sets. 

Due to the heavy computation burden for simulating the coupled 
model, we composed only five scenarios for this analysis. A scenario 
consists of 31 agents, i.e., 31 parameter sets. The agents’ parameter sets 
are selected from their own behavioral sets based on the KGE rankings. 
In doing so, we can maintain heterogeneity in agents’ decision-making 
and fair representations of their observed behaviors. The KGE rank
ings for the five scenarios are 1%, 25%, 50%, 75%, and 99%, rankings of 
the behavior sets, respectively, and for clarity, the scenarios are named 
after the percentile values (i.e., Q1%, Q25%, Q50%, Q75%, and Q99%). 

Since KGE measures how close the simulated results are to the 
observed data, the scenarios represent hypotheses of how agents’ future 
behavior would deviate from their historical patterns. That is, the Q99% 
scenario assumes that the agent’s future behavior will be similar to the 
past, while the Q75%, Q50%, and Q25% scenarios represent futures 
where agents can behave somehow differently from the past. 

The five scenarios are simulated from 2019 to 2060 under the same 
future flow condition (sum of all inflows in the basin, the solid line in 
Fig. 2a) - a recovering trend from a drought condition to a normal 
condition (the dashed line in Fig. 2a). The future flow series is generated 
from historical observation resampling and has two significant drought 
years in 2033 and 2047. To assess water scarcity uncertainty, we chose 
the basin storage (monthly average storage of all dams in the CRB) and 
Mexico delivery shortage year counts as system-level performance 
metrics. A shortage year is a year with the annual flow to Mexico less 
than 1.9 billion m3 stated in the 1944 Mexico Treaty. 

Table 1 
The uncertainty analysis workflow to quantify the effect of ABM parameter 
uncertainty on model outputs.  

Icon Uncertainty analysis workflow 

a. Identify parameter ranges: Parameter 
ranges are chosen based on the 
theoretical and suggested values in the 
literature (Table S1, Supplementary 
Information). 

b. Generate parameter sets: Parameter 
sets are sampled using Quasi-Monte 
Carlo methods (Bratley et al., 1992; 
Saltelli et al., 2010) from the ranges 
identified in step a. We generated 2,000 
parameter sets for each agent. 

c. Evaluate the parameter set 
performance: Due to the stochasticity 
of the ABM, each parameter set is 
simulated 30 times to calculate its mean 
performance for the period in which 
observation data is available (i.e., 
1980–2018). Kling-Gupta efficiency 
(KGE), a synthesized index consisting of 
the correlation, variability bias, and 
mean bias between simulated and 
observed data (Knoben et al., 2019), is 
applied as the performance metric. 
Consequently, the 2,000 parameter sets 
generate 2,000 mean KGE values 
(denoted KGE). 

d. Identify behavioral sets: We applied a 
threshold criterion of the KGE to 
identify “behavioral parameter” sets – 
parameter sets that reproduce plausible 
system behaviors (Beven and Binley, 
2014; Schaefli et al., 2011; Willems, 
1991). We used the ranked performance 
value to set the threshold, instead of a 
fixed value, for agents’ KGE values can 
vary in a wide range. Specifically, an 
agent’s threshold value is set to the 
90%-percentile KGE of the parameter 
sets. 

e. Assess model output uncertainty: We 
define the combination of all agents’ 
behavioral sets as one scenario (one set 
per agent; a total of 31 parameter sets 
for a scenario). The coupled ABM-CRSS 
model is simulated multiple times 
(n = 100 for our analysis) for a single 
scenario to estimate the output un
certainties of interest. Since it is not 
realistic to simulate all possible sce
narios due to computational limitations, 
we select scenarios based on the KGE 
rankings of the behavioral sets to eluci
date the overall uncertainty of the model 
outputs. The scenario generation pro
cess based on KGE rankings enables the 
exploration of diverse agent behaviors 
while maintaining heterogeneity among 
agents.  
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Fig. 2b shows the Mexico delivery shortage years of the five scenarios 
(each has 30 simulations), which range from 13 (the lower limit of the 
Q99% scenario) to 30 years (the upper limit of the Q50% scenario). We 
can see a trend that the higher percentile scenario is more likely to have 
a lower number of shortage years, except for the Q1% scenario. Inter
estingly, the Q1% scenario (the dark blue circles in Fig. 2c) is more likely 
to have a higher mean basin storage (larger x-axis values) than the other 
scenarios, even though the predicted shortage years (median) is higher 
than scenarios Q75% and Q99% (Fig. 2b). This result can be partially 
attributed to the Q1% scenario’s higher inter-annual variability in the 
basin storage (larger y-axis values), resulting from the farmer charac
teristics (i.e., agent parameter values). 

To further investigate human impacts on basin storage variability, 
we compare the water consumption of scenarios Q1% and Q99%, 
aggregated to sub-basin and basin levels, as Fig. 3 shows. Moreover, we 
highlighted three time periods in Fig. 3 by the orange boxes, separated 
by the 2033 and 2047 droughts to facilitate the discussion. 

In period (a), from 2019 to 2032, the water stored in the reservoirs is 
sufficient to satisfy water demands, so agents continue to exploit water 
resources (Fig. S4, Supplementary Information). Until 2033, the exces
sive water uses in period (a) and the significantly lower natural flow 
depletes water storage in the basin, resulting in a deep plunge in the 
basin and sub-basin water consumption. Because the reservoirs are 
depleted, agents have to adapt to the reduced water supply in period (b) 
to restore basin storage. We named this period (b) the adaptation period 
for the substantial changes in the water system, although agents in the 
three periods are active learning either for exploiting or conserving 
water resources. In both scenarios, the water consumption in the sub- 
basins shows different patterns: the UB consumption gradually re
covers to the pre-adaptation level, while the LB consumption recovers to 
a lower-than-pre-adaptation level. The LB agents mainly rely on water 
flow release from Lake Mead, which will be low in water storage after 
the 2033 drought, so they need to restrain their water uses. Whereas 
many UB agents have access to the natural flow and can return to their 

Fig. 2. (a) The future natural flow for the coupled model simulation; (b) the counts of shortage years (the annual water flow to Mexico below 1.9 billion m3 is a 
shortage year); and (c) the mean and standard deviation of the total CRB storage. Each scenario is simulated repeatedly 30 times to generate the shortage year counts 
and mean basin storage results. 

Fig. 3. Water consumption results of scenarios Q1% 
(top) and Q99% (bottom). The figures show the 
annual consumption time series lines of the Upper 
Basin (UB, light blue lines), the Lower Basin (LB, blue 
lines), and the total CRB (dark blue lines). Each line 
represents one of the 30 simulations and is stacked to 
represent the uncertainty band. Three periods are 
highlighted by the orange boxes: (a) pre-adaptation, 
(b) adaptation, and (c) post-adaptation. (For inter
pretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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normal water uses as long as the precipitation is within the normal 
conditions. Furthermore, although the UB consumption patterns are 
much alike in the two scenarios, we can see that the UB consumption in 
the Q1% scenario has a higher recovering rate (i.e., the slope of the 
water consumption) than in the Q99% scenario besides the wider band. 

When another severe drought occurs in 2047, it triggers another 
round of adaptation in the CRB and announces the arrival of the post- 
adaptation period (c). Given the experience of the adaptation period 
(b), agents are in a better position to cope with the shortage. Conse
quently, the CRB and the sub-basin water consumption can quickly 
recover to the adaptation period level or higher. The results of the two 
scenarios are very similar in this period, except that the uncertainty 
(measured by the range, i.e., maximum-minimum) is higher in the 
Q99% scenario. This implies that agents in both scenarios may have 
similar water use strategies when the natural flow returns to the normal 
condition, but some agents of the Q99% scenario may learn more 
diverse strategies in the simulations for the wider bandwidth. The dif
ference between Q1% and Q99% is due to our assumptions about 
farmers’ characteristics (i.e., agent parameter values). Fig. 4 shows 31 
agents’ parameter distributions (parameter ranges are normalized to 
0–1 range for the ease of reading) in the two scenarios where the main 
difference lies in ∊ (the probability of taking an exploration action) and 
regrets (a penalty for undersupply). The Q1% scenario’s high exploration 
rate results in the higher consumption variability in periods (a) and (b), 
whereas the low exploration rate and high regret of the Q99% scenario 
can explain the diverging trajectories in period (c). Fig. 4 also demon
strates that the scenario generation process can effectively generate 
distinct agent compositions while maintaining agent heterogeneity. 

Our analysis illustrates that the assumptions about farmers’ adap
tation behaviors can substantially influence system-level water scarcity 
outcomes. However, farmers’ adaptation depends on their perceptions 
of future water availability after shortages and their willingness to adapt 
- both are controlled by the ABM parameters. It is important to note that 
learning and adaptation occur at the farmer (agent) level and can differ 
from farmer to farmer depending on their local environment and 
characteristics. 

3.2. Clustering and principal component analyses for human behavior 
uncertainty assessment 

Following the uncertainty analysis in Section 3.1, we used the 

behavioral sets identified by the performance thresholds as the input 
data for clustering. Each agent has 200 behavioral sets. The analysis 
includes two steps. First, we mapped the behavioral sets to a 2-dimen
sional principal component space using principal component analysis 
(Jolliffe, 1986) for visual presentation and interpretation. The principal 
components (PCs) are linear transformations of the original parameter 
space (normalized to the range of 0 to 1) so that the PCs are linear un
correlated. The PCs are orthogonal directions with the high variance 
numbered conventionally by order of variance explained. Table 2 shows 
the coefficients of the linear transformation function of the two PCs: PC1 
mainly emphasizes the action parameters (μ and σ) and PC2 is related to 
the adaptation parameters (α, γ, ∊ and regret). A variable’s coefficient 
close to zero means that the variable has little contribution to the PC. 
Based on the features of the PCs, we named PC1 “the boldness in action” 
and PC2 “the willingness to adapt.” 

Then, we tested the K-means clustering by setting the number of 
clusters from 2 to 5 and found that three clusters yielded the most 
meaningful results. The clustering performance results are shown in 
Figs. S5 and S6, Supplementary Information. Fig. 5 shows the behavioral 
sets assigned to one of the three clusters: Prudent, Forward-looking, and 
Bold. The clusters’ naming is based on their mean parameter values, 
which are shown at the bottom of Fig. 5. The Prudent agents (orange 
circles) are cautious in adjusting amounts of water use (low μ and σ), 
inclined to conserve water after water shortages (high regret), and more 
willing to explore new strategies (high ∊). The Forward-looking agents 
(blue circles) consider the value of future water (high γ) and deliberate 
in adaptation to environmental changes (low α and ∊). Whereas the Bold 
agents (green circles) prefer making substantial adjustments in their 
water use (high μ, σ, and α) and do not regret nor value future water as 
much (low γ and regret). 

Assuming each parameter set is equally likely to be a good repre
sentation of an agent’s decision-making, we can then calculate the 
probabilities of an agent being assigned to each cluster (Tables S2 and 
S3, Supplementary Information). For example, Fig. 6 (right) shows the 

Fig. 4. The comparison of agents’ parameter values (normalized to [0,1]) applied in Q1% and Q99% scenarios.  

Table 2 
The 2D principal component axes.   

μ σ α γ ∊ regret 

PC 1  0.49  0.71  − 0.06  0.02  − 0.26  − 0.43 
PC 2  0.07  0.00  0.49  − 0.75  0.36  − 0.25  
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Fig. 5. The scatter plot of the clustering results in the 2D principal component space and the mean parameter values of the three clusters. The dark-colored circles are 
multiple circles stacked together. The mean value fields are colored in blue for low values and yellow for high values. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Pie charts of agent classification aggregated to the state level and weighted by agents’ water consumption (left) and two examples of individual agent 
clustering results (right). 
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clustering results of two agents: WY in the UB and WelltonMohawkIDD 
in the LB, and the probabilities are calculated based on the point counts 
of the clusters. The WY sets are mostly assigned to the Bold or Forward- 
looking, while the majority of the WelltonMohawkIDD sets are classified 
as the Prudent. Fig. 6 (left) shows the pie charts of the results, aggregated 
to the state level and weighted by agents’ water consumption in 2018. 
The agents simulated may consist of many farmers in reality, and 
therefore, the classification results are weighted by the water con
sumption when aggregated to the state level. The pie charts show that 
UB agents are likely to be categorized as either the Bold or Forward- 
looking agents, while the LB agents are likely to be assigned to the Pru
dent cluster. The classification and probability analysis of agent type can 
provide qualitative information about farmers’ adaptation behavior. For 
example, an agent may show “prudent” behaviors due to either the 
agent’s own thinking or the institutional constraints. Explicitly 
modeling the institutional constraints can eliminate the latter and help 
us focus on agents’ thinking. This will be a future research direction. 
Additionally, other clustering algorithms may generate different results. 
The comparison of multiple algorithms for better characterization can 
be another future research topic. 

3.3. Morris and Sobol SAs for human behavior model diagnoses 

This section presents the results of two SAs. Due to the high 
computation cost of the ABM evaluation, we limited the sample size for 
the SAs to between 1,000 and 2,000 samples. The model output selected 
for the SAs is the KGE, and the parameters are sampled from the ranges 
listed in Table S1 in Supplementary Information. 

In Morris SA, an insensitive parameter (i.e., a low mean value of EE) 
means that the ABM’s output does not depend on the parameter value – 
any value (in the parameter range) of that parameter would generate a 
similar result. Contrarily, a sensitive parameter (i.e., a high mean value 
of EE) indicates that the ABM performance is sensitive to the parameter 
value. Fig. 7 shows the Morris SA results on a scatter plot, and each circle 
represents a parameter’s EE of an agent (total 186 circles; 31 agents * 6 
parameters). The numerical results are presented in Tables S4 and S5 in 
Supplementary Information. The circles are colored orange and blue to 
indicate the UB and LB agents’ parameters, respectively. We can see that 
the EEs of the parameters vary in a wide range which suggests hetero
geneity in farmers’ characteristics. 

To improve our understanding of agents’ behaviors, we examined 
the historical diversion data. Starting from the extremes, we use Hopi
Tribe and Powers as two examples to explain why ABM performance is 
sensitive or insensitive to the changes in the parameter values. The ABM 

is designed to simulate changes in behavior through adaptive learning. 
Since the HopiTribe shows no obvious changes in its water uses, its 
performance would worsen when the parameters suggest more adapta
tion or a significant change. HopiTribe’s high STD is the result of 
applying a non-linear ABM to predict a rather linear behavior. In 
contrast, the Powers has steady water use and a decreasing trend after a 
significant drop. The ABM training process is to equip an agent with 
initial strategies. In the case of a simple trend, like the Powers, agents 
can easily learn good strategies from training and perform well 
regardless of what the parameter values are. When the ABM performs 
well in capturing a farmer’s adaptation behavior, the parameters 
generally have moderate EEs (0.2–0.4), as shown by MohaveValleyIDD 
in Fig. 7. 

Moreover, we can see that the circles exhibit a linear relationship 
between the means and standard deviations (STDs) of the EE values, 
which implies a scale effect in the parameters’ EE distributions. Large 
STDs also suggest the presence significant non-linear effects (Iooss and 
Lemaître, 2015). Interestingly, the orange circles (i.e., UB agents) also 
show a linear relationship, but some of the circles significantly deviate 
from the linear trend line (Fig. 7). Since performance metric KGE is a 
composite metric of correlation, mean, and variance ratios between 
simulated and observed data, parameters deviated from the trend line 
are indicators of the agents’ complex behaviors that require further 
investigation. 

To investigate what ABM parameters may require further attention, 
we showed the same results color-coded for parameters, instead of sub- 
basins, in Fig. 8. We can see that regret (blue asterisk), ∊ (orange square), 
and α (light blue diamond) are more likely to deviate from the trend line. 
This finding suggests non-linear and non-stationary mechanisms in the 
penalty, exploration, and learning behaviors. In addition, the magnitude 
of the Mean EE values (y-axis) indicates the potential abrupt twists in the 
agents’ historical water consumption patterns. When the observation 
data has an evident change, it is crucial for the model to capture the 
timing of the change. Failure to capture timing can result in a plunge in 
model performance (measured by KGE) because the trajectory would be 
very different. 

Fig. 9 shows the Sobol SA results of the UB agents and the largest five 
agents (in terms of water consumption) in the LB. The numerical results 
are presented in Tables S6 and S7 in Supplementary Information. Since 
Sobol SA is a variance-based method, σ (the standard deviation of the 
water use change) and ∊ (the random exploration rate) are expected to 
have higher first-order Sobol index values. The statement is generally 
true for the LB agents, but the results show that regret and α are also 
important parameters for many UB agents. This finding implies that 

Fig. 7. The mean absolute value and the standard deviation (STD) of agent-parameter EE are colored by sub-basins. The dashed line is the linear trend line of the 
results. The historical water use patterns of the HopiTribe, MohaveValleyIDD, and Powers are three examples of ABM model diagnoses. 
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being able to adapt may be crucial for simulating UB agents’ historical 
water use patterns. Moreover, suppose the parameters do not have sig
nificant interactions (i.e., the higher-order terms are close to 0). In that 

case, the sum of an agent’s first-order indices (and the sum of the total- 
order indices) should be close to 1. Therefore, the sum of the first-order 
indices substantially deviates from 1 is an indicator of strong non- 

Fig. 8. The mean absolute value and the standard deviation (STD) of agent-parameter EE are colored by parameters. The dashed line is the linear trend line of 
the results. 

Fig. 9. The first-order (S1) and total-order (ST) Sobol indices for the UB agents and the top-five agents in the LB. An agent’ parameter values are indicated by 
connected color lines to highlight the value differences between agents. 
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linearity (e.g., UT3 and AZ in the UB and CRIR AZ and YumaMesa IDD in 
the LB). 

The total-order Sobol indices represent the variances contributed by 
a parameter and its interactions with other parameters. This information 
can guide research to reduce the uncertainty of an agent’s simulation 
performance. For example, regret is the most sensitive parameter (in 
terms of the total-order Sobol index) for many UB agents, and if we can 
improve the regret estimations by collecting data and evidence of human 
cognitive thinking, we can significantly reduce the uncertainty in 
modeling UB agents’ adaptation behaviors. For the five LB agents, future 
research should focus on σ and ∊ to improve understanding of agents’ 
water consumption variability and reasons to deviate from the agents’ 
normal water consumption patterns. In addition, from Fig. 9, we can see 
that CO3 and CRIR AZ exhibit very different patterns in both Sobol 
indices compared to other agents in the sub-basin. Further investigation 
of these agents’ behaviors can be one of the future directions. 

When comparing the Morris and Sobol methods results, we observed 
that the two methods identify different sensitive parameters. The first- 
order Sobol indices indicate σ and ∊ as the most influential parame
ters, the total-order Sobol indices highlight regret and α for the UB agents 
and σ for the five LB agents, and the Morris method predicts the agent’s 
parameter EEs in a cluster. These different results of sensitive parame
ters confirm that multiple SA methods should be used to investigate 
ABM efficacy in representing farmers’ adaptation behaviors from mul
tiple aspects. Future research can consider exploring the broad spectrum 
of the SA methods for ABM model diagnosis. 

4. Discussion 

The results of the three analyses can inform policy development and 
shed light on future water management and climate adaptation research 
in the CRB. Below, we discussed the lessons learned from the numerical 
experiments and the limitations. 

4.1. Uncertainty analysis for exploration and improving understanding 

Previously in Section 3.1, we have shown that water storage, short
ages, and consumption uncertainties at basin level can vary with the 
scenarios and ABM parameterization (Figs. 2 and 3). To further inves
tigate the adaptation uncertainty effects at the sub-basin level, we 
summarized the water consumption results of the five scenarios in 
Figs. 10 and 11 and compared the results with the 2018 water con
sumption. The boxplots in Fig. 10 indicate the higher water consumption 
uncertainty in the UB than the LB within and across scenarios. Fig. 11 
shows the time series plots of the UB and LB water consumptions in the 
Q99% scenario stacked on top of the uncertainty band of all five sce
narios as an example of the uncertainty propagation through time. In the 
scenarios (Fig. 10), we can see that the UB water consumption has 
substantial increases, although in varying degrees, while the LB 

consumption is always well below the 2018 consumption level. The 
reasons are twofold. First, the UB water consumption has not yet 
reached the annual allowance of 9.25 billion m3, so the UB agents can 
continue to expand consumption except for the severe drought years (in 
2033, 2043, and 2047; Fig. 11). In contrast, the LB consumption in 2018 
had already reached the 9.25 billion m3 allowance, which left limited 
room for agents to expand their consumption. Second, the severe water 
shortage in 2033 would deplete the basin storage, which would result in 
a serious water security crisis for the LB agents for losing the stable water 
supply from Lake Mead. Moreover, since water in the CRB is originated 
from the mountain area in the UB, the UB agents will have priority ac
cess to the water until its consumption reaches the sub-basin allowance. 
Consequently, the UB agents can continue to increase water consump
tion while the LB agents need to curtail consumption due to the limited 
available water (after 2034, Fig. 11.). However, whether this is an 
economic and equitable distribution of the water resources under these 
shortage conditions may require further discussions and renegotiation 
among the stakeholders in the basin to tackle the water security issues. 

4.2. Policy implications for human adaptation and water scarcity 

The CRB’s first-tier water shortage declaration in August 2021 has 
stirred discussions on water conservation in the seven states. Conse
quently, the water supplies to Arizona and Nevada are reduced by 18% 
and 7% of their total allocations, respectively, starting in 2022, ac
cording to the Drought Contingency Plan. Without substantial actions 
for water conservation, further curtailment would soon be needed, as 
suggested by the simulation results (Fig. 11). Education programs can be 
effective tools to promote water conservation by triggering substantial 
learning that leads to water consumption behavior changes. The coupled 
model can be applied to assess when we need behavior changes to 
happen and to what degree. The learning parameters (α, γ, and regret) in 
our ABM control how quickly agents respond to environmental changes. 
Therefore, we can simulate the desired parameter values and design 
education programs to facilitate the transition. Moreover, the classifi
cation results provide a basis for making assumptions about the evolu
tion of agents’ decision-making in response to the policies. The ABM can 
be applied to assess various policy combinations and assumptions to 
facilitate the discussion about the evolution in farmers’ irrigation be
haviors and design policy accordingly to guide and quicken the 
evolution. 

One example could be some education programs that convert Bold 
agents to Forward-looking or Prudent agents. However, research may be 
needed to further investigate farmers’ attitudes toward climate change 
to reduce the uncertainties in human behavior modeling (including the 
model structure and parameter uncertainties) and design education 
programs to change farmers’ perceptions. The coupled ABM-CRSS is 
suitable for assisting such soft policy designs, as demonstrated in a 
previous study (Hung and Yang, 2021). Although the soft policy alone 

Fig. 10. The UB and LB water consumption uncertainty in the five scenarios. For comparison, the 2018 sub-basin water consumptions (dashed lines) are added to the 
subfigures as references. 
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may not solve the water scarcity problem, it can delay the decline in 
water storage for policymakers to generate solutions such as water right 
allocation renegotiation and water markets. 

If the basin continues to stay in drought conditions due to climate 
change, renegotiation of the water allocation will be needed for adap
tation (Gerlak et al., 2021; Udall and Overpeck, 2017). One can only be 
proactive in tackling the water scarcity problem if one recognizes that 
the decline in water supply is ongoing and not temporary. Furthermore, 
the timing of the actions is critical. Early actions to conserve water will 
help maintain reservoir storage at a more resilient level for climate 
adaptation and renegotiation. Failing to act promptly will cause an 
increased risk of depleting reservoirs (as Fig. S4 shows) and drive the 
basin to intense competition among water users. Our results suggest that 
it may be time to shift the water management paradigm from “supply- 
focus” to “risk-focus” to strengthen CRB’s adaptation capacity. 

4.3. Limitations and future research directions 

The ABM applied in this study simulates human decision-making as 
stochastic processes to account for the inherent randomness and our 
insufficient knowledge about human behavior. Since the historical data 
is merely a single realization of many possibilities, the ABM parame
terization should be viewed as an assumption of how agriculture irri
gation consumption patterns may change in the future. In the 
uncertainty analysis (Fig. 3), we showed the extent of future water 
consumption in the CRB could differ from the historical pattern. The 
results can serve as a basis for future discussions on climate change 
adaptation and water resources management. Additionally, the 
modeling results indicate that farmers would actively conserve water 
after substantial water shortages (box b in Fig. 3). However, in reality, 
whether the water supply cuts starting in 2022 can trigger farmers’ 
adaptation for water conservation and synchronize the co-evolution of 
the human and natural systems in the CRB still need to be verified. In 
fact, studies of human behavioral modeling should be continuous and 
adaptive. With new data and research findings becoming accessible, we 

will be able to reduce the water scarcity uncertainty, validate the results, 
and improve the model’s prediction. Regional survey and interview 
studies can be a complement to the clustering and sensitivity analyses 
and improve our understanding to reduce epistemic uncertainties. 

From the technical perspective, we summarize four future directions 
for quantifying and managing uncertainties in ABMs. First, sensitivity 
analyses for coupled ABM-CRSS are computationally expansive for the 
exponential growth in simulations with the increase of parameters. 
Future works can consider developing fully integrated models and uti
lizing High-Performance Computing to improve the accuracy of the 
sensitivity indices. 

Second, many sampled parameter sets performed poorly in the case 
study due to the model structure uncertainty, and including these 
parameter sets can obscure the implications of the analysis. Studies 
suggest applying screening methods to refine behavioral parameter 
space (Pianosi et al., 2016; Wagener and Pianosi, 2019), yet methods 
that systematically generate the behavioral parameter space are still not 
seen in the literature, except for the simple threshold method (Pap
penberger et al., 2008). Developing screening methods for sensitivity 
analyses is one of our future directions. 

Third, the results of the clustering analysis may not always be clear- 
cut. For example, the agents (circles in Fig. 5) located next to the cluster 
borderlines may exhibit significantly different behaviors than those 
agents close to the centroid of that cluster. The ambiguity may be 
partially attributed to the limitations of the K-means clustering method. 
Future research will apply more sophisticated clustering algorithms, 
such as Gaussian Mixture Models (Reynolds et al., 2000), to further 
explore the farmers’ characterization. 

Finally, our ABM only considers agriculture water use uncertainty 
and does not include other uncertainties in human systems, such as 
population growth, crop selections, irrigation practices, agriculture 
yields, and food preference. Future research may incorporate other de
cisions and uncertainties in human systems modeling. Additionally, we 
will consider investigating the impacts of current buy-and-dry practices 
and water leasing in the CRB on water resources management in the long 

Fig. 11. The annual water consumption uncertainty in the Q99% scenarios stacked on the consumption uncertainty band of all scenarios. The 2018 sub-basin water 
consumptions (dashed lines) are plotted as references. 
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run. 

5. Conclusions 

The Colorado River Basin (CRB) is a complex, non-linear, stochastic, 
and dynamic coupled human-natural system. While those features are 
recognized in the literature (Sivapalan et al., 2012; Vogel et al., 2015), 
most modeling studies have focused on the hydrological processes and 
overlooked the importance of the human counterpart. Such compro
mises in model development are inevitable due to the presence of high 
complexity and deep uncertainty (Hadjimichael et al., 2020b; Quinn 
et al., 2020). With the looming water crisis in the basin, it is critical to 
incorporate the human response and manage the water scarcity uncer
tainty in developing climate adaptation policy. This paper complements 
the existing natural process-focused studies by investigating human- 
water system interactions and the uncertainties in the human system 
with three numerical experiments: uncertainty, clustering, and sensi
tivity analyses. Our contributions include quantifying water scarcity 
uncertainty in the CRB caused by human adaptation, exploring farmers’ 
decision-making typology based on historical data, and identifying op
portunities to reduce model structure and parameter uncertainties in 
human behavior modeling. 

The results of the uncertainty analysis reveal the escalating water 
scarcity and an urgent need for changes in water management in the 
basin. The clustering analysis provides probabilistic information on 
farmers’ irrigation behavior characterization in the CRB. Moreover, our 
results indicate that farmers in the Upper Basin tend to change their 
water uses in response to climate signals, whereas, in the Lower Basin, 
farmers are more cautious in adjusting their water uses. Our findings in 
clustering analysis suggest that water conservation programs can be 
more effective if we tailor management programs based on farmers’ 
characteristics. The sensitivity analyses highlight the opportunity for 
future research on human behavioral modeling in the CRB. Findings 
from the Morris SA indicate a need to review the ABM structure for 
agents with highly sensitive or insensitive parameters (e.g., HopiTribe 
and Powers). Whereas the Sobol SA quantifies individual parameters’ 
contribution to the outcome uncertainty, thus signifying the potential 
for uncertainty reduction. Although the results of these analyses may not 
be directly applicable to policy-making yet, they form a foundation for 
policy discussion regarding human response and adaptation. 

Furthermore, modeling human adaptation and quantifying the un
certainty of the co-evolution in coupled human-natural systems are 
critical research fields for coping with water scarcity issues in major 
river basins. We demonstrated that the uncertainty, clustering, and 
sensitivity analyses could be applied to coupled human-natural system 
models to quantify and manage the uncertainty. Our immediate future 
work will focus on improving human behavior modeling and scenario 
selection design for water scarcity uncertainty analysis. Another future 
research direction is to include climate uncertainty to provide a holistic 
view of water scarcity in the CRB. 
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